Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

COMPUTER
GRAPHICS
USING

JAVA

2D AND 3D

HONG ZHANG
DANIEL LIANG

Nest b |

Next b |

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

Computer Graphics Using Java™ 2D and 3D
by Hong Zhang, Y. Daniel Liang - Armstrong Atlantic State University

Publisher: Prentice Hall

Pub Date: December 06, 2006

4~ |Print ISBN-10: 0-13-035118-0

% 1| Print ISBN-13: 978-0-13-035118-0

Ld eText ISBN-10: 0-13-232920-4
eText ISBN-13: 978-0-13-232920-0

Pages: 632

Overview

This Java based graphics text introduces advanced graphic features to a student audience mostly trained in the
Java language. Its accessible approach and in-depth coverage features the high-level Java 2D and Java 3D APIs—
offering an elegant and easy-to-understand presentation of 2D and 3D graphics without compromising the
fundamentals of the subject.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page iii]

Copyright

[Page iv]
Library of Congress Cataloging-in-Publication Data

Zhang, Hong.
Computer graphics using Java 2 and 3D / Hong Zhang, Y. Daniel Liang
p.cm.
Includes index.
ISBN 0-13-035118-0
1. Java (Computer program language) 2. Computer graphics. I. Liang, Y. Daniel. II.
Title

QA76.73.138243 2006
005.13'3—dc22
2006049804

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Dunkelberger

Associate Editor: Carole Snyder

Editorial Assistant: Christianna Lee

Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Production Editor: Donna Crilly

Director of Creative Services: Paul Belfanti

Creative Director: Juan Lopez

Art Director and Cover Manager: John Christiana

Interior Design: JMC Desig

Cover Design: Kiwi Design

Managing Editor, AV Management and Production: Patricia Burns
Art Editor: Xiaohong Zhu

Director, Image Resource Center: Melinda Reo

Manager, Rights and Permissions: Zina Arabia

Manager, Visual Research: Beth Brenzel

Manager, Cover Visual Research and Permissions: Karen Sanatar
Manufacturing Manager, ESM: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell

Executive Marketing Manager: Robin O'Brien

Marketing Assistant: Mack Patterson

Cover Image: Albert J Copley / Photodisc Green / Getty Images, Inc.
Chapter Opener Image: Philip Colmentz / Brand X Pictures

PEARSOMN

|

Prentice
Hall

© 2007 Pearson Education, Inc.
Pearson Prentice Hall

Pearson Education, Inc.

Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission
in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.
All other trademarks or product names are the property of their respective owners.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The
author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or
the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Printed in the United States of America

10987654321

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de C.V.

Pearson Education—Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

[Page v]
Dedication
To My Parents, Xuemei Sun and Zhongyi Zhang
—HZ
To Samantha, Michael, and Michelle

—YDL

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page xi]
Preface

On March 3, 2001, the first Oscar of the new millennium was awarded to three computer scientists, Rob Cook,
Loren Carpenter, and Ed Catmull, "for their significant advancements to the field of motion picture rendering as
exemplified in Pixar's 'RenderMan.™ This incredible event symbolizes the emergence of computer graphics and its
applications, once an esoteric research subject, as an essential part of the digital community. The rapid
development of computer hardware, graphical applications, and network technologies has made computer
graphics indispensable in mainstream computing.

Modeling and rendering virtual graphics objects with digital computers are the main objectives of computer
graphics. The topics involved in this process span a wide range of disciplines from mathematics and computer
science to psychology and arts. From the big model of the universe to the small details of rasterizing a graphical
primitive, sophisticated and ingenious methods, algorithms, and paradigms have been developed to address the
problems of modeling and rendering in computer graphics. A thorough treatment of this subject, therefore, would
require a broad and deep coverage of many related areas. A traditional computer graphics course, due to its
complexity and mathematical sophistication, is usually beyond the scope of a standard undergraduate computer
science curriculum.

However, we believe that the new technological developments and the availability of well-designed and easy-to-
use graphics programming packages have made an elementary graphics course feasible. This development is
analogous to the evolution of programming languages. Programming used to be a very tedious task when only
low-level languages such as machine instructions were available. The development of high-level languages freed
programmers from the low-level technical details. Programs at the more abstract levels are much more
manageable and logical. The performance loss due to the abstraction has become negligible with the
improvement of hardware and compiler technologies. Most programmers today may never need to program in
machine or assembly languages. Computer graphics programming is going through a similar process. High-level,
portable systems are rapidly replacing the tedious low-level approaches in many aspects of computer graphics.
The rapid development of hardware technologies is also erasing the performance gap.

The primary focus of this book is the fundamental concepts of computer graphics and applications of Java 2D and
Java 3D to graphics programming. Rather than studying the technical details of low-level implementations, we
will emphasize the techniques of developing practical applications using existing graphics packages. This approach
enables us to provide an introductory computer graphics text that is accessible to undergraduate computer
science and engineering students and most computer professionals.

Java 2D and Java 3D are the ideal graphics packages for such a purpose. They are high-level comprehensive
graphics packages that offer a much-needed layer of abstraction. They are also platform independent and provide
state-of-the-art graphics programming capabilities.

Java 2D and Java 3D are parts of the Java platform. Java is a relatively new programming language, yet it has
quickly gained popularity because of its unique characteristics and features, such as platform independence,
simplicity, and object-oriented programming support. Java 2D and Java 3D provide powerful, natural, and object-
oriented interfaces for graphics modeling and rendering.

This book is intended for students and computer professionals who want to learn basic computer graphics
concepts and techniques and to get started in programming with Java 2D and Java 3D. However, it is not just
another tutorial on Java 2D or Java 3D. Its purpose is to introduce the fundamentals of computer graphics to the
readers, and the powerful Java packages serve as useful and convenient tools to achieve the goal.

[Page xii]

The prerequisite of this book is a basic knowledge of programming with Java, including GUI programming (AWT
and Swing). Appendix B, "GUI Programming with AWT and Swing," illustrates the differences in programming
with AWT and Swing components. Basic mathematical courses in geometry and linear algebra will be helpful but
are not required. Appendix A, "Mathematical Background for Computer Graphics," provides a brief review of some
relevant mathematical concepts.

Companion Website
The companion website at www.cs.armstrong.edu/liang/graphics contains the following resources:
e Answers to review questions
e Solutions to even-numbered programming exercises
e Source code for the examples in the book
e Resource links

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.cs.armstrong.edu/liang/graphics

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
e Errata

Instructor Resource Website

The Instructor Resource website accessible from www.prenhall.com/liang or
www.cs.armstrong.edu/liang/graphics contains the following resources:

e Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted source code and
to run programs without leaving the slides.

e Sample exams.

e Solutions to all the exercises. Students will have access to the solutions of even-numbered exercises in the
book's companion website.

Some readers have requested the materials from the Instructor Resource Website. Please understand that these
are for instructors only. Such requests will not be answered.

Acknowledgments

The computer science department at Armstrong Atlantic State University is a great place to work. We thank Ray
Greenlaw and our colleagues at Armstrong Atlantic State University for their support of this book.

Our thanks to anonymous reviewers and our students for their critics, comments, and suggestions, which have
greatly improved this book.

It is a great pleasure and privilege to work with the legendary computer science team at Prentice Hall. We thank
Marcia Horton, Tracy Dunkelburger, Robin O'Brien, Christianna Lee, Jennifer Cappello, Barrie Reinhold, Mack
Patterson, Vince O'Brien, Camille Trentacoste, Donna Crilly, Xiaohong Zhu, and their colleagues for organizing,
managing, and promoting this project, and Robert Lentz for copy editing.

Hong Zhang (hong@armstrong.edu)
Y. Daniel Liang (liang@armstrong.edu)
www.cs.armstrong.edu/liang/graphics

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.prenhall.com/liang
http://www.cs.armstrong.edu/liang/graphics
mailto:hong@armstrong.edu
mailto:liang@armstrong.edu
http://www.cs.armstrong.edu/liang/graphics

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 1]
Chapter 1. Overview of Computer Graphics

(This item omitted from WebBook edition)

Objectives
e To understand the basic objectives and scope of computer graphics.
e To identify computer graphics applications.
e To understand the basic structures of 2D and 3D graphics systems.
e To understand evolution of graphics programming environments.
e To identify common graphics APIs.
e To understand the roles of Java language and the Java 2D and Java 3D packages.

e To identify fields related to computer graphics.

[Page 2]

1.1. Introduction

Computer graphics studies the theory and techniques of modeling, processing, and rendering of graphical objects
in computers. The basic objective of computer graphics is to build a virtual world of graphics objects and to render
a scene of the virtual model from a specific view onto a graphic device, as shown in Figure 1.1.

Figure 1.1. Main tasks of computer graphics: modeling a virtual world and rendering a scene.

{,'-"‘ff -a__‘, _‘\

,,-—’:i \—Pf? ﬁ .L Rendering ‘1{? U
{ “3
N |)

: e Image of a scene

A graphics system typically consists of two major components: a modeler and a renderer. The modeler is
responsible for the construction of the virtual world models and the renderer performs the rendering of a scene. A
"retained-mode" system maintains a persistent model of graphics objects and the modeler's function is explicit.
An "immediate-mode" system renders the objects immediately and the model is more transient. This view of the
modeling-rendering paradigm is convenient for studying graphics systems, even if the separation may not be
clear in some systems.

Typically the graphics objects to be modeled are in either a 2D or a 3D space. This common space to host all the
graphics objects is often called the world space. A rendered scene of the world space, the main output of a
graphics system, is typically in a 2D form. Consequently the techniques involved in 2D and 3D graphics are
considerably different. Because 3D graphics problems are significantly more complex, 2D and 3D graphics are
often treated as separate topics.

The graphics objects to be modeled in a world space are usually geometric entities such as lines and surfaces, but
they also include other special objects such as lights, texts and images. The graphics objects may possess many
characteristics and properties such as color, transparency and texture.

Various mathematical representations are used to model geometric objects. Straight-line segments and simple
polygon meshes provide simple and compact representations. Only the vertices of the structures need to be
stored and they are easy to implement. More sophisticated representations include spline curves and surfaces.
They are versatile and require only the storage of relatively few control points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Geometric transformations are applied to the objects to achieve the proper placement of the objects in the virtual
space. Transformations of this type are called object transformations. Transformations are also used for the
viewing; these are known as viewing transformations. A useful family of the geometric transforms is the affine
transforms, which include the most common types such as translations, rotations, scalings and reflections. A
more general set of transforms, the projective transformations, are useful for 3D viewing.

A view is used to see the model in the virtual world from a specific perspective. A 2D viewing process is relatively
simple. The viewing transformation is usually indistinguishable from the object transformation. Rendering
features such as composition rules and clipping paths may be applied. A 3D view is much more complicated. Like
eyes or cameras, 3D viewing involves a projection process that maps 3D objects to a 2D plane. Many parameters
such as the projection, view position, orientation, and field of view could affect the 3D rendering.

[Page 3]

In order to achieve a realistic rendering of the virtual world, numerous rendering issues need to be addressed.
Relative locations of the objects need to be correctly reflected in the rendered images. For example, an object
may be hidden behind another object, and the hidden portion should not be shown in the image. Light sources of
various characteristics should be considered. The properties of the materials of the objects will affect the
appearance. Many of the methods for solving the problems have significant computational demands.

The capabilities and characteristics of hardware devices have great impact on graphics systems. The most
common output devices for displaying the results of the graphics rendering are video monitors and printers. Other
output devices include plotters and holographic projectors. For input devices, mice, joysticks and tablets with pens
are widely available. There are also more sophisticated input devices and sensors such as six-degree-of-freedom
trackers.

Animation is also an important part of computer graphics. Instead of still images, animation produces dynamic
graphics contents and rendering. In applications such as movie-scene rendering and gaming, animation plays a
crucial role. Another dynamic aspect of computer graphics is interaction. In response to user inputs, the graphics
model may change accordingly. The fundamental principle of GUI (graphical user interface) is based on the user
interactions with graphics systems. Another example of extensive application of interaction is video games.

Computer graphics has a wide range of applications. The popularity of GUI environments has made graphics an
integral part of ordinary user programs. CAD (computer-aided design) and other engineering applications depend
heavily on graphics systems. Data visualization and other scientific applications also make extensive use of
graphics. With the rapid development of new computer-based instrumentation such CT (computer tomography),
PET (positron emission tomography), and MRI (magnetic resonance imaging), medical systems have increasingly
employed computer graphics technologies. Computer graphics is also a crucial ingredient in video games and
other entertainment applications.

Traditionally computer graphics has to deal with implementation details, using the low-level algorithms to convert
primitives such as lines to pixels, to determine the surfaces hidden from the view, to calculate the color values of
points on a surface, and so on. These algorithms and methods have made the subject technically difficult and
complex. In this book we shall rely on the Java 2D and Java 3D packages to avoid dealing with most of the low-
level details directly. This will enable us to focus on the big picture of modeling and rendering problems in
graphics, rather than the tedious implementation details.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 3 (continued)]

1.2. Evolution of Computer Graphics Programming

Graphics programming has appeared in almost every level of computer architecture. Generally it is moving from
low-level, platform-dependent methods toward abstract, high-level, and portable environments.

Figure 1.2 gives examples of graphics programming environments at various levels of computer architecture. The
subsections that follow discuss the characteristics of graphics programming at the different levels.

Figure 1.2. Graphics programming at different levels.

Platform independent (Java 2D and Java 3D)

Graphics standard (GKS, PHIGS, OpenGL)

0S (WIN32, X, Mac OS)

Hardware (direct register/video buffer programming)

[Page 4]
1.2.1. Hardware Level

Computer graphics programs depend on output devices with graphical capabilities. The most common display
devices for computer graphics are CRT (cathode ray tube) monitors and LCD (liquid crystal display) panels. These
are 2D raster devices that provide a display surface consisting of a rectangular array of discrete dots. A display
device of this kind is usually driven by a dedicated graphics board with its own processor and memory.

Lower-level graphics applications often program the graphics hardware directly. In the popular environment of
personal computers running MS-DOS, for example, most graphics applications directly access the display memory.
Even though BIOS and DOS provide certain primitive support for graphics functions, they are considered too slow
for graphics-intensive programs. Such programs are typically written in assembly language and manipulate the
hardware registers and video buffers in a highly machine-dependent way.

Listing 1.1 gives an assembly program that demonstrates low-level graphics programming. It uses Microsoft
Macro Assembler and can be executed on any IBM PC compatible machine with a VGA graphics card. It draws a
circle by directly writing to the memory locations of the video buffer. An ideal circle centered at the origin has the
equation:

X2+ y2 = R2

A computer monitor only displays discrete pixels. Therefore a set of pixels approximating the curve must be
computed. Only one-eighth of the circle needs to be calculated; other portions can be obtained through
symmetry. As illustrated in Figure 1.3, the algorithm generates a series of pixels close to the curve. Consider the
top right arc of the circle. Starting from the top pixel (x = 0, y = R), the algorithm attempts to obtain the next
pixel to the right of the current one. There are only two possible directions of movement: "east" or "southeast."
Between the two pixels, the one closer to the curve is selected. The two cases can be decided by testing the
midpoint (x + 1, y - 0.5). If the midpoint is inside the circle, the "east" pixel should be chosen; if it is outside, the
"southeast" pixel is the closer one. The equation of the circle is used to perform the test. By using certain
difference variables, the actual operations of the test can be further simplified to only integer additions.

Listing 1.1. Circle.asm
(This item is displayed on pages 4 - 7 in the print version)

1 .model small,stdcall

2 .stack 100h

3 .386

4

5 .data

6 saveMode BYTE ? ; saved video mode
7 xc WORD ? ; center x

8 yc WORD °? ; center y

9 x SWORD *? ; x coordinate
10 y SWORD ? ; y coordinate
11 dE SWORD *? ; east delta
12 dSE SWORD *? ; southeast delta
13 w WORD 320 ; screen width
14
15 .code

16 main PROC

17 mov ax,@data

18 mov ds,ax

19
20 ;Set Video Mode 320X200

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

21 mov ah, OFh ; get current video mode
22 int 10h
23 mov saveMode, al ; save mode
24
[Page 5]
25 mov ah,0 ; set new video mode
26 mov al,13h ; mode 13h
27 int 10h
28
29 push 0AOO0Oh ; video segment address
30 pop es ; ES = A00Oh (video segment)
31
32 ;Set Background
33 mov dx, 3c8h ; video palette port (3C8h)
34 mov al,0 ; set palette index
35 out dx,al
36
37 ;Set screen background color to dark blue
38 mov dx,3c9h ; port address 3C9h
39 mov al,0 ; red
40 out dx,al
41 mov al,0 ; green
42 out dx,al
43 mov al, 32 ; blue (32/63)
44 out dx,al
45
46 ; Draw Circle
47 ; Change color at index 1 to yellow (63,63,0)
48 mov dx, 3c8h ; video palette port (3C8h)
49 mov al,l ; set palette index 1
50 out dx,al
51
52 mov dx,3c%h ; port address 3C9h
53 mov al, 63 ; red
54 out dx,al
55 mov al, 63 ; green
56 out dx,al
57 mov al,0 ; blue
58 out dx,al
59
60 mov xc,160 ; center of screen
6l mov yc,100
62
63 ; Calculate coordinates
64 mov x, 0
65 mov y, 50 ; radius 50
66 mov bx, -49 ; l-radius

67 mov dE, 3
68 mov dSE, -95

69

70 DRAW:

71 call Draw Pixels ; Draw 8 pixels
72

73 cmp bx, 0 ; decide E or SE

74 jns MVSE

75

76 add bx, dE ; move east

77 add dE, 2
78 add dSE, 2

79 inc x

80 jmp NXT

81 MVSE:

82 add bx, dSE ; move southeast

83 add dE, 2
84 add dSE, 4

85 inc x
[Page 6]
86 dec vy
87 NXT:
88 mov cx, X ; continue if x < y
89 cmp CcxX, VY
90 jb DRAW
91
92 ; Restore Video Mode
93 mov ah,10h ; wait for keystroke
94 int 16h
95 mov ah,0 ; reset video mode
96 mov al, saveMode ; to saved mode
97 int 10h
98
99 LEXIT
100 main ENDP
101

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
102 ; Draw 8 pixels symmetrical about the center

103 Draw_Pixels PROC

104 ; Calculate the video buffer offset of the pixel.
105 mov ax, ycC

106 add ax, y

107 mul w

108 add ax, xc

109 add ax, x

110 mov di, ax
111 mov BYTE PTR es:[di],1l; store color index
112 ; Horizontal symmetrical pixel

113 sub di, x

114 sub di, x

115 mov BYTE PTR es:[di],1l; store color index
116 ; Vertical symmetrical pixel

117 mov ax, ycC

118 sub ax, vy

119 mul w

120 add ax, xc

121 add ax, x

122 mov di, ax

123 mov BYTE PTR es:[di],1l; store color index
124 ; Horizontal pixel

125 sub di, x

126 sub di, x

127 mov BYTE PTR es:[di],1l; store color index
128 ; Switch x, y to get other 4 pixels

129 mov ax, yc

130 add ax, x

131 mul w

132 add ax, xc

133 add ax, y

134 mov di, ax

135 mov BYTE PTR es:[di],1l; store color index
136 sub di, vy

137 sub di, y

138 mov BYTE PTR es:[di],1l; store color index
139 mov ax, yc

140 sub ax, x

141 mul w

142 add ax, xc

143 add ax, vy

144 mov di, ax

145 mov BYTE PTR es:[di],1l; store color index

[Page 7]

146 sub di, y
147 sub di, vy
148 mov BYTE PTR es:[di],1l; store color index

149

150 ret

151 Draw_ Pixels ENDP
152

153 END main

Figure 1.3. Determination of the pixels on a circle. From the current pixel, the next pixel will be
either to the "east" or to the "southeast.”

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

N
WA

The program first saves the current video mode and switches to mode 13h by using the BIOS interrupt 10h (line
27). The video mode 13h is an easy-to-use graphics mode with 320 by 200 pixels and 256 colors. Each pixel color
is represented by a byte value in the video buffer starting from the segment address AOOOh. Each byte value is a
color index to represent a color given in a color table. Because the aspect ratio of this mode does not match that
of a standard monitor, the display may appear to be stretched vertically and the circle may actually appear as an
ellipse.

The background color of the screen is set to a dark blue by writing to the register at port address 3c9n (lines
3844). The color to the circle is set to yellow (lines 48¢58).

The circle is centered at the middle of the screen and has a radius 50. The variables (xc, yc) define the center. A
loop starting at the label praw (line 70) is set to calculate and draw the pixels approximating the circle. The
variables (x, y) represent current pixel coordinates. The variables dt and dsk represent differences used for
deciding the next move. The loop calls the procedure braw Pixels to draw the current pixel and seven other
pixels in the symmetrical positions. It decides the movement for the next pixel and updates the variables. The
loop terminates when the calculation of one-eighth of the circle is completed.

The Draw Pixels procedure (line 103) draws eight pixels corresponding to the current calculation. It writes a
color index to the memory locations corresponding to the pixels. A calculation of the proper offset in the video
buffer is necessary because the memory addresses of the pixels are organized linearly:

offset = 320*x + y

[Page 8]

The video buffer starts from the segment address 2000h, which is placed in the register Es. To draw a pixel, the
pixel offset is calculated and placed in D1. The color index (the yellow color index 1 in this case) is directly written
to the memory address.

After the circle is drawn, the program waits for a keystroke from the user, using an interrupt 16h. Upon receiving
the keystroke, it will then restore the video mode and terminate.

1.2.2. Operating-System Level Support

The low-level graphics infrastructures provide basic facilities for programming the displays. However, directly
programming video buffers and hardware registers is not an effective approach for general graphics applications.
As illustrated in the previous section, programming at the hardware level requires intimate knowledge of the
devices. It is tedious even for simple tasks. Programs written at this level are not portable, even for different
devices in the same platform.

High-level programming interfaces are needed to ease the burden of graphics programming. Because of the
inherent complexities in graphics problems, it is certainly desirable to provide a layer of abstraction for application
programming. One natural place to add the abstraction is the operating system.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
With the development and widespread application of graphical user interface (GUI) in modern computer systems,
graphics support in operating systems has become common and extensive. Graphics APIs (application
programming interfaces) provided at the operating-system level offer a uniform interface for graphics
programming within the same platform. Typically hardware differences are accommodated by using device-specific
software drivers. A software driver implements a standard interface with the operating system for a particular
device. Application programs only need to call standard graphics functions provided by the operating system and
do not have to deal with hardware specifics.

WIN32 is the API for 32-bit Windows operating systems such as Windows 9x/ME/NT/2000/XP. The code example
in Listing 1.2 shows a WIN32 program that draws a circle (Figure 1.4). This example is a simple Windows
program written in the C language. The program creates a standard window and calls WIN32 API directly to draw
a circle in the client area of the main program window. The circle is centered in the window and the size is
adjusted automatically if the window is resized.

Listing 1.2. WinCircle.c
(This item is displayed on pages 8 - 10 in the print version)

1 #include <windows.h>
2 #include <string.h>
3
4 LRESULT CALLBACK
5 MainWndProc (HWND hwnd, UINT nMsg, WPARAM wParam, LPARAM lParam) {
6 HDC hdc; /* Device context used for drawing */
7 PAINTSTRUCT ps; /* Paint structure used during drawing */
8 RECT rc; /* Client area rectangle */
9 int cx; /* Center x-coordinate */
10 int cy; /* Center y-coordinate */
11 int r; /* Radius of circle */
12
13 /* Message processing.*/
14 switch (nMsg) {
15
[Page 9]
16 case WM DESTROY:
17 /* The window is being destroyed, close the application */
18 PostQuitMessage (0);
19 return 0;
20
21 case WM PAINT:
22 /* The window needs to be redrawn. */
23 hdc = BeginPaint (hwnd, &ps);
24 GetClientRect (hwnd, é&rc);
25 /* Calculate center and radius */
26 cx = (rc.left + rc.right)/2;
27 cy = (rc.top + rc.bottom)/2;
28 if (rc.bottom - rc.top < rc.right - rc.left)
29 r = (rc.bottom - rc.top) / 2 - 20;
30 else
31 r = (rc.right - rc.left) / 2 - 20;
32
33 Ellipse (hdc, cx-r, cy-r, cx+r, cy+r);
34
35 EndPaint (hwnd, &ps);
36 return 0;
37
38 }
39
40 return DefWindowProc (hwnd, nMsg, wParam, lParam);
41 }
42
43 int WINAPI
44 WinMain (HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmd, int nShow) {
45 HWND hwndMain; /* Main window handle */
46 MSG msg; /* Win32 message structure */
47 WNDCLASSEX wndclass; /* Window class structure */
48 char* szMainWndClass = "WinCircle"; /* The window class name */
49
50 /* Create a window class */
51 /* Initialize the entire structure to zero */
52 memset (&wndclass, 0, sizeof (WNDCLASSEX)):;
53
54 /* The class Name */
55 wndclass.lpszClassName = szMainWndClass;
56
57 /* The size of the structure. */
58 wndclass.cbSize = sizeof (WNDCLASSEX) ;
59
60 /* All windows of this class redraw when resized. */
61 wndclass.style = CS_HREDRAW | CS_VREDRAW;
62
63 /* All windows of this class use the MainWndProc window function. */

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

64 wndclass.lpfnWndProc = MainWndProc;

65

66 /* This class is used with the current program instance. */
67 wndclass.hInstance = hInst;

68

69 /* Use standard application icon and arrow cursor */

70 wndclass.hIcon = LoadIcon (NULL, IDI APPLICATION) ;

71 wndclass.hIconSm = LoadIcon (NULL, IDI APPLICATION);

72 wndclass.hCursor = LoadCursor (NULL, IDC ARROW) ;

73 B

[Page 10]

74 /* Color the background white */

75 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH) ;
76

77 /* Register the window class */

78 RegisterClassEx (&wndclass);

79

80 /* Create a window using the window class */

81 hwndMain = CreateWindow (

82 szMainWndClass, /* Class name */

83 "Circle", /* Caption */

84 WS_OVERLAPPEDWINDOW, /* Style */

85 CW_USEDEFAULT, /* Initial x (use default) */
86 CW_USEDEFAULT, /* Initial y (use default) */
87 CW_USEDEFAULT, /* Initial x size (use default) */
88 CW_USEDEFAULT, /* Initial y size (use default) */
89 NULL, /* No parent window */

90 NULL, /* No menu */

91 hInst, /* This program instance */
92 NULL /* Creation parameters */

93)i

94

95 /* Display the window */

96 ShowWindow (hwndMain, nShow) ;

97 UpdateWindow (hwndMain) ;

98

99 /* The message loop */
100 while (GetMessage (&msg, NULL, 0, 0)) {
101 TranslateMessage (&msg);
102 DispatchMessage (&msq) ;
103 }
104 return msg.wParam;
105 }

Figure 1.4. A WIN32 program in C displaying a circle.

=

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
[Page 11]

This is a typical C program for WIN32 APIL. The winMain function (line 44) is the entry point of the program. In
the method a window class named "WinCircle" is created with a set of commonly used options. The window class
is then registered with Windows. A window is created based on the registered window class. The window is
displayed and updated.

As in most GUI environments, Windows programming follows an event-driven model. Messages are sent to a
window and the message handler of the window performs certain actions in response to a message. The loop near
the end of winMain function is a standard message loop which is set up to dispatch the messages received.

The function MainwWndProc (line 5) is the window procedure responsible for handling the message events of the
window. It is a callback function specified in the definition of the window class. In this example, it handles two
types of messages: wM DESTROY, Which is usually sent when the user tries to close the window, and WM PAINT,
which is sent when the system attempts to repaint the window. If a wM DESTROY message is received, the handler
terminates the program by posting a quit message. When a wM_PAINT message is received, the handler draws a
circle in the window. The drawing is done through a device context obtained by a call to the BeginPaint function.
The Ellipse function (line 33) draws a circle when the width and the height are the same. The Endpaint
function ends the drawing. The center and radius of the circle are calculated based on the size of the window
client area, which is obtained by calling the function GetClientRect.

1.2.3. GKS and PHIGS

Graphics programming based on operating-system APIs is a major step forward from hardware-level approaches
in terms of device independency and convenience. However, graphics programs that rely on operating-system
functions are certainly not portable across platforms. Microsoft Windows and Mac OS, for example, are both
operating systems with graphical user interfaces (GUI). However, their APIs are different and incompatible at the
level of system calls.

It is easy to see the advantages of a standard interface for graphics programming. A graphics programming
standard will provide a layer of abstraction necessary for device and platform independence. In the short history
of computer graphics, several graphics standards have risen to the prominence. Graphics Kernel System (GKS) is
the first international standard for computer graphics. GKS (ISO 7942 1985) is a standard for 2D graphics. It
specifies basic graphics functions independent of computer platforms. Several levels are defined to accommodate
different capabilities of the hardware systems. A specific implementation of GKS in a programming language will
certainly require a syntax definition appropriate for the language. A language binding is used to define the specific
format of GKS in the programming language. The most common language binding for GKS is FORTRAN. Other
language bindings such as Pascal and C are also available.

GKS-3D (ISO 8805 1988) is an extension of GKS to support 3D graphics. GKS and GKS-3D APIs are designed
mainly for drawing individual objects with certain attributes. They are useful for static unstructured graphics
primitives, but they do not directly support more complex graphics models.

PHIGS (Programmer's Hierarchical Interactive Graphics System, ISO 9592 1991) is a graphics standard similar to
GKS. PHIGS and PHIGS+ include the capabilities of GKS, even though they are not strict supersets of GKS. They
have additional functionalities for hierarchical organizations of graphics primitives and dynamic editing.

Listing 1.3 demonstrates GKS programming in the FORTRAN binding. The simple FORTRAN program draws a red
circle using a GKS polyline primitive (Figure 1.5). The points on the circle are calculated with high-level
trigonometric functions provided by FORTRAN.

[Page 12]

X
1]

Xg + rcos6

Yo + rsin @

<
1l

Listing 1.3. circle.f

1 PROGRAM CIRCLE

2 C

3 C Define error file, Fortran unit number, and workstation type,
4 C and workstation ID.

5 C

6 PARAMETER (IERRF=6, LUNIT=2, IWTYPE=1, IWKID=1)
7 PARAMETER (ID=121)

8 DIMENSION XP (ID),YP(ID)

9 C
10 C Open GKS, open and activate a workstation.
11 C

12 CALL GOPKS (IERRF, IDUM)
13 CALL GOPWK (IWKID,LUNIT,IWTYPE)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

14 CALL GACWK (IWKID)

15 C

16 C Define colors.

17 C

18 CALL GSCR(IWKID,O0, 1.0, 1.0, 1.0)
19 CALL GSCR(IWKID,1, 1.0, 0.0, 0.0)
20 C

21 C Draw a circle.

22 C

23 X0 = .5

24 YO = .5

25 R = .3

26 JL = 120

27 RADINC = 2.*3.1415926/REAL (JL)
28 DO 10 J=1,JL+1

29 X = X0+R*COS (REAL (J) *RADINC)
30 Y = YO+R*SIN (REAL (J) *RADINC)
31 XP(J) = X

32 YP(J) = Y

33 10 CONTINUE

34 CALL GSPLI (1)

35 CALL GSPLCI (1)

36 CALL GPL(JL+1,XP,YP)

37 C

38 C Deactivate and close the workstation, close GKS.
39 C

40 CALL GDAWK (IWKID)

41 CALL GCLWK (IWKID)

42 CALL GCLKS

43 C

44 STOP

45 END

[Page 13]

Figure 1.5. A simple GKS program displaying a circle.

= O X[W cxmi = 0 A e

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The GKS routines usually have a "G" prefix in their names. The calls to Gopks, GoPWwK and GACWK (lines 1214) set
up the GKS environment. The GSCR calls define color indices. The circle is defined as a polyline of 120 points,
which are calculated directly using cos and sIN functions. An extra point is added to close the curve. The GpL call
(line 36) draws the polyline.

The program is compiled under the Linux operating system using the NCAR graphics package.

1.2.4. OpenGL

OpenGlL is a popular 2D/3D graphics API derived from GL (Graphics Library) of Silicon Graphics Inc. GL is the
graphics programming interface used on SGI's successful graphics workstations. OpenGL is designed to be an
open and vendor-neutral industry standard. It is available virtually on all computer platforms. In fact, many
hardware vendors offer OpenGL interfaces for their graphics cards and devices. With over 200 functions, OpenGL
provides a much more powerful graphics API than the earlier standards such as GKS.

OpenGL is a relatively low-level API with a procedural-oriented interface. Different language bindings for OpenGL
are possible, as for GKS. There is an official FORTRAN binding and currently there is a Java binding under
development. However, the deep root of OpenGL in the C language is still apparent. The C binding is the most
popular one.

OpenGL consists of two libraries: GL and GLU (OpenGL Utility Library). The GL library contains the core functions
for basic graphics features, and the GLU library contains higher-level utility functions built on top of GL functions.
OpenGlL itself does not have functions for constructing a user interface. A simple portable package called GLUT
(OpenGL Utility Toolkit) can be used with OpenGL to construct a complete graphics program.

Listing 1.4 is a simple OpenGL example that draws a circle (Figure 1.6). The program uses GLUT to construct the
user interface and uses GL and GLU functions to construct the display. The function names from the GL, GLU,
and GLUT libraries usually have their library names as prefixes.

[Page 14]
Listing 1.4. OpenGLCircle.c

1 #include <GL/glut.h>

2 #include <math.h>

3

4 void display(void) {

5 int i,

6 int n = 80;

7 float a = 2*3.1415926535/n;

8 float x;

9 float y;
10
11 glClear (GL _COLOR BUFFER BIT);
12 glColor3f(1.0,0,0);
13
14 glBegin (GL_LINE LOOP);
15 for (1 = 0; i < n; i++) |
16 X = cos(i*a);
17 y = sin(i*a);

18 glvertex2f (x, vy);

19 }
20 glEnd () ;
21 glFlush();
22}
23
24 int main(int argc, char** argv) {
25 glutInit (&argc, argv);
26 glutCreateWindow ("Circle");
27 glutDisplayFunc (display) ;
28 glMatrixMode (GL_PROJECTION) ;
29 glLoadIdentity () ;

30 gluOrtho2D(-1.2, 1.2, -1.2, 1.2);
31 glClearColor (1.0, 1.0, 1.0, 0.0);
32 glutMainLoop () ;

33 }

Figure 1.6. An OpenGL circle program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

=

TN

~_

[Page 15]

The main function calls several GLUT functions to set up the display window, the display function, and the
message loop. The glutInit function (line 25) initializes GLUT. The glutCreateWindow function creates a window.
The glutDisplayFunc function sets the display function, which is a callback function for graphics drawing. The
glutMainloop function (line 32) starts the event loop.

The projection matrix of the display is set to a 2D orthogonal projection using several GL functions and the GLU
function gluoOrtho2D.

The function display (line 4) is defined as the display function for this program. It draws a circle by using a
sequence of vertices in the mode GL._LINE LOOP. The vertices are calculated with a parametric equation for the
circle and set with the function glvertex2f.

Of course OpenGL, as a 3D API, is capable of much more than drawing a circle. Another simple OpenGL example
is given in Listing 1.5. It displays a spinning 3D sphere (Figure 1.7).

Listing 1.5. OpenGLSphere.c

1 #include <GL/glut.h>
2
3 GLUgquadricObj* sphere;
4
5 void display(void) {
6 glClear (GL_COLOR_BUFFER BIT);
7 glMatrixMode(GL_MODELVIEW);
8 glRotatef (0.2, 0.0, 0.0, 1.0);
9 gluSphere (sphere, 1.8, 24, 24);
10 glutSwapBuffers ()
11}
12
13 void idle(void) {
14 glutPostRedisplay () ;
15 }
16
17 int main(int argc, char** argv) {
18 glutInit (&argc, argv);
19 glutInitDisplayMode (GLUT DOUBLE | GLUT RGB);
20 glutCreateWindow ("Spinning Sphere");
21 glutDisplayFunc (display) ;
22 glMatrixMode (GL_PROJECTION) ;
23 glLoadIdentity () ;
24 glOortho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
25 glClearColor (1.0, 1.0, 1.0, 0.0);
26 glColor3f(1.0, 0.5, 0.5);
27 sphere = gluNewQuadric ()
28 gluQuadricDrawStyle (sphere, GLU LINE);
29 glutIdleFunc (idle) ;
30 glEnable (GL CULL FACE) ;
31 glCullFace (GL_BACK) ;
32 glMatrixMode (GL_MODELVIEW) ;
33 glLoadIdentity () ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

34 gluLookAt (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
35 glutMainLoop () ;
36 }

[Page 16]

Figure 1.7. An OpenGL program displaying a 3D spinning sphere.

EAspinning Sphere _ =10] x|

Double buffering is applied in this example through the function glutInitDisplayMode (line 19). The projection
matrix of the display is set to an orthogonal projection using GL functions. The function call gluLookat (line 34)
defines the view to have the eye positioned at (1, 1, 1) looking at (0, 0, 0). A sphere object is created with GLU
functions.

In this case, in addition to the display callback, an idle callback is also defined to drive the animation. The idle
function (line 13) calls glutPostRedisplay to request a call to the display function. In the display function, the
model view matrix is rotated by a small angle. The sphere is then redrawn on the hidden buffer. Finally the two
buffers are swapped to show the new drawing.

1.2.5. Java

OpenGL provides a standard and efficient rendering interface to graphics hardware. However, with the rapid
development of computer hardware and software technology, it can be argued that an even higher level
abstraction of graphics programming is now feasible. OpenGL offers a C-like procedural abstraction. It is not
designed to directly accommodate the graphics modeling in an object-oriented programming paradigm. A high-
level OOP-based graphics API (potentially built on top of OpenGL) may offer great benefits to application
programmers.

Java 2D and Java 3D are newer graphics APIs associated with the Java programming language. They are high-
level object-oriented APIs with high portability. Java 2D and Java 3D will be the APIs used in this book. Java 3D is
typically implemented on top of other lower-level APIs such as OpenGL. Figure 1.8 shows a typical graphics-
system layout.

Figure 1.8. Graphics-system

layers.
Graphics application
Java APIs Java 3D
Java VM OpenGL
0s

Display driver

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Graphics card

Display

An overview of the Java language and its graphics facilities is given in the next three sections.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 16 (continued)]

1.3. Java Programming Language

Java is a full-featured, general-purpose programming language that is capable of developing robust mission-critical
applications. In recent years, Java has gained enormous popularity and has quickly become the programming
language of choice for a wide range of applications. Today, it is used not only for Web programming, but also for
developing standalone applications across platforms on servers, desktops, and mobile devices.

[Page 17]

A Java program is compiled to a standard, platform-independent format called "byte code." The compiled byte
code can be executed without any change on any machine with a Java Virtual Machine. This platform
independence makes Java the ideal language for delivering applications over the Internet.

Java is designed from the ground up to support object-oriented programming (OOP). A Java program consists
entirely of class definitions. Object instantiations and interactions constitute the main actions of a Java program.

The Java language also maintains the simplicity, elegance, and efficiency of its predecessor, the C programming
language. At the same time, Java avoids many of the pitfalls and deficiencies of C and C++.

While the language itself is very simple, the Java platform offers a comprehensive set of APIs (application
programming interfaces). The Java APIs cover a wide range of tasks and applications: file I/O, graphics,
multimedia, database, network, security, and so on.

Java contains two nearly parallel sets of facilities for GUI programming: AWT and Swing. The early versions of
Java offered limited graphics support. Only minimal graphics features were included in JDK 1.x. Graphical user
interface (GUI) support and graphics drawing features were provided in the Abstract Window Toolkit (AWT)
package. GUI components in AWT are heavyweight—they are mapped to native components of the operating
system. Besides a simple set of features to create GUI elements, AWT offers capabilities to control certain
rendering attributes such as drawing color and to draw simple graphics primitives such as lines, rectangles, and
ovals. There is also some support for images. However, these features are severely limited. For example, there is
no way to control the width of drawing lines. Because of the limitations, early Java versions certainly did not
provide adequate support for modern computer graphics programming. The Swing package is a completely
redesigned GUI programming API included in the Java 2 platform. Most Swing components are lightweight—they
are not implemented as native components. The graphics support in Java 2 is also greatly enhanced. The Java 2D
package provides comprehensive 2D graphics features. Listing 1.6 shows a simple Java GUI program using AWT
only. A Swing example will be given in the next section.

The program in Listing 1.6 is a simple Java GUI application using only the drawing facilities provided by AWT
without more advanced features from Java 2D. It draws a circle in a frame (Figure 1.9). If the user clicks on the
frame, the circle will move to a new location with the center at the mouse pointer. A menu is added to the frame
with an item "Exit," which will terminate the program when selected.

Listing 1.6. AWTDemo.java
(This item is displayed on pages 17 - 18 in the print version)

1 package chapterl;

2

3 import java.awt.*;

4 import java.awt.event.*;

5

6 public class AWTDemo extends Frame implements ActionListener{
7 int x = 100;

8 int y = 100;

9
10 public static void main(String[] args) {
11 Frame frame = new AWTDemo () ;
12 frame.setSize (640, 480);
13 frame.setVisible (true);
14 }

15

16 public AWTDemo () {

17 setTitle ("AWT Demo") ;

18 // create menu

19 MenuBar mb = new MenuBar () ;

[Page 18]

20 setMenuBar (mb) ;
21 Menu menu = new Menu ("File");
22 mb.add (menu) ;
23 MenulItem mi = new MenulItem ("Exit");
24 mi.addActionListener (this);
25 menu.add (mi) ;
26 // end program when window is closed
27 WindowListener 1 = new WindowAdapter () {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

28 public void windowClosing (WindowEvent ev) {
29 System.exit (0);

30 }

31 }s

32 this.addWindowListener (1) ;

33 // mouse event handler

34 MouseListener mouselListener = new MouseAdapter () {
35 public void mouseClicked (MouseEvent ev) {
36 X = ev.getX();

37 y = ev.get¥();

38 repaint () ;

39 }

40 }i

41 addMouseListener (mouselListener) ;

42 }

43

44 public void paint (Graphics g) {

45 g.drawOval (x-50, y-50, 100, 100);

46 }

47

48 public void actionPerformed (ActionEvent ev) {
49 String command = ev.getActionCommand () ;

50 if ("Exit".equals (command)) {

51 System.exit (0) ;

52 }

53 }

54 1}

Figure 1.9. A simple Java GUI program with AWT.

EFTEE—————— EE: =— i= 0 T el

[Page 19]

This program is a GUI application using AWT. It has a main window with a menu and a circle. The menu contains
only one item, "Exit," which closes the window when selected. The graphical drawing responds to a mouse click
by redrawing the figure at the mouse location.

The AWTDemo class is defined to be a subclass of Frame (line 6). It defines the main program window. The menu in
the frame is created with objects of the classes MenuBar, Menu, and MenuItem (lines 19-25). The AWTDemo class
implements the Action Listener interface to process the ActionEvent generated by menu selections. The
actionPerformed method defined in the interface is the handler for the events. When the "Exit" menu item is
selected, the program exits by calling the method system. exit (0).

Two other event handlers are defined in the constructor of the AWTDemo class. A WindowListener is defined as an
anonymous inner class from windowAdapter (lines 27-32). It overrides the windowClosing method to terminate

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
the program upon receiving the closing event for the window. The other listener is a MouseListener, derived from
the MouseAdapter class (lines 34-41). The mouseClicked method is overridden to handle the mouse-click events.
In the mouseClicked method, the mouse location is saved to the variables x and y, and a call to the repaint
method is made to refresh the drawing and to move the figure to the new location.

The method paint (line 44) draws a circle of radius 50 with the method drawOval in the Graphics object. The
center of the circle is determined by the variables x and v.

The main method creates and displays an instance of AwTbemo. The frame is set to the size 640 by 480.

One graphics programming option for Java is OpenGL. There are several projects to develop Java language
bindings for OpenGL. JOGL is an implementation of JSR 231: Java language bindings for OpenGL. JOGL provides
the classes GL and GLU to encapsulate the functions in GL and GLU. The two components GLCanvas and GLJPanel
provide the drawing surfaces for the OpenGL calls. The GLcanvas is a heavyweight component that will use the
hardware acceleration. The GLJPanel is a lightweight component implemented in memory. No hardware
acceleration is available to GLJPanel. A typical procedure for programming JOGL is outlined below.

1. Create a GLCanvas or GLJPanel object through the GLDrawableFactory class.
2. Adda GLEvent listener to the canvas object.
3. Implement the listener by implementing the four methods: init, display, reshape, and displayChanged.

Listing 1.7 is the JOGL equivalent of Listing 1.4.

Listing 1.7. JOGLDemo.java
(This item is displayed on pages 19 - 20 in the print version)

1 package chapterl;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import net.java.games.jogl.*;
7
8 public class JOGLDemo ({
9
10 public static void main(String[] args) {
11 Frame frame = new Frame ("JOGL Demo") ;
12 GLCapabilities cap = new GLCapabilities();
[Page 20]
13 GLCanvas canvas =
14 GLDrawableFactory.getFactory () .createGLCanvas (cap) ;
15 canvas.setSize (300, 300);
16 canvas.addGLEventListener (new Renderer());
17 frame.add (canvas) ;
18 frame.pack () ;
19 frame.addWindowListener (new WindowAdapter () {
20 public void windowClosing (WindowEvent e) {
21 System.exit (0);
22 }
23 b
24 frame.show () ;
25 }
26
27 static class Renderer implements GLEventListener {
28 private GL gl;
29 private GLU glu;
30 private GLDrawable gldrawable;
31
32 public void init (GLDrawable drawable) {
33 gl = drawable.getGL() ;
34 glu = drawable.getGLU();
35 this.gldrawable = drawable;
36 gl.glMatrixMode (GL.GL PROJECTION) ;
37 gl.glLoadIdentity () ;
38 glu.gluOrtho2D(-1.2, 1.2, -1.2, 1.2);
39 gl.glClearColor(1.0f, 1.0£f, 1.0£f, 0.0f);
40 }
41
42 public void display(GLDrawable drawable) {
43 int i;
44 int n = 80;
45 float a = (float) (2*3.1415926535/n);
46 float x;
47 float vy;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

48

49 gl.glClear (GL.GL COLOR BUFFER BIT);

50 gl.glColor3f(1.0£,0,0);

51 gl.glBegin (GL.GL LINE LOOP);

52 for (i = 0; 1 < n; 1i++) {

53 x = (float)Math.cos (i*a);

54 y = (float)Math.sin(i*a);

55 gl.glVertex2f (x, vy);

56 }

57 gl.glEnd();

58 gl.glFlush{();

59 }

60

61 public void reshape (GLDrawable drawable, int x, int y, int width,
62 int height) ({}

63 public void displayChanged (GLDrawable drawable,
64 boolean modeChanged, boolean deviceChanged) {}
65 }

66 1}

JOGL, as a language binding for OpenGL, has the same advantages and shortcomings as OpenGL. It is an efficient
renderer, but it does not offer a full-fledged modeler with Java's OOP features.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
L] Pmuhu5_ Hewxt |
[Page 21]

1.4. Java 2D
The Java 2 platform brings significant improvements in graphics capabilities with the introduction of Swing and
Java 2D and 3D APIs. The well-designed APIs offer comprehensive support for many tasks of computer graphics.

Together with the unique advantages of the Java programming language, they have made the combination of
Java with Java 2D and Java 3D a very attractive option for graphics programming and learning computer graphics.

The graphics support in early versions of Java is very primitive and limited. Java 2D provides a rather complete set
of functionalities to manipulate and render 2D graphics. Specifically the enhancements include:

e A separate class hierarchy for geometric objects is defined in Java 2D.

e The rendering process is much more refined.

e Completely new image-processing features are introduced.

e Color models, fonts, printing, and other graphics-related supports are also greatly improved.

The Graphics2D class, a subclass of the Graphics class, is the rendering engine for Java 2D. It provides methods
to render geometric shapes, images, and texts. The rendering process can be controlled by selecting
transformation, paint, line properties, composition, clipping path, and other properties.

The Swing components and Java 2D included in the Java 2 platform are more advanced than the graphics
facilities in earlier Java platforms. The Java 2D examples in this book will use the Swing classes and avoid the old
AWT components whenever possible.

Listing 1.8 is a simple demonstration of Java 2D graphics features. It uses certain advanced capabilities of Java 2D
such as transparency, gradient paint, transformation, and font glyphs that are not available in AWT. (See Figure
1.10.)

Listing 1.8. Demo2D.java
(This item is displayed on pages 21 - 22 in the print version)

1 package chapterl;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import java.awt.font.*;
7 import java.awt.geom.*;
8
9 public class Demo2D extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame () ;
12 frame.setTitle ("Java 2D Demo");
13 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
14 JApplet applet = new Demo2D();
15 applet.init () ;
16 frame.getContentPane () .add (applet);
17 frame.pack () ;
18 frame.setVisible (true);
19 }
20
21 public void init () {
22 JPanel panel = new Panel2D();
23 getContentPane () .add (panel);
24 }
25 }
26
27 class Panel2D extends JPanel{
[Page 22]
28 public Panel2D() {
29 setPreferredSize (new Dimension (500, 400));
30 setBackground (Color.white) ;
31 }
32
33 public void paintComponent (Graphics g) {
34 super.paintComponent (g) ;
35 Graphics2D g2 = (Graphics2D)g;
36 // draw an ellipse
37 Shape ellipse = new Ellipse2D.Double (150, 100, 200, 200);
38 GradientPaint paint =
39 new GradientPaint (100,100, Color.white, 400, 400, Color.gray);
40 g2.setPaint (paint);
41 g2.fill(ellipse);
42 // set transparency

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 AlphaComposite ac =

44 AlphaComposite.getInstance (AlphaComposite.SRC _OVER, 0.4f);
45 g2.setComposite (ac);

46 g2.setColor (Color.blue);

47 // draw transparent text

48 Font font = new Font ("Serif", Font.BOLD, 120);

49 g2.setFont (font) ;

50 g2.drawString ("Java", 120, 200);

51 // get outline of text glyph

52 FontRenderContext frc = g2.getFontRenderContext () ;
53 GlyphVector gv = font.createGlyphVector (frc, "2D");
54 Shape glyph = gv.getOutline(150,300);

55 // draw rotated glyph

56 g2.rotate (Math.PI/6, 200, 300);

57 gz2.fill (glyph);

58 }

59 }

Figure 1.10. A Java 2D program. The circle is filled with a gradient paint and the textis
semitransparent.

=iz

A

alnlel

yava yava javad
2Nh 2h 2N

The class names of Swing components typically have a prefix "J." The class panel2D (line 27) extends the Jranel
class and overrides the paintComponent method (line 33). The Graphics parameter in the method is cast to
Graphics2D to take advantage of the extended functionality in Java 2D. A circle is drawn with a gradient paint
that changes its color based on locations. The composite rule is then set to achieve a degree of transparency. The
font glyphs for text string "2D" are retrieved and the outlines are used as geometric shapes. The shape for the
string "2D" is rotated 30 degrees (p/6). The details of Java 2D programming are introduced in the later chapters.

[Page 23]

A Java program can often be written as both an applet and an application. This program is an example of such
"dual-purpose" programs. The Demo2D class is a subclass of Japplet (line 9) and can be executed as an applet.
However, it also contains a main method (line 10) so it can also be executed as an application. The main method
creates an instance of Jrrame and adds an instance of Demo2D to the frame. It simulates the execution of the
applet by calling the init method. The results from the application and the applet are almost identical. Most
examples in this book will use this format.

Java 2D is a standard part of the core Java 2 platform. Any Java 2 Standard Edition (J2SE) Software Development
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Kit (SDK) or Java Runtime Environment (JRE) installation automatically includes Java 2D. This example can be
compiled under such an SDK without additional packages.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 23 (continued)]

1.5. Java 3D

Java 3D is an optional package of the Java platform. It can be obtained from the site:
http://www.javasoft.com/java3d. Java 3D provides an incredibly comprehensive framework for 3D graphics,
including such advanced features as animation, 3D interaction, and sophisticated viewing. Yet it still provides a
relatively simple and intuitive programming interface.

The Java 3D programming paradigm is very different from that of Java 2D. It closely follows the modeling-
rendering paradigm. An abstract model known as the scene graph is used to organize and retain the visual
objects and behaviors in the virtual scene. The scene graph contains the complete information of the virtual
graphics world. The Java 3D rendering engine renders the scene graph automatically.

Java 3D renders a scene on a Canvas3D object. canvas3D is a heavyweight component that does not work well
with the new Swing components. For this reason, the Java 3D examples in this book will use AWT objects.

Note

The reason that Java 3D still does not have a lightweight canvas is to take advantage
of hardware acceleration. With heavyweight components, the hardware graphics
acceleration provided through the native platform support is automatically used. It is
possible to mix heavyweight and lightweight components, but care must be taken to
avoid some undesirable effects. See Appendix B for more details.

Listing 1.9 is a simple Java 3D application. It displays a rotating globe and a 3D text string "Java 3D" in front of
the globe as shown in Figure 1.11.

Listing 1.9. Demo3D.java
(This item is displayed on pages 23 - 25 in the print version)

1 package chapterl;
2
3 import javax.vecmath.*;
4 import java.awt.*;
5 import java.applet.*;
6 import java.awt.event.*;
7 import java.net.URL;
8 import javax.media.j3d.*;
9 import com.sun.j3d.utils.universe.*;
10 import com.sun.j3d.utils.geometry.*;
11 import com.sun.j3d.utils.image.*;
12 import com.sun.j3d.utils.applet.MainFrame;
13 public class Demo3D extends Applet {
14 public static void main(String[] args) {
[Page 24]
15 new MainFrame (new Demo3D (), 480, 480);
16 }
17
18 private SimpleUniverse su;
19
20 public void init () {
21 GraphicsConfiguration gc =
22 SimpleUniverse.getPreferredConfiguration();
23 Canvas3D cv = new Canvas3D(gc);
24 setLayout (new BorderLayout());
25 add (cv) ;
26 BranchGroup bg = createSceneGraph();
27 bg.compile () ;
28 su = new SimpleUniverse (cv);
29 su.getViewingPlatform() .setNominalViewingTransform() ;
30 su.addBranchGraph (bg) ;
31 }
32
33 public void destroy () {
34 su.cleanup () ;
35 }
36
37 private BranchGroup createSceneGraph() {
38 BranchGroup root = new BranchGroup();
39 TransformGroup spin = new TransformGroup () ;
40 spin.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;
41 root.addChild (spin) ;
42 // 3d text
43 Appearance ap = new Appearance();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.javasoft.com/java3d

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

44 ap.setMaterial (new Material());
45 Font3D font = new Font3D(new Font ("Helvetica", Font.PLAIN, 1),
46 new FontExtrusion());
47 Text3D text = new Text3D(font, "Java 3D");
48 Shape3D shape = new Shape3D(text, ap):;
49 // transform for text
50 Transform3D tr = new Transform3D();
51 tr.setScale (0.2);
52 tr.setTranslation (new Vector3d(-0.35,-0.15,0.75));
53 TransformGroup tg = new TransformGroup (tr);
54 root.addChild (tg) ;
55 tg.addChild (shape) ;
56 // globe
57 ap = createAppearance();
58 spin.addChild (new Sphere(0.7f,
59 Primitive .GENERATE_TEXTURE_COORDS, 50, ap));
60 // rotation
61 Alpha alpha = new Alpha (-1, 6000);
62 RotationInterpolator rotator =
63 new RotationInterpolator (alpha, spin);
64 BoundingSphere bounds = new BoundingSphere () ;
65 rotator.setSchedulingBounds (bounds) ;
66 spin.addChild(rotator);
67 // background and lights
68 Background background = new Background(l1.0f, 1.0f, 1.0f);
69 background.setApplicationBounds (bounds) ;
70 root.addChild (background) ;
71 AmbientLight light =
72 new AmbientLight (true, new Color3f (Color.red));
73 light.setInfluencingBounds (bounds) ;
74 root.addChild (light) ;
[Page 25]
75 PointLight ptlight = new PointLight (new Color3f(Color.white),
76 new Point3f (3f,3f,3f), new Point3f(1f,0f,0f));
77 ptlight.setInfluencingBounds (bounds) ;
78 root.addChild (ptlight) ;
79 return root;
80 }
81
82 private Appearance createAppearance () {
83 Appearance ap = new Appearance () ;
84 URL filename =
85 getClass () .getClassLoader () .getResource ("images/earth.jpg") ;
86 TextureLoader loader = new Textureloader (filename, this);
87 ImageComponent2D image = loader.getImage () ;
88 Texture2D texture =
89 new Texture2D (Texture.BASE LEVEL, Texture.RGBA,
90 image.getWidth (), image.getHeight());
91 texture.setImage (0, image);
92 texture.setEnable (true);
93 texture.setMagFilter (Texture.BASE LEVEL LINEAR) ;
94 texture.setMinFilter (Texture.BASE LEVEL LINEAR) ;
95 ap.setTexture (texture) ;
96 return ap;
97 }
98 }

Figure 1.11. A Java 3D program that displays a rotating globe and a 3D text string.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
- BTSN

alle (I

This is a typical Java 3D application. The main task of the program is centered on the construction of a conceptual
data structure called scene graph. The visual effects of the program are achieved by creating a scene graph and
placing the appropriate graphics elements into it. The scene graph for the program is shown in Figure 1.12. It is a

treelike structure containing objects such as the sphere, the 3D text, appearance, transforms, background, lights,
and so on.

[Page 26]

Figure 1.12. The scene graph of the Java 3D program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

V/f

|
L/
Background
/ L

N \ b Branch
\) TG)

> — e .__/'I ’,-r y, p -
\-\"\ E Jl" l !#{ / f IIII

" -~
$» s x\. \:\ Sphere
Bounds J i, L

—— " Rotator -,
Jn"‘ - il y \A ” o - r. - &
Text3iD) A p:m;mmdli;!a Geometry) Appe amn-:-:;_‘;
s I e el
Y L L

Material j Texiure Texture2D
" coordinates \ —_ _——-")

The rendering of the scene is done automatically by the Java 3D engine. The results are shown in Figure 1.11.
The concepts and techniques of programming Java 3D with scene graphs will be introduced in the later chapters.

The program is also constructed as a dual-purpose applet/application. The class Demo3D is defined as a subclass of
Applet. Amain method also exists in Demo3D to run the class as an application. The utility class MainFrame (line
16) included in Java 3D provides the necessary functionality to run an applet in a frame.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 26 (continued)]

1.6. Related Fields

Computer graphics, image processing, and computer vision are all computer-related fields that deal with graphical
objects. They are different in their objectives and techniques. However, close relationships exist among them, and
the lines between them have been increasingly blurred.

Image processing is concerned with techniques of processing digital raster images. It typically deals with problems
such as image enhancement, noise reduction, image compression, and edge detection. Image processing takes
an existing image as input and performs appropriate actions. Computer graphics, on the other hand, generates
synthetic images from a virtual world.

Image processing is closely related to computer graphics. The results of graphics rendering are usually images.
Raster images are used extensively in computer graphics as graphics primitives. They are also used as textures to
enhance graphics rendering. Listing 1.9 shows a globe that is constructed as a sphere with an earth image
mapped on its surface. Examples of basic image-processing techniques will be given in Chapter 4.

Computer vision attempts to derive an understanding from images of the real world. In a way a computer vision
system is the inverse of a computer graphics system. Its main goal is to reconstruct a virtual world from real-
world images. Therefore, computer vision and computer graphics are complementary to each other. They provide
different perspectives to a common system.

[Page 27]

The theory and practice of computer graphics depend heavily on certain important mathematical concepts.

Closely related mathematics areas include analytic geometry and linear algebra. Analytic geometry provides a
numerical representation for graphical objects. Linear algebra studies the operations and transformations of
vector spaces, which are important in many fundamental problems of computer graphics. Relevant mathematical
topics will be introduced in the chapters associated with the graphics problems. Appendix A provides a summary of
graphics-related mathematical background.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 27 (continued)]
1.7. Resources
A classical reference for computer graphics is:

e J. Foley, A. van Dam, S. Feiner, and J. Hughs, Computer Graphics, Principles and Practices, 2d ed., Reading,
MA: Addison-Wesley, 1990.

Many current computer graphics textbooks use OpenGL.:

e E. Angel, Interactive Computer Graphics, A Top-Down Approach with OpenGL, 2d ed., Reading, MA:
Addison-Wesley, 2000.

e D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3d ed., Upper Saddle River, NJ: Prentice Hall,
2003.

e F. S. Hill, Computer Graphics Using OpenGL, 2d ed., Upper Saddle River, NJ: Prentice Hall, 2001.
GKS and other ISO standards are available at the ISO site:
http://www.iso.ch/
The NCAR Graphics package contains an implementation of GKS and is available at:
http://ngwww.ucar.edu/ng4.4/
The classical OpenGL books include:

e OpenGL Architecture Review Board, OpenGL Programming Guide, 4th ed., Reading, MA: Addison-Wesley,
2004.

e OpenGL Architecture Review Board, OpenGL Reference Manual, 4th ed., Reading, MA: Addison-Wesley,
2004.

Many websites for OpenGL are available. The official OpenGL site contains useful information and links:
http://opengl.org/

The website for the JOGL project is:

http://jogl.dev.java.net/

You may find tutorials, documentations, software downloads, and other useful information at the official
Java developer site:

http://java.sun.com/
A useful reference book on Java 3D is the API specification:

e H. Sowizral, K. Rushforth, and M. Deering, The Java 3D API Specification, 2d ed., Reading, MA: Addison-
Wesley, 2000.

[Page 28]
Web resources for Java 3D include:
http://java.sun.com/products/java-media/3D/index.jsp
http://j3d.org/

https://java3d.dev.java.net/

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.iso.ch/
http://ngwww.ucar.edu/ng4.4/
http://opengl.org/
http://jogl.dev.java.net/
http://java.sun.com/
http://java.sun.com/products/java-media/3D/index.jsp
http://j3d.org/
https://java3d.dev.java.net/

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 28 (continued)]

Key Classes and Methods
e javax.swing.JFrame A Swing class for the main window of an application.

e javax.swing.JFrame.setDefaultCloseOperation (int) A method to set the operation in response to the
window close event.

e java.lang.System.exit (int) A method to end the program.
e java.awt.Frame An AWT class for the main window of an application.

e javax.swing.JPanel A Swing component that can be used as a container or a base class for a custom
drawing canvas.

e javax.awt.Graphics A class for all graphics drawing facilities in AWT.
e javax.awt.event.MouselListener An interface for listening and handling mouse events.

e javax.awt.event.MouselListener.mouseClicked (MouseEvent) The method to implement the handler for
mouse clicking.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 28 (continued)]

Key Terms
modeling

The process of constructing a graphics model.

rendering

The process of constructing an image of a scene from a graphics model.

virtual world

A graphics model constructed in a computer.

API1

Application Programmer's Interface. A standardized software interface to specify the usage of functionalities
provided by a software package.

GKS

Graphics Kernel System. A standard graphics API.

PHIGS

Programmer's Hierarchical Interactive Graphics System. A graphics API.

OpenGL

A popular graphics API derived from Silicon Graphics' GL (Graphics Library). It has a programming interface
typically associated with the C language.

JOGL

A Java language binding for OpenGL.

image processing

A field of electrical engineering and computer science to study the computer processing of digital images.

computer vision

A computer and engineering field to study the perception and reconstruction of a scene from captured
images.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

AWT

Abstract Window Toolkit. A Java graphics package existing since the early versions of Java API.

Swing

A new enhanced Java graphics package.

OOoP

Object-oriented programming. A software engineering paradigm that views a program as a system of
interrelated objects.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 28 (continued)]

Chapter Summary

e This chapter provides an overview of computer graphics, its basic structures, its applications, its
relationships with other fields, and the graphics supports in the Java platform.

[Page 29]

e The fundamental objectives of computer graphics include the construction of a virtual world of graphics
objects and the rendering of a scene from the virtual world. Modeling and rendering are the two major
topics of computer graphics.

e The characteristics of problems involved in 2D and 3D graphics systems may be quite different. Usually 2D
and 3D graphics systems have different structures and they may be implemented as separate packages.
This is the case in the Java platform. Java 2D and Java 3D are separate packages with different
programming models.

e The graphics programming environment has been evolving from low-level hardware-specific methods to
high-level object-oriented paradigms. To reduce platform dependency and to achieve high levels of
abstraction, many graphics APIs have been developed. Examples of the standard graphics packages include
GKS, PHIGS, OpenGL, Java 2D, and Java 3D.

e Unlike early Java versions, the Java 2 platform offers extensive graphics support. The Java 2D and Java 3D
packages are high-level, full-featured graphics systems. This book will use Java 2D and Java 3D as the
main tools to introduce graphics programming.

e Computer graphics, as a computer discipline, is different from image processing and computer vision. But it
maintains close ties to these fields, which also deal with visual images.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 29 (continued)]

Review Questions

1.1 List three applications that use 2D computer graphics.
1.2 Name a hongame application that uses 3D computer graphics.
1.3 Search the Internet to assemble a list of movies that have applied computer graphics.

1.4 Identify the fields (computer graphics, image processing, and computer vision) that are applicable
to the following applications:

a. Locate small bright spots in a mammogram image.
b. Construct a 3D model of a building from a set of its pictures.

c. Display a simulation of the solar system with the sun and nine planets in
motion.

d. Recognize the brain region in a MRI scan and display a 3D model of the brain.
e. Use computers to generate the scene of a car collision.

f. Make a computer identification of a person from a photograph.

1.5 Search the Internet to find an example program that uses GKS.
1.6 Search the Internet to find an example program that uses PHIGS.
1.7 Compare OpenGL and Java 3D. List the advantages of each API.

1.8 Discuss the advantages and disadvantages of including graphics support in a standard language
platform such as Java.

1.9 List the major GUI components of AWT and find their approximate equivalents in Swing.
1.10 Read the documentation of Java 3D and list the Java packages in Java 3D.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 30]

Programming Exercises

1.1 Write a console-based Java program that fills a double array with 100 random values and prints
their mean and standard deviation.

1.2 Write a Java AWT program that draws a circle in the middle of the window.
1.3 Write a Java Swing program that draws a circle in the middle of the window.

1.4 Write a Java GUI program that responds to a mouse click by drawing a filled circle at the mouse
location.

1.5 Edit, compile, and run the Java 2D program in Listing 1.8 on your local machine.
1.6 Edit, compile, and run the Java 3D program in Listing 1.9 on your local machine.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 31]
Chapter 2. 2D Graphics: Basics

(This item omitted from WebBook edition)

Objectives
e To understand the architecture and operations of a 2D graphics system.
e To understand 2D coordinate systems and equations of graphs.
e To be able to identify the various coordinate spaces in a rendering pipeline.
e To understand Java 2D program structure and the Graphics2D object.
e To graph equations with Java programs.
e To use basic 2D geometric primitives.
e To construct custom shapes using the Generalpath class.

e To construct geometric shapes through constructive area geometry.

[Page 32]

2.1. Introduction

This chapter introduces basic concepts of 2D computer graphics systems and the Java 2D package. A 2D graphics
system models the virtual world with a two-dimensional space. Compared to 3D graphics, 2D graphics is simpler
in both modeling and rendering. 2D objects are easier to create and manipulate. The 2D rendering usually does
not involve any complicated projections such as those in 3D graphics. Even though a 2D model cannot completely
capture the full nature of a 3D space, 2D computer graphics is widely applied because of its simplicity and
efficiency. It is an essential ingredient of modern GUI-based programs.

The key concepts related to 2D graphics include the rendering pipeline, the object space, the world space, the
device space, coordinate systems, graphics primitives, geometric transformations, colors, clipping, composition
rules, and other topics. Java 2D provides comprehensive support for 2D graphics. This chapter covers the basic
structures of Java 2D programs and the geometric-object models. Additional topics for 2D graphics and Java 2D
programming will be discussed in the next two chapters.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 32 (continued)]

2.2. 2D Rendering Process

In 2D graphics, the virtual world space and the viewing space are both two dimensional. The rendering involves
composing various objects through some relatively straightforward transformations. Often the 2D world space is
not even needed in order to explicitly model the relationships among the graphics objects. However, to achieve
the clarity of system structures and to keep the analogy with 3D graphics, the notion of a virtual world space will
be retained.

Conceptually, a graphics object can be defined in its own object space and then placed in the 2D world space by
an object transformation. A 2D rendering takes a snapshot of the world and produces an image representing a
particular view in a device space.

Figure 2.1 shows a typical procedure for 2D graphics rendering.

Figure 2.1. A 2D graphics object is processed in a pipeline of transformation and viewing.

e e
transformation VIEWINE

The essential components of a 2D graphics system include the 2D object model to be rendered, the geometric
transformations applied to the objects, and the rendering engine that creates a particular view of the virtual world
on a display device. The basic steps for rendering graphics in a simple 2D graphics program can be outlined as
follows:

1. Construct the 2D objects.

2. Apply transformations to the objects.

3. Apply color and other rendering properties.
4. Render the scene on a graphics device.

The graphics objects in the model are two dimensional. Besides geometric objects constructed from basic
primitives such as lines, polygons, and ellipses, the model may also include objects such as texts and images.

The transformations involved in 2D graphics are usually affine transforms. The object transformations change the
shapes and locations of the visual objects to which the transforms are applied. The viewing transformations do
not change the virtual world model, but they change the views of the entire scene on the world space. For
example, in a virtual model with a circle and a triangle, a translation applied to the circle as an object
transformation will move only the circle without changing the triangle. A translation as a viewing transformation,
on the other hand, will move the entire view.

[Page 33]

In addition to the geometry, many other attributes will affect the rendering of a scene. Colors, transparency,
textures, and line styles are examples of such attributes. A 2D graphics system will render a scene based on the
geometry information, transformation, and a graphics context involving other attributes.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 33 (continued)]

2.3. 2D Geometry and Coordinate Systems

The fundamental components of a graphics model are geometric objects. In order to represent geometry precisely
and efficiently in computers, coordinate systems are employed. The most commonly used 2D coordinate system
employs rectangular (Cartesian) coordinates, as illustrated in Figure 2.2.

Figure 2.2. The 2D coordinate system with the x-axis and y-axis.

¥

A
4._
I (x, v}
2 :
I
[N S N 1 F
2 -1 0 1 2 3 34
1.
i,)

Two perpendicular axes are placed in the plane. Each axis is labeled with the set of real numbers. The horizontal
axis is customarily called the x-axis and the vertical axis the y-axis. The intersection of the axes is identified with
the number 0 on both axes and is called the origin. Each point on the plane is associated with a pair of real
numbers (x, y) known as the x-coordinate and the y-coordinate. The coordinates measure the horizontal and
vertical position of the point relative to the axes.

A 2D geometric object is a set of points in the plane. The number of points in the set that constitutes the
geometric object is usually infinite. To effectively represent such an object, an equation is used to define the
relation that the x- and y-coordinates of a point in the object must satisfy.

For example, a line (see Figure 2.3) can be represented by a polynomial equation of degree 1 (a linear equation):

Figure 2.3. A line can be represented by a linear equation.

Ax+ By +C =0

[Page 34]

A circle centered at the origin with radius R is represented by the equation:
X2 + y2 = R2

More generally, an ellipse centered at (xg, yo) has the standard equation:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

2 2

X = xp)° V= y)
(0) . (y =)

3 el
a” h*-

Another common type of equation to represent a curve is the parametric equation. Instead of an equation
relating x and y, a third variable, ¢, is introduced. Both x and y are expressed as functions of t.

x = f(t)

g(t)

y

An advantage of parametric equations is that they provide explicit functional forms for evaluating the coordinates.
The ellipse shown in Figure 2.4 can also be expressed using the parametric equation:

X = Xg+acost

y = yptbsint

Figure 2.4. An ellipse can be represented by a quadratic equation.

=

(xg. ¥p) @

Y
1=

—

The collection of all points or coordinates is also known as a space. Three types of spaces are typically involved in a
graphics system: object space, world space, and device space. Each space is usually characterized by its own
coordinate system. Geometric objects in one space can be mapped to another by transformations.

An object coordinate system, also known as local or modeling coordinate system, is associated with the definition
of a particular graphics object or primitive. In constructing such an object, it is usually convenient to choose a
coordinate system that is natural to the object without concerning its final destination and appearance in the
world space. For example, when we define a circle primitive, we may choose to have the origin of the coordinate
system at the center of the circle and simply define a unit circle (a circle of radius 1). The circle can later be placed
anywhere in the world space through a transformation called transl/ation. Its radius can be changed to any value
by scaling. It can even be transformed to an ellipse by using a nonuniform scaling.

The world coordinate system, or user coordinate system, defines a common reference space for all the objects in
a graphics model. It represents the virtual world shared by the modeling and rendering subsystems. Geometric
objects are placed into this space through object transforms. The rendering system takes a snapshot of the space
and produces a rendered image on an output device.

[Page 35]

The device coordinate system represents the display space of an output device such as a screen or a printer.
Figure 2.5 shows a typical example of such a coordinate system. The origin is located at the upper left corner, and
the positive direction of the y-axis is pointing downward. The coordinate values are usually integers only. This
choice is obviously different from the usual mathematical representation, but it is more natural for most
computer display devices.

Figure 2.5. Java 2D's coordinate system originates from origin (0, 0) with the x-axis increasing
rightward and the y-axis increasing downward.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
(0,0} = X

By default, Java 2D's world coordinates coincide with the device coordinates. With the available transformation
facilities in a graphics system, it is easy to define a different world space that may be more appropriate for a
particular application.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 35 (continued)]

2.4. The Graphics2D Class

In Java 2D, the rendering engine is accessed through the class Graphics2D. In early versions of Java, graphics
drawings are obtained through the class java.awt.Graphics. The Graphics class contains basic methods for
rendering graphics primitives and controlling the rendering modes. Java 2D uses the more extensive Graphics2D
class for its graphics rendering. Graphics2D extends the Graphics class to maintain compatibility with the early
AWT rendering in GUI components.

Graphics and Graphics2D classes are abstract, because their implementations will necessarily be platform
dependent. Consequently, you cannot directly instantiate the Graphics2D class. There are two ways to retrieve a
Graphics2D object. It can be obtained as the parameter in the paintComponent method or by calling the
getGraphics method. The standard approach to draw graphics in a JComponent object is to override the
paintComponent method:

void paintComponent (Graphics g)

The parameter g is declared to be Graphics, but it is also a Graphics2D object. It can be cast to a Graphics2D
object. The paintComponent method is called automatically by Java Virtual Machine whenever the display needs
to be redrawn, such as when the window is restored after it is minimized. Therefore the drawing made in the
method will appear to be persistent.

Java does not explicitly provide a "retained-mode" modeling facility for 2D graphics. The custom code in the
paintComponent method may be regarded implicitly as a model for the graphics system.

Another way to obtain a reference to a Graphics2D object is to call the method getGraphics in the class
Component.

Graphics getGraphics ()

[Page 36]

Again the Graphics object returned from the method can be cast to a Graphics2D, and it can be used to perform
graphics rendering. However, usually the drawings obtained this way will not be persistent.

In AWT, the Graphics class provides the methods to control all aspects of rendering. It contains methods to set
colors and fonts, to translate the coordinates, to set XOR mode, and to draw primitives such as lines and ovals
directly. Some of the methods in Graphics are listed below.

void setColor (Color c)
void setFont (Font f)
void setXORMode (Color c)
void setPaintMode ()
void translate (int x, int y)
void drawline (int x1, int yl, int x2, int y2)
void drawRect (int x1, int yl, int width, int height)
void drawOval (int x1, int yl, int width, int height)
void drawArc (int x1, int yl, int width,

int height, int start, int arc)
void drawRoundRect (int x1, int y1,

int width, int height, int arcW, int arcH)
void drawPolygon (int[] xPoints, int[] yPoints, int nPoints)
void fillRect (int x1, int yl, int width, int height)
void fillOval (int x1, int yl, int width, int height)
void fillArc(int x1, int yl, int width,

int height, int start, int arc)
void fillRoundRect (int x1, int yl, int width,

int height, int arcW, int arcH)
void fillPolygon (int[] xPoints, int[] yPoints, int nPoints)
void drawString (String str, int x, int y)

There is no clear separation between the modeler and the renderer in AWT. For example, a single method
drawOval is responsible for both defining (modeling) an ellipse and drawing (rendering) the ellipse.

Java 2D, on the other hand, is required to handle much more sophisticated graphics objects. Therefore, instead of
bundling all rendering functions into a sinale class, the modeling and transformation features are implemented
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

with additional classes separated from the Graphics2D class. GraphJ_CSZD provides some generic methods such as
draw (Shape) and fill (Shape) to render separately defined objects. The objects to be drawn are implemented as
Shape objects. Similarly, the transformations can be constructed with the AffineTransform class. Graphics2D
provides the method setTransform (AffineTransform) to set the current transformation to the separately
defined transformation object. A partial list of Graphics2D methods is given below.

void draw (Shape s)

void fill (Shape s)

void setTransform(AffineTransform Tx)
void transform(AffineTransform Tx)
void setPaint (Paint p)

void setStroke (Stroke s)

void clip (Shape s)

void setComposite (Composite c)

void addRenderingHints (Map hints)

The separation of modeling and rendering is more apparent in Graphics2D. For example, to draw an ellipse you
will create an instance of E11ipse2D (which implements the shape interface) and call the draw method to render
it.

[Page 37]

A typical Java 2D graphics program uses the Jpanel class as the drawing canvas. By overriding the
paintComponent method, custom painting is achieved. The associated Graphics2D object can be configured for
proper settings such as colors, paints, strokes, and transformations. A graphical object is constructed as an
instance of a class implementing the shape interface. It can be rendered through the Graphics2D object.

Listing 2.1 shows a simple Java 2D program. It illustrates the basic structure of a Java 2D program and the use of
the Graphics2D class. The program displays a transformed circle and a text string with a blue color, as shown in
Figure 2.6.

Listing 2.1. Hello2D.java

1 package chapter2;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*
6 import java.awt.geom.*;
7
8 public class Hello2D extends JApplet {
9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("Hello 2D");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
13 JApplet applet = new Hello2D();
14 applet.init () ;
15 frame.getContentPane () .add (applet);
16 frame.pack () ;
17 frame.setVisible (true);
18 }
19
20 public void init () {
21 JPanel panel = new Hello2DPanel () ;
22 getContentPane () .add (panel);
23 }
24 }
25

26 class Hello2DPanel extends JPanel {
27 public Hello2DPanel () {

28 setPreferredSize (new Dimension (640, 480));
29 }

30

31 public void paintComponent (Graphics g) {

32 super.paintComponent (g) ;

33 Graphics2D g2 = (Graphics2D)g;

34 g2.setColor (Color.blue);

35 Ellipse2D e = new Ellipse2D.Double(-100, -50, 200, 100);
36 AffineTransform tr = new AffineTransform();
37 tr.rotate (Math.PI / 6.0);

38 Shape shape = tr.createTransformedShape (e) ;
39 g2.translate(300,200);

40 g2.scale(2,2);

41 g2.draw (shape) ;

42 g2.drawString ("Hello 2D", 0, 0);

43 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
44 }

[Page 38]

Figure 2.6. A simple Java 2D application draws a rotated ellipse and a text string.

§nelozo =0l x|

The program is written to run as both an applet and an application. The Hel1l02D class extends Japplet. Amain
method is also included that creates a JFrame window and adds an instance of Hel102D to the window. The applet
contains an instance of the Hel1o02DPanel. The Hello2DPanel class extends the Jpanel class and overrides the
paintComponent method to draw the graphics display.

The main graphics functions are carried out inside the paintComponent method (line 31). The paintComponent
method of the superclass is invoked first to handle the necessary cleanup operations. The Graphics object g is
cast into a Graphics2D object g2 to use the Java 2D features (line 33). The parameter g is declared as Graphics,
but it is actually a Graphics2D object in all versions of Java that include Java 2D. The drawing color is then set to
blue by calling the method setcolor () in the Graphics object. More sophisticated drawing attributes that exist in
the Graphics2D class will be introduced later in this chapter.

An ellipse is created using the E11ipse2D.Double class (line 35). A rotation of p/6 is constructed as an
AffineTransfrom object. The rotation is an object transformation applied only to the ellipse. The transformed
shape is obtained by calling the createTransformedShape method of the AffineTransform object.

The viewing transformation consists of a translation by (300, 200) and a scaling of factor 2. The transformation is
achieved by directly calling the methods translate and scale in the Graphics2D object.

Using the draw method the rotated ellipse is drawn to the screen (line 41). A string "Hello 2D" is drawn with the
method drawString in the Graphics2D object.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
L] Pmuhu5_ Hewxt |
[Page 38 (continued)]

2.5. Graphing Equations

Mathematical equations are important in modeling graphics objects. Conversely, graphical plots offer a useful tool
for studying mathematical functions and equations. Plotting an equation is a simple graphics application.

A simple way to graph an equation is to generate a sequence of coordinates satisfying the equation and then plot
the points. For a function of the form y = f(x), it is straightforward to choose a set of x-coordinates and calculate
the corresponding y-coordinates. An equation of the implicit form F(x,y) = 0 is more difficult to calculate, because,
given a value of the x- (or y-) coordinate, it would in general require solving an equation to find the other
coordinate. Certain equations can be expressed in the parametric form that is convenient for calculations.

[Page 39]
A sample run of the program is shown in Figure 2.7.

Figure 2.7. A spirograph plot using a parametric equation.

£ gpirograph =10] x|

Listing 2.2 plots a spirograph based on a parametric equation. Consider a circle rolling on another circle. The curve
formed by a pen attached to the rolling circle is called an epicycloid or spirograph. Using the angle of rolling as the
parameter, a parametric equation can be derived:

X (ri + rp) cos t - pcos((ry + rR)t/ry)

(r1 +) sin t - psin((ry + N)t/r)

y

The radii of the fixed circle and the rolling circle are denoted by r1 and r2. The offset of the pen position relative
to the center of the rolling circle is p. A variety of curves can be generated by changing the values of r1, r2, and

P.

Listing 2.2. Spirograph.java
(This item is displayed on pages 39 - 40 in the print version)

1 package chapter2;

2

3 import java.awt.*;

4 import java.awt.event.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
5 import javax.swing.*;
6 import java.awt.geom.*;

7
8 public class Spirograph extends JApplet {
9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("Spirograph");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new Spirograph();
14 applet.init ()
15 frame.getContentPane () .add (applet) ;
16 frame.pack () ;
17 frame.setVisible (true) ;
18 }
19
[Page 40]
20 public void init () {
21 JPanel panel = new SpiroPanel();
22 getContentPane () .add (panel);
23 }
24 }
25

26 class SpiroPanel extends JPanel{
27 int nPoints = 1000;

28 double rl = 60;

29 double r2 = 50;

30 double p = 70;

31

32 public SpiroPanel () {

33 setPreferredSize (new Dimension (400, 400));
34 setBackground (Color.white);

35 }

36

37 public void paintComponent (Graphics g) {

38 super.paintComponent (g) ;

39 Graphics2D g2 = (Graphics2D)g;

40 g2.translate (200,200) ;

41 int x1 = (int) (rl + r2 - p);

42 int yl1 = 0;

43 int x2;

44 int y2;

45 for (int 1 = 0; 1 < nPoints; i++) {

46 double t = 1 * Math.PI / 90;

47 x2 = (int) ((rl+r2)*Math.cos (t)-p*Math.cos ((rl+r2)*t/r2));
48 y2 = (int) ((rl4+r2)*Math.sin(t)-p*Math.sin((rl+r2)*t/r2));
49 g2.drawlLine(x1, yl, x2, v2);

50 x1l = x2;

51 vyl = y2;

52 }

53 }

54 1}

The spiroPanel class is defined as a subclass of Jpanel. The plotting is performed inside the paintComponent
method (line 37). The variable npoints defines the number of points to evaluate. The variables for the parametric
equation are set to the values:

rl = 60
r2 = 50
p = 70

The parameter t is initialized to 0 and incremented by p/90 for each point. The x- and y-coordinates are
calculated based on the parametric equation. A line segment is drawn between two adjacent points.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 40 (continued)]

2.6. Geometric Models

2D graphics objects that constitute a virtual world model may include geometric shapes, text objects, and images.
More detailed discussions on fonts, texts, and images will be presented later in Chapters 3 and 4. This section will
focus on the geometric objects.

2.6.1. Shapes

In Java 2D, a geometric object can be rendered by Graphics2D if it implements the shape interface. Graphics2D
contains draw (Shape s) and fill (Shape s) methods that draws the outline of the shape or fills the interior of
the shape. Java 2D provides facilities to construct basic shapes and to combine them to form more complex
shapes. The shape class hierarchy is shown in Figure 2.8.

[Page 41]

Figure 2.8. Java 2D defines various shapes.

Shape |
‘f} RectangularShape |<—— Arc2D }<——— Arc2D.Double |
__ i | — Arc2D.Float |
- S | [Ellipsez l4——— E11ipse2D. Double 1
s J — E11ipse2D. Float |
L_ Fe Pt | — Rectangle2D k}—— Rectangle2D.Double |
- |

- Rectangle2D.Float

— RoundRectanglezD Il'::}—[RoundRectangle2D.Double |
RoundRectangle2D.Float |

= Line2D «}—— Line2D.Double

|
: L Line2D.Float |
- QuadCurve2d |<— QuadCurve2D.Double |
i |
|
|

i — QuadCurve2D.Float
“- CubicCurve2D |<J— CubicCurve2D.Double
— CubicCurve2D.Float

The classes Line2D, QuadCurve2D, CubicCurve2D, Rectangle2D, RoundRectangle2D, Arc2D, and E1lipse2D are
abstract classes. Each has two concrete inner subclasses named X.Double and X.Float that represent the
coordinates using double or float data types, respectively. For example, Line2D.Double and Line2D.Float are
subclasses of L.ine2D and they are also inner classes of Line2D. The two inner subclasses both represent lines, but
they differ in their data types for coordinate representation. To create a Line2D object with double data type, you
may use the following constructor:

Line2D line = new Line2D.Double (x1, yl, x2, y2);

QuadCurve2D represents a quadratic curve, which is mathematically defined as a quadratic polynomial and
specified by three control points. The first and last control points are the endpoints of the curve. The middle
control point usually is not on the curve but instead defines the trend of the quadratic curve, as shown in Figure
2.9. A Quadcurve2D object may be created using a constructor as shown below. The coordinates of the three
control points are specified with the six parameters.

QuadCurve2D quad = new QuadCurve2D.Double (x1, vyl, x2, y2, x3, vy3);

Figure 2.9. A quadratic curve is specified by three control points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
®

[Page 42]

CubicCurve2D represents a cubic B&zier curve, which is defined as a cubic polynomial and specified by four
control points. As in the quadratic curves, the first and last control points are the endpoints of the curve. The
middle two control points define the shape of the curve but are not necessarily on the curve, as shown in Figure
2.10. An example of constructing a CubicCurve2D object is given below.

CubicCurve2D cubic = new CubicCurve2D.Float (x1,vyl,x2,v2,x3,y3,x4,vy4);

Figure 2.10. A cubic Bgzier curve is specified by four control points.

The rRectangle2D class defines rectangles with horizontal and vertical sides. The Rectangle class defined in JDK
1.1 has been integrated into Java 2D. Rectangle is now a subclass of Rectangle2D. Rectangle uses integer
coordinates. Rectangle2D.Double and Rectangle2D.Float, the other subclasses of Rectangle2D, use double and
float, respectively, to represent coordinates. The following code fragment creates three Rectangle2D objects
with different data type. The upper left corner of the rectangles is (20, 30) and the dimension is (100, 80).

Rectangle2D ri = new Rectangle (20,30,100,80);
Rectangle?2D rd = new Rectangle2D.Double(20.0,30.0,100.0,80.0);
Rectangle2D rf = new Rectangle2D.Float (20f,30f,100f,80f);

RoundRectangle2D defines rectangles with round corners. The constructor for a RoundrRectangle2D object may
contain two more parameters that specify the width and height of the arch. For example, the arch in the
following round rectangle has dimension 5 by 5:

RoundRectangle2D rrect = new RoundRectangle2D.Double (20,30,100,80,5,5);

Ellipse2D represents a full ellipse. The parametric equation of the ellipse centered at the origin can be written as

X = acos 6

b sin 6

Y

The parameter 6 varies from 0 to 2p or 0 to 360 degrees. The location and size of an E11ipse2D object are
specified using its bounding rectangle. An E11ipse2D object with float data type can be created with the
following constructor. The upper left corner of the bounding rectangle is (20, 30) and the dimension is (100, 80).

Ellipse2D ellipse = new Ellipse2D.Float (20f, 30f, 100£f, 80f);

[Page 43]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Arc2D defines an elliptic arc. The underlying ellipse is defined in the same way as E11ipse2D and can be
represented with the same parametric equation. The portion of the arc is specified by a range on the parameter 6.
Arc2D defines three ways to close an arc: OPEN, CHORD, and PIE. For example, the following code constructs an arc
with the parameter ranging from 8 = 30 degrees to 6 = 75 degrees, and the arc is closed with a pie shape.

Arc2D arc = new Arc2D.Float (20f, 30f, 100f, 80f, 30f, 45f, Arc2D.PIE);

Note

The angle 6 is specified in degrees instead of radians. The parameter 6 in general
does not correspond to the radial angle of a given point. For example, when 8 = 45
degrees, the line from the center to the point on the ellipse corresponds to the
diagonal of the bounding rectangle, as shown in Figure 2.11. Clearly the angle of the
line is not 45 degrees, unless the ellipse is a circle.

Figure 2.11. The geometric angle of the radial line for a point on the ellipse is not necessarily equal
to the parameter value.

A

Y

!

The classes Rectangle2D, RoundRectangle2D, E11ipse2D, and Arc2D provide only for the construction of objects
that have their bounding rectangles parallel to the x- and y- axes. However, this is not a severe limitation,
because the general "rotated" versions of these objects can be obtained easily with proper transformations. A
detailed discussion of transformations will be given in the next chapter.

The pPolygon class, similar to the Rectangle class, comes from the old AWT, and it supports only integer
coordinates. To construct a Polygon object you may use the following constructor:

Polygon (int[] xcoords, int[] ycoords, int npoints);

The two integer arrays define the vertices of the polygon. The first point and last point are joined to form a closed
path.

2.6.2. Example

Listing 2.3 is an interactive drawing program. It allows a user to draw various geometric shapes in Java 2D,
including rectangles, round rectangles, ellipses, arcs, lines, quadratic curves, cubic curves, and polygons (Figure
2.12). A menu is used to select drawing shapes, and the user draws a particular shape on the screen by dragging
the mouse. The drawings are persistentthat is, they will not disappear when the window is repainted.

[Page 44]

Listing 2.3. DrawShapes.java
(This item is displayed on pages 44 - 48 in the print version)

package chapter2;

import java.awt.*;
import java.awt.geom.*;
import Jjava.awt.event.*;
import java.util.*;
import javax.swing.*;

O o0 ~Joy Ul W

public class DrawShapes extends JApplet implements ActionListener {
10 public static void main(String s[]) {

11 JFrame frame = new JFrame();

12 frame.setTitle ("Drawing Geometric Shapes");

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

14 JApplet applet = new DrawShapes{();

15 applet.init () ;

16 frame.getContentPane () .add (applet) ;

17 frame.pack (),

18 frame.setVisible (true) ;

19 }

20

21 JavaDraw2DPanel panel = null;

22

23 public void init () {

24 JMenuBar mb = new JMenuBar () ;

25 setJMenuBar (mb) ;

26 JMenu menu = new JMenu ("Objects");

27 mb.add (menu) ;

28 JMenultem mi = new JMenultem ("Rectangle");

29 mi.addActionListener (this);

30 menu.add (mi) ;

31 mi = new JMenultem("RoundRectangle");

32 mi.addActionListener (this);

33 menu.add (mi) ;

34 mi = new JMenultem("Ellipse");

35 mi.addActionListener (this) ;

36 menu.add (mi) ;

37 mi = new JMenultem ("Arc");

38 mi.addActionListener (this) ;

39 menu.add (mi) ;

40 mi = new JMenultem("Line");

41 mi.addActionListener (this);

42 menu.add (mi) ;

43 mi = new JMenultem("QuadCurve");

44 mi.addActionListener (this);

45 menu.add (mi) ;

46 mi = new JMenultem("CubicCurve");

47 mi.addActionListener (this);

48 menu.add (mi) ;

49 mi = new JMenuItem("Polygon");

50 mi.addActionListener (this) ;

51 menu.add (mi) ;

52 panel = new JavaDraw2DPanel () ;

53 getContentPane () .add (panel) ;

54 }

55

56 public void actionPerformed (ActionEvent ev) {

57 String command = ev.getActionCommand () ;

58 if ("Rectangle".equals (command)) {

59 panel.shapeType = panel.RECTANGLE;
[Page 45]

60 } else if ("RoundRectangle".equals (command)) {

61 panel.shapeType = panel.ROUNDRECTANGLE2D;

62 } else if ("Ellipse".equals (command)) {

63 panel.shapeType = panel.ELLIPSE2D;

64 } else if ("Arc".equals (command)) {

65 panel.shapeType = panel.ARC2D;

66 } else if ("Line".equals (command)) {

67 panel.shapeType = panel.LINE2D;

68 } else if ("QuadCurve".equals (command)) {

69 panel.shapeType = panel.QUADCURVE2D;

70 } else if ("CubicCurve".equals (command)) {

71 panel.shapeType = panel.CUBICCURVE2D;

72 } else if ("Polygon".equals (command)) {

73 panel.shapeType = panel.POLYGON;

74 }

75 }

76 1}

77

78 class JavaDraw2DPanel extends JPanel

79 implements MouselListener, MouseMotionListener {

80 private Vector shapes = new Vector();

81 static final int RECTANGLE = 0;

82 static final int ROUNDRECTANGLE2D = 1;

83 static final int ELLIPSE2D = 2;

84 static final int ARC2D = 3;

85 static final int LINE2D = 4;

86 static final int QUADCURVE2D = 5;

87 static final int CUBICCURVE2D = 6;

88 static final int POLYGON = 7;

89 static final int GENERAL = 8§8;

90 static final int AREA = 9;

91

92 int shapeType = RECTANGLE;

93 // vector of input points

94 Vector points = new Vector ();

95 int pointIndex = 0;

96 Shape partialShape = null;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

97 Point p = null;

98

99 public JavaDraw2DPanel () {
100 super () ;
101 setBackground (Color.white);
102 setPreferredSize (new Dimension (640, 480));
103 addMouselListener (this);
104 addMouseMotionListener (this) ;
105 }
106
107 public void paintComponent (Graphics g) {
108 super.paintComponent (g) ;
109 Graphics2D g2 = (Graphics2D)g;
110 for (int i = 0; 1 < shapes.size(); 1i++) {
111 Shape s = (Shape)shapes.get(i);
112 g2.draw(s) ;
113 }
114 }
115 public void mouseClicked (MouseEvent ev) {
116 }
117
118 public void mouseEntered (MouseEvent ev) {
119 }
120

[Page 46]

121 public void mouseExited (MouseEvent ev) {
122 }
123
124 public void mousePressed (MouseEvent ev) {
125 points.add(ev.getPoint());
126 pointIndex++;
127 p = null;
128 }
129
130 public void mouseReleased (MouseEvent ev) {
131 Graphics g = getGraphics();
132 Point pl = (Point) (points.get (pointIndex-1));
133 p = ev.getPoint () ;
134 Shape s = null;
135 switch (shapeType) {
136 case RECTANGLE:
137 s = new Rectangle(pl.x, pl.y, p.x-pl.x, p.y-pl.v);
138 break;
139 case ROUNDRECTANGLEZ2D:
140 s = new RoundRectangle2D.Float(pl.x, pl.y,
141 p.x-pl.x, p.y-pl.y, 10, 10);
142 break;
143 case ELLIPSE2D:
144 s = new Ellipse2D.Float(pl.x, pl.y, p.x-pl.x, p.y-pl.y);
145 break;
146 case ARC2D:
147 s = new Arc2D.Float(pl.x, pl.y, p.x-pl.x,
148 p.y-pl.y, 30, 120, Arc2D.OPEN);
149 break;
150 case LINE2D:
151 s = new Line2D.Float(pl.x, pl.y, pP.X, P.V)’
152 break;
153 case QUADCURVE2D:
154 if (pointIndex > 1) {
155 Point p2 = (Point)points.get (0);
156 s = new QuadCurve2D.Float(p2.x, p2.y, pl.x, pl.y, P.X, P.VY);
157 }
158 break;
159 case CUBICCURVE2D:
160 if (pointIndex > 2) {
161 Point p2 = (Point)points.get (pointIndex-2);
162 Point p3 = (Point)points.get (pointIndex-3);
163 s = new CubicCurve2D.Float(p3.x, p3.y, pP2.%X, pP2.Y,
164 pl.x, pl.y, p.X, P.Y);
165 }
166 break;
167 case POLYGON:
168 if (ev.isShiftDown ()) {
169 s = new Polygon();
170 for (int 1 = 0; 1 < pointIndex; i++)
171 ((Polygon)s) .addPoint (((Point)points.get (i)) .x,
172 ((Point)points.get (1)) .v);
173 ((Polygon)s) .addPoint(p.x, p.y):
174 }
175
176 }
177 if (s != null) {
178 shapes.add (s) ;
179 points.clear();
180 pointIndex = 0;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 47]
181 p = null;
182 repaint () ;
183 }
184 }
185
186 public void mouseMoved (MouseEvent ev) {
187 }
188
189 public void mouseDragged (MouseEvent ev) {
190 Graphics2D g = (Graphics2D)getGraphics();
191 g.setXORMode (Color.white) ;
192 Point pl = (Point)points.get (pointIndex-1);
193 switch (shapeType) {
194 case RECTANGLE:
195 if (p !'= null) g.drawRect(pl.x, pl.y, p.x-pl.x, p.y-pl.y);
196 p = ev.getPoint ();
197 g.drawRect (pl.x, pl.y, p.x-pl.x, p.y-pl.vy);
198 break;
199 case ROUNDRECTANGLEZ2D:
200 if (p !'= null) g.drawRoundRect (pl.x, pl.y,
201 p.x-pl.x, p.y-pl.y,10,10);
202 p = ev.getPoint ();
203 g.drawRoundRect (pl.x, pl.y, p.x-pl.x, p.y-pl.y,10,10);
204 break;
205 case ELLIPSE2D:
206 if (p != null) g.drawOval(pl.x, pl.y, p.x-pl.x, p.y-pl.y);
207 p = ev.getPoint ();
208 g.drawOval(pl.x, pl.y, p.x-pl.x, p.y-pl.y);
209 break;
210 case ARC2D:
211 if (p != null) g.drawArc(pl.x, pl.y, p.x-pl.x, p.y-pl.y, 30, 120);
212 p = ev.getPoint ();
213 g.drawArc(pl.x, pl.y, p.x-pl.x, p.y-pl.y, 30, 120);
214 break;
215 case LINE2D:
216 case POLYGON:
217 if (p !'= null) g.drawlLine(pl.x, pl.y, p.X, P.V):
218 p = ev.getPoint ();
219 g.drawLine(pl.x, pl.y, pP.%X, P.Y);
220 break;
221 case QUADCURVE2D:
222 if (pointIndex == 1) {
223 if (p != null) g.drawline(pl.x, pl.y, P.X, P.V);
224 p = ev.getPoint () ;
225 g.drawLine (pl.x, pl.y, P.X, P.VY);
226 } else {
227 Point p2 = (Point)points.get (pointIndex-2);
228 if (p != null) g.draw(partialShape);
229 p = ev.getPoint () ;
230 partialShape = new QuadCurve2D.Float(p2.x, p2.Yy,
231 pl.x, pl.y, p.X, P.Y);
232 g.draw (partialShape) ;
233 }
234 break;
235 case CUBICCURVE2D:
236 if (pointIndex == 1) {
237 if (p != null) g.drawlLine(pl.x, pl.y, P.X, P.V);
238 p = ev.getPoint () ;
239 g.drawLine(pl.x, pl.y, pP.%X, P.V);
240 } else if (pointIndex == 2) {
[Page 48]
241 Point p2 = (Point)points.get (pointIndex-2);
242 if (p != null) g.draw(partialShape);
243 p = ev.getPoint () ;
244 partialShape = new QuadCurve2D.Float(p2.x, p2.y,
245 pl.x, pl.y, P.X, P.VY);
246 g.draw (partialShape) ;
247 } else {
248 Point p2 = (Point)points.get (pointIndex-2);
249 Point p3 = (Point)points.get (pointIndex-3);
250 if (p != null) g.draw(partialShape);
251 p = ev.getPoint () ;
252 partialShape = new CubicCurve2D.Float (p3.x, p3.y,
253 p2.x, p2.y, pl.x, pl.y, p.X, P.V);:
254 g.draw (partialShape);
255 }
256 break;
257 }
258 }
259 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

lPIease purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 2.12. Drawing basic shapes defined in Java 2D.

e B = EL] ksl
=

=

This is a simple drawing program that does not have all the supporting features, such as file I/O, but does have
the essential functionality of a typical drawing package. It allows users to draw an arbitrary number of basic
shapes with the mouse operations.

The DrawShapes class defines an applet with a menu. The type of shape to be drawn is selected from the menu.
The JavaDraw2DPanel, a subclass of Jpanel, implements the actual drawing logic. The variable panel holds an
instance of the JavaDraw2DpPanel (line 52). The menu selection is handled in the Drawshapes class. The action
event handler sets the selected shape to the shapeType variable in panel.

[Page 49]

The JavabDraw2DPanel class contains a vector shapes that holds all the shapes drawn by the user. When the
drawing of a particular figure is completed, it is added to the vector. Because the vector class defines a dynamic
data structure, the number of shapes is virtually unlimited. The paintComponent method is surprisingly simple. It
traverses the vector and calls the draw method on each shape regardless of the types of shapes (lines 110¢112).
This elegant approach is made possible by the powerful polymorphism support of Java and the Graphics2D class.

The JavabDraw2DPanel class handles the mouse events to implement the drawing functions. The details of
drawing a shape depend on the type of the shape. Rectangles, rounded rectangles, ellipses, arcs, and lines are
defined by their bounding rectangles. They are drawn by dragging the mouse from one corner of the bounding
rectangle to the opposite. Quadratic curves are defined by three control points, and they are drawn by dragging
the mouse twice to define two line segments. Cubic curves are defined by four control points and are constructed
with three mouse drags. The polygons may have arbitrary numbers of points and are constructed by dragging the
mouse repeatedly and terminating with a double click.

During the construction of a shape, "rubber-banding" is implemented to provide a visual clue. As the user drags
the mouse, the shape corresponding to the current mouse location is displayed and updated continuously. This is
done inside the mouse event handlers and through the use of XOR drawing mode. When the mouse button is
pressed, the current mouse location is saved to the vector points (line 125). When the mouse is dragged, a
Graphics2D object is retrieved (line 190) and its XOR mode is set by calling the setXORMode method (line 191). A
temporary shape is drawn based on the shape type and current points. This temporary shape is erased by
subsequent calls and replaced with new a temporary shape, thus creating a dynamic "rubber-banding" effect. In
the XOR mode, drawing the same figure a second time will erase the first drawing. When the mouse is released
(line 130), a new point is created. If enough points are present for the current shape type, a new complete shape
is constructed and added to the shapes vector. If the number of points is not enough for the shape, a partial
shape is defined.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 49 (continued)]

2.7. Constructive Area Geometry

One way to create more complex shapes is to combine several existing shapes. This is known as constructive area
geometry. The class Area is designed to perform constructive area geometry. Four operations are supported:
union, intersection, difference, and symmetric difference. These set-theoretic operations are performed on the
regions of two areas, resulting in a new area. The union of two sets consists of all points that belong to either set.
The intersection of two sets consists of points that belong to both sets. The difference of two sets consists of
points that belong to the first set but not the second set. The symmetric difference of two sets consists of the
points that belong to exactly one of the two sets. An Area object can be constructed from any shape object using
the following constructor:

Area (Shape s)

The four operations can be performed using the following methods of an Area object:

void add(Area a)

void intersect (Area a)
void subtract (Area a)
void exclusiveOr (Area a)

The results of the operations are placed in the current Area object. The second Area object passed as a parameter
to the methods will not be altered by the operations.

Listing 2.4 shows a program demonstrating the effects of four operations of constructive area geometry. Two
shapes are combined using the four operations to obtain four new shapes (Figure 2.13).

[Page 50]

Listing 2.4. AreaGeometry.java

1 package chapter2;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import javax.swing.*;
6 import java.awt.geom.*;
7
8 public class AreaGeometry extends JApplet {
9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("Constructive Area Geometry");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
13 JApplet applet = new AreaGeometry();
14 applet.init ();
15 frame.getContentPane () .add (applet) ;
16 frame.pack () ;
17 frame.setVisible (true) ;
18 }
19
20 public void init () {
21 JPanel panel = new AreaPanel();
22 getContentPane () .add (panel) ;
23 }
24 }
25

26 class AreaPanel extends JPanel {
27 public AreaPanel () {

28 setPreferredSize (new Dimension (760, 400));

29 }

30

31 public void paintComponent (Graphics g) {

32 Graphics2D g2 = (Graphics?2D)g;

33 Shape sl = new Ellipse2D.Double(0, 0, 100, 100);
34 Shape s2 = new Ellipse2D.Double (60, 0, 100, 100);
35 Area al;

36 Area a2 = new Area(s2);

37 g2.translate (20, 50);

38 g2.draw(sl);

39 g2.draw(s2);

40 g2.translate(0,200);

41 al = new Area(sl);

42 al.add(a2);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 g2.fill(al);

44 g2.translate(180,0);
45 al = new Area(sl);
46 al.intersect (a2);

47 g2.fill (al);

48 g2.translate(180,0);
49 al = new Area(sl);
50 al.subtract(a2):;

51 gz2.fill(al);

52 g2.translate (180,0);
53 al = new Area(sl);
54 al.exclusiveOr (a2);
55 g2.fill(al);

56 }

57 1}

[Page 51]

Figure 2.13. Top row: Two shape objects. Bottom row: The results of four area operations: add,
intersect, subtract, exclusiveOr.

T ke EE|

IO ' O®'C O

Two overlapping circles s1 and s2 are used as the original shapes, and they are drawn on the top of the screen.
Area Objects a1l and a2 are created from the shapes (lines 35-36). Each of the four operations is applied to a1
and a2 by calling the methods add, intersect, subtract, and exclusiveOr. The resulting areas are displayed as
filled shapes in the bottom row (lines 42-55). Because the Area class implements the shape interface, the Area
objects can be passed directly to the fi11 method of the Graphics2D object.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 51 (continued)]

2.8. General Path

The Graphics2D engine internally uses five basic types of curve segments or operations to render the borders of
any shape. The shape interface provides methods to retrieve a pathIterator that is an interface describing the
path of the shape border using the five types of segments. pathIterator defines the five segment constants:

SEG_MOVETO
SEG_LINETO
SEG_QUADTO
SEG_CUBICTO
SEG_CLOSE

A powerful way to construct custom shapes is to use the GeneralpPath class, which directly supports the path
construction with the five basic curve segments known to Graphics2D. The following methods in the
GeneralPath class perform the segment constructions corresponding to the five segment types:

void moveTo (float x, float y);

void lineTo (float x, float y);

void quadTo (float x1, float yl, float x2, float y2);
void curveTo (float x1, float yl, float x2,

float y2, float x3, float y3);

void closePath{();

The process of the path construction can be viewed as drawing with a "pen." At any moment, the pen has a
"current location." The moveTo method moves the pen to the new location (X, y) without drawing anything. The
lineTo method draws a line from the current location to the point (x, y), and the pen takes the new point as its
current location. The quadTo method draws a quadratic curve from the current location to (x2, y2) using (x1, y1)
as the middle control point. The curveTo method draws a cubic curve from the current point to (x3, y3) using
(x1, y1) and (x2, y2) as its two middle control points. The closePath method draws a line back to the point
defined by the last moveTo method.

[Page 52]
For example, the following code segment constructs the shape shown in Figure 2.14.

GeneralPath path = new GeneralPath();
path.moveTo (-2£, 0f);

(
path.quadTo (0f£, 2f, 2f, 0f);
path.quadTo (0f, -2f, -2f, 0f);
path.moveTo (-1f, 0.5f);
path.lineTo (-1f, -0.5f);
path.lineTo (1f, 0.5f);

path.lineTo (1f, -0.5f);
path.closePath() ;

Figure 2.14. A shape defined by a GeneralPath object.

The path defines the boundary or outline of a shape. To completely define the shape, however, we must specify
what constitutes the interior or the exterior of the shape. This information is needed, for example, in drawing a
filled figure of the shape. Because multiple regions with complicated relationships may be formed from the path,
the interior region problem is not always trivial. The winding rules define the conditions in which a region is

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
considered inside the shape. Two winding rules are defined by pathiterator:

WIND EVEN ODD
WIND NON ZERO

To determine whether a particular region formed by the path is in the interior, draw a line through the region and
consider the number of crossings with the path from the outside to reach the region. With the even-odd rule, the
region is in the interior if the number of crossings is odd and exterior if the number is even. Essentially the path is
considered as the boundary separating the interior from the exterior, and consequently the designation of interior
and exterior alternates every time the line crosses the path.

With the nonzero rule, the direction of the path crossing is taken into consideration, and the crossing number can
be positive or negative. If the line crosses the path from left to right as you view it in the direction of the path,
the crossing number is increased by 1, otherwise it is decreased by 1. The region is interior if the signed crossing
number is not zero. The nonzero rule essentially defines the left side of the path, when you move along the path,
as the interior and the right side as the exterior.

For example, Figure 2.15 shows a path that consists of two squares. With the even-odd rule, the inner square
region is considered "outside" because the crossing number is even. With the nonzero rule, if the path is oriented
as shown, the inner square is considered "inside" because the crossing number is not zero.

[Page 53]

Figure 2.15. Even-odd rule and nonzero rule for interior definition.

L i

Another example is given in Figure 2.16. With the even-odd rule, both triangles in the region are considered to
be in the exterior. They are holes in the curved region. With the nonzero rule, however, only one triangle is
considered a hole. The triangle on the right is considered to be inside, because the orientation of its path is in the
same direction as the outer path and the crossing numbers do not cancel out as a line goes through them.

Figure 2.16. Left: Even—odd rule. Right: Nonzero rule.

&P &P

The program in Listing 2.5 shows the construction of shapes using the Generalpath and the effects of the
winding rules. Two shapes are created, and they are displayed in three different styles: path only, even-odd rule,
and nonzero rule (Figure 2.17).

Listing 2.5. CustomPath.java
(This item is displayed on pages 53 - 54 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

1 package chapter2;

2

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6 import java.awt.geom.*;

7

8 public class CustomPath extends JApplet {

9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("GeneralPath and Winding Rules");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
13 JApplet applet = new CustomPath();
14 applet.init () ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

15 frame.getContentPane () .add (applet) ;
16 frame.pack ()
17 frame.setVisible (true) ;
18 }
19
20 public void init () {
21 JPanel panel = new PathPanel();
22 getContentPane () .add (panel) ;
23 }
24
25
[Page 54]
26 class PathPanel extends JPanel {
27 public PathPanel () {
28 setPreferredSize (new Dimension (640, 480));
29 }
30
31 public void paintComponent (Graphics g) {
32 super.paintComponent (g) ;
33 Graphics2D g2 = (Graphics2D)g;
34 GeneralPath path = new GeneralPath (GeneralPath.WIND EVEN ODD) ;
35 float x0 1.0f;
36 float yO 0.0f;
37 float x1 = (float)Math.cos(2*Math.PI/5.0);
38 float yl = (float)Math.sin(2*Math.PI/5.0);
39 float x2 = (float)Math.cos (4*Math.PI/5.0);
40 float y2 = (float)Math.sin (4*Math.PI/5.0);
41 float x3 = (float)Math.cos(6*Math.PI/5.0);
42 float y3 = (float)Math.sin(6*Math.PI/5.0);
43 float x4 = (float)Math.cos(8*Math.PI/5.0);
44 float y4 = (float)Math.sin(8*Math.PI/5.0);
45 path.moveTo (x2,vy2);
46 path.lineTo (x0,vy0);
47 path.lineTo (x3,vy3);
48 path.lineTo (x1,vy1l);
49 path.lineTo (x4,v4);
50 path.closePath () ;
51 AffineTransform tr = new AffineTransform();
52 tr.setToScale (100,100);
53 g2.translate(120,120);
54 path = (GeneralPath)tr.createTransformedShape (path);
55 g2.draw (path) ;
56 g2.translate (200,0);
57 gz2.fill (path);
58 path.setWindingRule (GeneralPath.WIND NON ZERO) ;
59 g2.translate (200,0);
60 g2.fill (path);
61
62 path.reset () ;
63 path.moveTo (x0, yO0);
64 path.lineTo (x1, y1l);
65 path.lineTo (x2, y2);
66 path.lineTo (x3, y3);
67 path.lineTo (x4, v4);
68 path.closePath () ;
69 path.moveTo (x0, yO0);
70 path.quadTo (x4, v4, x1, yl);
71 path.quadTo (x2, y2, x3, y3);
72 path.closePath () ;
73 path.moveTo (x4,v4) ;
74 path.curveTo (x1,vyl,x3,vy3,x2,y2);
75 path.curveTo (x1,vyl,x3,y3,x4,v4);
76 path = (GeneralPath)tr.createTransformedShape (path);
77 g2.translate (-400,220);
78 g2.draw (path) ;
79 path.setWindingRule (GeneralPath.WIND EVEN ODD) ;
80 g2.translate (200,0);
81 g2.fill (path);
82 path.setWindingRule (GeneralPath.WIND NON ZERO) ;
83 g2.translate (200,0);
84 gz2.fill (path);
85 }
86

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 55]

Figure 2.17. General paths and regions formed with the even-odd rule and the nonzero rule.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
¢ GeneralPath and Winding Rules i =100 %]

Two shapes are constructed with the GeneralPath class. The star is formed entirely by line segments. The
vertices of the star are calculated by dividing a circle into five equally spaced parts (lines 35-44). The method
reset clears the path in a Generalpath object (line 62). The other shape is a pentagon with several segments of
lines, quadratic curves, and cubic curves. Three versions of each shape are displayed in three columns. First the
draw method is called to draw the outline path of the shape (lines 55, 78). Then the winding rule of the shape is
set to even-odd and the £i11 method is called to display the shape with filled interior (lines 57, 81). Finally the
winding rule is changed to nonzero and the shape is displayed with a filled interior again in the third column (lines
60, 84). It is clear that the nonzero winding rule will often yield more interior regions than the even-odd rule.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 55 (continued)]

Key Classes and Methods

e javax.swing.JComponent.paintComponent (Graphics) A method usually overridden to perform custom
painting for the component.

e java.awt.Graphics2D A class providing an interface to the Java 2D rendering engine.
e java.awt.Graphics2D.draw (Shape) A method to draw the outlines of a shape.

e java.awt.Graphics2D.fill (Shape) A method to fill the interiors of a shape.

e java.awt.Shape An interface for 2D geometric shapes.

e java.awt.geom.GeneralPath A class to define a general 2D contour using all segment types in the Shape
interface.

e java.awt.geom.Area A class for constructive area geometry.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 56]

Key Terms
coordinate system

A method to associate geometric points with algebraic quantities of ordered tuples of numbers.

parametric equation

A set of equations that express coordinate variables as functions of parameters.

world space

A common reference coordinate space for a graphics model.

object space

A local coordinate space associated with an individual object.

device space

A coordinate space used by a specific output device.

constructive area geometry

A method to create new geometric shapes by using set operations such as union and intersection on the
areas of existing shapes.

winding rule

A rule to determine the interior regions with given contours.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 56 (continued)]

Chapter Summary

In this chapter we discuss the basic principles of 2D graphics systems and Java 2D programming. A typical
2D graphics rendering pipeline involves three different coordinate spaces. In an object space, various visual
objects are defined in a local coordinate system convenient for object modeling. Through object
transformations the object spaces are mapped into a world space that is a common reference coordinate
system for all objects. The graphics scene modeled in the world space is mapped to a device space for
display. This transformation from the world space to the device space is known as the viewing
transformation.

A 2D curve can often be represented as an equation. Parametric equations are convenient for graphics
applications.

The geometric model of a visual object is constructed from primitive elements and constructive operations.
Java 2D provides a rich family of graphics primitives, including line, rectangle, rounded rectangle, ellipse,
arc, quadratic curve, and cubic curve. The shape interface provides a general framework for the geometric
descriptions.

Constructive area geometry is a technique to create new shapes based on operations on existing areas.
Java 2D supports four set-theoretical operations for constructive area geometry.

Five basic operations are recognized in the shape interface to define a path with different segments. The
GeneralPath class provides direct access to the five segment types. Two winding rules are available to
determine the interior of a region.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 56 (continued)]

Review Questions

2.1 What are the differences between object transformations and viewing transformations?
2.2 Plot the following points in a 2D coordinate system:
(11 3)/ (_211-5)1 (Ol _2)1 (01 0)

2.3 Find the coordinates of the vertices of the triangle in Figure 2.18.

Figure 2.18. A triangle for Question 2.3.
(This item is displayed on page 57 in the print version)

e

2.4 \Write the Java code to construct an ellipse of width 80 and height 100 centered at (100, 300).

2.5 Find the actual angle spanned by the following arc:

new Arc2D.Float (0, 0, 100, 200, 0, 45);

[Page 57]
2.6 Use the GeneralPath class to construct a shape of regular octagon.

2.7 Determine the interior of the shape in Figure 2.19 using the even-odd rule.

Figure 2.19. Define shape interior from the path.

A

Y

A
A

L i

2.8 Determine the interior of the shape in Figure 2.19 using the nonzero rule.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 57 (continued)]

Programming Exercises

2.1 Write a Java program to plot the following parametric equation:

y = ¢

2.2 Write a Java program to plot the following parametric equation:

x = 20tcost
y = 20tsint
0 < t':—:8p

2.3 Write a Java program to display a square centered at the origin and rotated by 45°.
2.4 Write a Java program to draw an 8 x 8 chessboard.

2.5 Write a Java program to display the accompanying filled shape (Figure 2.20) using constructive
area geometry.

Figure 2.20. A moon shape.

[Page 58]
2.6 Write a program to display the figure shown in the preceding problem using a general path.

2.7 Write a Java program to draw a Ying-Yang symbol as shown in Figure 2.21. (Hint: Use
constructive area geometry.)

Figure 2.21. A Ying-Yang symbol.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
[2mom PEE o RS -~ (L]

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 59]

Chapter 3. 2D Graphics: Rendering Details

(This item omitted from WebBook edition)

Objectives
e To understand color spaces.
e To use the Java color class.
e To be able to use different types of paints in drawing visual objects.
e To apply stroke types.
e To construct affine transforms including translation, rotation, scaling, shearing, and reflection.
e To understand object transformations and viewing transformations.
e To combine basic transformations to form more complex ones.
e To identify the compositing rules.
e To use clipping path.
e To apply fonts and font metrics.

e To understand glyph, ligature, and derived font.

[Page 60]
3.1. Introduction

This chapter introduces several important attributes associated with 2D graphics rendering and their
implementation in Java 2D. Besides the geometry that defines the structure of the graphics objects, many other
attributes and operations contribute significantly to the appearance of rendered images. Colors, stroke types,
transformations, compositing rules, clipping paths, and rendering hints are some of the factors affecting the
outcome of rendering.

Colors and paints are highly visible attributes. Colors are usually represented in numerical forms called color
spaces. Java defines the class Color to represents colors as objects. A generalization of color is the concept of
paint that can represent complex color patterns. Java 2D uses the paint interface to unify different paints. The
classes Color, GradientPaint, and TexturePaint all implement the paint interface and can be used by a
Graphics2D object.

Strokes define the details of painting pens such as the width, end style, join style, and dash type. Similar to
Paint, Graphics2D allows the selection of a stroke object as one of its rendering attributes. The concrete class
BasicStroke implements the stroke interface and provides common stroke settings.

Transformations are crucial parts of computer graphics. Transformations can be used to modify geometric objects
and to change the views. Affine transforms are the common family of transformations in computer graphics.
Transforms such as translation, rotation, scaling, reflection, and shearing are all examples of affine transforms.

Related to colors, transparency and more general compositing rules for overlapping objects are interesting
rendering attributes. A general set of compositing rules known as Porter-Duff rules are often applied in 2D
graphics. The recent versions of Java 2D fully support Porter-Duff rules.

Clip path is another rendering attribute. It defines a region in which the rendered objects will actually be visible.

Texts are special graphics objects that have very compact representations. The actual geometric shapes of texts
are predefined by fonts. Java 2D provides extensive support for fonts. In addition to the standard application of
drawing texts with various settings of fonts, advanced features such as retrieving the outline of a character are
also available.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 60 (continued)]

3.2. Colors and Paints
3.2.1. Color Space

Colors are important attributes in graphics systems. The color of light is associated with the wavelength or
frequency of the light. Usually light has a spectrum of frequencies whose exact description will be complex. In
practical terms, only colors visible and distinguishable to human eyes need to be defined in graphics systems. A
system called color space is often used to define visible colors with numerical values. Several different color spaces
exist to specify colors in a precise and quantitative way. The general approach is to select a small number of fixed
primary colors such as (red, green, blue) and represent an arbitrary color as a combination of the primary colors:

C=r-pr+g-pg+b-pp

The coefficients (r, g, b) represent the components of the color c in red, green, and blue. They provide a
convenient numerical specification for colors.

The CIEXYZ is a color standard that uses three primary colors, X, Y, and Z, instead of red, green, and blue. Any
visible color can be represented as a positive combination of X, Y, and Z. However, it is usually difficult to directly
implement CIEXYZ in physical devices.

Most monitors use RGB (red, green, blue) color spaces and printers typically use CMYK (cyan, magenta, yellow,
black) spaces. The combinations of the primary colors are used to represent different colors. These systems are
natural to the devices, but they are usually device dependent and they cannot represent all visible colors with
positive coefficients.

[Page 61]

SRGB (standard RGB) is an absolute device-independent color space. It uses the same type of red, green, and blue
components as other RGB systems, but it standardizes the color definitions so that they are independent of any
specific device.

3.2.2. Color

When the geometry of a shape is constructed, it can be rendered with the £i11 (Shape) or draw (Shape) methods
in Graphics2D. To set the color for rendering the object, the following method of the Graphics class may be used:

void setColor (Color c)

A Color object defines a color. The Color class by default uses the sRGB color space, a proposed standard color
space. A color contains Red, Green, Blue and Alpha components. The Alpha component defines the transparency
of the color. The color class defines the following constant color values:

black
blue
cyan
darkGray
gray
green
lightGray
magenta
orange
pink

red
white
yellow

Note

These names do not follow the Java naming convention, which specifies that
constants should be in all capital letters. Since JDK 1.4, you can also use the new
constants: BLACK, BLUE, CYAN, DARK_GRAY, GREEN, LIGHT GRAY, MAGENTA, ORANGE,

PINK, RED, WHITE, and YELLOW.

Other colors can be easily constructed using one of many constructors of the color class. You may directly specify
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
the RGB values using the following constructors:

Color (int r, int g, int Db);
Color (int rgb);
Color (float r, float g, float b);

The first version specifies the three-color components using int values in the range 0-255. The second version is
similar, but the three values are packed into a single int value. The third version uses float values in the range
0.0-1.0 to define the color components.

Besides RGB values, an alpha value related to the transparency of the color can be specified. The following
constructors allow alpha value specification:

Color (int r, int g, int b, int a);

Color (int rgba, boolean hasAlpha);
Color (float r, float g, float b, float a);

Another constructor of the color class allows the specification of a color space.

Color (ColorSpace colorSpace, float[] components, float alpha);

The following code fragment draws three squares of different colors:

public void paintComponent (Graphics g) {
g.setColor (Color.red);

[Page 62]
.draw (new Rectangle (0, 0, 100, 100));
.setColor (new Color (0, 255, 128));
.draw (new Rectangle (100, 0, 100, 100));
.setColor (new Color(0.5f, 0.0f, 1.0f));
.draw (new Rectangle (200, 0, 100, 100));

Q Q Q9 Q

Listing 3.1 illustrates the combinations of primary colors and the usage of colors in Java 2D rendering. The
program displays three overlapping circles representing red, green, and blue. Seven different regions represent
various combinations of the three primary components. Three sliders on the right of the window control the
values of the red, green, and blue components (Figure 3.1).

Listing 3.1. TestColors.java
(This item is displayed on pages 62 - 64 in the print version)

1 package chapter3;

2

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6 import javax.swing.event.*;

7 import java.awt.geom.*;

8

9 public class TestColors extends JApplet {
10 public static void main(String s[]) |
11 JFrame frame = new JFrame();

12 frame.setTitle ("Colors");

13 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
14 JApplet applet = new TestColors();

15 applet.init () ;

16 frame.getContentPane () .add (applet) ;
17 frame.pack () ;

18 frame.setVisible (true);

19 }
20

21 ColorPanel panel;
22 public void init () {

23 panel = new ColorPanel();

24 Container cp = getContentPane();

25 cp.setLayout (new BorderLayout ());

26 cp.add(panel, BorderLayout.CENTER) ;

277 JPanel p = new JPanel();

28 cp.add(p,BorderLayout.EAST) ;

29 p.setlLayout (new GridLayout (1,3,30,10));

30 JSlider slider = new JSlider (JSlider.VERTICAL,0,255,100);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

31 p.add(slider);

32 slider.addChangelistener (new ChangelListener () {
33 public void stateChanged(ChangeEvent ev) {

34 panel.red = ((JSlider) (ev.getSource())) .getValue():;
35 panel.repaint();

36 }

37 });

38 slider = new JSlider (JSlider.VERTICAL,0,255,100);
39 p.add(slider);

40 slider.addChangelistener (new ChangelListener () {
41 public void stateChanged (ChangeEvent ev) {

42 panel.green = ((JSlider) (ev.getSource())) .getValue();
43 panel.repaint();

44 }

45 }) 7

[Page 63]

46 slider = new JSlider (JSlider.VERTICAL,O0,255,100);
47 p.add(slider);

48 slider.addChangelistener (new ChangelListener () {
49 public void stateChanged(ChangeEvent ev) {

50 panel.blue = ((JSlider) (ev.getSource())) .getValue();
51 panel.repaint();

52 }

53 b):

54 }

55 }

56

57 class ColorPanel extends JPanel({

58 int red = 100;

59 int green = 100;

60 int blue = 100;

61

62 public ColorPanel () {

63 setPreferredSize (new Dimension (500, 500));

64 setBackground (Color.white);

65 }

66

67 public void paintComponent (Graphics g) {

68 super.paintComponent (g) ;

69 Graphics2D g2 = (Graphics2D)g;

70 Shape rc = new Ellipse2D.Double (100, 113, 200, 200);
71 Shape gc = new Ellipse2D.Double (50, 200, 200, 200);
72 Shape bc = new Ellipse2D.Double (150, 200, 200, 200);
73 Area ra = new Area(rc);

74 Area ga = new Area(gc);

75 Area ba = new Area (bc);

76 Area rga = new Area(rc);

77 rga.intersect (ga);

78 Area gba = new Area(gc);

79 gba.intersect (ba);

80 Area bra = new Area(bc);

81 bra.intersect (ra);

82 Area rgba = new Area(rga);

83 rgba.intersect (ba) ;

84 ra.subtract (rga) ;

85 ra.subtract (bra) ;

86 ga.subtract(rga);

87 ga.subtract (gba) ;

88 ba.subtract (bra);

89 ba.subtract (gba) ;

90 // £ill the color regions

91 g2.setColor (new Color(red,0,0));

92 g2.fill(ra);

93 g2.setColor (new Color (0,green,0));

94 g2.fill (ga);

95 g2.setColor (new Color(0,0,blue));

96 g2.fill (ba);

97 g2.setColor (new Color (red,green,0));

98 g2.fill (rga);

99 g2.setColor (new Color(0,green,blue));
100 g2.fill (gba);
101 g2.setColor (new Color(red,O0,blue));
102 g2.fill (bra);
103 g2.setColor (new Color (red,green,blue));
104 g2.fill (rgba) ;
105 // draw three circles

[Page 64]

106 g2.setColor (Color.black);
107 g2.draw(rc);
108 g2.draw (gc) ;
109 g2.draw (bc) ;
110 }
111 1}

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 3.1. Colors formed by combinations of red, green, and blue.
£colors =101

o

The ColorPanel class has three int fields red, green, and blue to represent the primary color components. In
the paintComponent method (line 67), the seven regions of the picture are formed from three circles using
constructive area geometry. Each region is filled with a combination of primary colors covering the region. For
example, the region covered by the red circle is filled with the red component. The region covered by the red and
blue circles is filled with the color composed of red and blue components. The center region covered by all three
circles is colored with all three components. The three circles are drawn in black.

Three vertical gslider objects are placed on the right side of the window. They are used to control the values of
the fields red, green, and blue in the Colorpanel. The values of the slides have the range 0 to 255. When a
slider is changed, the corresponding ChangelListener implementation will change the color variable and repaint
the panel (lines 30-53).

3.2.3. Paint

The setColor (Color c) method belongs to the older Graphics class. It sets only a solid color for rendering. The
Graphics2D class of Java 2D contains a much more powerful setPaint (Paint p) method to control the rendering
colors. Paint is a generalization of color. The paint interface is implemented by the color class and also
implemented by other classes (see Figure 3.2) that can represent more attributes than simple solid colors.

[Page 65]

Figure 3.2. Paint class hierarchy.

Paint

FaN

t-- Color
;L-—Grad"ientPai nt
i TexturePaint

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The GradientPaint class defines a type of paint with varying colors. A gradient paint is specified by two points
and two colors. As the location moves from the first point to the second, the paint color changes gradually from
the first color to the second. A gradient paint can be cyclic or acyclic. A cyclic gradient paint repeats the same
pattern periodically. To create an acyclic gradient paint, the following constructors can be used:

GradientPaint (float x1, float yl, Color cl, float x2, float y2, Color c2);
GradientPaint (Point2D pl, Color cl, Point2D p2, Color c2);

In either version, two points are specified with their associated colors. The colors for points between the two given
points will change gradually from one specified color to the other color. Cyclic gradient paints can be created with
the following constructors.

GradientPaint (float x1, float yl, Color cl, float x2, float y2, Color c2,
boolean cycl);
GradientPaint (Point2D pl, Color cl, Point2D p2, Color c2, boolean cycl);

Setting the last parameter to true will construct a cyclic gradient paint.

The TexturePaint class allows an object to be filled with a texture pattern. An image and an anchor rectangle are
used to define a texture paint. When painting with the texture, the image is repeatedly applied to the tiled
rectangular regions. A TexturePaint object is created with the following constructor:

TexturePaint (BufferImage image, Rectangle2D anchor);

The image defines the texture for painting. The anchor rectangle specifies the positioning of the image in the user
space.

Listing 3.2 demonstrates the effects of graphics drawing with gradient and texture paints. A sample run of the
program is shown in Figure 3.3.

Listing 3.2. TestPaints.java
(This item is displayed on pages 65 - 66 in the print version)

1 package chapter3;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.image.*;
6 import javax.swing.*;
7 import java.awt.font.*;
8 import java.awt.geom.*;
9 import java.io.*;
10 import java.net.URL;
11 import javax.imageio.*;
12
13 public class TestPaints extends JApplet {
14 public static void main(String s[]) {
15 JFrame frame = new JFrame () ;
[Page 66]
16 frame.setTitle ("Gradient and Texture Paints");
17 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
18 JApplet applet = new TestPaints();
19 applet.init ()
20 frame.getContentPane () .add (applet) ;
21 frame.pack () ;
22 frame.setVisible (true);
23 }
24
25 public void init () {
26 JPanel panel = new PaintPanel();
27 getContentPane () .add (panel) ;
28 }
29 }
30
31 class PaintPanel extends JPanel/{
32 private BufferedImage image;
33
34 public PaintPanel () {
35 setPreferredSize (new Dimension (500, 500));
36 setBackground (Color.white);
37 URL url = getClass () .getClassLoader () .getResource

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

38 ("images/earth.jpg");

39 try {

40 image = ImagelIO.read(url);

41 } catch (IOException ex) {

42 ex.printStackTrace () ;

43 }

44 }

45

46 public void paintComponent (Graphics g) {

47 super.paintComponent (g) ;

48 Graphics2D g2 = (Graphics2D)g;

49 GradientPaint gp = new GradientPaint (100,50,

50 Color.white, 150, 50, Color.gray, true);

51 g2.setPaint (gp);

52 g2.fillRect (100, 40, 300, 20);

53 TexturePaint tp = new TexturePaint (image,

54 new Rectangle2D.Double (100, 100, image.getWidth(),
55 image.getHeight ()));

56 g2.setPaint (tp);

57 Shape ellipse = new Ellipse2D.Double (100, 100, 300, 200);
58 g2.fill(ellipse);

59 GradientPaint paint = new GradientPaint (100, 300, Color.white,
60 400, 400, Color.black);

61 g2.setPaint (paint);

62 Font font = new Font ("Serif", Font.BOLD, 144);

63 g2.setFont (font) ;

64 g2.drawString ("Java", 100, 400);

65 }

66 1}

Figure 3.3. Shapes drawn with cyclic gradient paint, texture paint, and acyclic gradient paint.
(This item is displayed on page 67 in the print version)

=101 x|

£ Gradient and Texture Painks

This program draws three visual objects in the paintComponent method (line 46). Three different types of paints
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
are used to draw the figures. The top rectangle is drawn with a cyclic gradient paint created by the following
constructor:

new GradientPaint (100,50, Color.white, 150, 50, Color.gray, true);

The gradient paint specifies a gradual change of colors from the white at the point (100, 50) to the gray at the
point (150, 50). The pattern is cyclically repeated. Because the two points have the same y-coordinates, you will
see a vertical pattern.

[Page 67]
The ellipse is filled with a texture paint defined by an image.

new TexturePaint (image, new Rectangle2D.Double (100, 100, image.getWidth(),
image.getHeight ()));

The image is a BufferedImage object loaded from a file using the read method of the Image10 class.

The text string is drawn with an acyclic gradient paint:

new GradientPaint (100,300, Color.white, 400, 400, Color.black);

The gradient paint changes the color from white to black as the location moves from (100, 300) to (400, 400).
The paint is acyclic, and the color pattern does not repeat.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 67 (continued)]

3.3. Strokes

A line rendered in computer graphics is not an ideal line with zero width. To be practically realizable, lines must
have specific shapes. The attributes that define the fine details of such shapes are called strokes. A stroke may
include attributes such as the width of lines, the dash style of lines, the cap shape at the ends of lines, and the
style at the joins of lines.

Java 2D includes the interface stroke to represent strokes. A concrete implementation of the Stroke interface is
the class BasicStroke. BasicStroke provides settings for width, end style, join style, and dash. The constructors
of BasicStroke are listed below.

BasicStroke ()

BasicStroke (float width)

BasicStroke (float width, int cap, int join)

BasicStroke (float width, int cap, int join, float miterlimit)

BasicStroke (float width, int cap, int join, float miterlimit,
float[] dash, float dashphase)

[Page 68]

The parameter width defines the width of the drawing pen. The parameter cap sets the end cap style and can
take values:

CAP_BUTT
CAP_ROUND
CAP_SQUARE

The parameter join defines the join style with values:

JOIN BEVEL
JOIN MITER
JOIN ROUND

The miterlimit sets a limit for JOIN MITER to prevent a very long join when the angle between the two lines is
small.

The dash array defines a dash pattern by specifying the lengths of the ON/OFF segments. The dashphase defines
the starting point in the dash pattern.

Graphics2D has the following method to set the current stroke:

void setStroke (Stroke s)

Listing 3.3 demonstrates the effects of graphics drawing with different stroke settings. Three end styles, three
join styles, and a dash array with two different dash phase values are illustrated. A sample run of the program is
shown in Figure 3.4.

Listing 3.3. TestStrokes.java
(This item is displayed on pages 68 - 69 in the print version)

1 package chapter3;

2

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6 import java.awt.geom.*;

7

8 public class TestStrokes extends JApplet {
9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("Different Strokes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new TestStrokes();
14 applet.init () ;
15 frame.getContentPane () .add (applet) ;
16 frame.pack (),
17 frame.setVisible (true) ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

18 }
19
20 public void init () {
21 JPanel panel = new StrokePanel();
22 getContentPane () .add (panel);
23 }
24 }
25
26 class StrokePanel extends JPanel {
27 public StrokePanel () {
28 setPreferredSize (new Dimension (700, 400));
[Page 69]
29 setBackground (Color.white) ;
30 }
31
32 public void paintComponent (Graphics g) {
33 super.paintComponent (g) ;
34 Graphics2D g2 = (Graphics2D)g;
35 GeneralPath path = new GeneralPath (GeneralPath.WIND EVEN ODD) ;
36 path.moveTo (0,120) ;
37 path.lineTo (80,0);
38 path.lineTo (160,120);
39 Stroke stroke = new BasicStroke (20, BasicStroke.CAP BUTT,
40 BasicStroke.JOIN BEVEL);
41 g2.setStroke (stroke);
42 g2.translate(50,50);
43 g2.draw (path) ;
44 g2.drawString ("JOIN BEVEL",100,0);
45 g2.drawString ("CAP_BUTT", 40, 120);
46 stroke = new BasicStroke (20, BasicStroke.CAP ROUND,
47 BasicStroke.JOIN MITER) ;
48 g2.setStroke (stroke);
49 g2.translate (200,0);
50 g2.draw (path) ;
51 g2.drawString ("JOIN MITER",100,0);
52 g2.drawString ("CAP_ROUND", 40, 120);
53 stroke = new BasicStroke (20, BasicStroke.CAP SQUARE,
54 BasicStroke.JOIN ROUND) ;
55 g2.setStroke (stroke);
56 g2.translate (200,0);
57 g2.draw (path) ;
58 g2.drawString ("JOIN ROUND",100,0);
59 g2.drawString ("CAP_SQUARE", 40, 120);
60 float[] dashArray = {60,20,20,40};
61 float dashPhase = 0;
62 stroke = new BasicStroke (10, BasicStroke.CAP BUTT,
63 BasicStroke.JOIN BEVEL, 0, dashArray, dashPhase);
64 g2.setStroke (stroke);
65 g2.translate (-400,200);
66 g2.drawLine (100, 50, 550, 50);
67 g2.drawString("dash=60 20 20 40", 250, 10);
68 g2.drawString ("phase=0", 0, 50);
69 dashPhase = 20;
70 stroke = new BasicStroke (10, BasicStroke.CAP BUTT,
71 BasicStroke.JOIN BEVEL, 0, dashArray, dashPhase);
72 g2.setStroke(stroke);
73 g2.translate (0,50);
74 g2.drawLine (100, 50, 550, 50);
75 g2.drawString ("phase=20", 0, 50);
76 }
77 }

Figure 3.4. Examples of strokes with different end style, join style, and dash settings.
(This item is displayed on page 70 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
¢ pifersntstokes ~ioix|

JOIN_BEVEL JOIN_MITER JOM_ROUMD

CAP_BUTT CaPR_ROLIMD

CAP_SQUARE

dash=60 20 20 40

pheaga=0 ST = EE JLotvne o R e] L

phasesll I . = B I .]

A GeneralPath is constructed with two joining line segments (lines 34-37). The path is drawn three times on the
top row. Three BasicStroke instances with different end styles and join styles are applied to the drawings. The
width is set to 20 in order to show the details of stroke styles.

The bottom two rows display dashed lines. The dash array is defined to be {60, 20, 20, 40} (line 59), and the
width is 10 for both strokes, but the dash phase values are 0 and 20, respectively. The shifting of the dash
pattern due to nonzero dash phase is clearly visible.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 70]

3.4. Affine Transformation

Geometric objects go through a transformation stage before being rendered. A general family of geometric
transforms commonly used in computer graphics is called affine transforms. An affine transform preserves the
parallel lines. The affine transforms that also preserve distances are called isometries, Euclidean motions, or rigid
motions. The common affine transforms include:

e Translation
e Rotation

Reflection

Scaling
e Shearing

A translation moves all points of the object by a fixed amount (see Figure 3.5). It is specified by the amounts of
movements in the x- and y-directions. A translation is an isometry, since it does not change lengths and angles.
Figure 3.5 shows a translation of (3, -1). The object is moved 3 units to the right and 1 unit up.

Figure 3.5. A translation of (3, -1).

— T T T T T =%

[Page 71]

A rotation rotates the object about a point by an angle (see Figure 3.6). It is determined by the point and the
angle. A rotation is also an isometry, though it changes the orientation of the shape. Figure 3.6 shows a rotation
of 45 degrees about the origin.

Figure 3.6. A rotation about the origin.

= X

~1 T T T T 1

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
A reflection maps the object to its mirror image about a line (see Figure 3.7). It is determined by the line. A
reflection is an isometry, though it changes the orientation of an angle. Figure 3.7 shows a reflection about the
45 degree line between the x- and y-axes.

Figure 3.7. A reflection about the diagonal line.

=
|

iy

A scaling resizes the object by certain fixed factors in the x- and y-directions (see Figure 3.8). A scaling is not an
isometry, because it will change distances and angles. However, it preserves parallelism. Figure 3.8 shows a
scaling by the factors (1.5, 2).

Figure 3.8. A scaling by factors (1.5, 2).
T 1 1 1 1 - F

[Page 72]

A shearing about a line shifts a point by an amount proportional to the signed distance to the line (see Figure
3.9). The movements of the points are parallel to the line. Points on the line are not moved. Points on the
opposite sides of the line are moved in the opposite directions. A shearing is not an isometry, but it still preserves
parallelism. Figure 3.9 shows a shearing by the factor 1.0 along the horizontal line y = 2.

Figure 3.9. A shearing by factor 1 along the dashed horizontal line.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
— 1 1 T 1T 1 %

Mathematically a 2D affine transformation can be represented as a 3 x 3 matrix. An affine transform requires a 3
x 3 instead of a 2 x 2 matrix, because transforms such as translations are not linear in a 2D space. Using the
concept of homogeneous coordinates, it is possible to treat all affine transforms in a linear framework by adding
one dimension to the vector representation of the points. A more detailed discussion on matrices and
homogeneous coordinates can be found in Appendix A.

For basic transforms, it is usually easy to find the transformation matrices directly. A rotation of an angle 8 about
the origin is represented as the matrix:

cos® sinf 0
—sind cos# 0
(0 |

A translation by the amount (a, b) has the matrix:

1 0 a
o 1 &b
0 o 1

A scaling by the factors (a,) has the matrix representation:

a 0 0
0 B 0
0 0 |

A reflection about the line y = kx is represented by the matrix:

2 | 2
| + k° | + k°
2k 2k
S s— 1 0
| + &2 | + &2
i 0 0 I]

[Page 73]

A shear along the x-axis by the factor s is given by the matrix:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
1 5 0

Java 2D uses the AffineTransform class to define an affine transform. It offers convenient methods to set up
most of the basic affine transforms defined above. The following methods of AffineTransform directly set these
named transforms,

void setToldentity ()

void setToRotation (double theta)

void setToRotation (double theta, double x, double vy)
void setToScale (double sx, double sy)

void setToShear (double shx, double shy)

void setToTranslation (double tx, double ty)

One transform missing from this list of methods is the reflection. However, you may define a reflection by setting
its matrix. The following matrix defines a reflection about the y-axis:

=1 0 0

The AffineTransform class has constructors and methods to directly set the first two rows of the transformation
matrix.

AffineTransform(double m00, double ml0, double mO1l,
double mll, double m02, double ml2)
AffineTransform (float m00, £float mloO,
float m0l, float mll, float m02, float ml2)
AffineTransform(double|[] flatmatrix)
AffineTransform(float[] flatmatrix)
void setTransform(double m00, double ml10, double mO1l,
double mll, double m02, double ml2)

Because the last row of an affine transformation matrix is always (0 0 1), it is omitted in the parameter list. The
reflection matrix defined above may be set by the following method:

transform.setTransform(-1, 0, 0, 1, 0, 0);

Because the AffineTransform class allows a scaling with negative factors, the reflection can also be defined as a
special kind of scaling:

transform.setToScale (-1, 1);

An AffineTransform object can be used for both object transformations and viewing transformations. The
following methods of the AffineTransform class apply the transform to geometric objects:

Shape createTransformedShape (Shape shape)

void transform(double[] src, int srcOff, double[] dst,
int dstOff, int numPts)

void transform(double[] src, int srcOff, float[] dst,
int dstOff, int numPts)

void transform(float[] src, int srcOff, double[] dst,
int dstOff, int numPts)

void transform(float[] src, int srcOff, float[] dst,
int dstOff, int numPts)

Point2D transform(Point2D src, Point2D dst)

[Page 74]
Point2D transform(Point2D[] src, int srcOff, Point2D[] dst,

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
int dstOff, int numPts)

void deltaTransform(double[] src, int srcOff, double[] dst,
int dstOff, int numPts)

Point2D deltaTransform(Point2D src, Point2D dst)

The createTransformedShape method transforms an entire shape. The transform methods perform the
transformation on a set of points. The deltaTransform methods perform the transformation on a set of vectors.

A viewing transformation can be realized with the transformation in the Graphics2D object. The Graphics2D class
has the following methods to manipulate its transformation:

void setTransform(AffineTransform tx)
void transform(AffineTransform tx)

The method setTransform replaces the current transformation with the given AffineTransform object. The
method transform concatenates the current transformation with the given aAffineTransform object on the right.

Listing 3.4 illustrates the effects of affine transforms through an interactive approach. A user is allowed to
perform the transformations on a graphics object using the mouse. The affine transforms are selected with a
menu that includes translation, rotation, scaling, shearing, and reflection. A sample run of the program is shown
in Figure 3.10.

Listing 3.4. Transformations.java
(This item is displayed on pages 74 - 77 in the print version)

1 package chapter3;

2

3 import java.awt.*;

4 import java.awt.geom.*;

5 import java.awt.event.*;

6 import java.util.*;

7 import javax.swing.*;

8

9 public class Transformations extends JApplet implements
10 ActionListener {

11 public static void main(String s[]) {

12 JFrame frame = new JFrame();

13 frame.setTitle ("Affine Transforms");

14 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
15 JApplet applet = new Transformations();
16 applet.init () ;

17 frame.getContentPane () .add (applet);

18 frame.pack () ;

19 frame.setVisible (true) ;
20 }
21
22 TransformPanel panel = null;
23
24 public void init () {
25 JMenuBar mb = new JMenuBar () ;
26 setJMenuBar (mb) ;
27 JMenu menu = new JMenu ("Transforms") ;
28 mb.add (menu) ;
29 JMenuItem mi = new JMenultem("Translation");
30 mi.addActionListener (this) ;
31 menu.add (mi) ;
32 mi = new JMenultem("Rotation");
33 mi.addActionListener (this);
34 menu.add (mi) ;

[Page 75]

35 mi = new JMenultem("Scaling");
36 mi.addActionListener (this) ;
37 menu.add (mi) ;
38 mi = new JMenultem("Shearing");
39 mi.addActionListener (this);
40 menu.add (mi) ;
41 mi = new JMenultem("Reflection");
42 mi.addActionListener (this);
43 menu.add (mi) ;
44
45 panel = new TransformPanel () ;
46 getContentPane () .add (panel);
47 }
48
49 public void actionPerformed (ActionEvent ev) {
50 String command = ev.getActionCommand () ;
51 if ("Translation".equals (command)) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

52 panel.transformType = panel.TRANSLATION;
53 } else if ("Rotation".equals (command)) {
54 panel.transformType = panel .ROTATION;
55 } else if ("Scaling".equals (command)) {
56 panel.transformType = panel.SCALING;
57 } else if ("Shearing".equals (command)) {
58 panel.transformType = panel.SHEARING;
59 } else if ("Reflection".equals (command)) {
60 panel.transformType = panel.REFLECTION;
61 }
62 }
63 }
64
65 class TransformPanel extends Jpanel
66 implements MouselListener, MouseMotionListener {
67 static final int NONE = O0;
68 static final int TRANSLATION = 1;
69 static final int ROTATION = 2;
70 static final int SCALING = 3;
71 static final int SHEARING = 4;
72 static final int REFLECTION = 5;
73
74 int transformType = NONE;
75 Shape drawShape = null;
76 Shape tempShape = null;
77 Point p = null;
78 int x0 = 400;
79 int y0 = 300;
80
81 public TransformPanel () {
82 super () ;
83 setPreferredSize (new Dimension (800, 600));
84 setBackground (Color.white);
85 drawShape = new Rectangle(-50, -50, 100, 100);
86 addMouselListener (this);
87 addMouseMotionListener (this);
88 }
89
90 public void paintComponent (Graphics g) {
91 super.paintComponent (g) ;
92 Graphics2D g2 = (Graphics2D)g;
93 g2.translate (x0, yO0);
94 g2.drawLine (-200, 0, 200, O0);
[Page 76]
95 g2.drawLine (0, -200, 0, 200);
96 g2 .draw (drawShape) ;
97 }
98
99 public void mouseClicked (MouseEvent ev) {
100 }
101
102 public void mouseEntered (MouseEvent ev) {
103 }
104
105 public void mouseExited (MouseEvent ev) {
106 }
107
108 public void mousePressed (MouseEvent ev) {
109 p = ev.getPoint ();
110 }
111
112 public void mouseReleased (MouseEvent ev) {
113 Graphics g = getGraphics();
114 Point pl = ev.getPoint();
115 AffineTransform tr = new AffineTransform() ;
116 switch (transformType) {
117 case TRANSLATION:
118 tr.setToTranslation(pl.x-p.x, pl.y-p.vy);
119 break;
120 case ROTATION:
121 double a = Math.atan2(pl.y-y0, pl.x-x0) - Math.atan2
122 (p.y-vy0, p.x-x0);
123 tr.setToRotation(a);
124 break;
125 case SCALING:
126 double sx = Math.abs ((double) (pl.x-x0)/(p.x-x0));
127 double sy = Math.abs ((double) (pl.y-y0)/(p.y-y0));
128 tr.setToScale (sx, sy);
129 break;
130 case SHEARING:
131 double shx = ((double) (pl.x-x0)/(p.x-x0))-1;
132 double shy = ((double) (pl.y-y0)/(p.y-y0))-1;
133 tr.setToShear (shx, shy);
134 break;
135 case REFLECTION:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

136 tr.setTransform(-1, 0, 0, 1, 0, 0);
137 break;
138 }
139 drawShape = tr.createTransformedShape (drawShape) ;
140 repaint () ;
141 }
142
143 public void mouseMoved (MouseEvent ev) {
144 }
145
146 public void mouseDragged (MouseEvent ev) {
147 Point pl = ev.getPoint();
148 AffineTransform tr = new AffineTransform() ;
149 switch (transformType) {
150 case TRANSLATION:
151 tr.setToTranslation(pl.x-p.x, pl.y-p.vy);
152 break;
153 case ROTATION:
154 double a = Math.atan2(pl.y-y0, pl.x-x0) - Math.atan2
155 (p.y-vy0, p.x-x0);
[Page 77]
156 tr.setToRotation (a);
157 break;
158 case SCALING:
159 double sx = Math.abs ((double) (pl.x-x0)/(p.x-x0)) ;
160 double sy = Math.abs ((double) (pl.y-y0)/(p.y-y0));
161 tr.setToScale(sx, sy);
162 break;
163 case SHEARING:
164 double shx = ((double) (pl.x-x0)/(p.x-x0))-1;
165 double shy = ((double) (pl.y-y0)/(p.y-y0))-1;
166 tr.setToShear (shx, shy);
167 break;
168 case REFLECTION:
169 tr.setTransform(-1, 0, 0, 1, 0, 0);
170 break;
171 }
172 Graphics2D g = (Graphics2D)getGraphics();
173 g.setXORMode (Color.white) ;
174 g.translate (x0, yO0);
175 if (tempShape != null)
176 g.draw (tempShape) ;
177 tempShape = tr.createTransformedShape (drawShape) ;
178 g.draw (tempShape) ;
179 }
180 1}

Figure 3.10. Affine transforms applied to a rectangle.

E——EEE——e LY _ aisn
p—
1 e

e
g
]
A

The program initially displays a set of axes for the coordinate system and a rectangle. A menu is defined to select
an affine transformation from a list including translation, rotation, scaling, shearing, and reflection (lines 25¢43).
To perform a selected transformation, drag the mouse in the desired direction. The amount of mouse movement
is used to determine the corresponding transformation on the object.

Two classes are defined in this program, Transformations and TransformPanel. The Transformations class is a
subclass of Japplet and contains the menu for selecting the current affine transform. The class is also the action
event handler to handle the menu selection actions and to set the appropriate values for the transformType
variable in TransformPanel

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
The TransformPanel class is a subclass of Jpanel and it handles the mouse events. When a transform is
requested, an AffineTransform object is set to the value determined by the selected transform type and the
mouse movements. The transform is then applied to the shape as an object transformation using the method
createTransformedShape (line 139). The shape is initially a rectangle, but the transformations on the shape are
accumulative, and the newly transformed shape becomes the current shape. The transformations do not affect
other objects such as the axes, because they are object transformations applied locally to the shape only.

[Page 78]

The rubber-banding technique is also used to provide visual clues while the user is dragging the mouse. The
method is the same as that in Listing 2.3. The XOR drawing mode is applied to draw and erase the temporary
shapes.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 78 (continued)]

3.5. Compositions of Transformations

Transformations can be combined to form new transformations. For example, you may apply a translation
followed by a rotation and followed by another translation. Any composition of affine transforms is still an affine
transform. Any composition of rigid motions is still a rigid motion. Conversely, a transform may be decomposed
into a series of (usually simpler) transforms.

The transformation matrix of a composite transform is the product of matrices of the individual transforms. For
example, if My, M, M3 are the matrices for the affine transforms Ty, T, T3, respectively, then the matrix for the
composition Ty © T, © T3 is M{M,Ms3. Note that the operation of transformation composition is noncommutative,
so the order of applying the transforms is significant. In our notation, the transforms in a composite transform
are applied from right to left. For example, when the composite transform T © T5 © T3 is applied to a point p, the
order of the transforms is T3, T, Ty:

(T1 ° T2 0 T3)(p) = T1(T2(T3(P)))

Composite transforms are useful in constructing complex transforms from simpler ones. If you need a rotation
about the point (3, 4) by 30 degrees, you may first perform a translation to move the point (3, 4) to the origin.
Then you may perform a 30-degree rotation about the origin. Finally you can translate the origin back to the
point (3, 4). Combining the three transforms, you will obtain the required transform. In the matrix form, the
translation that moves (3, 4) to the origin is given by:

10 =3
o 1 —4
0 0 I

The rotation of 30 degrees about the origin is

V32 =12 0
2 V3nr o
0 0

The second translation is

Combing three transforms, the final rotation has the transformation matrix:

1 0 3 V3R =12 0 1 0 =3
0 1 4 1/2 V32 0 0 1 —4
0 0 1 0 0 I 0 0 I

In Java 2D, the AffineTransform class provides the following methods to support composite transforms:

void rotate (double theta)
void rotate (double theta, double x, double vy)
[Page 79]

void scale (double sx, double sy)
void shear (double shx, double shy)
void translate (double tx, double ty)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Unlike the setTo* methods introduced in the previous section, these methods do not clear the existing
transforms in the current objects, but combine the current transforms with the newly specified transforms. The
new transforms are appended to the right of the current ones. Instead of the simple transformations listed above,
it is also possible to combine the current transform with another AffineTransform object:

void concatenate (AffineTransform tx)
void preConcatenate (AffineTransform tx)

The first method concatenates the other transform to the right of the current. The second concatenates the
other transform to the left of the current.

Note that the order of transform composition is from left to right, and the methods above (except for
preConcatenate) concatenate the transform from the right. If you create a composite transform by calling the
above methods, the transforms are applied in the opposite order of your calling sequence. For example, consider
the following code:

AffineTransform transform = new AffineTransform();
transform.rotate (Math.PI/3);

transform.scale (2, 0.3);

transform.translate (100, 200);

The first transform to be applied is the translation and the last transform is the rotation.

Listing 3.5 illustrates the use of transform composition. To rotate an ellipse about its center that is not located at
the origin, you may first translate the object to the origin. Then rotate around the origin. Finally, translate the
center of the rotated ellipse to its original point. (See Figure 3.11.)

Listing 3.5. Composition.java
(This item is displayed on pages 79 - 80 in the print version)

package chapter3;
import javax.swing.*;
import java.awt.*;

1
2
3
4
5 import java.awt.geom.*;
6
7
8

public class Composition extends JApplet {

public static void main(String s[]) {

9 JFrame frame = new JFrame();
10 frame.setTitle ("Transformation Composition");
11 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
12 JApplet applet = new Composition();
13 applet.init ()
14 frame.getContentPane () .add (applet) ;
15 frame.pack() ;
16 frame.setVisible (true);
17 }
18
19 public void init () {
20 JPanel panel = new CompositionPanel () ;
21 getContentPane () .add (panel) ;
22 }
23 '}
24

25 class CompositionPanel extends JPanel {
26 public CompositionPanel () {

[Page 80]
27 setPreferredSize (new Dimension (640, 480));
28 this.setBackground (Color.white) ;
29 }
30
31 public void paintComponent (Graphics g) {
32 super.paintComponent (g) ;
33 Graphics2D g2 = (Graphics2D)g;
34 g2.translate (100,100);
35 Shape e = new Ellipse2D.Double (300, 200, 200, 100);
36 g2.setColor (new Color(160,160,160));
37 g2.fill (e);
38 AffineTransform transform = new AffineTransform() ;
39 transform.translate (-400,-250);
40 e = transform.createTransformedShape (e);
41 g2.setColor (new Color(220,220,220));
42 g2.fill (e);
43 g2.setColor (Color.black);
44 g2.drawLine (0, 0, 150, 0);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

45 g2.drawLine (0, 0, 0, 150);

46 transform.setToRotation (Math.PI / 6.0);
47 e = transform.createTransformedShape (e);
48 g2.setColor (new Color (100,100,100));

49 g2.draw(e) ;

50 transform.setToTranslation (400, 250);

51 e = transform.createTransformedShape (e);
52 g2.setColor (new Color(0,0,0));

53 g2.draw(e) ;

54 }

55 }

Figure 3.11. Composition of a translation, a rotation, and another translation.

¢ Transformation Composition } -]EI|E|

The program shows a shape at different stages of a composite transformation. The shape is an ellipse originally
constructed with a bounding rectangle (300, 200, 200, 100), so its center is located at (400, 250) (line 35). The
objective is to rotate the ellipse by 30 degrees around the center (400, 250). To achieve this transformation, a
composition of three transformations is used. First a translation of (-400, -250) will move the ellipse so that it is
centered at the origin. Then a rotation of 30 degrees about the origin is applied. The ellipse is rotated and still
centered at the origin. Finally a translation of (400, 250) moves the ellipse back so that its center is again at
(400, 250). The composition of the three transforms is the desired transformation.

[Page 81]

To show all parts of the figures, a viewing transformation is used to move the origin of the world space from the
upper left corner of the screen to (100, 100) (line 34). The x- and y-axes are drawn to show the new origin. The
ellipse at each stage of the transformation is displayed with different gray levels. The rotated ellipses are not filled.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 81 (continued)]

3.6. Transparency and Compositing Rules

Compositing rules determine the results of rendering overlapped objects. Various visual effects such as different
degrees of transparency can be obtained by choosing compositing rules.

To establish the compositing rules, the concept of an a-channel is needed. The a-channel can be viewed as a part
of color properties that specifies the transparency. An a-channel is a number between 0.0 and 1.0, with 0.0
representing complete transparency and 1.0 complete opaqueness.

Given the source and destination pixel color and a-values, the Porter-Duff rules define the resulting color and a-
values as linear combinations of the source and destination values:

o]
|

—FS-aS-CS+Fd-ad-Cd

Q
|

—FS-aS+Fd-ad

Often the color components may have their a-values premultiplied to speed up the computation. The different
choices of the two coefficients F5 and Fg in the equation define the different compositing rules. There are twelve

Porter-Duff rules, having the coefficients shown in Table 3.1.

Table 3.1.

(This item is displayed on page 82 in the print version)
Porter-Duff Rule Fg Fq
Clear 0 0
SrcOver 1 1-ag
DstOver 1-ay 1
SrcIn ag 0
DstIn 0 as
SrcoOut 1-ay 0
Dstout 0 1-as
Src 1 0
Dst 0 1
SrcAtop ag 1-ag
DstAtop 1- ag ag
Xor 1-ay 1-ag

The Porter-Duff rules can be derived systematically from a probabilistic model. The a-value of a color can be
interpreted as the probability that the color will be shown, or more concretely as the portion of the pixel area
covered by the specified color. To combine the source and destination colors with their respective a-values, four
different cases need to be considered: source color occurs only, destination color occurs only, both colors occur,
and neither color occurs. Figure 3.12 illustrates the four events, which occur with probabilities ag(1 - ag), ag(1 -
ag), asaq, and (1 - ag) (1 - ay), respectively. A compositing rule simply decides whether to retain a color when the
color occurs. In the source-color-only event, a rule can choose to retain the source color or to omit it. In the
destination-color-only event, the destination color can be selected or omitted. In the both-colors event, a rule can
choose the source color, the destination color, or no color. In the neither-color event, a rule can only select no
color. Therefore, the total number of rules based on this modelis 2 x 2 x3 x1 = 12.

Figure 3.12. Four different events of color occurrence in the probabilistic model of compositing.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

MNeither

Both

[Page 82]

For example, the srcover rule chooses the source color in the event of source color only and the event of both
colors. It chooses the destination color in the destination-color-only event. It must choose no color in the neither-
color event. Consequently the probability of source color occurring in the combined color is ag(1 - ag) + as ag = ag,
and the probability of destination color is ag(1 - ag). This leads to the selection of the coefficients Fg = 1, Fy = (1 -
ag) as shown in Table 3.1.

Early versions of Java 2D supports the first eight rules in Table 3.1. Starting with J2SDK 1.4, all twelve rules are
supported. The AlphaComposite class encapsulates the rules. An instance of AlphaComposite for a rule can be
obtained by a static field of AlphaComposite with the name shown in Table 3.1. To apply a compositing rule to a
Graphics2D object, simply call the setComposite method. For example, the following statement sets the
compositing rule to srcin:

Graphics2D g2 = (Graphics2D)g;
g2.setComposite (AlphaComposite.SrcIn);

Listing 3.6 illustrates the application of the AlphaComposite class to implement Porter-Duff rules. This example
shows several visual objects rendered with the twelve different Porter-Duff compositing rules. The rules are
selected by clicking the mouse on the display panel. A sample run of the program is shown in Figure 3.13.

Listing 3.6. Compositing.java
(This item is displayed on pages 82 - 84 in the print version)

package chapter3;

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import javax.swing.*;
import java.awt.font.*;
import java.awt.geom.*;
import java.io.*;

import java.net.URL;

O WO Jo U b W

[Page 83]
11 import javax.imageio.*;

13 public class Compositing extends JApplet {
14 public static void main(String s[]) {

15 JFrame frame = new JFrame () ;

16 frame.setTitle ("Compositing Rules");
17 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
18 JApplet applet = new Compositing();

19 applet.init () ;

20 frame.getContentPane () .add (applet);

21 frame.pack () ;

22 frame.setVisible (true);

23 }

25 public void init () {

26 JPanel panel = new CompositePanel () ;
27 getContentPane () .add (panel) ;

28 }

29 }

30

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

31 class CompositePanel extends JPanel implements MouseListener ({
32 BufferedImage image;
33 int[] rules = {AlphaComposite.CLEAR, AlphaComposite.SRC_OVER,
34 AlphaComposite.DST OVER, AlphaComposite.SRC _IN,
35 AlphaComposite.DST IN, AlphaComposite.SRC_OUT,
36 AlphaComposite.DST OUT, AlphaComposite.SRC,
37 AlphaComposite.DST, AlphaComposite.SRC_ATOP,
38 AlphaComposite.DST ATOP, AlphaComposite.XOR};
39 int ruleIndex = 0;
40
41 public CompositePanel () {
42 setPreferredSize (new Dimension (500, 400));
43 setBackground (Color.white) ;
44 URL url =
45 getClass () .getClassLoader () .getResource ("images/earth.jpg") ;
46 try |
47 image = ImageIO.read(url);
48 } catch (IOException ex) {
49 ex.printStackTrace();
50 }
51 addMouselListener (this) ;
52 }
53
54 public void paintComponent (Graphics g) {
55 super.paintComponent (g) ;
56 Graphics2D g2 = (Graphics2D)g;
57 g2.drawlImage (image, 100, 100, this);
58 AlphaComposite ac =
59 AlphaComposite.getInstance (rules[rulelIndex], 0.4f);
60 g2.setComposite (ac);
61 Shape ellipse = new Ellipse2D.Double (50, 50, 120, 120);
62 g2.setColor (Color.red);
63 g2.fill(ellipse);
64 g2.setColor(Color.orange);
65 Font font = new Font ("Serif", Font.BOLD, 144);
66 g2.setFont (font) ;
67 g2.drawString ("Java", 90, 240);
68 }
69
70 public void mouseClicked (MouseEvent e) {
[Page 84]
71 ruleIndex++;
72 rulelIndex %= 12;
73 repaint () ;
74 }
75 public void mousePressed (MouseEvent e) {
76 }
77 public void mouseReleased (MouseEvent e) {
78 }
79 public void mouseEntered (MouseEvent e) {
80 }
81 public void mouseExited (MouseEvent e) {
82 }
83 }

Figure 3.13. Overlapping objects rendered with the srRc_OVER rule, one of the twelve compositing
rules demonstrated in this example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

=10 x|

i Compositing Rules

This program demonstrates the twelve Porter-Duff compositing rules. The class Compositing extends the Jranel
class and implements the MouseListener interface.

The list of compositing rules is placed in an int array using the constants defined in the AlphaComposite class
(line 33). The variable ruleIndex points to the current compositing rule. The mouseClicked method rotates the
compositing rules by incrementing the ruleIndex modulo 12 (lines 71-72). A repaint method is called to refresh
the display with the new compositing rule. Therefore, every time the panel is clicked, the panel switches to a
different compositing rule.

In the constructor of CompositePanel an image is loaded from a disk file (line 41). In the paintComponent
method (line 54), the image is drawn first. The composite rule is then set to the current compositing rule with an
a-value of 0.4, using the static method getInstance of the AlphaComposite class. A red circle is drawn, and the
string "Java" is also drawn with a white color.

The on-screen drawing surface does not maintain an itself, and the a-value of any pixel is always implicitly
assumed to be 1.0. Consequently, as soon as an object is painted to the screen, the destination a becomes 1.0.
Because of this behavior, some of the compositing rules do not produce interesting results. For example, the rules
DstOver, DstOut, DstATop, and xor will always ignore the source, since the destination a is 1. One way to show
more interesting effects is to draw on an off-screen image with an a-channel.

[Page 85]
4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
L] Pmuhu5_ Hewxt |
[Page 85 (continued)]

3.7. Clipping

A clipping path defines a region in which the objects will actually be visible. Graphics2D maintains a current
clipping region. When an object is drawn, it is clipped against the clipping path. Portions of the object falling
outside the clipping path will not be drawn. Any shape object can be used for clipping. The following code segment
sets an ellipse as the clipping shape and draws an image. Only the portion of the image which lies inside the
ellipse will be visible.

Graphics2D g2 = (Graphics2D)g;

Shape ellipse = new Ellipse2D.Double (0, 0, 300,200);
g2.setClip(ellipse);

g2.drawImage (image, 0, 0, this);

Another method of Graphics2D that can change the clip region is:

void clip (Shape path)

This method will clip the current clipping region further with the specified shape.

Listing 3.7 demonstrates the use of clipping path. Another example will be given in the next section. In this
simple example, a special shape is created and used as the clip path for a Graphics2D object. The subsequent
drawings are clipped by the shape. A sample run of the program is shown in Figure 3.14.

Listing 3.7. TestClip.java
(This item is displayed on pages 85 - 86 in the print version)

1 package chapter3;

2

3 import java.awt.*;

4 import javax.swing.*;
5

6

7

8

import java.awt.geom.*;

public class TestClip extends JApplet {

public static void main(String s[]) {
9 JFrame frame = new JFrame () ;
10 frame.setTitle ("Clip Path");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 JApplet applet = new TestClip();
13 applet.init () ;
14 frame.getContentPane () .add (applet) ;
15 frame.pack (),
16 frame.setVisible (true) ;
17 }
18
19 public void init () {
20 JPanel panel = new ClipPanel();
21 getContentPane () .add (panel) ;
22 }
23 1}
24

25 class ClipPanel extends JPanel {
26 public ClipPanel () {

27 setPreferredSize (new Dimension (500, 500));
[Page 86]

28 setBackground (Color.white);

29 }

30

31 public void paintComponent (Graphics g) {

32 super.paintComponent (g) ;

33 Graphics2D g2 = (Graphics2D)g;

34 GeneralPath path = new GeneralPath (GeneralPath.WIND EVEN ODD);

35 path.moveTo (100, 200) ;

36 path.quadTo (250, 50, 400, 200);

37 path.lineTo (400,400) ;

38 path.quadTo (250,250,100, 400) ;

39 path.closePath () ;

40 g2.clip(path);

41 g2.setColor (new Color (200,200,200));

42 g2.fill (path);

43 g2.setColor (Color.black);

44 g2.setFont (new Font ("Serif", Font.BOLD, 60));

45 g2.drawString("Clip Path Demo",80,200);

46 g2.drawOval (50, 250, 400, 100);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
47 }
48 }

Figure 3.14. The gray area is enclosed by the clip path. Graphical drawings are clipped by the clip
path.

i Clip Path - |0] xi

_tip Path .

The program has a structure similar to that in the previous examples. An applet with a main method is created to
form an application as well as an applet. The Clippranel class extends Jpanel to form the drawing canvas of the
program.

In the paintComponent method (line 31), a GeneralPath object with two line segments and two quad curves is
constructed. The closed path is set as the current clip path of the Graphics2D object by calling the method clip.
The path is used again with the £fi11 method to show the clip area in a light gray shade. Two graphics objects are
drawn: a text string "Clip Path Demo" and an ellipse. The effect of clipping is obvious. Only the portions of the
objects lying inside the clip path are visible.

[Page 87]
4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 87 (continued)]

3.8. Text and Font

In computer graphics, text represents a special type of geometric objects. A text string can be compactly
represented by a sequence of characters with standard coding schemes, such as ASCII and Unicode. The actual
rendering shapes of the characters are determined by predefined fonts. The geometry describing the shape of a
character is known as a glyph. A font is a collection of glyphs for an entire alphabet.

Note

The relation between characters and glyphs is not always one to one. Sometimes
one glyph may correspond to several characters, as in the case of a ligature. A
ligature occurs in some fonts when certain two-character sequences are rendered in
a combined fashion. A common ligature is "fi" in some fonts, as shown in Figure
3.15.

Figure 3.15. A common ligature.

Java 2D offers a rich set of font and text-manipulation features. The most common high-level usages of texts
involve creating a Font object and calling the methods setFont and drawString in Graphics2D.

A Font object can be created with the following constructor:

Font (String name, int style, int size)

The name parameter specifies the font face name or the logical name of a font. A font is identified by the font face
name (also called font name), such as "Times New Roman." The fonts available in an environment are platform
dependent. Java also supports logical fonts to improve portability. A logical font is mapped to a physical font on a
particular system. For example, the logical font "SansSerif" is mapped to "Arial" in a Windows system. Five logical
font families are always supported in Java.

Serif
SansSerif
Monospaced
Dialog
DialogInput

[Page 88]

The style parameter is a mask to select font styles. Three bit masks are defined in Font, and they may be
combined with the bitwise OR "|" operator:

PLAIN
ITALIC
BOLD

The size parameter specifies the point size of the font.

A Font object can be selected in a Graphics2D object with the method:

void setFont (Font font)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The font will take effect for subsequent calls to methods for drawing texts:

void drawString(String s, int x, int y)
void drawString(String s, float x, float vy)

In addition to applying existing fonts in the system, it is also possible to derive new fonts from existing ones by
modifying certain attributes. The following methods in the Font class generate derived fonts:

Font deriveFont (int style)

Font deriveFont (float size)

Font deriveFont (int style, float size)

Font deriveFont (AffineTransform tx)

Font deriveFont (int style, AffineTransform tx)
Font deriveFont (Map attributes)

The point size of a font provides only a crude indication of the size of the text drawn. The actual size of the
rendered text usually depends on the characters in the string. In tasks such as centering the text, it may be
useful to know the actual geometric size of the text. Font metrics are measurements of rendered texts with a
specific font. The following methods of Font provide font metric information:

Rectangle2D getStringBounds (String str, FontRenderContext frc)
LineMetrics getLineMetrics (String str, FontRenderContext frc)

Because the precise metrics also depend on the options of rendering, the above methods use a
FontRenderContext object to obtain the additional information. The FontRender-Context object can be obtained
through a method in Graphics2D:

FontRenderContext getFontRenderContext ()

The getStringBounds method returns a bounding rectangle for the string. The getLineMetrics method returns
a LineMetrics object that contains more detailed line metric data. The baseline is the reference line of a font.
The ascent is the amount that the font extends above the baseline. The descent is the amount extending below
the baseline. The leading is the extra space between the two lines. The following methods of LineMetrics
retrieve the metrics:

float getAscent ()
float getDescent ()
float getLeading()

Listing 3.8 demonstrates font-related features. The derived fonts and font metrics are demonstrated in this
example. Three lines of text are displayed. The first line is drawn with a derived font that is slanted to the left.
The second line shows the bounding rectangle together with the text. The third line displays the baseline, ascent,
descent, and leading for the text. A sample run of the program is shown in Figure 3.16.

[Page 89]

Listing 3.8. FontFun.java
(This item is displayed on pages 89 - 90 in the print version)

1 package chapter3;

2

3 import java.awt.*;

4 import javax.swing.*;

5 import java.awt.geom.*;

6 import java.awt.font.*;

7

8 public class FontFun extends JApplet {
9 public static void main(String s[]) {
10 JFrame frame = new JFrame () ;
11 frame.setTitle ("Fonts");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
13 JApplet applet = new FontFun();
14 applet.init ();
15 frame.getContentPane () .add (applet) ;
16 frame.pack () ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

17 frame.setVisible (true) ;

18 }

19

20 public void init () {

21 JPanel panel = new FontPanel ()

22 getContentPane () .add (panel) ;

23 }

24 %}

25

26 class FontPanel extends JPanel {

27 public FontPanel () {

28 setPreferredSize (new Dimension (640, 480));

29 setBackground (Color.white) ;

30 }

31

32 public void paintComponent (Graphics g) {

33 super.paintComponent (g) ;

34 Graphics2D g2 = (Graphics2D)g;

35 Font font = new Font ("Serif", Font.BOLD, 36);

36 AffineTransform tx = new AffineTransform();

37 tx.shear (0.5, 0);

38 g2.setFont (font.deriveFont (tx)) ;

39 g2.drawString ("Derived font", 100, 100);

40

41 g2.setFont (font) ;

42 FontRenderContext frc = g2.getFontRenderContext () ;

43 String str = "String bounds";

44 Rectangle2D bounds = font.getStringBounds(str, frc);

45 g2.translate (100, 200);

46 g2.draw (bounds) ;

47 g2.drawString(str, 0, 0);

48

49 str = "Baseline, ascent, descent, leading";

50 g2.translate (0,100);

51 int w = (int) font.getStringBounds (str, frc).getWidth();

52 LineMetrics 1lm = font.getLineMetrics(str, frc);

53 g2.drawlLine (0, 0, w, 0);

54 int y = -(int)lm.getAscent();

55 g2.drawLine (0, vy, w, Vy);

56 y = (int)lm.getDescent();

57 g2.drawLine (0, vy, w, y);

58 y = (int) (lm.getDescent ()+1lm.getLeading()) ;
[Page 90]

59 g2.drawLine (0, vy, w, Vy);

60

61 g2.drawString(str,0,0);

62 }

63 }

Figure 3.16. The first line shows the text drawn with a derived font. The second line draws the
bounding rectangle. The third line shows the baseline and the amounts of ascent, descent, and
leading.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
=101x]

Vexived Llonk

String bounds

Baseli | loadi

Three lines of text are drawn in the paintComponent method of the FontpPanel class (line 32). An
AffineTransform object is created to perform a horizontal shear. A new font is derived from a 36-point bold Serif

font with the transformation. The derived font is slanted to the left because of the shear transform. The text
string "Derived font" is drawn using the derived font.

A FontRenderContext object is obtained from the Graphics2D object (line 42). It is used in the method
getStringBounds of the Font object to retrieve the bounding rectangle for the string "String bounds." The string
is drawn together with the bounding rectangle.

The third line of text is the string "Baseline, ascent, descent, leading." The baseline of the text is drawn based on
the width of the text. The LineMetrics object for the string is retrieved through the method getLineMetrics
(line 52). The values for ascent, descent, and leading are obtained from the object, and the lines corresponding to
the values are drawn relative to the baseline.

Java 2D also provides advanced functions for font-related operations. In particular, glyphs of characters in a font
can be retrieved as shape objects. This enables sophisticated processing and application of the glyphs to achieve
varieties of visual effects. The class Font represents a font. The class Glyphvector encapsulates the geometric
description of a sequence of glyphs. To obtain a G1yphvector object for a string corresponding to a font, use the
following method of Font:

[Page 91]

GlyphVector createGlyphVector (FontRenderContext frc, String str)

The FontRenderContext object defines certain measurements necessary to render a font. It can be obtained from
a Graphics2D object by calling the method getFontRender-Context. Once the Glyphvector object is created, the
Shape object corresponding to the glyphs can be obtained by the following methods of G1yphvector:

Shape getOutline ()
Shape getOutline (float x, float vy)

The x- and y-parameters specify the starting location for rendering the glyphs. The returned shape object
corresponding to the glyphs can be processed and rendered like other shape objects. Listing 3.9 illustrates the use
of glyphs as a clipping shape. The program shows the technique of retrieving the glyphs of a text string as a
Shape and use it as a clip path. A sample run of the program is shown in Figure 3.17.

Listing 3.9. GlyphClip.java
(This item is displayed on pages 91 - 92 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

1 package chapter3;

2

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6 import java.awt.font.*;

7 import java.awt.geom.*;

8

9 public class GlyphClip extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame () ;

12 frame.setTitle ("Glyph and Clip");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 JApplet applet = new GlyphClip();
15 applet.init () ;

16 frame.getContentPane () .add (applet) ;
17 frame.pack () ;

18 frame.setVisible (true) ;

19 }
20
21 public void init () {
22 JPanel panel = new GlyphPanel();
23 getContentPane () .add (panel) ;
24 }
25 }
26

27 class GlyphPanel extends JPanel {
28 public GlyphPanel () {

29 setPreferredSize (new Dimension (500, 400));
30 setBackground (Color.white) ;
31 }
32 public void paintComponent (Graphics g) {
33 super.paintComponent (g) ;
34 Graphics2D g2 = (Graphics2D)g;
35 Font font = new Font ("Serif", Font.BOLD, 144);
36 FontRenderContext frc = g2.getFontRenderContext();
37 GlyphVector gv = font.createGlyphVector (frc, "Java");
38 Shape glyph = gv.getOutline(100,200);
39 g2.setClip (glyph) ;
[Page 92]
40 g2.setColor (Color.red);
41 for (int 1 = 0; 1 < 2000; i++) {
42 Shape shape = new Ellipse2D.Double (Math.random()*500,
43 Math.random () *400, 30, 20);
44 g2.draw (shape) ;
45 }
46 }
47 }

Figure 3.17. Two thousand random ellipses drawn on a clipping shape defined by the glyphs of the
string "Java."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

£ Glyph and Clip 3 =10) x|

The program displays the special figure in a subclass of Jpanel. The paintComponent method is overridden to
perform the drawing. A bold, 144-point "Serif" font object is created. A FontRenderContext object is obtained
through the Graphics2D object.

The glyphs from the string "Java" are obtained from the font and font render context and they are kept in a
GlyphVector variable (line 37). The glyph vector is converted to a shape object through the getoutline methods
(line 38). The shape is then set to the clipping path of the rendering by calling the method setclip of the
Graphics2D object.

Two thousand ellipses with random locations are drawn on the panel (lines 41-44). Only the portions inside the
glyphs are visible. The text string is never explicitly drawn, but the drawing inside the clipping region clearly
highlights the outline of the glyphs.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 92 (continued)]

Key Classes and Methods
e java.awt.Color A class encapsulating colors.
e java.awt.Paint An interface for Color, GradientPaint, and TexturePaint classes.
e java.awt.GradientPaint A class for gradient paint.
e java.awt.TexturePaint A class for texture paint.
e java.awt.Stroke An interface for stroke definitions.
e java.awt.BasicStroke An implementation of common strokes.
e java.awt.geom.AffineTransform A class encapsulating 2D affine transformations.

e javax.awt.AlphaComposite A class for alpha compositing rules.

[Page 93]
e java.awt.Graphics2D.setClip (Shape) A method to set the current clipping path.
e java.awt.Graphics2D.setComposite (AlphaComposite) A method to set the current compositing rule.
e java.awt.Font A class encapsulating a font.
e java.awt.font.LineMetrics A class for font metrics.

e java.awt.font.GlyphVector A class encapsulating a series of glyphs for a text string.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 93 (continued)]

Key Terms
color space

A system to specify colors with numerical values.

affine transformation

A transform that preserves parallelism.

transform composition

A combining of two or more transforms to form a new one.

Porter-Duff rules

A method to create new geometric shapes by using set operations such as union and intersection on the
areas of existing shapes.

clip path

A shape defining a region to constrain rendering.

font

A design of the shapes for a set of characters.

font metrics

Measurements of the rendered text such as ascent, descent, and leading.

glyph

A geometric description of a text string in a specific font.

ligature

A special combination of multiple characters forming one glyph.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 93 (continued)]

Chapter Summary

e In this chapter we discuss several important aspects of 2D graphics rendering and their implementations in
Java 2D. Main topics covered include colors, strokes, transformations, clip paths, compositing rules, and
fonts.

e Colors and, more generally, paints are attributes that can be applied to visual objects when they are
rendered. Java 2D provides three types of paints using the classes Color, GradientPaint, and
TexturePaint.

e Strokes define the details of line styles. Java 2D contains the stroke interface for general stroke definitions
and a specific implementation BasicStroke for commonly used stroke attributes such as line width, end
cap style, and join style.

e Affine transformations are a large set of transformations commonly used for object transformations and
viewing transformations. An affine transform preserves parallelism. Basic affine transforms include
translation, rotation, scaling, shearing, and reflection. Java 2D provides comprehensive supports for affine
transformation. The class AffineTransform defines an affine transform and contains many constructors
and methods to specify the transform. The method createTransformedsShape provides a way to perform
the object transformations. An AffineTransform object can also be used by a Graphics2D object to set the
viewing transformation. Transformations can be combined to form more complex ones.

e The Porter-Duff rules define the compositing operations with an The twelve compositing rules specify
various ways that colors from the source and the destination may be combined. Interesting visual effects
such as transparency can be achieved by using appropriate compositing rules.

[Page 94]

e Clipping is a rendering facility that can produce complex visual effects. In Java 2D, a clipping path for a
Graphics2D object can be set to any shape object.

e Text strings are useful visual objects. A font defines the glyphs of all the characters. Besides the usual
rendering of texts with the drawString method, glyphs for a text string can be retrieved as a shape object
that can be directly manipulated as other shape objects.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4 Prewvious

MNext #
[Page 94 (continued)]

Review Questions

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.12

3.13

3.14

3.15

3.20

3.21

3.22

3.23

What is the wavelength range of visible color?

In an RGB system, if each of the red, green, and blue components is represented by a byte, how
many different colors can be formed?

Construct a color object equivalent to the following using float parameters:

new Color (255, 0, 128);

Construct a color object equivalent to the following using int parameters:

new Color (0f, 0.5f, 0.125f);

Construct a cyclic gradient paint that varies from the color red at the point (0, 0) to the color
blue at the point (100, 100).

Construct an acyclic gradient paint that varies from the color yellow at the point (100, 0) to the
color green at the point (800, 600).

What is the transformation matrix of the rotation of 45 degrees about the origin?

Construct an AffineTransform object for a general reflection about a line through the origin.
Is it possible to transform an ellipse to a circle using affine transformations? Rigid motions?

Is it possible to transform a trapezoid to a square using affine transformations? Rigid motions?
What is the inverse of the rotation of angle p/3 about the origin?

Find an affine transform that maps x-axis to y-axis and y-axis to x-axis.

Find the transformation matrix for the rotation ? of angle about the point (a, b).

Find the transformation matrix for the reflection about the line y = 2x.

Find the transformation matrix for the reflection about the liney = 2x - 1.

Find the transformation matrix for the shear along the y-axis with the factor 0.5.

Find the transformation matrix for the composition of a rotation of p/3 about the origin and a
reflection about the line y = 2x.

If the RGB and a-values of a source pixel are 0.5, 0.0, 0.8, and 0.4, and the values for the
destination pixel are 0.2, 1.0, 0.5, and 0.6, find the RGB and of the composite using the srcover
rule.

Repeat the previous problem using the DstoOver rule.

Repeat the previous problem using the src rule.

Repeat the previous problem using the Dst rule.

Repeat the previous problem using the srcout rule.

Repeat the previous problem using the Dstout rule.

[Page 95]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

3.24 If the destination color has an a-values 1.0, which compositing rules will not be affected by the
source color?

3.25 Write a code segment that draws the outline of a text string in the paintComponent method.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 95 (continued)]

Programming Exercises

3.1 Write a Java program to draw a series of rectangles filled with colors defined by the constants in
the color class.

3.2 Write a Java program to draw the shape in Figure 3.18 filled with green color.

Figure 3.18. A filled shape.

lf N
__/

3.3 Write a Java program to display the shape in Figure 3.18 using a gradient paint with colors
varying vertically from black to white.

3.4 Write a Java program to display the shape in Figure 3.18 using a texture paint.
3.5 Swing contains the class JColorChooser that allows interactive color selections through a dialog

box. Modify the program in Exercise 3.2 to allow the selection of drawing colors using the
JColorChooser class.

3.6 Draw a pentagon with a stroke of width 20 and a round join style.

3.7 Apply an AffineTransform to @ Rectangle2D object to create a shape of a square centered at the
origin and rotated by 45 degrees. Display the shape.

3.8 Write a Java program to display the mirror image of the string "Hello 2D." (Hint: Use a
reflection.)

3.9 Write a Java program that performs a reflection about the line y = 2x. Draw an original rectangle
of size 100 by 50 at (0, 100). Apply the reflection to the rectangle and draw the transformed
shape in a different color.

3.10 Write a Java program to draw a circular text around the point (300, 300) as shown in Figure
3.19. (Hint: Use the drawstring method for each character and apply a rotation repeatedly.)

Figure 3.19. A circular text.
(This item is displayed on page 96 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
=]

[
NS
oy o

& 21
&P -
Q

3.11 Write a Java program that performs a scaling of factor 3 along the line y = x. Draw an original
square of size 100 centered at (0, 0). Apply the scaling to the square and draw the transformed
shape in a different color. (Hint: Decompose the transform into a standard scaling and two
rotations.)

3.12 Use the shape in Figure 3.18 as the clip path and draw the text string "Java 2D" with a large
font.

[Page 96]

3.13 Write a program to load an image and display only an elliptic region of the image. Use a clipping
path to achieve this effect.

3.14 Derive a font by a rotation of 45 degrees and draw a string with the font.

3.15 Use the glyph shapes and area geometry to display the outline of the superimposed glyphs of the
characters "N" and "V."

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 97]

Chapter 4. 2D Graphics: Advanced Topics (Optional)

(This item omitted from WebBook edition)

Objectives
e To understand B-spline curves.
e To construct custom shape primitives.
e To apply basic image-processing techniques.
e To create fractal images.
e To create 2D animation.

e To perform graphics printing.

[Page 98]
4.1. Introduction

In the preceding chapters we discussed basic concepts and techniques of 2D computer graphics systems and the
Java 2D package. In this chapter we discuss more advanced topics of 2D graphics and several features not directly
available in Java 2D.

Spline curves are important modeling tools for computer graphics. A B-spline curve is a smooth curve defined by a
sequence of control points. Java 2D does not offer direct support for drawing spline curves. However, a B-spline
curve can be converted to a series of Bézier curves. This technique is introduced in this chapter.

Java 2D offers a set of common graphics primitives through a class hierarchy implementing the shape interface.
You may also implement your own primitives. This chapter will introduce a technique to implement a custom
Shape class so it can be passed to a Graphics2D object for rendering just like the built-in classes.

Even though image processing is a separate subject, it is closely related to computer graphics. Images are useful
objects in computer graphics, as you have seen from the example of texture paints. The image-handling features
of Java 2D will be introduced in this chapter. Java 2D offers an image model much improved over the previous
AWT model. Images can be conveniently loaded, processed, and saved through the support of Java APIs. It is also
possible to create an image from scratch. Fractal images will be used to illustrate image creation in Java.

Animation creates an images series of a dynamic scene. It adds a new dimension of time to the graphics system.
Java's multithreading capability provides crucial support for implementing animation in a Java 2D program.
Several examples of animation including cellular automata will be introduced.

Printing is a part of many graphics applications. Java 2D offers convenient printing support that is highly
consistent with the drawing on screen. We will discuss the implementation of graphics printing in Java.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 98 (continued)]

4.2. Spline Curves

A spline curve consists of a sequence of smoothly joined polynomial curves. A type of spline curves widely used in
CAD and other computer graphics applications is the B-spline curves. In particular, the cubic B-spline curves are
the most commonly used B-spline curves in computer graphics.

The mathematical definitions of Bézier curves can be given in parametric equations. A general Bézier curve of
degree n with control points pg, py, ..., P IS given by

."i{f} = EPIBHJ'(")

i=(]

where By, j(t) is known as the Bernstein polynomials or Bernstein basis.

The quadratic curves and cubic curves supported in Java 2D are special cases of Bézier curves with degrees n = 2
and n = 3, respectively. Their equations may be expressed as follows:

sa(6)

s3(t)

(1 -t)%po + 2t(1 - t)py + t2p,

(1 - t)3pg + 3t(1 - t)%py + 3t%(1 - t)py + t3p3

[Page 99]

A B-spline curve is defined by a sequence of control points. Like a Bézier curve, the B-spline curve follows the
general directions of the control points, but it need not always interpolate the points. A general B-spline curve of
degree k is defined by n + 1 control points pg, p1, ..., P, @and a sequence of n + k + 2 parameter values known as

the knots: tg < t1 < 009 < th+k+1- The parametric equation of the B-spline curve can be expressed as:

p(t) = EPrNLf(f')

i=M

The curve is defined only over the interval [t3, ty4k-2). The functions Ny j(t) are called the normalized B-spline
blending functions and may be defined recursively:

1? .I"El_fj.,fl.'.']}
Noilt) = '
! ﬂ‘f{) {D, otherwise
I =1 Livh+1 — 1
Nei(t) = ——— N1 (1) + ——— Ni—1i+1(1)
livk — 1 livk+1 — li+1

The B-spline curves are versatile modeling tools. The smoothness and continuity of a curve can be controlled by
the knots. When the differences between adjacent knot values are a constant: tj;1 - tj = ¢, the curve is called a
uniform B-spline. In general, the curve is a nonuniform B-spline. The B-spline formulation can also be applied to
homogeneous coordinates with the same blending functions for the w components. When the control points are
represented in homogeneous coordinates, the curve is known as a rational B-spline curve. The most general
family of B-spline curves is therefore called the NURBS (nonuniform rational B-spline).

In this section, we consider only a special type of cubic B-spline curves that are direct extensions of cubic Bézier
curves. The knots are chosen to be uniformly distributed, except that the first four and the last four knots are set
to be equal:

to=t1=0 =13

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
t,'+1 - t,' =1,i=3,4,..,n

the1 = the2 = the3 = thia

The duplicated knots will cause the first and the last control points to be interpolated by the curve, similar to a
Bézier curve. In fact, if n = 3, a cubic B-spline of this type is exactly a regular cubic Bézier curve:

No,o(t) = Ng,1(t) = Np,2(t) = 0, Ng,3(t) = Xo,1, No,4(t) = No,s(t) = Nog,e(t) =0
N1,0(t) = Ny,1(t) = 0, Ny, o(t) =(1 - £)Xp,1, N1,3(t) = Xo,1, N1,4(t) = Ny ,5(t) = 0
No,o(t) = 0 Ny, 1(t) = (1 - £)*Xg,1, Na,2(t) = 2t(1 - t) Xg,1, Na,3(t) = t2Xg,1, No,4(t) = O

N3,0(t) = (1 - £)3Xg,1, N3,1(t) = 3t(1 - £)%X,1 N3 2(t) = 3t3(1 -)Xo, 1, N3,3(t) = t3Xp,1

[Page 100]

Xop,1 denotes the characteristic function of the interval [0,1). The parametric equation of the B-spline is:
p(t) = (1 - t)°pg + 3t(1 - t)%py + 3t%(1 - t)py + t3p3, t €[0,1)

This is exactly the equation for a cubic Bézier curve. When n > 3, the B-spline has more than one polynomial
segment and more control points than a Bézier curve.

Java 2D does not directly support B-spline curves. However, a cubic B-spline curve may be converted to a series of
cubic Bézier curves that can be rendered with the cubic Bézier curve support of Java 2D. Let pg, p1, ---, Pn be the

control points of a B-spline. Each segment of the B-spline can be converted to a cubic Bézier curve. Let the control
points of a Bézier curve be bg, by, by, b3. Then, except for the first and the last segment, the conversion is given
by the following formula:

b.y = (pi-1+ 2p)/3
by = (2pi + pi+1)/3
bg = (b1 + b1)/2
by = (pi+ 2pi4+1)/3
by = (2pj41 + Pi+2)/3
by = (by + bg)/2

The first and the last segments are handled differently, because the first and last control points are the endpoints
of the curve. The conversion of the first segment is given by the following formula:

bo = po

by = p1

by = (p1+p2)/2
bgy = (2by + p3)/3
bs = (by + by)/2

The last segment uses the following formula:

=
AN
[

(2pp-2 + pp-3)/3
by = (Pp-1+ Pn-2)/2

by = (b1 + by)/2
by = ppa
bz = pp

Listing 4.1 illustrates the conversion and rendering of a B-spline curve. In this example a B-spline curve is

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
converted to a series of cubic B@zier curves which is represented with a Generalpath. A simple drawing program
is implemented to allow the user to input control points with a mouse. The B-spline and its control points are
displayed. A sample run of the program is shown in Figure 4.1.

[Page 101]

Listing 4.1. BSpline.java
(This item is displayed on pages 101 - 103 in the print version)

1 package chapter4;

2

3 import java.awt.*;

4 import java.awt.geom.*;

5 import java.awt.event.*;

6 import java.util.x*;

7 import javax.swing.*;

8

9 public class BSpline extends JApplet {
10 public static void main(String s[]) |
11 JFrame frame = new JFrame();

12 frame.setTitle ("B-Spline");

13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 JApplet applet = new BSpline();

15 applet.init () ;

16 frame.getContentPane () .add (applet) ;
17 frame.pack (),

18 frame.setVisible (true) ;

19 }
20
21 public void init () {
22 JPanel panel = new BSplinePanel();
23 getContentPane () .add (panel) ;
24 }
25 1}
26
27 class BSplinePanel extends Jpanel
28 implements MouselListener, MouseMotionListener {
29 Vector points = null;
30 boolean completed = true;
31
32 public BSplinePanel () {
33 setPreferredSize (new Dimension (640, 480));
34 setBackground (Color.white) ;
35 addMouselListener (this);
36 addMouseMotionListener (this);
37 points = new Vector();
38 }
39
40 public void paintComponent (Graphics g) {
41 super.paintComponent (g) ;
42 Graphics2D g2 = (Graphics2D)g;
43 Point p0 = null;
44 Point pl = null;
45 Point p2 = null;
46 Point p3 = null;
47 float x1, vyl1, x2, v2, x3, vy3, x4, v4;
48 Iterator it = points.iterator();
49 if (it.hasNext ()) {
50 pl = (Point) (it.next());
51 }
52 while (it.hasNext ()) {
53 p2 = (Point) (it.next());
54 g2.drawlLine(pl.x, pl.y, p2.x, p2.VY);
55 pl = p2;
56 }
57
58 GeneralPath spline = new GeneralPath();

[Page 102]

59 int n = points.size();

60 if (n == 0) return;

6l pl = (Point)points.get (0);

62 spline.moveTo(pl.x, pl.y);

63 g2.drawRect (pl.x-3, pl.y-3, 6, 6);
64 pl = (Point)points.get (1) ;

65 p2 = (Point)points.get(2);

66 p3 = (Point)points.get (3);

67 x1l = pl.x;

68 vyl = pl.y;

69 x2 = (pl.x + p2.x)/2.0f;
70 y2 = (pl.y + p2.y)/2.0f;
71 x4 (2.0f*p2.x+p3.x)/3.0f;
72 y4 = (2.0f*p2.y+p3.y)/3.0f;
73 X3 = (x2+x4)/2.0f;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

74 y3 = (y2+y4)/2.0f;
75 spline.curveTo (x1, vy1, x2, y2, x3, y3);
76 g2.drawRect ((int)x1-3, (int)yl-3, 6, 6);
77 g2.drawRect ((int)x2-3, (int)y2-3, 6, 6);
78 g2.drawRect ((int)x3-3, (int)y3-3, 6, 6);
79 for (int 1 = 2; 1 < n - 4; i++) {
80 pl = p2;
81 p2 = p3;
82 p3 = (Point)points.get (i+2);
83 x1l = x4;
84 vl = v4;
85 x2 = (pl.x+2.0f*p2.x)/3.0f;
86 y2 = (pl.y+2.0f*p2.y)/3.0f;
87 x4 = (2.0f*p2.x+p3.x)/3.0f;
88 y4 = (2.0f*p2.y+p3.y)/3.0f;
89 x3 = (x2+x4)/2.0f;
90 y3 = (y2+y4)/2.0f;
91 spline.curveTo (x1,v1l,x2,y2,x3,vy3);
92 g2.drawRect ((int)x1-3, (int)yl-3, 6, 6);
93 g2.drawRect ((int)x2-3, (int)y2-3, 6, 6);
94 g2.drawRect ((int)x3-3, (int)y3-3, 6, 6);
95 }
96 pl = p2;
97 p2 = p3;
98 p3 = (Point)points.get (n-2);
99 x1 = x4;
100 vl = vy4;
101 x2 = (pl.x+2.0f*p2.x)/3.0f;
102 y2 = (pl.y+2.0f*p2.y)/3.0f;
103 x4 = (p2.x+p3.x)/2.0f;
104 yv4d = (p2.y+p3.y)/2.0f;
105 x3 = (x2+x4)/2.0f;
106 y3 = (y2+y4)/2.0f;
107 spline.curveTo (x1,v1l,x2,y2,x3,vy3);
108 g2.drawRect ((int)x1-3, (int)yl-3, 6, 6);
109 g2.drawRect ((int)x2-3, (int)y2-3, 6, 6);
110 g2.drawRect ((int)x3-3, (int)y3-3, 6, 6);
111 p2 = p3;
112 p3 = (Point)points.get (n-1);
113 x1 = x4;
114 vyl = vy4;
115 X2 = p2.x;
116 y2 = p2.vy;
117 x3 = p3.x;
118 y3 = p3.vy;
[Page 103]
119 spline.curveTo(x1l,yl,x2,y2,x3,y3);
120 g2.drawRect ((int)x1-3, (int)y1l-3, 6, 6);
121 g2.drawRect ((int)x2-3, (int)y2-3, 6, 6);
122 g2.drawRect ((int)x3-3, (int)y3-3, 6, 6);
123 g2.draw(spline);
124 }
125 public void mouseClicked (MouseEvent ev) {
126 }
127
128 public void mouseEntered (MouseEvent ev) {
129 }
130
131 public void mouseExited (MouseEvent ev) {
132 }
133
134 public void mousePressed (MouseEvent ev) {
135 Graphics g = getGraphics();
136 if (completed) {
137 points.clear();
138 completed = false;
139 }
140 if (ev.getClickCount () == 1) {
141 Point p =ev.getPoint () ;
142 points.add (p);
143 g.fillOval(p.x-3, p.y-3, 6, 6);
144 }
145 }
146
147 public void mouseReleased (MouseEvent ev) {
148 if (ev.getClickCount() > 1) {
149 completed = true;
150 repaint () ;
151 }
152 }
153
154 public void mouseMoved (MouseEvent ev) {
155 }
156
157 public void mouseDragged (MouseEvent ev) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
158 }
159 }

Figure 4.1. A B-spline curve rendered with a series of Bézier curves. The polygon represents the
control points of the B-spline curve, and the small squares indicate the locations of control points of
the Bézier curves.

(This item is displayed on page 104 in the print version)

O -0 | = IO —=

AT M Pl e —

[Page 103]
Note

The B-spline curve conversion shown above is only for the simple type of B-spline
discussed in this section. More general types of B-splines with nonuniform knots can
also be converted to Bézier curves.

The class BsplinePanel extends the Jpanel class and provides a panel for drawing a B-spline curve. A vector
points (line 29) is defined to hold the input control points of the B-spline curve. Mouse events are processed to
enter the control points. A single mouse click defines one control point, and the point is shown as a small filled
circle. A double click defines the last control point of the curve and completes the control-point entry. For
simplicity only one B-spline curve is defined at any moment. After all control points are entered, the B-spline
curve is drawn by the paintComponent method.

The conversion from the B-spline curve to Bézier curves is performed in the paintComponent method. The
conversion uses the formulas introduced in this section. A GeneralPath object is used to hold the converted
sequence of Bézier curves (line 58). The path is drawn after all curve segments are converted. The control
polygon formed by the control points is shown as a series of line segments (line 54). The small squares in the
display show the Bézier control points after the conversion.

[Page 104]
4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 104 (continued)]

4.3. Custom Primitives

As seen from the previous chapters, geometric primitives defined as classes in the shape family can be
transformed and rendered in a uniform fashion. It is also possible to define your own primitives that behave just
like the built-in classes. The key is the shape interface that has ten abstract methods.

public boolean contains (Rectangle2D rect)

public boolean contains (Point2D point)

public boolean contains (double x, double v)

public boolean contains (double x, double y, double w, double h)

public Rectangle getBounds ()

public Rectangle2D getBounds2D ()

public PathIterator getPathIterator (AffineTransform at)

public PathIterator getPathIterator (AffineTransform at, double flatness)
public boolean intersects (Rectangle2D rect)

public boolean intersects (double x, double y, double w, double h)

The contains methods test whether the given point or rectangle is entirely contained in the shape. The
intersects methods test for intersections. The getBounds and getBounds2D methods return the bounding
rectangle of the shape. The getPathIterator method returns a PathIterator object that describes the path
using the basic drawing segments.

Extending the class GeneralPath may appear to be an easy way to implement a custom primitive, because
GeneralPath provides an implementation for all the shape methods and it allows all the basic drawing functions
for a path. Unfortunately, this approach is not possible, because Generalpath is declared as a final class, so
further extension is not allowed. You may still take advantage of the Generalpath implementation by wrapping it
in your class. The required methods declared in the shape interface can be implemented simply by invoking the
corresponding methods in GeneralPath. Listing 4.2 illustrates this approach. This example shows the
construction of a custom shape by wrapping a GeneralPath object. A heart shape is constructed with two cubic
curves (Figure 4.2).

[Page 105]
Listing 4.2. Heart.java
(This item is displayed on pages 105 - 106 in the print version)

1 package chapter4;
2
3 import java.awt.*;
4 import java.awt.geom.*;
5 import javax.swing.*;
6
7 public class Heart implements Shape {
8 GeneralPath path;
9
10 public Heart (float x, float y, float w, float h) {
11 path = new GeneralPath();
12 float x0 = x + 0.5f*w;
13 float y0 = y + 0.3f*h;
14 float x1 = x + 0.1f*w;
15 float yl1 =y + 0f * h;
16 float x2 = x + 0f * w;
17 float y2 = y + 0.6f * h;
18 float %3 = x + 0.5f * w;
19 float y3 =y + 0.9f * h;
20 float x4 = x + 1f * w;
21 float y4 = y + 0.6f * h;
22 float x5 = x + 0.9f * w;
23 float y5 = y + 0f * h;
24 path.moveTo (x0, yO0);
25 path.curveTo (x1, yl, x2, y2, x3, y3);
26 path.curveTo (x4, vy4, x5, y5, x0, y0);
27 }
28
29 public boolean contains (Rectangle2D rect) {
30 return path.contains (rect);
31 }
32
33 public boolean contains (Point2D point) {
34 return path.contains (point);
35 }
36
37 public boolean contains (double x, double y) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

38 return path.contains (x, vy);
39 }
40
41 public boolean contains (double x, double y, double w, double h) {
42 return path.contains(x, y, w, h);
43 }
44
45 public Rectangle getBounds () {
46 return path.getBounds () ;
47 }
48
49 public Rectangle2D getBounds2D () {
50 return path.getBounds2D() ;
51 }
[Page 106]
52
53 public PathIterator getPathIterator (AffineTransform at) {
54 return path.getPathIterator (at);
55 }
56

57 public PathIterator getPathIterator (AffineTransform at,
58 double flatness) {

59 return path.getPathIterator (at, flatness);
60 }

61

62 public boolean intersects (Rectangle2D rect) {
63 return path.intersects (rect);

64 }

65

66 public boolean intersects (double x, double y, double w, double h) {
67 return path.intersects(x, vy, w, h);

68 }

69 }

Figure 4.2. A heart-shape primitive constructed with a GeneralPath object using two symmetric cubic
curves.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www. verypdf com to remove this watermark.
I - ri_i| T 2w BN (L]

The class Heart implements the shape interface so it can be used like other geometric primitives in the shape
family. A GeneralPath object is created and stored in the variable path (line 8). The ten required methods in
Shape are implemented by calling the corresponding methods in path.

The Heart class defines a constructor that specifies a bounding rectangle for the shape. In the constructor (line
10), the Generalpath object is constructed and the path of the heart shape is defined. Two symmetric cubic
curves define the left and right sides of the heart. The control points are calculated and the curves are
constructed with the curveTo method of the GeneralPath class. The closed path forms a region that can be filled.

[Page 107]

In Listing 4.3, an applet TestHeart with a main method is included to test the Heart primitive. An anonymous
subclass of Jrpanel is created and added to the applet. The panel overrides the paintComponent method to paint a
Heart object filled with the color red.

Listing 4.3. TestHeart.java

1 package chapter4;

2

3 import java.awt.*;

4 import java.awt.event.*;

5 import javax.swing.*;

6 import java.awt.geom.*;

7

8 public class TestHeart extends JApplet {

9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle ("Heart");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE);
13 JApplet applet = new TestHeart():;
14 applet.init ();
15 frame.getContentPane () .add (applet);
16 frame.pack () ;
17 frame.setVisible (true);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

18 }

19

20 public void init () {

21 JPanel panel = new JPanel () {

22 public void paintComponent (Graphics g) {

23 super.paintComponent (g) ;

24 Heart h = new Heart(0,0,500,500);

25 g.setColor (Color.red);

26 ((Graphics2D)g) .£il1l (h) ;

27 }

28 }i

29 panel.setBackground (Color.white) ;

30 panel.setPreferredSize (new Dimension (500,500)) ;
31 getContentPane () .add (panel) ;

32 }

33 }

4 Prewvious MNext

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 107 (continued)]

4.4. Image Processing

A digital image is a raster representation of a 2D picture and is defined by an array of point values called pixels.
Each pixel value represents the color, gray level, and other attributes of the corresponding point. Even though
image processing is a separate specialized subject, it does have a close connection with computer graphics.
Images are useful objects in graphics rendering. The output of graphics rendering is typically an image. Java 2D
offers powerful image-processing facilities.

In AWT, an image is represented by the Image class. AWT uses a "push" model for images. The data for the image
is not necessarily available when the Image is created. An object implementing the ImageProducer interface is a
producer, and an object implementing the ImageConsumer is @ consumer. A producer acts as the source of the
image, and a consumer receives the data from a producer. Between a producer and a consumer, there can also be
a chain of filters that implement both ImageProducer and ImageConsumer. A producer pushes the data to the
consumer in an asynchronous fashion. The consumer cannot request data. The data transfer process can be
monitored by an instance of ImageObserver. This model is designed with the idea of loading images over a
network. However, the "push" model is not very convenient for image processing.

[Page 108]

Java 2D introduces a new "immediate" model. The new image class BufferedImage is used to represent an image
with an immediately available data store. A BufferedImage contains a Raster and a ColorModel. A Raster
represents pixel values in numerical forms and a ColorModel specifies the mapping between the numerical values
in the rRaster and the actual colors.

Note

Java Advanced Image (JAI) is an optional package that offers even more advanced
and comprehensive image-processing capabilities. JAI is not covered in this book.

A typical image-processing cycle is illustrated in Figure 4.3.

Figure 4.3. An image-processing system.

read display

Image file : = [mage object » Screen
Y
Cperators '
Y
| : : isplay -
Image file |- LALL: Image object diplay = Screen

The source image is usually given as a file in one of many image-file formats. An image object is created in the
Java program to represent an image. The external image file needs to be read into the image object. The image
may be displayed in a device such as a screen or a printer. The next step is to process the image through one or
more image-processing operators. The result is another image object. The processed image can be displayed and
written to an external image file.

A Java 2D image processing program usually uses BufferedImage to represent images. A Buf feredImage object
can be created using one of its constructors. For example, the following statement creates a blank buffered
image:

BufferedImage bi = new BufferedImage (300, 400, BufferedImage.
TYPE INT RGB);

To draw on a BufferedImage, We need to obtain a Graphics2D object:

Graphics2D g2 = (Graphics2D) (bi.createGraphics());

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

With the Graphics2D object g2 you may perform all types of graphics renderings on the BufferedImage, just like
drawing to the screen.

In J2SDK versions prior to 1.4, standard Java 2D does not directly support loading a Buf feredImage from external
files or network sources. To load an image from a file to an Image object, we can use the old AWT facilities, as
follows:

Image image = Toolkit.getDefaultToolkit ().getImage (imageFileName) ;

In an applet, instead of using the Toolkit object, an image can be loaded from a network URL using the
getImage (url) method of the Applet class.

[Page 109]

In the push model, the images are loaded asynchronously. The above call will return immediately without waiting
for the image loading to complete. If we want to be sure that the image is fully loaded, we may use a
MediaTracker object to force the loading and wait for its completion.

MediaTracker tracker = new MediaTracker (new Component () {});
tracker.addImage (image, 0);
try {

tracker.waitForID(0) ;
} catch (InterruptedException ex) {

}

The constructor of MediaTracker requires a parameter of class Component. Because Component is an abstract
class, it is not possible to create a generic instance of Component. Instead, the above code uses an instance of an
anonymous subclass new Component () {} as the parameter.

The above procedure only reads an external image to an Image object image. To convert the externally loaded
Image tO @ BufferedImage, yOou may use the Graphics2D object g2 associated with the BufferedImage object bi.
The drawImage method of g2 allows the drawing of the image into bi.

g2.drawImage (image, 0, 0, new Component () {});

If the size of bi is the same as that of image, the effect of the above method call is a conversion from an Image
object to a BufferedImage object. The last parameter of the drawImage method is an ImageObserver. Because
the class Component implements the ImageObserver interface, the anonymous subclass can be used as a generic
parameter. You may also use null for the image observer. If this code is in a GUI application, then a GUI
component such a Jranel object is usually used as the image observer. The purpose of the ImageObserver object
is to support asynchronous loading of images in the original AWT push model. The default implementation for
ImageObserver in Component is to repaint the component so that the image can be drawn incrementally as the
image data arrives.

J2SDK 1.4 includes the new ImagelO API that offers support for direct reading and writing of BufferedImage. To
read an image from a file, you can simply call the following static method:

BufferedImage bi = ImagelO.read(file);

Once we have a BufferedImage Object properly set up, we may apply image-processing operations to it. Java 2D
contains a set of classes for image operations. These classes implement the BufferedImageOp interface, as shown
in Figure 4.4.

Figure 4.4. BufferedImageOp is a common interface for buffered image operations.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
BufferedImageOp

A

--- RescaleOp
- LookupOp
- ConvolveOp

-—— ColorConvertOp

- AffineTransformOp

[Page 110]

RescaleOp performs pixel-by-pixel rescaling of the pixel values by a linear function. A pixel value is multiplied by a
scaling factor and then an offset is added. If f (x, y) and g(x, y) represent the pixel values of the images before
and after the processing, then the rescale operation can be written as

glx, y) = af(x,y) + b
ColorConvertOp performs pixel-by-pixel conversions of colors. The operation can be specified with color spaces.

LookupOp performs pixel-by-pixel conversions of pixel values based on lookup tables. The operator can be
expressed as

glx, y) = T(f(x, y))

AffineTransformOp performs affine transforms on the image. The operator does not change the value of a pixel,
but it moves the pixel to a different location. The AffineTransform object is used to set the transform. The
formula for affine transform operator is

g(x, y) = f(A(x, ¥))

ConvolveOp defines convolution operators. A convolution is a linear transformation. If an image is represented
mathematically by a function f(x, y), the convolution can be expressed as

glx,y) = ”//F.'(.r —u,y — v)f(u,v) dudv

where K is a fixed function known as the kernel. The property of the convolution is determined by the kernel. By
choosing appropriate kernels, you may achieve various effects on the images, such as smoothing, sharpening,
and edge detection.

For digital images, the integrals become summations.

g(x,y) = 2 Eﬁf{,\' — iy — j)f(i J)

The indices /, j run through the entire image. To improve the efficiency, the kernel is often chosen to have a finite
support; that is, K'is 0 except for a neighborhood of the origin. For example, K(i, j) may have only nine nonzero

values when -1 < iJ < 1. In this case, the above convolution formula becomes

vHl oy

gny) = X3 K(x =iy = (i)

i=x—1j=y

At each point, only the nine pixels around the point need to be considered for the calculation.
In Java 2D, to apply an operator to a BufferedImage, simply call the filter method of the operator object.

dst = op.filter(src, null);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A BufferedImage can be displayed using the drawImage method of the Graphics object. For example,

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
g.drawImage (bi, 0, 0, this);

This code segment may be inside a component such as Jpanel. The drawImage call paints the BufferedImage
starting at the location (0, 0).

Prior to J2SDK 1.4, Java 2D does not contain direct support for exporting a BufferedImage to an external file or
encoding the image in a standard image file format. The new Image10 class offers the static write method to
store the image to an external file:

ImageIO.write(bi, "png", file);

[Page 111]

The first parameter is the BufferedImage object to be saved. The second parameter is a string specifying the file
format. The third object is a File object representing the external file to write.

Listing 4.4 shows a complete image-processing program with 1/0, processing, and display. A user may load an
image from a disk file, perform several common image-processing operations, and save the processed image to a
disk file. A sample run of the program is shown in Figure 4.5.

Listing 4.4. ImageProcessing.java
(This item is displayed on pages 111 - 114 in the print version)

1 package chapter4;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.awt.image.*;
6 import java.awt.color.*;
7 import java.awt.geom.*;
8 import java.io.*;
9 import javax.swing.*;
10 import javax.imageio.*;
11
12 public class ImageProcessing extends JFrame implements
13 ActionListener {
14 public static void main(String[] args) {
15 JFrame frame = new ImageProcessing();
16 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
17 frame.pack () ;
18 frame.setVisible (true);
19 }
20
21 ImagePanel imageSrc, imageDst;
22 JFileChooser fc = new JFileChooser () :;
23
24 public ImageProcessing() {
25 JMenuBar mb = new JMenuBar () ;
26 setJMenuBar (mb) ;
27
28 JMenu menu = new JMenu ("File");
29 JMenultem mi = new JMenulItem("Open image");
30 mi.addActionListener (this) ;
31 menu.add (mi) ;
32 mi = new JMenultem ("Open image (awt)");
33 mi.addActionListener (this);
34 menu.add (mi) ;
35 mi = new JMenultem("Save image");
36 mi.addActionListener (this);
37 menu.add (mi) ;
38 menu.addSeparator () ;
39 mi = new JMenultem("Exit");
40 mi.addActionListener (this) ;
41 menu.add (mi) ;
42 mb.add (menu) ;
43
44 menu = new JMenu ("Process");
45 mi = new JMenultem("Copy"):;
46 mi.addActionListener (this);
47 menu.add (mi) ;
48 mi = new JMenultem("Smooth");

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

49 mi.addActionListener (this) ;

50 menu.add (mi) ;

51 mi = new JMenultem("Sharpen");

52 mi.addActionListener (this);

53 menu.add (mi) ;

[Page 112]

54 mi = new JMenultem ("Edge");

55 mi.addActionListener (this) ;

56 menu.add (mi) ;

57 mi = new JMenultem("Rescale");

58 mi.addActionListener (this) ;

59 menu.add (mi) ;

60 mi = new JMenultem ("Rotate");

61l mi.addActionListener (this);

62 menu.add (mi) ;

63 mi = new JMenultem("Gray scale");

64 mi.addActionListener (this);

65 menu.add (mi) ;

66 mb.add (menu) ;

67

68 Container cp = this.getContentPane() ;

69 cp.setlLayout (new FlowLayout());

70 imageSrc = new ImagePanel () ;

71 imageDst = new ImagePanel () ;

72 cp.add (imageSrc) ;

73 cp.add (imageDst) ;

74 }

75

76 public void actionPerformed (ActionEvent ev) ({

77 String cmd = ev.getActionCommand() ;

78 if ("Open image".equals (cmd)) {

79 int retval = fc.showOpenDialog(this);

80 if (retval == JFileChooser.APPROVE OPTION) ({

81 try |

82 BufferedImage bi = ImagelO.read(fc.getSelectedFile());

83 imageSrc.setImage (bi) ;

84 pack () ;

85 } catch (IOException ex) {

86 ex.printStackTrace () ;

87 }

88 }

89 } else if ("Open image (awt)".equals(cmd)) {

90 int retval = fc.showOpenDialog(this);

91 if (retval == JFileChooser.APPROVE OPTION) {

92 Toolkit tk = Toolkit.getDefaultToolkit();

93 Image img = tk.getImage(fc.getSelectedFile () .getPath());

94 MediaTracker tracker = new MediaTracker (new Component () {1});

95 tracker.addImage (img, 0);

96 try {

97 tracker.waitForID(0) ;

98 } catch (InterruptedException ex) {}

99 BufferedImage bi = new BufferedImage (img.getWidth (this),
100 img.getHeight (this), BufferedImage.TYPE INT RGB);
101 bi.getGraphics () .drawImage (img, 0, 0, this);
102 imageSrc.setImage (bi);

103 }
104 } else if ("Save image".equals (cmd)) {
105 int retval = fc.showSaveDialog(this);
106 if (retval == JFileChooser.APPROVE OPTION) {
107 try{
108 ImageIO.write (imageDst.getImage (), "png"
109 fc.getSelectedFile());
110 } catch (IOException ex) {
111 ex.printStackTrace () ;
112 }
113 }
[Page 113]
114 } else if ("Exit".equals(cmd)) {
115 System.exit (0) ;
116 } else if ("Copy".equals(cmd)) {
117 imageSrc.setImage (imageDst.getImage()) ;
118 } else {
119 process (cmd) ;
120 }
121 }
122
123 void process (String opName) {
124 BufferedImageOp op = null;
125 if (opName.equals ("Smooth")) {
126 float[] data = new float[9];
127 for (int i = 0; 1 < 9; i++) data[i] = 1.0f/9.0f;
128 Kernel ker = new Kernel (3,3,data);
129 op = new ConvolveOp (ker);
130 } else if (opName.equals ("Sharpen")) {
131 float[] data = {0f, -1f£, 0f, -1f, 5f, -1f, 0f, -1f, 0f};

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

132 Kernel ker = new Kernel (3,3,data);

133 op = new ConvolveOp (ker);

134 } else if (opName.equals ("Edge")) {

135 float[] data = {0f, -1f, 0f, -1f, 4f, -1f, 0f, -1f, O0f};
136 Kernel ker = new Kernel (3,3,data);

137 op = new ConvolveOp (ker);

138 } else if (opName.equals ("Rescale")) {

139 op = new RescaleOp(l1.5f, 0.0f, null);

140 } else if (opName.equals ("Gray scale")) {

141 op = new ColorConvertOp (ColorSpace.getInstance

142 (ColorSpace.CS _GRAY), null);

143 } else if (opName.equals ("Rotate™)) {

144 AffineTransform xform = new AffineTransform();

145 xform.setToRotation (Math.PI/6);

146 op = new AffineTransformOp (xform, AffineTransformOp.
147 TYPE_BILINEAR) ;

148 }

149 BufferedImage bi = op.filter (imageSrc.getImage (), null);
150 imageDst.setImage (bi);

151 pack () ;

152 }

153 1}

154

155 class ImagePanel extends JPanel ({
156 BufferedImage image = null;

157
158 public ImagePanel () {
159 image = null;
160 setPreferredSize (new Dimension (256, 256));
161 }
162
163 public ImagePanel (BufferedImage bi) {
164 image = bi;
165 }
166
167 public void paintComponent (Graphics g) {
168 Graphics2D g2 = (Graphics2D)g;
169 if (image != null)
170 g2.drawImage (image, 0, 0, this);
171 else
172 g2.drawRect (0, 0, getWidth()-1, getHeight()-1);
173 }
[Page 114]
174
175 public BufferedImage getImage () {
176 return image;
177 }
178
179 public void setImage (BufferedImage bi) {
180 image = bi;
181 setPreferredSize (new Dimension (bi.getWidth (), bi.getHeight()));
182 invalidate () ;
183 repaint () ;
184 }
185 1}

Figure 4.5. Image sharpening is one of the operations supported by this image-processing example
program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[-0l

File Process

This program is an example of image-processing systems. It provides basic functions of image I/0O, operations, and
displays. The main frame of the program contains two menus. The "File" menu has items to open an image file,
to open an image file using AWT facilities, to save an image to a file, and to exit the program. The "Process" menu
contains items to select various image-processing operations. The content pane of the frame contains two
ImagePanel objects, the source image on the left and the processed image on the right.

The ImagePanel class extends the Jgpanel class and it displays a Buf feredImage. An image can be passed to the
ImagePanel by a constructor or by the method setImage.

The program implements two different ways to load image files. One method uses the static method read of the
ImageIO class to load an image file directly to a BufferedImage object (line 82). The other uses AWT image
loading and a BufferedImage is obtained by drawing the image (lines 92-101). A JrileChooser oObject is used to
allow the user to select an image file to open.

Several operations are implemented to perform common image-processing tasks including: smooth, sharpen,
edge detection, rescale, rotation, and grayscale. The smooth operator is a convolution defined by the following 3 x
3 kernel:

/9 1/9 1/9
/9 1/9 1/9
/9 19 1/9

[Page 115]

The sharpen operator is defined with the kernel

0 -1 0
-1 5 -1
0 —I 0

The edge-detection operator has the kernel

0 -1 0
-1 4 -1
0 -1 0

The rescale operation uses the rRescaleOp class. It is designed to brighten the image.

The rotation operation uses the AffineTransformOp class. A rotation of p/6 is defined by an AffineTransform
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
object and applied to the AffineTransformOp object.

The grayscale operation uses the ColorConvertOp class to convert the source image to a grayscale image.

The copy operation simply copies the processed image back to the source image so that additional processing can
be applied.

The processed image can be saved to a disk file in PNG format. A JFileChooser is used to select a file to write.
The ImagelO static method save is used to save an image.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 115 (continued)]

4.5. Creating Fractal Images

In the last section, we discussed how to create, load, save, process, and display a Buf feredImage. It is also
possible to perform low-level operations and directly manipulate the pixels in a BufferedImage.

The Raster class encapsulates the pixel data of the BufferedImage. The WritableRaster is a subclass of Raster
that is writable. To obtain a writableRaster object from a BufferedImage, you may use the getRaster method:

BufferedImage bi = new BufferedImage (640, 480, BufferedImage.TYPE ARGB);
WritableRaster raster = bi.getRaster();

The raster class provides a number of methods to get pixel data, and WritableRaster adds methods to set pixel
data.

int[] getPixel (int x, int y, int[] data);

float([] getPixel (int x, int y, float[] data);

double[] getPixel (int x, int y, double[] data);

int[] getPixels(int x, int y, int w, int h, int[] data);
float|[] getPixels(int x, int y, int w, int h, float[] data);
double[] getPixels(int x, int y, int w, int h, double[] data);
void setPixel (int x, int y, int[] data);

void setPixel (int x, int y, float[] data);

void setPixel (int x, int y, double[] data);

void setPixels (int x, int y, int w, int h, int[] data);
void setPixels(int x, int y, int w, int h, float[] data);
void setPixels(int x, int y, int w, int h, double[] data);

The parameters x, y specify the location of the pixel and w, h define the dimension of a rectangle of pixels. The
data array holds the pixel data. The size of the array depends on the type of the image. For example, if the
BufferedImage iS TYPE INT RGB, then the data array for each pixel has three elements containing the RGB
values.

[Page 116]

Through the writableRaster object, the contents of an image can be created at the pixel level. This method of
pixel-by-pixel image generation may be illustrated by the example of building a fractal image. A fractal is a self-
similar geometric structure. Fractals often exhibit a great deal of complexity, even though they might be
generated by some rather simple procedures. The Mandelbrot set is a well-known example of fractals. It is defined
on the complex plane. A complex number has the form

X+ iy

where x and y are real numbers and i satisfies the equation 2 = -1. The addition and multiplication of two

complex numbers zy = xy + iyy and z; = X3 + iy> are defined as:

71+ 2 (x1 + x2) + i(y1 + y2)

217y (x1x2 - y1¥2) + i(X1y2 + yY1X2)

. P (R 2
The absolute value of a complex number is |x + -'.'!'| = VX" + ¥7 | A complex number can be interpreted as
a point on a 2D plane by identifying the (x, y) values as the coordinates of the point. The absolute value of the
complex number corresponds to the distance of the point to the origin.

To define the Mandelbrot set, we consider the iteration on the complex plane:

c is a complex number, and the starting point of iteration is zg = 0. For a given c the iteration will produce a
sequence of complex numbers: zg, 2y, ..., Z,, It can be shown that the sequence either tends to infinity or

stays bounded. The Mandelbrot set is defined to be the set of points ¢ such that the iteration sequence is
bounded. The Mandelbrot set is surprisingly complex. It contains recursively self-similar substructures. It is known

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
that the Mandelbrot set is contained in the circle of radius 2 centered at the origin, and if at any step of the
iteration the point goes outside the circle, the sequence will escape to infinity and the corresponding ¢ does not
belong to the Mandelbrot set.

Listing 4.5 illustrates a way to build an image based on the Mandelbrot set. This example creates an image
approximating the Mandelbrot set. The iteration process is carried out for each pixel and the number of iterations
is color coded to create the image. A sample run of the program is shown in Figure 4.6

Listing 4.5. Mandelbrot.java
(This item is displayed on pages 116 - 117 in the print version)

1 package chapterd;
2
3 import javax.swing.*;
4 import java.awt.*;
5 import java.awt.image.*;
6
7 public class Mandelbrot extends JApplet {
8 public static void main(String s[]) {
9 JFrame frame = new JFrame () ;
10 frame.setTitle ("Mandelbrot set");
11 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
12 JApplet applet = new Mandelbrot();
13 applet.init () ;
14 frame.getContentPane () .add (applet) ;
15 frame.pack () ;
[Page 117]
16 frame.setVisible (true) ;
17 }
18
19 public void init () {
20 JPanel panel = new MandelbrotPanel();
21 getContentPane () .add (panel) ;
22 }
23 1}
24
25 class MandelbrotPanel extends JPanel({
26 BufferedImage bi;
27
28 public MandelbrotPanel () {
29 int w = 500;
30 int h = 500;
31 setPreferredSize (new Dimension(w, h));
32 setBackground (Color.white);
33 bi = new BufferedImage(w, h, BufferedImage.TYPE INT RGB) ;
34 WritableRaster raster = bi.getRaster();
35 int[] rgb = new int[3];
36 float xmin = -2;
37 float ymin = -2;
38 float xscale = 4f/w;
39 float yscale = 4f/h;
40 for (int 1 = 0; i < h; i++) {
41 for (int j = 0; J < w; J++) |
42 float cr = xmin + j * xscale;
43 float ci = ymin + 1 * yscale;
44 int count = iterCount (cr, ci);
45 rgb[0] = (count & 0x07) << 5;
46 rgb[1] = ((count >> 3) & 0x07) << 5;
47 rgb[2] = ((count >> 6) & 0x07) << 5;
48 raster.setPixel (j, 1, rgb);
49 }
50 }
51 }
52
53 private int iterCount (float cr, float ci) {
54 int max = 512;
55 float zr = 0;
56 float zi = 0;
57 float lengthsg = 0;
58 int count = 0;
59 while ((lengthsg < 4.0) && (count < max)) {
60 float temp = zr * zr - zi * zi + cr;
61 zi = 2 * zr * zi + ci;
62 zr = temp;
63 lengthsg = zr * zr + zi * zi;
64 count++;
65 }
66 return max-count;
67 }
68
69 public void paintComponent (Graphics g) {
70 super.paintComponent (g) ;
71 g.drawImage (bi, 0, 0, this);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
72 }
73}

[Page 118]

Figure 4.6. The Mandelbrot set colored with the number of iterations.

& Mandelbrot set =10] %]

This program creates an image depicting the Mandelbrot set in the complex plane over the square:
-2 < X,y < 2

A BufferedImage is created with the size 500 x 500 and with the integer RGB pixel type. A WiritableRaster
object is obtained from the image (line 34). The pixels of the image are set through the raster. The pixel indices
are mapped to the coordinates on the complex plane by linear functions.

The iterations are carried out by the method iterCount. A complex number is represented by two float

variables. The iteration terminates if the value goes outside the circle |zn| > 2 (or, equivalently, |z,,,|2 > 4). The
maximum number of iterations for each pixel is limited to 512, so the iteration count is in the range [1, 512].
The complement of the counter max-count is used to color a pixel. It has the range [0, 511]. The 9-bit counter
value is divided into three 3-bit RGB components.

The paintComponent method draws the completed image to MandelbrotPanel, a subclass of Jpanel. Because of
the large number of calculations required in generating the Mandelbrot image, it may take a while for the image
to appear in the window.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 118 (continued)]

4.6. Animation

Animation introduces dynamic changes to graphics contents and often creates a visual effect of motion. An
animation produces a series of rendered images (frames) that depicts the changes in a scene. When the frames
are displayed consecutively at certain rate (for example, 60 frames per second), we may perceive continuous
motion in the scene rather than discrete images. Animation adds a dimension of time to the graphics model. Each
rendered frame at a specific time instance is essentially a regular still image. However, the content of the frames
may change over time. Higher frame rates represent smoother animations, but the frame rate of an animation is
limited by the capability of the rendering system.

Implementing animation in Java usually requires additional threads to handle the time-related changes. Because
an animation typically runs indefinitely, placing all animation code in the event dispatch thread will make the GUI
program not responsive. However, when using Swing components to display graphics animation, you need to
avoid direct manipulation of the Swing components from the thread other than the event dispatch thread,
because Swing components are not thread safe. For example, in the animation thread, you should not call
getGraphics () method and use the Graphics object to do graphics painting. There are several methods of Swing
components that are safe to call from other threads:

[Page 119]

public void repaint ()
public void revalidate()

Therefore, a proper way to create an animation on Swing components is to separate the rendering from the
model changes. The rendering code is placed in the paintComponent method of the Swing component only. The
animation logic is placed in the separate thread without actual rendering. When the data for a frame is ready, the
method repaint () is called to trigger the rendering. An outline of a typical multithread animation is shown below.

public void paintComponent (Graphics g) {
<* render a frame *>

}

public void run () {

while (true) {
<* update frame data *>
repaint () ;
try {
Thread.sleep(sleepTime) ;

} catch (InterruptedException ex) {}

The paintComponent method contains all the rendering code to generate a frame. The run method of the
Runnable interface or the Thread class is overridden to perform the animation. It typically contains an infinite
loop to continuously generate the frames. A frame is rendered by calling the repaint method. Between two
frames, the thread typically goes to sleep for a specific period of time. The sleep method of Thread specifies a
sleep time in milliseconds.

Listing 4.6 creates a simple scene of simulated rain. Numerous vertical line segments are moving downward. The
locations and the lengths of the lines are random. A sample run of the program is shown in Figure 4.7.

Listing 4.6. Rain.java
(This item is displayed on pages 119 - 120 in the print version)

1 package chapter4;

2

3 import java.awt.*;

4 import java.awt.geom.*;

5 import java.awt.event.*;

6 import Jjava.util.*;

7 import javax.swing.*;

8

9 public class Rain extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame();
12 frame.setTitle ("Rain");
13 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

[Page 120]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

14 JApplet applet = new Rain();

15 applet.init () ;

16 frame.getContentPane () .add (applet) ;

17 frame.pack () ;

18 frame.setVisible (true);

19 }

20

21 public void init () {

22 JPanel panel = new RainPanel();

23 getContentPane () .add (panel);

24 }

25 }

26

27 class RainPanel extends JPanel implements Runnable{
28 Point2D.Double[] pts = new Point2D.Double[1200];
29

30 public RainPanel () {

31 setPreferredSize (new Dimension (640, 480));
32 setBackground (Color.gray) ;

33 for (int i = 0; 1 < pts.length; i++) {
34 pts[i] = new Point2D.Double (Math.random(), Math.random()) ;
35 }

36 Thread thread = new Thread(this);

37 thread.start ()

38 }

39

40 public void paintComponent (Graphics g) {
41 super.paintComponent (g) ;

42 g.setColor (Color.white);

43 for (int i = 0; 1 < pts.length; i++) {
44 int x = (int) (640*pts[i].x);

45 int y = (int) (480*pts[i].vy);

46 int h = (int) (25*Math.random()) ;

47 g.drawlLine (x, vy, x, y+h);

48 }

49 }

50

51 public void run() {

52 while (true) {

53 for (int 1 = 0; 1 < pts.length; i++) {
54 double x = pts[i].getX();

55 double y = pts[i].get¥Y();

56 y += 0.1*Math.random() ;

57 if (y > 1) {

58 y = 0.3*Math.random() ;

59 x = Math.random() ;

60 }

ol pts[i].setLocation(x, vy);:

62 }

63 repaint () ;

64 try {

65 Thread.sleep (100) ;

66 } catch (InterruptedException ex) {}
67 }

68 }

69 }

[Page 121]

Figure 4.7. A rainy animation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The class RainPanel extends Jpanel and implements Runnable interface. An array pts of Point2D.Double is used
to store the locations of the lines (line 28). They are initialized to random values.

The paintComponent method draws the vertical lines based on the values in the pts array (scaled to component
size) and random lengths.

A new thread is created in the constructor of Rain to execute the code provided by the run method in the same
class. The run method (line 51) contains an infinite loop that updates line locations in the pts array. Each point is
increased by a random amount in the y-coordinate, so the line drops down. When a line reaches the bottom, the
point is reset to a random location in the top region. After the array is updated, the repaint method is called to
redraw the panel. The thread then goes to sleep for 100 milliseconds.

An instance of RainPanel is placed in the applet Rain. A standard main method is included to run the animation
as an application.

An alternative to creating your own thread is to use the Timer class provided by Swing. A Timer object periodically
generates an action event at a predefined rate. The events will trigger the listeners, which may perform the
rendering of a frame. To set up a Timer object, you may specify its period and listeners in its constructor and call
its start () method:

Timer timer = new Timer (period, listener);
timer.start();

The ActionListener object should implement the rendering in its actionPerformed method:

public void actionPerformed (ActionEvent event) {
<* do frame rendering *>

}

The Timer class provides a more convenient approach for animation than explicit creation of threads. Because the
actionPerformed method is invoked in the event dispatch thread, it is safe to perform rendering on Swing
components in the method.

[Page 122]

Listing 4.7 demonstrates the application of the Timer class. A real-time analog clock is displayed as shown in
Figure 4.8. The time of the clock is from the system time. The clock is updated continuously to achieve the visual
effect of clock movements.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 4.7. Clock2D.java
(This item is displayed on pages 122 - 123 in the print version)

1 package chapter4;
2
3 import java.awt.*;
4 import java.awt.geom.*;
5 import java.awt.event.*;
6 import java.util.Calendar;
7 import javax.swing.*;
8
9 public class Clock2D extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame () ;
12 frame.setTitle ("Clock") ;
13 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
14 JApplet applet = new Clock2D();
15 applet.init () ;
16 frame.getContentPane () .add (applet) ;
17 frame.pack () ;
18 frame.setVisible (true) ;
19 }
20
21 public void init () {
22 JPanel panel = new ClockPanel();
23 getContentPane () .add (panel) ;
24 }
25 1}
26
27 class ClockPanel extends JPanel implements ActionListener({
28 AffineTransform rotH = new AffineTransform();
29 AffineTransform rotM = new AffineTransform();
30 AffineTransform rotS = new AffineTransform();
31
32 public ClockPanel () {
33 setPreferredSize (new Dimension (640, 480));
34 setBackground (Color.white);
35 Timer timer = new Timer (500, this);
36 timer.start () ;
37 }
38
39 public void paintComponent (Graphics g) {
40 super.paintComponent (g) ;
41 Graphics2D g2 = (Graphics2D)g;
42 g2.translate (320,240);
43 // clock face
44 Paint paint = new GradientPaint
45 (-150,-150,Color.white,150,150,Color.gray);
46 g2.setPaint (paint) ;
47 g2.fillOval (=190, -190, 380, 380);
48 g2.setColor (Color.gray);
49 g2.drawString ("Java 2D", -20, 80);
50 Stroke stroke = new BasicStroke(3);
51 g2.setStroke (stroke);
52 g2.drawOval (-190, -190, 380, 380);
53 for (int 1 = 0; 1 < 12; i++) {
54 g2.rotate (2*Math.PI/12) ;
[Page 123]
55 g2.fil113DRect (-3, -180, 6, 30, true);
56 }
57 // clock hands
58 Shape hour = new Line2D.Double(0, 0, 0, -80);
59 hour = rotH.createTransformedShape (hour) ;
60 Shape minute = new Line2D.Double (0, 0, 0, -120);
61 minute = rotM.createTransformedShape (minute);
62 Shape second = new Line2D.Double(0, 0, 0, -120);
63 second = rotS.createTransformedShape (second);
64 g2.setColor (Color.black);
65 g2.setStroke (new BasicStroke (5,
66 BasicStroke.CAP_ROUND, BasicStroke.JOIN ROUND)) ;
67 g2.draw (hour) ;
68 g2.draw (minute) ;
69 g2.setStroke (new BasicStroke (2));
70 g2.draw (second) ;
71 }
72
73 public void actionPerformed (ActionEvent e) {
74 int hour = Calendar.getInstance().get (Calendar.HOUR) ;
75 int min = Calendar.getInstance () .get (Calendar.MINUTE) ;
76 int sec = Calendar.getInstance().get (Calendar.SECOND) ;
77 rotH.setToRotation (Math.PI * (hour+min/60.0)/6.0);
78 rotM.setToRotation (Math.PI * min /30.0);
79 rotS.setToRotation (Math.PI * sec /30.0);
80 repaint () ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
81 }
82 }

Figure 4.8. A real-time analog clock.

The class ClockPanel extends Jpanel and implements ActionListener interface. Three AffineTransform fields
define the rotations for the hour, minute, and second hands (lines 28-30).

[Page 124]

The paintComponent method paints the clock face and the three hands. The face consists of a circle filled with a
gradient paint and drawn with a gray color, twelve tick marks created with filled 3D rectangles, and a text string
"Java 2D." The hour, minute, and second hands are drawn as lines. Their positions are determined by the rotation
fields that specify the correct angles for the current time. The rotations are applied to the corresponding hands
that start from the 12 o'clock position.

A Timer object is created and started in the constructor of ClockpPanel. It uses the ClockPanel object as the
listener and sets a period of 500 ms (line 35). Responding to the action events generated by the Timer, the
actionPerformed method (line 73) implements the animation functions. It uses the calendar class to get the
current system time and sets appropriate angles for the three rotations. After the rotations are updated, a
repaint method call is made to update the display.

A cellular automaton is a simple iterative system on a grid that evolves based on a fixed set of rules. Many cellular
automata generate surprisingly complex patterns. A 2D cellular automaton is defined on a 2D grid. Each cell has
two states: black and white (also called live and dead). A cell has eight neighbors. In some systems, only four
neighbors are considered. The iteration of the system proceeds by assigning the next state of each cell based on
the previous configuration. Each cell follows the same set of rules, and the new state depends only upon the
current states of the same cell and its neighbors. For example, Figure 4.9 shows one iteration step with the rule:
"A cell is black if exactly one of its neighbors in the current configuration is black."

Figure 4.9. One step in the evolution of a cellular automaton.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

%o

A well-known example of cellular automata is Conway's Game of Life, as illustrated in Listing 4.8. A sample run of
the program is shown in Figure 4.10.

Figure 4.10. Game of Life.
(This item is displayed on page 126 in the print version)

i Game of Life : =10] x|

sae o

® nOztm.

The Game of Life is a 2D cellular automaton. The rules are quite simple:
1. (birth). A dead cell becomes live if it has exactly three live neighbors.
2. (survival). A live cell remains live if it has two or three live neighbors.
3. (death). Otherwise, a cell dies.

Listing 4.8. Life.java
(This item is displayed on pages 124 - 126 in the print version)

package chapter4;

import java.awt.*;
import Jjava.awt.event.*;
import javax.swing.*;
import java.awt.geom.*;

~N oUW N

8 public class Life extends JApplet ({
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 125]
9 public static void main(String s[]) |
10 JFrame frame = new JFrame();
11 frame.setTitle ("Game of Life");
12 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
13 JApplet applet = new Life();
14 applet.init () ;
15 frame.getContentPane () .add (applet) ;
16 frame.pack () ;
17 frame.setVisible (true);
18 }
19
20 public void init () {
21 JPanel panel = new LifePanel ();
22 getContentPane () .add (panel) ;
23 }
24 1}
25
26 class LifePanel extends JPanel implements ActionListener{
27 int n = 30;
28 boolean[][] cellsl;
29 boolean([][] cells2;
30
31 public LifePanel () {
32 setPreferredSize (new Dimension (400, 400));
33 setBackground (Color.white);
34 cellsl = new boolean[n] [n];
35 cells2 = new boolean[n] [n];
36 for (int 1 = 0; 1 < n; 1i++) {
37 for (int j = 0; J < n; Jj++) {
38 cellsl[i][j] = Math.random() < 0.1;
39 cells2[i][j] = false;
40 }
41 }
42 Timer timer = new Timer (1000, this);
43 timer.start () ;
44 }
45
46 public void paintComponent (Graphics g) {
477 super.paintComponent (g) ;
48 Graphics2D g2 = (Graphics2D)g;
49
50 g2.setColor(Color.lightGray) ;
51 int p = 0;
52 int ¢ = 16;
53 int len = c*n;
54 for (int i = 0; 1 <= n; i++) {
55 g2.drawLine (0, p, len, p);
56 g2.drawLine(p, 0, p, len);
57 p += c;
58 }
59 g2.setColor (Color.black);
60 for (int i = 0; i < n; i++) |
6l for (int j = 0; J < n; J++) {
62 if (cellsl[i][3]) {
63 int x = i*c;
64 int y = j*c;
65 g2.fill0Oval(x, y, ¢, c);
66 }
67 }
68 }
[Page 126]
69 }
70
71 public void actionPerformed (ActionEvent e) {
72 boolean[] [] cells = cellsl;
73 for (int i = 0; 1 < n; i++) {
74 for (int j = 0; J < n; J++) {
75 cells2[i]1[j] = cells[i]l[31:
76 int nb = neighbors(cells, i, J);
77 if (nb == 3)
78 cells2[i][3j] = true;
79 if (nb < 2 || nb > 3)
80 cells2[i][]j] = false;
81 }
82 }
83
84 cellsl = cells2;
85 cells2 = cells;
86 repaint () ;
87 }
88
89 private int neighbors(boolean[][] cells, int x, int y) {
90 int x1 = (x>0)°?x-1:x;
91 int x2 = (x<n-1)°?x+1:x;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
92 int yl1 = (y>0)?y-1:y;

93 int y2 = (y<n-1)2y+l:y;
94 int count = 0;
95 for (int i

= x1; 1 <= x2; i++) {
96 for (int j =
(

yli 3§ <= y2; j++) |
97 count += (cells[i][]]1)?21:0;
98 }
99 }
100 if (cells[x][y]) count--;
101 return count;
102 }
103 }

[Page 127]

The program creates an n-by-n board to display the game. A 2D array of boolean is used to hold the states of the
cells. The initial configuration is set randomly, with the probability of live cells being 0.1.

A timer of 1000 milliseconds is used to animate the progress of the game (line 42). The LifepPanel object is the
action listener for the timer. Every time the event is fired, one step of the game is performed. In order to avoid
repeated creation of arrays, only two arrays for the cell configurations are used (lines 28-29). cellsl references
the array for the currently displayed cells. cel11s2 is for the next configuration. After the computation for a board
update is completed, the two arrays are swapped.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 127 (continued)]

4.7. Printing

Printing is a common task in computer applications. The rendering problems involved in printing graphics are
essentially the same as those in drawing on the screen. However, printing does present some special problems
such as pagination. Java API provides convenient facilities for printing.

The printerJob class can be used to manage a printing process. The following static method returns an instance
of PrinterJob:

static PrinterJob getPrinterJob () ;

At the beginning of a print job the user is usually presented with a printer selection dialog box. You may do that
by simply invoking the method of printerJob:

boolean printDialog();

The method returns true if the user chooses to proceed with the printing. You may initiate the printing by calling
the following method:

void print () throws PrinterException;

The actual graphics contents of printing are defined using the printable interface. An object implementing
Printable is selected to a PrinterJob through the method:

void setPrintable (Printable painter);

The printable interface provides a callback structure to define the custom drawing of the printing job. The
interface contains the following method for custom implementation:

int print (Graphics g, PageFormat pf, int pagelndex) ;

The implementation of this method is very similar to that of paintComponent. The code can often be shared
between the two methods. The Graphics parameter, which can be cast to a Graphics2D object, provides access
to the 2D rendering engine. All the drawing, transformation, and other features are available to printing.

The pageIndex parameter provides the page humber of the page currently being rendered. It starts with 0. The
implementation of the method should return either the value NO_sucH PAGE if the page should not be printed or
the value PAGE_EXISTS if the page is rendered.

The pageFormat Object contains information about the printer's page settings. The following are some of the
methods in PageFormat:

int getOrientation();
double getWidth () ;
double getHeight () ;
double getImageableX();

[Page 128]
double getImageableY () ;
double getImageableWidth() ;
double getImageableHeight () ;

The last four methods retrieve the rectangle of the printable area of the page.

Listing 4.9 demonstrates the usage of these classes in implementing printing functionalities in Java applications.
The program displays a window containing a panel with the text "Welcome!" and a button labeled "Print." If the
button is clicked, a printer selection dialog box is displayed. When a printer is chosen, the same text string will be
printed on two pages, as shown in Figure 4.11. The rendered image is cut against the printable area, but the
fragments are properly aligned across the pages.

Listing 4.9. Printing.java
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
(This item is displayed on pages 128 - 129 in the print version)

1 package chapter4;

2

3 import java.awt.*;

4 import java.awt.geom.*;

5 import java.awt.event.*;

6 import Jjava.awt.print.*;

7 import javax.swing.*;

8

9 public class PrintGraphics extends JFrame implements ActionListener {
10 public static void main(String[] args) {
11 JFrame frame = new PrintGraphics();

12 frame.setTitle ("Printing");

13 frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
14 frame.pack () ;

15 frame.setVisible (true);

16 }

17

18 PrinterJob pj;

19 PrintPanel painter;
20
21 public void actionPerformed (ActionEvent e) {
22 if (pj.printDialog()) {
23 try {
24 pj.print();
25 } catch (PrinterException ex) {
26 ex.printStackTrace () ;
27 }
28 }
29 }

30

31 public PrintGraphics () {

32 Container cp = this.getContentPane () ;
33 cp.setLayout (new BorderLayout());

34 JButton button = new JButton ("Print");
35 cp.add (button, BorderLayout.SOUTH) ;

36 button.addActionListener (this);

37 painter = new PrintPanel ()

38 cp.add (painter, BorderLayout.CENTER) ;
39 pj = PrinterJob.getPrinterJob () ;

40 pj.setPrintable (painter) ;

41 }

42 3}

43

[Page 129]

44 class PrintPanel extends JPanel implements Printable {
45 public PrintPanel () {

46 setPreferredSize (new Dimension (800, 400));

47 setBackground (Color.white) ;

48 }

49

50 public int print (Graphics g, PageFormat pf, int pagelndex) {
51 switch (pageIndex) {

52 case 0:

53 draw(g) ;

54 break;

55 case 1:

56 g.translate (- (int)pf.getImageableWidth (), 0);
57 draw (g) ;

58 break;

59 default:

60 return NO SUCH PAGE;

61 }

62 return PAGE_EXISTS;

63 }

64

65 public void paintComponent (Graphics g) {

66 super.paintComponent (g) ;

67 draw (g) ;

68 }

69

70 private void draw(Graphics g) {

71 g.setFont (new Font ("Serif", Font.BOLD, 144));
72 g.drawString ("Welcome!", 200, 300);

73 }

74 '}

Figure 4.11. Printing over multiple pages.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Weler ame! Weler yme! Welei yme!

[Page 130]

The class printPanel extends Jpanel and implements the printable interface. An instance of PrintPanel is
added to the main frame of the program. It is also used for printing. The panel paints the string "Welcome!" using
a 144-point font. A private method draw is defined to perform the drawing (line 70). Both paintComponent and
print methods call the draw method.

The print method has additional logic to handle the page split. The first page (pageIndex = 0) is printed without
change. In the second page, a translation is performed to move the page so that it covers the area to the right of
the first page. To determine the precise offset, we use the pageFormat object to retrieve the width of the
printable area (line 56).

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 130 (continued)]

Key Classes and Methods
e javax.awt.geom.GeneralPath.curveTo(...) A method to construct a cubic curve segment.
e javax.awt.image.BufferedImage A class encapsulating an image.
e javax.awt.image.BufferedImageOp An interface for image-processing operators.
e java.swing.Timer A class generating action events in a periodic fashion.
e java.lang.Runnable An interface to define code executable as a separate thread.
e java.lang.Thread A class encapsulating a thread of execution of a program.
e java.lang.Thread.sleep(long ms) A method to place the thread to sleep for a specified time period.
e java.util.Calendar A class encapsulating a calendar for date and time.
e java.awt.image.Raster A class encapsulating image data.
e java.awt.image.WritableRaster A class encapsulating writable image data.
e java.awt.print.PrinterJob A class for printing management.

e java.awt.print.Printable An interface to define print contents.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 130 (continued)]

Key Terms
B-spline curve

A curve defined as a parametric equation of piecewise polynomials blending with a sequence of control
points.

Bézier curve

A curve defined as a parametric equation of polynomials blending with control points.

NURBS

Nonuniform rational B-spline.

image processing

Computer manipulation of digital images to enhance or extract information.

convolution

A type of linear operations often used in signal and image processing.

kernel

A function to define a convolution.

complex numbers

An extension of real numbers.

complex plane

The set of complex humbers interpreted as points on a plane.

frame rate

The speed of an animation measured in frames per second (fps).

thread

A line of execution in a running program. In a multithreading environment a single program may have
several threads running simultaneously.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

cellular automata

A dynamic system on a grid of cells, evolving based a simple set of rules that specify the next state of a cell
using the previous states of itself and its neighbors.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 130 (continued)]
Chapter Summary
e In this chapter we present several advanced techniques in 2D computer graphics.

e B-spline curves are important tools in modeling 2D geometry. A B-spline curve can be converted to a
sequence of Bézier curves, which may then be rendered directly by the Graphics2D object. The control
points of each Bézier curve are linear combinations of the control points of the B-spline curve.

[Page 131]

e Java 2D provides a basic set of graphics primitives. We discussed how to build custom primitives by
implementing the shape interface. Even though it is not possible to extend the GeneralPath class, you
may still include it in your own class to take advantage of its implementation.

e A brief introduction to image processing is given in this chapter. Java 2D provides supports for image
reading, writing, rendering, and processing. The BufferedImage class is the main representation for images
in Java 2D. Image-processing operators implementing the BufferedImageOp interface provides convenient
ways to process Buf feredImage objects.

e Images can also be created and manipulated in a program at the pixel level. Raster and WritableRaster
classes offer access to the pixel data in a BufferedImage. An example in constructing an image for the
Mandelbrot set is given.

e Animation is an important part of computer graphics. Implementing a 2D animation in Java usually
requires multiple threads to separate the continuous rendering from the regular user interface handling.
The Thread class and the rRunnable interface provide essential multithreading support. The Timer class of
the Swing package provides a convenient utility to trigger the periodic frame rendering.

e Printing in Java fits the general rendering scheme of Java 2D quite well. The same Graphics2D class
provides the rendering engine. The Printable interface allows for the necessary callback structure for
defining the graphics output. The PrinterJob class facilitates the special tasks in printing.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 131 (continued)]

Review Questions

4.1 Given a cubic B-spline curve as defined in this chapter with n control points, how many Bézier
curves will be generated from the conversion?

4.2 Another kind of B-spline curve does not impose special restrictions of the endpoints of the curves.
The first and the last segments are treated in the same way as other segments. It uses the
same formula for the conversion to Bézier curves on every segment. Consequently, the first and
the last control points are not necessarily interpolated by the curve. Find the conversion formula
for this type of B-spline curve.

4.3 If you apply a smoothing operator to an image followed by a sharpening operator, will you recover
the original image?

4.4 Perform five iterations in the Mandelbrot set definition for c = i.
4.5 Perform five iterations in the Mandelbrot set definition for c = 1.

4.6 Ifit takes 0.01 second to complete a frame rendering, and the thread sleeps for 50 milliseconds
for each frame, calculate the frame rate.

4.7 How many different rules are there for cellular automata with four neighbors?

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious | Hewxt |
[Page 131 (continued)]

Programming Exercises

4.1 Implement the type of B-spline curve defined in Review Question 4.2.

4.2 Addthe Heart primitive to the program in Listing 2.3 so it can be selected and drawn like other
shapes.

[Page 132]

4.3 Write a Triangle class that implements the shape interface. Provide a constructor to define the
three vertices of the triangle.

4.4 Implement a regular n-gon primitive. Define the class to implement the shape interface and
provide a constructor to specify the number of sides n.

4.5 Add an invert operation to the program in Listing 4.4. The color of every pixel is turned to its
opposite color; that is, a color with components r, g, bischangedto1-r,1-g,1-b.

4.6 Write a Java program with a text field, a button, and a text area as shown in Figure 4.12. A user

may enter a string in the text field. When the button "Print" is clicked, the text area will display
the pattern of the string formed with the character "*'.

Figure 4.12. ASCII art.

g =101 x|
Java 20 || Pririt |

R T aaw R TR

TEE TTTTEE EEE EEE
+++ + EEEE +t+ +t+
aaa - e e -
EEE ETEETE WETET wEE EEEREE EEE TEE EEE
+++ +* +*+ EEt +* +* +++ ++ +++ +*+
s e waw s . was wmas e e s
*TEE *TEE ATE *TEE * *TEE ATE *E *TEE *TEE
EE e EE e i +* EE o
saw mww saw wmww sww W T an o -
*EE ATE TEE ETE Tk Ttk ETE * * EEE Tk
+* + HRd EEd +d HRd EEd e L it

mmww mmw wmw " mw www AETWAREE BWWWERABBEE

4.7 Modify the program in Listing 4.5 to allow a general rectangular region of the complex plane to be
viewed in the image. The user may select the rectangle by dragging the mouse.

4.8 The Julia set uses the same type of iterations as in the Mandelbrot set. The constant c is always
fixed. The starting point of the iteration is not necessarily 0. A point is in the Julia set if the
sequence generated by the iteration starting at the point is bounded. Write a Java program to
display the Julia set when ¢ = -0.672 + 0.435i.

4.9 Modify the program in Listing 3.6 so that the drawing with compositing rules is done on an off-
screen image that supports the a-channel. The image is drawn to the screen after the drawing is
completed.

4.10 Write a program to display a running fan with four blades.

4.11 Write a Java 2D program that animates a ball bouncing inside a rectangle, as illustrated in Fiqure
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4.13. The ball |n|t|aIIy moves on a randomly chosen line. When the ball hits a side of the
rectangle, it bounces back in another random direction.

4.12

4.13

[Page 133

Figure 4.13. A bouncing ball.

Write a Java program simulating an analog stopwatch. Use mouse clicking to operate the
stopwatch which cycles through three states: Start-Stop—Reset.

Implement a cellular automaton with the following rules based on the four-neighbors of a cell:

1. A white cell becomes black if the number of its black neighbors is not 1;

2. A black cell stays black if the number of its black neighbors is either 1 or 3;

3. Otherwise, the cell becomes white.

Starting from a single black cell at the center of the board, the amazing pattern shown in Figure
4.14 will emerge. Use a Timer object to animate the process, and allow the user to stop the

animation by a mouse click.

Figure 4.14. A pattern generated by a simple cellular automaton.

i Cellular Automata

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4.14 Write a Java program to print an analog clock showing the current time.

4.15 Add a "Print" menu item to the drawing program in Listing 2.3. When selected, it will initiate a
printing of the current drawing.

[Page 134]

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 135]

Chapter 5. Basic 3D Graphics

(This item omitted from WebBook edition)

Objectives
e To describe the 3D rendering process.
e To present an overview of Java 3D programs.
e To define the Java 3D scene graph.
e To classify components of a scene graph.
e To apply background nodes.
e To understand and apply bounds.

e To make changes in live scene graphs.

[Page 136]

5.1. Introduction

Our perception of the physical world is clearly three dimensional. However, the visual images that we see through
our eyes are two dimensional. A special type of mapping called perspective projections is the underlying
mechanism to capture a 3D scene to a 2D image. The basic objective of 3D computer graphics is to simulate this
process in computers.

3D computer graphics studies the modeling and rendering of a 3D world. The geometric objects in the 3D space
may have dimension 0 (points), dimension 1 (curves), dimension 2 (surfaces), or dimension 3 (solids). The
objects may have different kinds of material properties. There may exist light sources of various characteristics
illuminating the scene in the virtual space. The virtual cameras that capture the scenes of the virtual world may
be placed at different locations in the space and have different characteristics. A 3D computer graphics system
needs to address many problems in representing the graphics objects and their properties, facilitating
transformations, organizing all the components, and rendering the scene.

Java 3D is an object-oriented API for 3D computer graphics. The entire graphics model of a Java 3D program is
organized in a structure called the scene graph. Each node of the scene graph is an object of a class representing
one of many graphics entities. The scene graph provides a systematic model for the Java 3D rendering engine to
automatically render a scene constructed by a Java 3D program.

In this chapter, we will introduce the basic concepts of a 3D graphics system. In particular you will learn the
overall architecture of Java 3D, the concept of a Java 3D scene graph, and an overview of different categories of
scene-graph components. You will be able to construct Java 3D scene graphs and write simple Java 3D programs.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 136 (continued)]

5.2. 3D Rendering Process

Rendering a 3D scene to produce an image (typically 2D) is an inherently complex process. Unlike 2D graphics, a
rendered image of a 3D object is significantly different from its original 3D version. To directly model the object
based on its rendered image would not be feasible. Therefore, a 3D graphics system invariably involves the
construction of a virtual world in which various graphics objects and light sources are defined. Rather than
constructing the scene "on the fly," as often seen in the 2D cases, a persistent "retained" model of the virtual
world separated from the rendering engine is often needed. The scene is then viewed in a structured way within
the virtual world, and the rendering engine produces the image of the view. A simple illustration of 3D graphics
concepts is shown in Figure 5.1.

Figure 5.1. 3D graphics model and view.

%& Light
» f-"'t-
'§_' - & Viewer

- e e Image

World space

Visual object

The rendering process of a static graphics scene is similar to that of a real camera taking a picture. The virtual
world contains visual objects that reflect light from various light sources. The camera is located at a specific point
in the virtual world and projects the visible portions of the virtual world along a specific direction onto a 2D plane.
The graphics objects as well as the views may be dynamic. Consequently, the scene and the rendered images
may continuously change over time. There may be interactions between the virtual world and the real physical
world. User and sensor inputs may affect the virtual models.

[Page 137]

In order to implement or use such a 3D graphics system, we have to consider many problems related to the
modeling of the virtual world and the rendering of a scene—for example,

e Geometry of the graphics objects.

e Location and position of the objects.

e Geometric transformations applied to objects and views.
e Material properties and texture of the objects.

e Lights and their characteristics.

e Type of projections in a view.

e View position, field of view, and other properties.

e Illumination and shading models.

¢ Dynamic behaviors of various components.

e Reactions to the user inputs

Geometric descriptions of the graphics objects are the most fundamental aspect of building a virtual world in a 3D
graphics system. Basic building blocks for 3D graphics objects include points, lines, surfaces, and solids. Simple
polygon meshes are commonly used to approximate complex objects. A 3D graphics system usually offers
convenient facilities to generate certain high-level geometries such 3D texts and geometric primitives (for
example, spheres, cones, and boxes). More advanced modeling tools include spline curves and surfaces.

Transformation is an important tool in a graphics system. Geometric transforms are used to place the geometric
objects in the virtual world space and to change their shapes, sizes, and positions when necessary. 3D affine
transforms are the commonly used family of transforms in the virtual world space. Another family known as
projective transforms is more general. Projective transforms are important parts of a 3D viewing process.

Besides its geometry, a graphics object also has appearance properties that determine how the object is rendered.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
These properties may include colors, textures, and material properties for more sophisticated shading. The
lighting, illumination, or shading policy controls the way that colors and light intensities on objects are calculated.
The choice of illumination model also influences the outcome of rendering. Certain geometric information such as
the surface normals is closely related to the appearance in some illumination models. The normal at a point of the
surface is the direction perpendicular (vertical) to the tangent plane at the point. In the Phong illumination model
that considers specular reflection, for example, the light intensity at the point is associated with the angle
between the direction of the view and the direction of the light reflection. The reflection vector is determined by
the direction of the light and the surface normal. The details of illumination and shading models will be introduced
in Chapter 9.

The 3D viewing process typically involves a projective transformation that maps a 3D scene to a 2D plane. A view
can have many parameters to control its characteristics. The projection may be parallel or perspective. For a
particular view, the visible volume of the virtual world is usually finite, and this volume is known as the view
frustum. Simply applying a mathematical transformation of projection may not be enough for the rendering. For
example, the relative positions among the objects may also be important to the rendering process. A portion of an
object may be hidden by another object. These problems need to be properly addressed to achieve acceptable
visual results.

Of course, the 3D rendering is not limited to a static scene. The virtual world can change over time. The viewing
system may be associated with a dynamic device such as a head-mounted display. The dynamic effects of the
rendering process may include animation and interaction. Interaction is an alteration of the scene resulting from
user feedbacks. Animation is a change designed internally in the virtual world. The distinction between the two
types of dynamics is often blurred. The dynamic behaviors may be originated from the changes in the graphics
objects in the virtual world or from the changes of the viewer. The viewers (cameras or eyes) may themselves be
objects located in the virtual world and may dynamically change their positions, directions, and other properties.

[Page 138]

Java 3D API provides a comprehensive implementation of the basic graphics algorithms, enabling us to
concentrate on the main concepts and problems in graphics instead of tedious details of lower-level
implementations. This book uses the Java 3D package as the tool to study and implement 3D graphics systems
and applications.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
L] Pmuhu5_ Hewxt |
[Page 138 (continued)]

5.3. Java 3D API Overview

Java 3D provides a high-level API for modeling and rendering 3D graphics scenes. The Java 3D rendering engine
automatically renders a scene with all the structures and properties specified by the programmer. Programming
with Java 3D API, therefore, will require only the specifications of the desired graphics scene and the associated
properties, and will not need to implement the highly complex and tedious low-level rendering process.

Java 3D takes advantage of the object-oriented programming features of the Java programming language. Almost
all elements involved in the graphics rendering (such as geometry, transformation, light, and animation) are
implemented as Java classes. Such objects are created simply by instantiating the corresponding classes.

In order to organize all the objects involved in rendering a scene, Java 3D uses a special structure called a scene
graph. This, with its superstructure objects, node objects, and node components, defines the entire virtual
graphics world to be rendered. The Java 3D rendering engine will traverse the scene graph to continuously
perform the actual rendering. The scene graph defines geometries, appearances, transformations, lights, and
views in a 3D scene. It may also include animations, interactions, and sounds.

5.3.1. A Simple Example

Listing 5.1 shows a simple Java 3D applet and application. It demonstrates the basic structure of a Java 3D
program. The program displays a solid 3D text "Hello 3D" illuminated by a point light (Figure 5.2).

Listing 5.1. Hello3D.java
(This item is displayed on pages 138 - 139 in the print version)

1 package chapter5;
2
3 import java.awt.*;
4 import java.applet.*;
5 import java.awt.event.*;
6 import javax.media.j3d.*;
7 import javax.vecmath.*;
8 import com.sun.j3d.utils.universe.*;
9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Hello3D extends Applet {
13 public static void main(String s[]) {
14 new MainFrame (new Hello3D(), 640, 480);
15 }
16
17 public void init () {
18 GraphicsConfiguration gc =
19 SimpleUniverse.getPreferredConfiguration();
20 Canvas3D cv = new Canvas3D(gc);
21 setLayout (new BorderLayout());
22 add (cv, BorderLayout.CENTER) ;
23 BranchGroup bg = createSceneGraph();
[Page 139]
24 bg.compile () ;
25 SimpleUniverse su = new SimpleUniverse(cv);
26 su.getViewingPlatform() .setNominalViewingTransform() ;
27 su.addBranchGraph (bg) ;
28 }
29
30 private BranchGroup createSceneGraph() {
31 BranchGroup root = new BranchGroup () ;
32 // object
33 Appearance ap = new Appearance () ;
34 ap.setMaterial (new Material());
35 Font3D font = new Font3D(new Font ("SansSerif", Font.PLAIN, 1),
36 new FontExtrusion()):;
37 Text3D text = new Text3D(font, "Hello 3D");
38 Shape3D shape = new Shape3D(text, ap):;
39 // transformation
40 Transform3D tr = new Transform3D();
41 tr.setScale(0.5);
42 tr.setTranslation (new Vector3f(-0.95f, -0.2f, 0f));
43 TransformGroup tg = new TransformGroup (tr);
44 root.addChild (tg);
45 tg.addChild (shape) ;
46 // light
47 PointLight light = new PointLight (new Color3f (Color.white),
48 new Point3f(1f,1f,1f),
49 new Point3f(1f,0.1f,0f));
50 BoundingSphere bounds = new BoundingSphere () ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

51 light.setInfluencingBounds (bounds) ;
52 root.addChild (light) ;

53 return root;

54 }

55 }

Figure 5.2. A simple Java 3D program displays a 3D text string.

[Page 140]

This example is a complete Java 3D program. It shows a frame containing a 3D text string "Hello 3D." You can
see the depths of the characters and the illumination of the characters originated from a light. The background of
the scene is black.

Besides the AWT packages, the program imports the following packages from Java 3D API:

javax.media.j3d
javax.vecmath
com.sun.j3d.utils.universe
com.sun.j3d.utils.geometry

javax.media.j3d is the main package of Java 3D. javax.vecmath contains classes for vectors, matrices, and
other mathematical objects that are useful for Java 3D. The other two packages contain many convenient utility
classes for building primitives, views, and other objects in Java 3D, even though the com.sun.j3d.* packages are
not considered in the core of Java 3D.

The visual components used in the program Hello3D are the old-style AWT components instead of the Swing
components. For example, an Applet object is used instead of Japplet. This is because the GUI component
Canvas3D used for Java 3D rendering is a heavyweight component. Even though it is possible to place
heavyweight components into a Swing component JFrame, doing so may cause some irregularities in the display.
For example, the menu may not be shown properly.

An applet derived from the applet class can be implemented as an application as well by adding the applet to a
Frame instance in a main method, similar to the Swing implementation. Because the Frame class does not have
the setDefaultCloseOperation method, the window-closing operation for the frame needs to be implemented by
handling the WindowEvent. The class com.sun.j3d.utils.applet.MainFrame provides an implementation for
running an applet as an application (line 14). Hel1103D and most subsequent examples will use this convenient
utility class to create the dual-purpose program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
A canvas3D object is created to display the 3D rendering (line 20). canvas3D is a subclass of the AWT component
canvas and therefore the canvas3D object can be added to this Frame. The method createSceneGraph defines the
scene graph for the application. It returns a BranchGroup object that can be attached to a SimpleUniverse
object. The utility class simpleUniverse provides a basic framework for Java 3D rendering. Once the scene graph
branch is attached to the simpleUniverse object, the rendering will begin.

In the createSceneGraph method (line 30), first a BranchGroup object is created to act as the root. The visual
object to be displayed is a 3D text string represented by a Text3D object. It is constructed with a 3D font and an
appearance. A transformation is then defined with the Transform3D class. It performs a scaling and a translation.
The transformation is applied to the Text3D object. A light is constructed and placed in the scene. The influence of
the light is limited to a region defined by a BoundingSphere object.

To fully understand the Java 3D program, it is necessary first to understand Java 3D scene graphs. The details of
Java 3D scene graphs will be introduced in the next sections, and the complete analysis of the scene graph
contained in this example will be given later in the chapter.

5.3.2. Install Java 3D

To compile and execute a Java 3D program, you need a Java software development environment and the Java 3D
package. Java 3D is an optional package of the Java 2 platform. A standard Java installation does not
automatically include it. You may download the Java 3D package at the site:

http://java.sun.com/products/java-media/3D/

Java 3D is available for various platforms including Solaris, Windows, Linux, and Mac OS. After installing the Java
3D package on top of a Java 2 software development kit, you will be able to compile and run a Java 3D program
such as the one in Listing 5.1.

[Page 141]
A Java 3D distribution includes native code and Java libraries. The Java classes are packaged in four jar files:

j3dcore.jar
j3dutils.jar
j3daudio.jar
vecmath.jar

In a Windows installation, the jar files are typically placed in the directory:

<j2sdk directory>/jre/lib/ext

The native code is implemented in three dynamic link libraries: J3D.d11, j3daudio.dll, and J3DUtils.d1l1l under
the directory:

<j2sdk directory>/jre/bin

You may also build Java 3D programs in IDEs such as JBuilder and Netbeans. Additional configurations may be
required to use the Java 3D packages. In JBuilder, you need to create a new library to include the four jar files
above, using the Tools menu item Configure Libraries. After the library is created, you may set the Project
properties to use the library. In Netbeans (Sun ONE Studio, Forte), you will be able to compile and run Java 3D
applications as soon as the Java 3D package is installed to the J2SDK associated with the Netbeans installation.
However, to take advantage of the context-sensitive code-completion feature of the IDE, you may need to update
the parser database for the jar files. This can be done by mounting the four jar files and selecting "Update Parser
Database" on each. This step is not necessary for newer versions of Netbeans.

A Java 3D application can be executed in a Java Runtime Environment (JRE) with the Java 3D package installed. A
Java 3D program may also be built as an applet. To view a Java 3D applet in a browser, you need to install a Java
plug-in associated with a JRE for Java 2 environment and install the Java 3D package on top of the JRE.

Java 3D is usually built on top of other low-level graphics API such as OpenGL. For example, there are two Java
3D distributions for the Windows environment: one for OpenGL and the other DirectX. Rendering 3D graphics is
usually a computationally intensive task. To achieve better performance, Java 3D will attempt to take advantage
of the acceleration features offered by the graphics hardware. Because of the large variety of different graphics
boards, software drivers, and vendors, you may encounter some compatibility problems when using Java 3D on
certain platforms. The following suggestions may help you resolve some of the problems:

e Update your video driver to the latest stable version.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://java.sun.com/products/java-media/3D/

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
e Use the most recent release of Java 3D.

e Set the depth buffer in the OpenGL options of your graphics card to 24 bits or higher.
e Turn off hardware acceleration of the graphics card.
e Join the Java 3D interest group: java3d-interest@java.sun.com

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

mailto:java3d-interest@java.sun.com

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 141 (continued)]

5.4. Java 3D Scene Graphs

In order to organize various elements in the 3D rendering effectively, Java 3D uses the concept of scene graph to
build a virtual universe that includes everything relevant to a 3D rendering. A scene graph is an abstract
mathematical model for the organization of a scene. It is not a picture or an image of the scene. The scene graph
can be conceptually drawn as a diagram, but its actual implementation is done in the program through object
instantiation and method invocation. The scene graph enables programmers to specify complex graphics
structures and actions in a uniform manner. It also enables the Java 3D rendering engine to process the scene
systematically and efficiently.

[Page 142]

A scene graph is a treelike data structure known as DAG (directed acyclic graph). A directed graph consists of a
set of vertices (or nodes) connected with directed edges (or links). Figure 5.3 shows a directed graph with 6
vertices and 8 edges. A (directed) path in a directed graph is a vertex-edge sequence that moves along the edges
of the graph. For example, in Figure 5.3, b-c-f-e is a path. A cycle in a directed graph is a closed path—that is, a
path having the same initial and terminal vertex. For example, in Figure 5.3, a-c-f-e-a is a cycle. ADAG is a
directed graph without any cycles. Therefore Figure 5.3 is not a DAG. However, if the edge e-a is removed, then it
becomes a DAG.

Figure 5.3. A directed graph.

i
N\

N/

|

©

A (directed) tree is a special type of DAG. A tree is constructed starting from one vertex known as the root of the
tree. There can be a number of edges originated from the root leading to other distinct vertices called the children
of the root. Each child can then have a number of edges leading to its children in the same fashion. This process
can iterate an arbitrary number of steps to produce a tree. Figure 5.4 shows an example of a tree. The vertex a is
the root of the tree. In a tree, a vertex may have any number of children (including 0), but it cannot have more
than one parent. A vertex that has no child is called a /eaf. A nonleaf vertex is called an internal node. In Figure
5.4, the nodes e, h, ¢, g are leaves and the nodes a, b, d, f are internal nodes.

Figure 5.4. A directed tree.

a

SN

c d

AT
\

The nodes of a scene graph represent objects of the various classes related to graphics functions. The links
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
between nodes represent the logical relationships between them. In an actual Java 3D program, the nodes are
created by instantiation of the classes defined in the Java 3D API, or the classes derived from the API classes and
interfaces. The links are created by calling the appropriate methods or constructor in the classes. Figure 5.5
shows a very simple Java 3D scene graph.

[Page 143]

Figure 5.5. A scene graph as a DAG.

T

Different types of nodes and links are represented by different symbols in the diagram drawing of a scene graph.
Figure 5.6 shows the symbols conventionally used for scene graph nodes and edges.

Figure 5.6. Legend of scene graphs.

% Virtual universe

Locale

Group node

Leal node
Node component

Cither object

—_— Parent—child Link

—-———— Reference

A scene graph has three major parts. On the top is the superstructure, which consists of objects from
VirtualUniverse and Locale classes. The main body of the scene graph is a tree of objects belonging to the Node
class. The third part is a set of NodeComponent objects. The leaf nodes in the tree structure can reference the
node component objects. One NodeComponent object may be referenced by several Leaf objects. Therefore, the
overall structure of a scene graph is not a tree but only a DAG.

The main class hierarchy for the scene graph elements is shown in Figure 5.7. The virtualUniverse and Locale
are classes for the superstructure and they are not derived from the SceneGraphObject abstract class. The tree
nodes in a scene graph are defined by the subclasses of the abstract class Node. The NodeComponent abstract class
serves as the base class for various node components.

[Page 144]

Figure 5.7. Scene-graph class hierarchy.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

SceneGraphObject VirtualUniverse
1 T
— Node SimpleUniverse
Group Locale
Leaf
— NodeComponent
4 Prewvious | MNext P_

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 144 (continued)]

5.5. The Superstructure

The virtualUniverse and Locale objects are the superstructure objects of scene graphs. A Java 3D program
typically has only one virtualUniverse object. The virtualUniverse is designed to potentially represent the
entire space that is of interest to any Java 3D program. In order to accommodate the size and precision of a
"universe," VirtualUniverse uses three high-resolution 256-bit fixed-point numbers to represent its coordinates.
A high-resolution fixed-point number has its binary point at the middle of the 256 bits, so it has 128 bits for the
integer part and 128 bits for the fractional part. The number 1.0 represents the unit of 1 meter. Numbers of this
type can provide a distance measure as high as 2127 meters with a resolution of 27128 meters. This should be
adequate to measure any real objects in the universe. For example, the distance from the Earth to the Sun is

only about 237 meters and the radius of a proton is believed to be about 2730 meters.

The class HiResCoord is defined to represent such a high-resolution coordinate. It contains three 256-bit high-
resolution fixed-point numbers to represent the x-, y-, z-coordinates of a location.

While the virtualUniverse is capable of modeling essentially the entire universe known to us through the
HiResCoord numbers, it is clearly very inefficient to represent all coordinates using HiResCoord objects.
Therefore, Java 3D uses the Locale class to represent smaller local spaces and to achieve much greater efficiency.
A Locale object defines a local coordinate system anchored at a specific location specified by HiResCoord in the
virtual universe. Within a specific locale, the coordinates of the points are represented by usual floating-point
numbers. A VirtualUniverse contains one or more Locale objects. A Locale may have branch graphs attached
to it. When a branch graph is attached to a Locale, the Java 3D rendering engine will start to render the branch,
and the graph becomes live. A Locale object is always attached to one virtualUniverse object. This association
is established with constructors of Locale.

Locale (VirtualUniverse wvu)
Locale (VirtualUniverse vu, HiResCoord location)
Locale (VirtualUniverse vu, int[] x, int[] vy, int[] z)

The location of a Locale object in the universe can be specified using a HiResCoord object or three int arrays
specifying the high-resolution numbers. The default location is (0, 0, 0). The following statements will create a
superstructure for a scene graph:

VirtualUniverse universe = new VirtualUniverse();
Locale locale = new Locale (universe);

[Page 145]

Branches of a scene graph rooted at BranchGroup objects can be attached to a Locale object by using the
following method in Locale:

void addBranchGraph (BranchGroup branch)

The branches can be edited with the following methods:

void replaceBranchGraph (BranchGroup oldBranch, BranchGroup newBranch)
void removeBranchGraph (BranchGroup branch)

The following methods return the number of branches and all the branches in a Locale:

int numBranchGraphs ()
Enumeration getAllBranchGraphs ()

The class simpleUniverse is a utility class derived from virtualUniverse. It includes a Locale object and a set of
objects to define a standard view. A simpleUniverse object can be combined with the visual content branch to
quickly form a complete scene graph. The world coordinate system in Java 3D is a right-handed rectangular
system. The default view position is located on the z-axis looking toward the negative z-axis. From the viewer's
perspective, the x-axis is pointing to the right and the y-axis up.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 145 (continued)]

5.6. The Nodes

The Node objects are the nodes in the main tree structure of a scene graph. There are two main categories of
nodes: the Group nodes and the Leaf nodes. The Group nodes are internal nodes of the tree representing certain
relations and operations for the child nodes. The Leaf nodes are leaves of the tree representing certain graphics
entities. The leaf nodes in a scene graph usually reference some NodeComponent object to define its attributes and
properties. The node components may be shared among different leaf nodes.

5.6.1. The Group Nodes

Group nodes are the internal nodes in a scene graph. The main group-node class hierarchy is given in Figure 5.8.
Group nodes are the main building blocks of the scene-graph tree structures. They may have children. A child of a
group node can be a leaf node or another group node. Because of the tree structure imposed on the Node objects
in a scene graph, two group nodes cannot share the same child-node object. A child node has only one parent,
and there is a unique path from the root to a leaf node.

Figure 5.8. The Group-node classes.
Group
aX

— BranchGroup

— OrderedGroup

— Primitive

— SharedGroup

— Switch

— TransformGroup

[Page 146]

A Group node maintains a list of children. To add a child node to a Group node, you may call the following
methods:

void addChild (Node child)
void insertChild(Node child, int index)

A child can be accessed through an index.

Node getChild(int index)
void setChild(Node child, int index)

The methods to retrieve information about children include

int numChildren ()
int indexOfChild (Node child)

Other methods related to children of a Group node include

Enumeration getAllChildren ()
void removeChild (Node child)
void removeChild (int index)
void removeAllChildren ()

A BranchGroup node is the root of a branch of a scene graph. It is the only type of node that can be attached to a
Locale object. Therefore, there must be at least one BranchGroup node in a scene graph. A BranchGroup node
does not perform any special operations other than bringing its children together.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

An OrderedGroup node specifies an order of rendering on its children. The Java 3D rendering engine renders a
scene by traversing the scene graph from the root to all the leaf nodes. Normally at a particular node the order of
visiting the children is not specified. Java 3D may choose to render the children in any order. The OrderedGroup
node provides a way to enforce a specific ordering on traversing the children. The children of an 0rderedGroup
node are guaranteed to be rendered in the order of their indices. For example, the following code constructs a
portion of a scene graph in which the three shapes will be guaranteed to render in the order shapel, shape2,
shape3. The corresponding scene graph is shown in Figure 5.9.

Shape3D shapel = new Shape3D();

Shape3D shape?2 new Shape3D() ;

Shape3D shape3 = new Shape3D();
OrderedGroup group = new OrderedGroup () ;
group.addChild (shapel) ;

group.addChild (shape?2) ;

group.addChild (shape3) ;

Figure 5.9. An OrderedGroup node and its children.

(W5 | group
b 5 5
shapel shape? shape3
[Page 147]

A primitive node represents a complete geometric primitive such as a sphere. It is a utility class in the package
com.sun.j3d.utils.geometry. Primitives will be discussed in Chapter 6, "Graphics Contents."

A sharedGroup node is the root of a branch graph that can be shared by several Link leaf nodes. It is not
uncommon that certain branches of a scene graph are identical. But the common branch cannot be shared
among group nodes, because of the requirement of tree structure. In this case, you may define the common
branch using a sharedGroup object as the root. This branch can then be shared by several Link leaf nodes
through references, instead of the parent-child relations. Consider the simple example in Figure 5.10. In the
scene graph on the left, two branches have the same structure and attributes. To share the common branch, a
SharedGroup hode is added as the root of the shared branch. Two Link nodes referencing the shared branch are
introduced to replace the original common branches. The result is the scene graph on the right. Note that this
structure does not violate the requirement for a tree, because the sharedGroup node is not a child of the Link
nodes.

Figure 5.10. Identical branches may be shared through a sharedGroup node and Link leaf nodes.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

B: B

AN N\

TG TG

i L i !
1 . i Y Link
G : “ L
H LY -
: LY '\-"
+ i A e E
5 o !
Commaon : E
hranch Common ! i
branch e EShﬂlud
I'Gi i branch
8

A switch node acts as a switch to select a particular set of children of the node for rendering. In the list children
of a switch node, you may turn on the rendering of a specific child, none of the children, all of the children, or a
set of children using the following method:

void setWhichChild(int whichChild)

The parameter whichChild may be a nonnegative integer specifying the index of a child, or one of the predefined
constants: CHILD NONE, CHILD ALL, CHILD MASK. If the constant cHILD MASK is used, then the set of selected
children is defined by a mask. The mask may be set with the following method:

void setChildMask (BitSet mask)

[Page 148]

For example, the following code segment selects the shapel and shape3 for rendering:

Shape3D shapel = new Shape3D();
Shape3D shape?2 new Shape3D();
Shape3D shape3 = new Shape3D()
Switch group = new Switch();
group.addChild (shapel) ;
group.addChild (shapeZ2) ;
group.addChild (shape3) ;

BitSet mask = new BitSet();
mask.set (0) ;

mask.set (2);
group.setChildMask (mask) ;
group.setWhichChild (Switch.CHILD MASK) ;

’

A TransformGroup node represents a geometric transform that applies to all of its children. A TransformGroup
node uses a Transform3D object for the specification of a transform. Transformations will be covered in Chapter 7,
"Geometric Transformation."

5.6.2. The Leaf Nodes

The Leaf class is an abstract subclass of Node. Leaf nodes generally represent various geometric objects, sounds,
and other graphics objects in a scene graph. They have no child node, but they usually do contain references to
node component objects. The class hierarchy of leaf nodes is given in Figure 5.11.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Figure 5.11. Leaf-node class.

Leaf |<]

Fa

— AlternateAppearance — Link

— Background — ModelClip

— Behawvior — Morph

— BoundinglLeaf — Shape3Dd

— Clip — Sound

— Fog — SoundScape
— Light — ViewPlatform

A shape3D leaf node represents a graphics object to be rendered. It holds the references to node components that
describe the geometry and appearance of the object. The details about the shape3D and its subclasses can be
found in Chapter 6.

The Behavior class encapsulates the actions that can be defined in a scene graph to achieve dynamic effects. It is
the foundation for animation and interaction. The details of animation and interaction are covered in Chapters 10
and 11.

A Morph node is similar to shape3D, but it facilitates the blending of multiple geometries. A Morph node can be
used with a Behavior object to achieve morphing effects on an object.

A Light leaf node defines a light that illuminates the scene when lighting is enabled. Lighting models are
discussed in Chapter 9, "Lighting and Texturing."

The Fog node provides a special rendering effect of blending object colors with another color. The degree of
blending is related to the distance to the viewer. This creates an effect of fading or fog. The details about Fog class
will be presented in Chapter 9.

[Page 149]

A viewPlatform node represents the positioning of a view in the scene graphs. It is a part of the sophisticated
Java 3D viewing system and is associated with a view object. Views are discussed in Chapter 8, "Views."

The Background node defines a background for a scene. The usage of Background is discussed later in this
chapter.

The BoundingLeaf node defines a bound that limits the influences of certain nodes such as backgrounds, lights,
and behaviors. The concept of bounds will be covered later in this chapter.

Clip and ModelClip nodes define planes that clip the view. A c1ip node specifies the far clip plane. Anything
beyond the plane is clipped and excluded from rendering. A ModelClip node specifies six planes to clip the view.

The Link node is used to reference a sharedGroup node of a shared branch in a scene graph, as introduced
before.

An AlternateAppearance hode overrides the appearance of visual objects. shape3D and Morph nodes will have
their appearance overridden by an AlternateAppearance node if they are in the influence bound of the node and
they allow the appearance to be overridden.

Sound and SoundScape nodes represent audio objects. Java 3D allows incorporation of sounds in a scene graph.
This is a useful feature for applications such as video games.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 149 (continued)]

5.7. The Node Components

Group nodes and leaf nodes define the structure of a scene, but usually the attributes of the nodes are defined
separately by other objects. Most of the attribute objects belong to the NodeComponent class. The NodeComponent
objects define certain attributes such as geometries, colors, textures, and materials. The NodeComponent objects
themselves are not nodes in the main tree structure of a scene graph, but they are usually referenced by leaf
nodes in the scene graph. The class hierarchy of NodeComponent is shown in Figure 5.12.

Figure 5.12. The NodeComponent classes.

NodeComponent<} Font3D
Fa¥
— Alpha — ImageComponent — RenderingAttributes
— Appearance — LineAttributes — TexCoordGeneration
— AuralAttributes — Material — Texture
— ColoringAttributes, — MediaContainer — TextureAttributes
— DepthComponent — PointAttributes — TextureUnitState
— Geometry — PolygonAttributes| — TransparencyAttributes

The Geometry class (and its subclasses) defines the geometry of a graphics object. A shape3D leaf node depends
on Geometry objects to define its geometric attributes.

The Appearance class controls the appearances of the rendered objects by holding references to other attribute
objects. An Appearance object defines the complete rendering states of a shape3D node. It holds other attribute
objects including ColoringAttributes, TransparencyAttributes, Material, PointAttributes, LineAttributes,
PolygonAttributes, RenderingAttributes, Texture, TextureAttributes, and TexCoordGeneration. Geometry
and Appearance are discussed in Chapter 6.

The ColoringAttributes class defines the color and shading model for rendering a visual object.

The TransparencyAttributes class sets the transparency properties including transparency mode, blend
function, and blend value.

[Page 150]

The Material class defines more sophisticated material properties than does ColoringAttributes. Material
objects are used in lighting and illumination models. Detailed discussions of material attributes and their effects
can be found in Chapter 9.

RenderingAttributes specify certain rendering-related parameters such as depth buffer and alpha test.

PointAttributes, LineAttributes, and PolygonAttributes objects define attributes related to the rendering of
points, lines, and polygons. The point attributes include the point size and antialiasing setting. The line attributes
include line width, line pattern, and antialiasing. The polygon attributes include polygon rendering related property
settings such as polygon drawing mode, culling, backface normal flip, and offset.

The classes Texture, TextureAttributes, TextureUnitState are related to a rendering technique known as
texture mapping. Texture mapping allows images to be used in rendering details of visual objects. The
ImageComponent class encapsulates the images for the mapping. An ImageComponent object can also be used to
set the background of a scene. The TexCoordGeneration class facilitates automatic generations of texture
coordinates that are important parts of texture mapping. The details of texture mapping are presented in
Chapters 9 and 12.

The ruralAttributes class defines certain parameters related to audio rendering. The MediaContainer class is
used to define sound data. Examples of using sounds in Java 3D can be found in Chapter 12.

An Alpha object converts time values to floating-point numbers between 0 and 1 (alpha-values). It acts as a
signal or waveform generator that can trigger certain actions. Alpha objects are useful in animations. Animations
are covered in Chapter 11, "Animation."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
The DepthComponent class encapsulates the concept of a depth buffer (also known as a z-buffer)—that is, a 2D

array to store the depth values (z-values).

The Font3D class defines a solid 3D font. A Font3D object is based on an AWT Font object that defines the 2D
glyphs of the font and a FontExtrusion object that defines the extrusion path in the third dimension.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 150 (continued)]

5.8. The Structure of a Java 3D Program

In a simplistic view, to write a Java 3D program is essentially to assemble a scene graph. Of course it is necessary
to create the usual user interface elements and other features relevant to an application, but the 3D modeling
and rendering of the graphics program mainly consists of the construction of the scene graph. The scene graph is
a complete specification of all the graphics objects and their attributes in the system and it is also linked to AWT
components for displaying rendered images.

A Java 3D program needs to create a Canvas3D object. Canvas3D is a subclass of java.awt.Canvas, SO its
instances can be placed in AWT containers in the same way as any other AWT components. A Canvas3D object
serves as the panel to display a rendered scene of the virtual world.

The Java 3D program should build a complete and correct scene graph using the objects of the classes provided or
derived from the API. A virtualUniverse object and a Locale object are needed for the superstructure of the
scene graph.

A viewing branch of the scene graph is needed to set up a view of the scene. Typically it contains objects of
BranchGroup, TransformGroup, ViewPlatform, View, PhysicalBody, and PhysicalEnvironment. The viewing
branch is attached to the Locale and is linked to the canvas3D object to deliver the rendered view.

At least one other branch of the scene graph should be constructed for the graphics contents of the virtual world.
This content branch should have a BranchGroup node as its root, so that it can be attached to the Locale. Other
nodes can be added to build the virtual world. shape3D, Light, and other nodes can be used to create graphics
objects. A shape3D node can establish its geometry and appearance by referencing appropriate Geometry and
Appearance objects. TransformGroup nodes can be used to apply necessary transformations to the child nodes.

[Page 151]

To simplify the process of scene graph creation, Java 3D provides a convenient utility class SimpleUniverse.
SimpleUniverse creates a VirtualUniverse, a Locale, and objects for a standard view. The SimpleUniverse is
adequate for setting up the superstructures and views in most Java 3D applications using an ordinary video
monitor display.

With a basic understanding of Java 3D scene graphs, we can now examine the structure of the program in Listing
5.1. The scene graph corresponding to the Java 3D application in Listing 5.1 is shown in Figure 5.13.

Figure 5.13. The scene graph for Listing 5.1.

metmememmmmesmsmssssmesemmmseemssesssmsssesessses————————-
‘ ay/ff SimplelUniverse
L, :
N 3
Ea) . (36)
/ i .\\"\ "-.‘.
*.\ . “-\H \
TG) ! B TG |
___,; —_— —;—\ : .*"
* / Light '
Background ;i E l
N\ F
Shape3D h Bounds) | -coooa View [-73% Canvas3D
T ViewPlatform /A‘m L
-~ e 2 \h _________
f" "\ il e ey ¥
-~ wu, + b |
T ' Physical Physical :
Texti?ﬂ ﬁwk‘"‘m_"_t.e d body environment i
B - -1 .)
i ;
T R L S ;

Material

i

The simpleUniverse object contains objects of classes virtualUniverse, Locale, BranchGroup, TransformGroup,
ViewPlatform, View, PhysicalBody, and PhysicalEnvironment. The branch outside SimpleUniverse is a content

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
branch that defines graphics objects in the virtual world. To attach the branch graph to the Locale object, use
the method attachBranchGraph () in SimpleUniverse.

The view object inside simpleUniverse is associated with a Canvas3D object that is an AWT component. The
Canvas3D object is created separately, and it can be placed in an AWT container to display the rendered view. The
View object in the simpleUniverse defines a set of default parameters. A partial list of the parameters is given
below.

Projection policy PERSPECTIVE_PROJECTION
Field of view p/4

Front clip distance 0.1

Back clip distance 10.0

The PhysicalBody and PhysicalEnvironment objects are also created with default values appropriate for the
normal screen views. The viewing branch of the scene graph inside simpleUniverse consists of a BranchGroup
node, a TransformGroup node, and a ViewPlatform leaf. The BG object is the required node to attach the viewing
branch the Locale. The TG node defines a transform for the viewPlatform. The default view has the view plane
pass through the origin. This is not convenient if some objects in the scene are also near the origin. One way to
avoid the problem is to move the view back along the z-axis by changing the view transform. This procedure is
done by the setNominalViewingTransform method in ViewingPlatform class. The following line from Listing 5.1
retrieves the viewingPlatform from the SimpleUniverse and calls this method to move the view:

[Page 152]

su.getViewingPlatform() .setNominalViewingTransform() ;

The content branch in this program contains a BranchGroup node BG as the root. The left child of BG is a
TransformGroup hode TG that performs an affine transform on its children. The transform is a scaling of 0.5 and a
translation by (-0.95, -0.2, 0). There is one leaf node, a shape3D object, under the TG node. The Shape3D object
references a geometry that is a Text3D object. The Text3D node component is set to represent text "Hello 3D."
The appearance is set to reference a Material object with default parameters. With the Material object set, the
lighting mode is enabled. The 3D text is iluminated by a light defined in the scene.

A light leaf node is another child of the BG node. The light is defined as a point light of white color located at (3, 3,
3) with an attenuation of (1, 0, 0). For computational efficiency, we may limit the range of the light. There is only
one Shape3D object in the program, so it is reasonable to limit the influence of the light to a local region enough
to cover the 3D text.

The branch graph can be compiled to improve the performance. Once it is attached to the Locale, it becomes
"live." A live scene graph will be rendered by the Java 3D rendering engine automatically. The objects in a live
scene graph can no longer be edited unless specific permissions are given.

Listing 5.2 illustrates the construction of the entire scene-graph with scene-graph objects without using the
utility class simpleUniverse. This example is functionally equivalent to Listing 5.1. However, instead of using the
SimpleUniverse utility class, it builds a complete scene graph from the basic objects of node, node component,
and other related classes.

Listing 5.2. Hello3DfullGraph.java
(This item is displayed on pages 152 - 153 in the print version)

package chapter5;

import java.awt.*;

import java.awt.event.¥*;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import java.applet.*;

10 import com.sun.j3d.utils.applet.MainFrame;

W J o0 WM

O

11

12 public class Hello3DFullGraph extends Applet ({

13 public static void main(String[] args) {

14 new MainFrame (new Hello3DFullGraph(), 640, 480);
15 }

16

17 public void init () {

18 // create canvas

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout (new BorderLayout());
23 add (cv, BorderLayout.CENTER) ;
24
25 // create superstructure
26 VirtualUniverse vu = new VirtualUniverse();
27 Locale loc = new Locale (vu);
[Page 153]
28
29 // create view branch
30 BranchGroup bgView = createViewBranch (cv);
31 bgView.compile () ;
32 loc.addBranchGraph (bgView) ;
33
34 // create content branch
35 BranchGroup bg = createContentBranch{() ;
36 bg.compile () ;
37 loc.addBranchGraph (bg) ;
38 }
39
40 private BranchGroup createViewBranch (Canvas3D cv) {
41 View view = new View () ;
42 view.setProjectionPolicy (View.PERSPECTIVE PROJECTION) ;
43 ViewPlatform vp = new ViewPlatform();
44 view.addCanvas3D(cv) ;
45 view.attachViewPlatform (vp) ;
46 view.setPhysicalBody (new PhysicalBody());
47 view.setPhysicalEnvironment (new PhysicalEnvironment ());
48 Transform3D trans = new Transform3D();
49 Point3d eye = new Point3d (0, 0, 1/Math.tan(Math.PI/8));
50 Point3d center = new Point3d(0, 0, 0);
51 Vector3d vup = new Vector3d(0, 1, 0);
52 trans.lookAt (eye, center, vup):;
53 trans.invert () ;
54 TransformGroup tg = new TransformGroup (trans);
55 tg.addChild (vp) ;
56 BranchGroup bgView = new BranchGroup();
57 bgView.addChild (tqg) ;
58 return bgView;
59 }
60
61 private BranchGroup createContentBranch () {
62 BranchGroup root = new BranchGroup () ;
63 // object
64 Appearance ap = new Appearance();
65 ap.setMaterial (new Material());
66 Font3D font = new Font3D(new Font ("SansSerif", Font.PLAIN, 1),
67 new FontExtrusion()):;
68 Text3D text = new Text3D(font, "Hello 3D");
69 Shape3D shape = new Shape3D(text, ap):;
70 // transformation
71 Transform3D tr = new Transform3D();
72 tr.setScale (0.5);
73 tr.setTranslation (new Vector3f(-0.95f, -0.2f, 0f));
74 TransformGroup tg = new TransformGroup (tr);
75 root.addChild (tg) ;
76 tg.addChild (shape) ;
77 // light
78 PointLight light = new PointLight (new Color3f (Color.white),
79 new Point3f(1f,1f,1f),
80 new Point3f(1f,0.1£f,0f));
81 BoundingSphere bounds = new BoundingSphere () ;
82 light.setInfluencingBounds (bounds) ;
83 root.addChild (light) ;
84 return root;
85 }
86 }

[Page 154]

This example is essentially equivalent to Listing 5.1. Its scene graph is the same as that of Listing 5.1, as shown
in Figure 5.13. The difference is that the superstructure and view branch are created explicitly without using the
SimpleUniverse class.

The superstructure objects of virtualUniverse and Locale are created with default settings (lines 26-27). The
Locale object is anchored at the default location (0, 0, 0). The content branch is identical to that in Listing 5.1.
The view branch is new, and its construction is done in the method createviewBranch (line 40). As shown in

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
Figure 5.13, the view branch consists of objects of BranchGroup, TransformGroup, View, ViewPlatform,
PhysicalBody, and PhysicalEnvironment.

The TransformGroup Uses a Transform3D object to represent the transform. The transform is constructed using
the methods 1ookat and invert (lines 52-53). lookAt sets up a transform based on the eye position, view
direction and view up direction. The inverse of this transform is used for setting the view transform group. The
transformation settings used in this example are the same as those in SimpleUniverse with the
setNominalViewingTransform call. Consequently the display of this example is identical to that of Listing 5.1, as
shown in Figure 5.2.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 154 (continued)]

5.9. Backgrounds and Bounds

The default background in a scene is black. If you do not place any visual object or light in the scene graph, you
will see a black canvas. The background can be changed by using the Background leaf nodes. A Background leaf
may define a solid background color or a background image. It may even define a background geometry. A
background will be rendered behind all other visual objects. The constructors of Background are listed below.

Background ()

Background (Color3f color)

Background (float r, float g, float b)
Background (ImageComponent2D image)
Background (BranchGroup geometry)

Listing 5.3 shows an application using a Background node. This program is similar to Listing 5.1. Instead of the
default black color, the background color of the rendered scene is white.

Listing 5.3. Hello3Dbackground.java
(This item is displayed on pages 154 - 155 in the print version)

1 package chapter5;
2
3 import java.awt.*;
4 import java.applet.*;
5 import java.awt.event.*;
6 import javax.media.j3d.*;
7 import javax.vecmath.*;
8 import com.sun.j3d.utils.universe.*;
9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Hello3DBackground extends Applet {
13 public static void main(String[] args) {
14 new MainFrame (new Hello3DBackground(), 640, 480);
15 }
16
17 public void init () {
18 GraphicsConfiguration gc =
19 SimpleUniverse.getPreferredConfiguration();
20 Canvas3D cv = new Canvas3D(gc);
21 setLayout (new BorderLayout());
22 add (cv, BorderLayout.CENTER) ;
[Page 155]
23 BranchGroup bg = createSceneGraph();
24 bg.compile () ;
25 SimpleUniverse su = new SimpleUniverse(cv);
26 su.getViewingPlatform() .setNominalViewingTransform() ;
27 su.addBranchGraph (bg) ;
28 }
29
30 private BranchGroup createSceneGraph() {
31 BranchGroup root = new BranchGroup () ;
32 // object
33 Appearance ap = new Appearance () ;
34 ap.setMaterial (new Material());
35 Font3D font = new Font3D(new Font ("SansSerif", Font.PLAIN, 1),
36 new FontExtrusion());
37 Text3D text = new Text3D(font, "Hello 3D");
38 Shape3D shape = new Shape3D(text, ap):;
39 // transformation
40 Transform3D tr = new Transform3D();
41 tr.setScale(0.5);
42 tr.setTranslation (new Vector3f(-0.95f, -0.2f, 0f));
43 TransformGroup tg = new TransformGroup (tr);
44 root.addChild(tg) ;
45 tg.addChild (shape) ;
46 // light
47 PointLight light = new PointLight (new Color3f (Color.white),
48 new Point3f(1f,1f,1f),
49 new Point3f(1£f,0.1f£,0f));
50 BoundingSphere bounds = new BoundingSphere();
51 light.setInfluencingBounds (bounds) ;
52 root.addChild (light) ;
53 // background
54 Background background = new Background(l1.0f, 1.0f, 1.0f);
55 background.setApplicationBounds (bounds) ;
56 root.addChild (background) ;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
g; } return root;
59 }

This example is similar to Listing 5.1. The visible difference is that the background of the scene is changed to
white, as shown in Figure 5.14.

Figure 5.14. A simple Java 3D program with a white background.
(This item is displayed on page 156 in the print version)

e o|m - o T — bl

Hello 3D Hello 3DHello 3D

The new scene graph is given in Figure 5.15. A Background leaf node is added to the content branch of the scene
graph (lines 54-56). The background is created with a constructor that specifies color RGB values:

Background background = new Background(l1.0f, 1.0f, 1.0f);
background.setApplicationBounds (bounds) ;
root.addChild (background) ;

Figure 5.15. The scene graph for Listing 5.3.
(This item is displayed on page 156 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

frm—— B L LT T T T
i

V// Simplelniverse

0

i

B L BG
;// Y \\H\t.ah \\\
b
TG { TG
.7] H
% Light 1
Backeround % g T i l
]
Shape3D Bounds ; "_'-_-_'_'_-_-_;_ View ::_'_t CanvasiD
o T, i ViewPlatform ,’h‘\ L.
i a H - M "“"--.._
o L [r = L
- 'Y : > - H
Text3D e : Physical Physical §
SRR H oy environment i
| 1 H
i i i
¥ | e S T s —— ol
Material

The application bound of the background is a BoundingSphere object shared with the light.

Environmental nodes such as Background and Light may potentially influence the entire universe. To achieve a
reasonable rendering efficiency it is necessary to limit the influence. The bounds for environmental nodes can be
set in two different ways: through the Bounds objects or the BoundingLeaf leaf nodes. Bounds objects are node
components and BoundingLeaf objects are leaf nodes of a scene graph. The main difference between the two
approaches is the coordinates of the bounds. A node that sets a bound by directly referencing a Bounds object will
have the bound positioned relative to the node. A BoundingLeaf node has its own position defined for the bound.
A node referencing the BoundingLeaf will acquire a bound positioned according to the BoundingLeaf.

[Page 156]

The Bounds classes are shown in Figure 5.16. The abstract class Bounds has three subclasses BoundingBox,
BoundingSphere, and BoundingPolytope to represent different types of bounding volumes.

[Page 157]

Figure 5.16. The Bounds class hierarchy.

Bounds
BoundingBox
BoundingSphere

BoundingPolytope

The BoundingBox class defines a bound as a rectangular box with edges parallel to the axes. The BoundingSphere
class defines a sphere as the bounding volume. The Bound-ingPolytope class defines a bounding volume of a
general polytope.

The following statements create three bounds of different types:

Point3d lower = new Point3d(0,0,0); // lower corner of box
Point3d upper = new Point3d(1.0,0.5,1.5); // upper corner of box
BoundingBox box = new BoundingBox (lower, upper); // a bounding box
BoundingSphere sphere = new BoundingSphere (lower, 2);

// a bounding sphere
BoundingPolytope polytope = new BoundingPolytope(); // a polytope

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A BoundingLeaf object is leaf node in the tree of a scene graph and has a specific location in the locale of the
scene. A BoundingLeaf object uses a Bounds object to define its bounding region. This bounding region is
positioned according to the position of the BoundingLeaf node. If several nodes located at different places in the
virtual world need to reference a common bounding region, it is easier to use a BoundingLeaf node.

Consider an example of setting the influence bound of a light. The two different approaches are illustrated below.

// set bounds directly

BoundingSphere bounds = new BoundingSphere(); // a bounding sphere
light.setInfluencingBounds (bounds) ;

// set bounds by referencing a BoundingLeaf

BoundingSphere bounds = new BoundingSphere(); // a bounding sphere
BoundingLeaf leaf = new BoundingLeaf (bounds) ;

root.addChild(leaf); // add to scene graph
light.setInfluencingBoundingLeaf (leaf) ;

In the first case, a unit BoundingSphere is created and the influencing bound of a light is set directly to the
bound. The sphere will be centered at the origin in the coordinate space of the light.

In the second case, a similar BoundingSphere is created, but it is referenced by a BoundingLeaf node. The
influencing bound of the light is set to the BoundingLeaf node. The bounding sphere will be centered at the origin
in the local coordinate system of the leaf node, which may be different from the local coordinate system of the
light. The distinction between Bounds and BoundinglLeaf will be more apparent if several lights under different
transformation paths in the scene graph reference the same Bounds or BoundingLeaf objects. With direct Bounds
references, their actual influencing bounds defined by the object are different. With a BoundLeaf, the actual
bounds defined will be the same.

Listing 5.4 demonstrates the effects of Bounds objects on a light. A scene with an image background, three
spheres and a light is created and rendered as shown in Figure 5.17. The spheres are lit by the light when they
are within the influencing bounds of the light. When a user clicks the mouse on the panel, the influencing bound
of the light is changed to the next of the three bounds. The first click will reduce the bounds, avoiding the left
sphere. The second click reduces the bounds further to include only the right sphere. The third click will return to
the original bounds.

[Page 158]

Listing 5.4. TestBounds.java
(This item is displayed on pages 158 - 159 in the print version)

package chapter5;

import java.awt.*;

import java.awt.event.*;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import java.awt.image.*;

10 import java.io.*;

11 import java.net.URL;

12 import javax.imageio.*;

13 import java.applet.*;

14 import com.sun.j3d.utils.applet.MainFrame;

O 00 Joy Ul WwWN -

15

16 public class TestBounds extends Applet {

17 public static void main(String[] args) {

18 new MainFrame (new TestBounds (), 640, 480);
19 }

20

21 Light light = null;

22 Bounds[] bounds = new Bounds|[3];

23 int bIndex = 0;

24

25 public void init () {

26 // create canvas

27 GraphicsConfiguration gc =

28 SimpleUniverse.getPreferredConfiguration();
29 Canvas3D cv = new Canvas3D(gc);

30 setLayout (new BorderLayout());

31 add (cv, BorderLayout.CENTER) ;

32 cv.addMouselListener (new MouseAdapter () {

33 // change background color and image on mouse click
34 public void mouseClicked (MouseEvent ev) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

35 bIndex = (bIndex+1l) % 3;

36 System.out.println (bIndex) ;

37 light.setInfluencingBounds (bounds [bIndex]) ;

38 }

39 1)

40 BranchGroup bg = createSceneGraph();

41 bg.compile () ;

42 SimpleUniverse su = new SimpleUniverse (cv) ;

43 su.getViewingPlatform() .setNominalViewingTransform() ;

44 su.addBranchGraph (bg) ;

45 }

46

47 private BranchGroup createSceneGraph() {

48 BranchGroup root = new BranchGroup();

49 // first sphere

50 Sphere sphere = new Sphere();

51 Transform3D tr = new Transform3D() ;

52 tr.setScale (0.1);

53 TransformGroup tg = new TransformGroup (tr);

54 root.addChild (tg);

55 tg.addChild (sphere) ;

56 // second sphere

57 sphere = new Sphere();

58 tr.setTranslation (new Vector3f(-0.4f, 0f, 0f));
[Page 159]

59 tg = new TransformGroup (tr);

60 root.addChild (tg);

6l tg.addChild (sphere) ;

62 // third sphere

63 sphere = new Sphere();

64 tr.setTranslation (new Vector3f(-0.8f, 0f, 0f));

65 tg = new TransformGroup (tr);

66 root.addChild (tg) ;

67 tg.addChild (sphere) ;

68 // light

69 light = new PointLight (new Color3f (Color.white),

70 new Point3f(1f,1f,1f),

71 new Point3f(1f,0£f,0f));

72 light.setCapability (Light. ALLOW_INFLUENCING_BOUNDS_WRITE) ;

73 // bounds

74 bounds[0] = new BoundingSphere (new Point3d(0,0,0), 1);

75 bounds[1l] = new BoundingSphere (new Point3d(0,0,0), 0.6);

76 bounds[2] = new BoundingSphere (new Point3d(0,0,0), 0.2);

77 light.setInfluencingBounds (bounds[0]) ;

78 root.addChild (light) ;

79 // background

80 URL url = getClass () .getClassLoader () .getResource

81 ("images/bg.jpg") ;

82 BufferedImage bi = null;

83 try {

84 bi = ImageIO.read(url);

85 } catch (IOException ex) {

86 ex.printStackTrace () ;

87 }

88 ImageComponent2D image =

89 new ImageComponent2D (ImageComponent2D.FORMAT RGB, bi);

90 Background background = new Background (image) ;

91 background.setApplicationBounds (bounds[0]) ;

92 root.addChild (background) ;

93 return root;

94 }

95 }

Figure 5.17. The effects of influencing bounds. Left: The light has influencing bounds including all
three spheres. Center: The light has influencing bounds including only two spheres. Right: The
influencing bounds of the light are further reduced to cover only one sphere.

EErs iRl aar s ilEar s Lan P 'i"'_‘-_-_-rh.‘:'?.r'?_*:-:-"“ I".-a-_*:':'ﬂ;- | T e
- o T A b ", ’ . s

. 4
5 - T ! . & e
ot B N % }'*i.-i-l "'.l-lr hL'.-Il.- }"‘-i-\- ot = S ot = Y "

L }:! Lo

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
The abbreviated scene graph is shown in Figure 5.18. Three sphere objects are added to the scene graph. Each
sphere is attached to a TransformGroup node to scale it down in size and to translate the sphere to a different
location. The amounts of translations for the three spheres are different so they do not overlap (lines 49-67).

[Page 160]

Figure 5.18. The scene graph for Listing 5.4.

/Y

/\

‘-.fn,w branch
TG TG TG

l l l Background I Light i
1 [
Y Y

Bounds Bounds

Sphere Sphere sphere

A light is placed at (1, 1, 1) to illuminate the spheres. The light has influencing bounds that determines whether
an object is lit by the light. Three different BoundingSphere objects of radii 1, 0.6, and 0.2 are created and stored
in the bounds array (lines 74-76). An integer field bIndex is an index to keep track of the current bounds.
Initially bounds [0] is used by the light, and it is large enough to include all three spheres.

A MouseListener is added to the canvas3D object to handle the mouse events. In an event of a mouse click, the
current bounds index is changed:

bIndex = (bIndex + 1) % 3;
light.setInfluencingBounds (bounds [bIndex]) ;

Therefore, the elements in the bounds array are selected in a cyclic way in response to mouse clicks. When
bounds [1] is selected, the left sphere is outside the influencing bounds of the light, and it becomes black. When
bounds [2] is selected, only the right sphere remains in the bounds, and the other two spheres are black.

The background is defined using a Background leaf node. The background is set to an image loaded from an image
file. The Background node also needs a Bounds object to limit its application. In this example the BoundingSphere
object in bounds [0] is also used by the background node for its application bounds:

background.setApplicationBounds (bounds[0]) ;

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 160 (continued)]

5.10. Compiling Scene Graphs and Capability Bits

A scene graph rooted at a BranchGroup node can be compiled before it is attached to a Locale and becomes live.
The BranchGroup class contains a method compile for compiling the scene graph. Compiling a scene graph
converts it to an internal representation that will be more efficient for the Java 3D rendering engine to use in
rendering the scene. Compiling the scene graph also gives Java 3D an opportunity to perform certain
optimizations that can speed up the rendering. The optimizations are not defined by the Java 3D specification and
may be implementation dependent.

You may change a scene graph after it is live, but to do so you have to explicitly get permission for every
operation attempted on a live scene-graph object. The permissions are expressed in the form of capability bits
that exist in the node and node-component objects. Each individual operation in an individual object has an
independent capability bit. By default, all capability bits are turned off to improve the rendering performance. In
order to make a dynamic change on any aspect of a live scene graph, you need to turn on the corresponding
capability bit in advance. The capability bits must be set before the scene graph is compiled with the method call
compile. If an operation is performed without the appropriate capability bit being set, a runtime exception will be
thrown.

[Page 161]
The capability bits can be set with the following method of the SceneGraphObject class,

public final void setCapability(int bit);

The capability bits are defined as constants in individual classes. If multiple capability bits need to be set, you have
to make several calls to the setcapability method. Each call can set only one bit. It is not allowed to combine
multiple capability bits into one and to make only one call. For example, to allow the change of color in a
ColoringAttributes object, you need to set the corresponding capability bit:

coloring.setCapability(ColorAttributes.ALLOW COLOR WRITE) ;

To read the color when the scene graph is live, you need to give the read permission:

coloring.setCapability(ColorAttributes.ALLOW COLOR READ) ;

To be able to read and write the color, you need to set the two bits:

coloring.setCapability(ColorAttributes.ALLOW COLOR READ) ;
coloring.setCapability (ColorAttributes.ALLOW COLOR WRITE) ;

If you need to modify the geometry of a Shape3D node, you must set the capability bit:

shape.setCapability (Shape3D.ALLOW GEOMETRY WRITE) ;

Listing 5.5 shows the use of capability bits and the modification of the background in a live scene graph. This
program demonstrates the process of changing the attributes of a live scene graph. The background image and
color in the scene are changed in response to mouse clicks. (See Figure 5.19.)

Listing 5.5. ChangeBackground.java
(This item is displayed on pages 161 - 163 in the print version)

package chapter5;

import java.awt.*;

import java.awt.event.*;

import javax.media.j3d.*;

import javax.vecmath.*;

import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.geometry.*;
import java.awt.image.*;

10 import java.io.*;

11 import java.net.URL;

12 import javax.imageio.*;

QO J oy U WN

NeJ

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

13 import java.applet.*;
14 import com.sun.j3d.utils.applet.MainFrame;
15
16 public class ChangeBackground extends Applet ({
17 public static void main(String[] args) {
18 new MainFrame (new ChangeBackground (), 640, 480);
19 }
20
21 Background background = null;
[Page 162]
22 ImageComponent2D image = null;
23
24 public void init () {
25 GraphicsConfiguration gc =
26 SimpleUniverse.getPreferredConfiguration () ;
27 Canvas3D cv = new Canvas3D(gc);
28 setLayout (new BorderLayout());
29 add (cv, BorderLayout.CENTER) ;
30 cv.addMouselListener (new MouseAdapter () {
31 // change background color and image on mouse click
32 public void mouseClicked (MouseEvent ev) {
33 if (background.getImage () == null)
34 background.setImage (image) ;
35 else {
36 background.setImage (null) ;
37 float r = (float)Math.random() ;
38 float g = (float)Math.random() ;
39 float b = (float)Math.random() ;
40 background.setColor(r, g, b);
41 }
42 }
43 b
44 BranchGroup bg = createSceneGraph();
45 bg.compile () ;
46 SimpleUniverse su = new SimpleUniverse (cv) ;
47 su.getViewingPlatform() .setNominalViewingTransform() ;
48 su.addBranchGraph (bg) ;
49 }
50
51 private BranchGroup createSceneGraph() {
52 BranchGroup root = new BranchGroup();
53 // object
54 Appearance ap = new Appearance();
55 ap.setMaterial (new Material());
56 Font3D font = new Font3D(new Font ("SansSerif", Font.PLAIN, 1),
57 new FontExtrusion());
58 Text3D text = new Text3D(font, "Hello 3D");
59 Shape3D shape = new Shape3D(text, ap);
60 // transformation
ol Transform3D tr = new Transform3D() ;
62 tr.setScale(0.5);
63 tr.setTranslation (new Vector3f(-0.95f, -0.2f, 0f));
64 TransformGroup tg = new TransformGroup (tr) ;
65 root.addChild (tg) ;
66 tg.addChild (shape) ;
67 // light
68 PointLight light = new PointLight (new Color3f (Color.white),
69 new Point3f(1f,1f,1f),
70 new Point3f(1f,0.1f,0f));
71 BoundingSphere bounds = new BoundingSphere () ;
72 light.setInfluencingBounds (bounds) ;
73 root.addChild (light);
74 // background
75 background = new Background(1.0f, 1.0f, 1.0f);
76 background.setApplicationBounds (bounds) ;
77 // load image
78 URL url = getClass () .getClassLoader ().
79 getResource ("images/bg.jpg") ;
80 BufferedImage bi = null;
[Page 163]
81 try {
82 bi = ImageIO.read(url);
83 } catch (IOException ex) {
84 ex.printStackTrace ()
85 }
86 image = new ImageComponent2D(ImageComponent2D.FORMAT RGB, bi);
87 // set capability bit to allow color and image change
88 background.setCapability (Background.ALLOW COLOR WRITE) ;
89 background.setCapability (Background.ALLOW IMAGE READ);
90 background.setCapability (Background.ALLOW IMAGE WRITE);
91 root.addChild (background) ;
92 return root;
93 }
94 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 5.19. The background toggles between a sky image and a random solid color.

C e m—

BT P 877 L . U KR ™

oh 3 o
= | i | f*.-‘* oy
Hellg 3D Hello 3D Hellg 3 Hello 3D Hellg 3 Hello 3D

This example is similar to Listing 5.2. They have the identical scene graph. Two kinds of backgrounds are applied
in this example: an image and a solid color.

An image is read from a file "bg.jpg" to a BufferedImage object and is then passed to an ImageComponent2D
object (lines 77-84). The Background node has the following capability bits set to allow live changes of its color
and image and to read its image (lines 88-90):

ALLOW_COLOR_WRITE
ALLOW_IMAGE READ
ALLOW IMAGE WRITE

In the constructor, the canvas3D object is set to listen to mouse events. In the mouse-click handler,
mouseClicked, the background is checked for the existence of a background image. If there is no image in the
background, the loaded image is assigned to the background. If there is already an image in the background, the
image of the background is set to null and the color of the background is changed to a random color. Therefore,
successive clicking of the canvas will toggle the background between the image and a random solid color.

4 Previous MNext #

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 163 (continued)]

Key Classes and Methods

com.sun.j3d.util.applet.MainFrame A utility class to display an applet in a frame.

javax.media.j3d.VirtualUniverse A class encapsulating a coordinate space of the entire virtual universe.

[Page 164]

javax.media.j3d.Locale A class defining a coordinate space with float data type anchored in the virtual
universe.

javax.media.j3d.HiResCoord A fixed-point data type to represent high-resolution coordinates of the
virtual universe.

com.sun.j3d.util.universe.SimpleUniverse A convenience class with a default implementation of the
virtual universe, a locale, and a view branch of the scene graph.

javax.media.j3d.SceneGraphObject An abstract class served as the root class for all scene-graph
elements.

javax.media.j3d.Node A class for nodes in a scene graph.
javax.media.j3d.NodeComponent A class for node components in a scene graph.
javax.media.j3d.Group A class for group nodes in a scene graph.
javax.media.j3d.Leaf A class for leaf nodes in a scene graph.

javax.media.j3d.SceneGraphObject.setCapability (int) A method to allow certain manipulations of
the object in a live scene graph.

javax.media.j3d.Group.addChild (Node) A method to add child nodes in a scene graph.
javax.media.j3d.BranchGroup A special type of group nodes that can be attached to a locale.

javax.media.j3d.BranchGroup.compile () A method to compile the scene graph to improve the
performance.

javax.media.j3d.Background A leaf node defining the background color, image, and geometry of a scene.

javax.media.j3d.Bounds A node-component class encapsulating a spatial volume that is used by
environmental nodes to limit their scope of activation.

javax.media.j3d.BoundingLeaf A leaf class encapsulating a spatial volume that is used by environmental
nodes to limit their scope of activation.

javax.media.j3d.BoundingBox A class encapsulating box-shaped bounds.
javax.media.j3d.BoundingSphere A class encapsulating spherical bounds.

javax.media.j3d.BoundingPolytope A class encapsulating polytope bounds.

4 Prewvious MNext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 164 (continued)]

Key Terms
geometry

A structural definition of a visual object.

appearance

A collection of rendering attributes of a visual object.

DAG

(directed acyclic graph) A directed graph with no directed cycles.

scene graph

A DAG specifying the graph scene to be rendered.

tree

A graph formed by recursively adding distinct child nodes.

leaf node

A node in a tree that has no children.

internal node

A node in a tree that has children.

primitive

A basic visual object that may be used to build a model.

capability bit

A flag in sceneGraphObiject that gives permission to performing a specific operation in a live scene graph.

4 Prewvious Mext k

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 164 (continued)]

Chapter Summary

e In this chapter, we discuss the fundamental concepts of 3D computer graphics and the basic architecture
of the Java 3D system.

e In a 3D graphics system, a virtual world is built to model a 3D graphics scene. The model is viewed from a
particular perspective to produce a rendering of the scene.

[Page 165]

e The Java 3D API is built on the key concept of scene graphs. A scene graph incorporates all the graphics
descriptions and attributes of a scene to be rendered into a single data structure.

e The rules for constructing the scene graphs and their building blocks are introduced. A scene graph is a
DAG, with nodes being objects from classes of superstructures, nodes, and node components.

e The overall structure of a Java 3D program is presented. By using a scene graph and its related objects, we
can build a 3D graphics model and let Java 3D render the scene automatically.

e The background of a scene can be changed using the Background leaf node. Environmental nodes such as
Light and Background need to set bounds to limit their influence in rendering. Bounds and BoundingLeaf
objects are two ways of setting bounds.

A branch graph can be compiled to improve rendering efficiency. A component of a live scene graph can be
modified only if appropriate capability bits are set.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 165 (continued)]

Review Questions

5.1 If atree has 15 nodes, how many links does it have?

5.2 Isthe following graph (Figure 5.20) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.20. A graph for Problem 5.2.

Lr}
[=%

/

5.3 Isthe following graph (Figure 5.21) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.21. A graph for Problem 5.3.

v

a - (]

[Page 166]

5.4 Isthe following graph (Figure 5.22) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.22. A graph for Problem 5.4.

=
—

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

5.5 Draw a scene graph corresponding to the following Java 3D code segment:

BranchGroup root = new BranchGroup () ;
TransformGroup trans = new TransformGroup () ;
root.addChild (trans) ;

Shape3D shapel = new Shape3D();

Shape3D shape?2 = new Shape3D();

Shape3D shape3 = new Shape3D();
trans.addChild (shapel) ;

trans.addChild (shape?2) ;

root.addChild (shape3);

5.6 Draw a scene graph corresponding to the following Java 3D code segment:

BranchGroup root = new BranchGroup () ;
TransformGroup transl = new TransformGroup();
TransformGroup trans2 = new TransformGroup () ;
root.addChild(transl);

root.addChild(trans2);

Light light = new PointLight () ;
transl.addChild(light) ;

Switch switch = new Switch();
Trans2.addChild(switch) ;

Shape3D shapel = new Shape3D();

Shape3D shape?2 = new Shape3D();
switch.addChild (shapel) ;

switch.addChild (shape?);

Appearance appear = new Appearance();
shapel.setAppearance (appear) ;
shape2.setAppearance (appear) ;

5.7 Write a Java 3D code segment corresponding to the scene graph branch shown in Figure 5.23.
[Page 167]

Figure 5.23. Scene graph for Problem 5.7.

BG | BranchGroup

TG TG TG | TransformGroup
5 5
PointLight Shape3D Shape3D

5.8 Write a Java 3D code segment corresponding to the scene graph branch shown in Figure 5.24.

Figure 5.24. Scene graph for Problem 5.8.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

BG | BranchGroup

TransformGroup TG TG | TransformGroup

Link L. L Link
e ~ Ly i
Ta kT
Shared '
branch SG | SharedGroupi
g % Shape3D
1
I

¥

Appearance

4 Previous

Nest b |

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 167 (continued)]

Programming Exercises

5.1 The CcolorCube class is a subclass of shape3D and can be used as a leaf node to represent a cube
with colored faces. Write a Java 3D application that displays a colorCube object using the
SimpleUniverse class.

5.2 Write a Java 3D program to display a ColorCube as in Exercise 5.1 without using the
SimpleUniverse class. Draw a complete scene-graph diagram for the program.

[Page 168]

5.3 Add a blue background to the program in Exercise 5.1 using a Background leaf node. Set the
application bounds of the background directly with a bounding sphere.

5.4 Write a Java 3D program similar to Exercise 5.3, but use a BoundingLeaf node to set the
application bounds to a bounding box.

5.5 Write a Java 3D program similar to Listing 5.4, but use a BoundingLeaf node for the influencing
bounds of the light.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢
[Page 169]

Chapter 6. Graphics Contents

(This item omitted from WebBook edition)

Objectives
e To understand geometry and appearance, the basic attributes of visual objects.
e To describe the representations of points and vectors.
e To apply the GeometryArray family of classes for constructing geometry.
e To apply the GeometryInfo class for constructing geometry.
e To use geometric primitives.
e To use texts and fonts as geometric objects.

e To use the Appearance class and the associated node-component classes.

[Page 170]

6.1. Introduction

The fundamental graphics building blocks in a 3D graphics model are the visual shape objects. They constitute the
visible objects in a rendered scene. A shape object is defined by its geometry and its appearance. The geometry
provides a mathematical description of the object's shape, size, and other structural properties. The appearance
defines the object's color, texture, material properties, and other attributes.

The geometry of a visual object may be constructed from a set of simple objects such as triangles. More complex
but useful objects such as cubes and spheres may be prebuilt as reusable objects known as primitives. Primitives
provide a level of abstraction that will simplify the construction of many complex objects. Text objects based on
fonts provide another source of geometry objects. Both 2D and 3D text objects are useful elements of a 3D
graphics scene.

Java 3D provides the leaf node class shape3D to represent shape objects. The geometry and appearance of a
Shape3D node are defined by referencing the Geometry and Appearance objects. The Geometry class has a number
of subclasses to help define various types of geometries in different ways. The aAppearance class holds references
to various other attribute objects to define different aspects of the appearance. Commonly used primitives such

as boxes, spheres, cylinders, and cones are also provided by Java 3D. Java 3D offers supports to use 2D and 3D
texts as geometric objects.

In this chapter, we will introduce the construction of visual objects using geometry and appearance specifications.
Java 3D's facilities for the low-level construction of geometries are examined. The high-level constructs of
primitives and text objects are also presented. We will discuss the basic structure and usage of Java 3D
appearance attributes in this chapter. The attributes that are related to more advanced rendering options such as
lighting and texturing will be covered in greater detail in later chapters.

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious MNext ¢

[Page 170 (continued)]

6.2. Points and Vectors

The modeling of geometry begins with the modeling of a point. To precisely represent points in computers, the
algebraic concept of vectors and vector spaces is commonly used. An n-dimensional vector is an n-tuple of
numbers:

(X1,X2,+41Xn)

The collection of all the n-dimensional vectors forms an n-dimensional space R". In a 3D space, a point can be
represented by a 3D vector (x, y, z). Using homogeneous coordinates, a point is associated with a 4D vector (x, y,
zZ, w).

There is also a geometric concept of vectors that represents quantities with directions. Examples of such vectors
include the direction of a line, force, velocity, and acceleration. A geometric vector is also represented as an n-
tuple. Algebraically there is no distinction between a geometric point and a geometric vector. The difference exists
only in the interpretations of general mathematical quantities.

In 3D graphics, geometry construction and transformation depend heavily on the mathematical notion of vectors.
Java provides an extensive set of classes for representing points, vectors, and matrices in the package
javax.vecmath. Java 3D classes frequently use the vector math classes, and the javax.vecmath package is
included in the distribution of Java 3D.

The package javax.vecmath contains many variations of vector and matrix classes. A partial list of the vector
classes is given below in Figure 6.1.

[Page 171]

Figure 6.1. Vector math classes.

Tuple3f Tuple3d

s
— Color3f Point3d
— Point3f Vector3d
— TexCoord3f Tuple3i
— Vector3f i Point3i

Tupledf Tup ledd

s
— Coloraf Pointdd
— Pointaf Quatdd
— Quat4f Vector4d
— TexCoord4f Tupledi
— Vectordf i Pointdi

The suffixes in the class names indicate the dimensions and the data types of the components. The data type
suffixes are listed below:

f: float
d: double
i: int
b: byte

For example, "4d" represents a four-dimensional tuple of double values. The stems of the class names indicate
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
the categories of their usage.

e Tuplex* classes: the abstract base classes for the tuples.
e Color* classes: color representations.

e Point* classes: geometric points.

e Vector* classes: geometric vectors.

e TexCoord* classes: texture-mapping coordinates.

e Quat* classes: quaternions.

Besides the data representation, the vector classes contain methods for standard operations related to their
categories. For example, the Tuple4f class includes methods:

e void add (Tuple4f t1)— Add another tuple.
e void sub (Tuple4f tl1)— Subtract another tuple.
e void scale (float k) — Scale the tuple.

e void negate () — Negate all components of the tuple.

[Page 172]
Point3d class adds distance-related methods:
e void distance (Point3d pl)— Find the distance to another point.
e void distancell (Point3d pl)— Find the L1 distance to another point.
e void distanceLinf (Point3d pl)— Find the L®° distance to another point.
Vector3d class includes methods for vector operations:
e double dot (Vector3d v1)— Find the dot product with another vector.
e double cross (Vector3d vl, Vector3d v2)— Calculate the cross product of the two vectors.
e double length () — Find the length of the vector.
e double angle (Vector3d vl)— Find the angle with another vector.

The vector math objects are easy to create and manipulate. The following example creates two Point3d objects
and finds the distance between them:

Point3d pl = new Point3d (1.0, 2.3, 0.0);
Point3d p2 = new Point3d (0.0, -0.5, 1.2);
double dist = pl.distance(p2);

To find the angle between two vectors, you can call the angle method:

Vector3f vl = new Vector3f (1.0, 2.3, 0.0);
Vector3f v2 = new Vector3f (0.0, -0.5, 1.2);
double angle = vl.angle(v2);

4 Prewvious Mext ¥

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
4 Frewvious | Hewxt |
[Page 172 (continued)]

6.3. Geometry

The basic geometric shapes of 3D objects are typically modeled as points, lines, and surfaces. Points and lines
(including curves) are relatively simple to define because they are usually straightforward extensions of the
corresponding 2D models. The surface models present some real challenges. 3D solid objects can usually be
modeled as surfaces. Mathematically a surface can often be represented by an implicit equation on the
coordinates:

F(x,y,2)=0

Alternatively, a parametric equation with two parameters is usually more convenient for graphics applications:

x = flu, v)
y =49, V)
z=h(u, v)

Because of the obvious complexity involved in representing an arbitrary 3D surface, it is often necessary to use a
collection of simpler surfaces as an approximation. A commonly used representation is a mesh of simple polygons,
such as triangles and quadrilaterals. Another versatile and powerful representation tool for surfaces is the
polynomial and spline surfaces. Figure 6.2 shows an example of polygon meshes representing a surface.

Figure 6.2. A sphere represented by triangle meshes of different resolutions.
(This item is displayed on page 173 in the print version)

Java 3D offers direct support for arrays of points, lines, and triangles or quadrilaterals as the basic tools for
geometry construction. It also offers support for high-level geometries such as primitives and 3D text.

In a Java 3D scene graph, a visual object is usually represented by a shape3D leaf node. The shape3D object
references a Geometry object that defines the shape and other geometric characteristics of the visual object. The
Shape3D node also references Appearance objects to define its appearance in rendering. A typical scene-graph
Shape3D node configuration is shown in Figure 6.3.

[Page 173]

Figure 6.3. A typical scene-graph shape node.

Shape3D ‘:

- b
L e
- Y
- b
& S

x> £y

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The Geometry class is an abstract class with a large number of descendants. Figure 6.4 shows the class hierarchy
of the Geometry classes.

Figure 6.4. Geometry class hierarchy.

Geometry | ——LineSterArray|
e
- GeometryArray [<——— GeometryStripArray {¢—— TriangleFanrray |
— CompressedGeometry | — TriangleStripArray |
— Raster | — IndexedGeometryArray h}—— IndexedLineArraf|
— Text3D | — LineArray | — IndexedPointArray |
— PointArray | ——Inde:edﬂuadhrray|
— QuadArray ——IndexedTriang1eArray!
—"Trianglehrray| —jé:dexedﬁeometryStripArray|
rIl’ldEHEdLiﬂﬂstriﬂﬁ.I"r‘ay |
IndexEdTriang1EFanArray|

IndexEdTriang1EStripArray|

[Page 174]
6.3.1. GeometryArray
The GeometryArray family of classes provides facilities to directly construct geometries with arrays of simple

polygons, lines, or points. A GeometryArray defines the vertices and specifies the structural relationships among
the vertices.

In a GeometryArray object, the definitions for vertices always include their coordinates, but they may also include
other types of data components such as surface normals and colors. The presence of a particular type of vertex
data component is indicated by a corresponding bit mask.

COORDINATES - the coordinates of vertices.

NORMALS - the surface normals of vertices.

COLOR_3 - the colors of vertices without

COLOR_4 - the colors of vertices with

TEXTURE COORDINATE 2 - the 2D texture coordinates.
TEXTURE COORDINATE 3 - the 3D texture coordinates.
TEXTURE _COORDINATE 4 — the 4D texture coordinates.

These masks can be combined using bitwise OR operator "|". The masks can be set in the constructors of
GeometryArray classes. The data components, if present, are assigned to each vertex. Color specifications at the
vertices may be used to determine the colors of the visual objects under given shading models. The surface
normals are necessary to calculate light reflections in illuminated models. Texture coordinates define the
coordinates in texture space. Lighting models and texture mapping are discussed in Chapter 9.

Typically an object in the Geometryarray family is created by calling an appropriate constructor with the specified
data components and the array sizes. Then the vertex data are set through method calls. Geometryarray
provides a variety of different methods to set the coordinates and other data. For example, a coordinate can be
set individually or an array of coordinates can be set in one method:

void setCoordinate (int index, Point3f coord)
void setCoordinates (int startIndex, Point3f[] coords)

The pointArray class defines a geometry consisting of a set of points. Each vertex specification corresponds to a
point in the geometry. For example, the following code fragment defines a PointArray geometry with three
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
points. The geometry is shown in Figure 6.5.

Figure 6.5. A PointArray geometry.

PointArray pa = new PointArray (3, GeometryArray.COORDINATES) ;
pa.setCoordinate (0, new Point3f (0f, 0f, 0f));
pa.setCoordinate(l, new Point3f (1f, 0f, 0f));
pa.setCoordinate (2, new Point3f (0f, 1f, 0f));

The LineArray class defines a geometry of line segments. Every two vertices specified sequentially correspond to
a line segment in the geometry:

[Page 175]
LineArray la = new LineArray (6, GeometryArray.COORDINATES) ;
Point3f[] coords = new Point3f[6];

coords[0] = new Point3f(0f, 0f, 0f);
coords[l] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords([4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f (3f, 0f, 0f);

la.setCoordinates (0, coords);

The line geometry defined above is illustrated in Figure 6.6.

Figure 6.6. A LineArray geometry.

The TriangleArray class defines a surface consisting of triangle patches. Every three vertices define a triangle.
The following code fragment defines a geometry object of two triangles:

TriangleArray ta = new TriangleArray (6, GeometryArray.COORDINATES) ;
Point3f[] coords = new Point3f[6];

coords[0] = new Point3f(0f, 0f, 0f);
coords([l] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);

coords[5] = new Point3f(3f, 0f, 0f);
ta.setCoordinates (0, coords);

The geometry defined in the TriangleArray is shown in Figure 6.7.

Figure 6.7. A TriangleArray geometry.

The geometry of a cone may be defined as a series of triangles using a TriangleArray:
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

int n = 60; // number of triangle patches
TriangleArray ta = new TriangleArray(3*n, GeometryArray.COORDINATES) ;
Point3f apex = new Point3f (0, 0, 1);
Point3f pl = new Point3f (1, 0, 0);
int count = 0O;
for (int ii = 1; ii <= n; 1ii++) {
float x = (float)Math.cos (ii*2*Math.PI/n);
float y = (float)Math.sin(ii*2*Math.PI/n);
Point3f p2 = new Point3f(x, vy, 0);
ta.setCoordinate (count++, apex);
ta.setCoordinate (count++, pl);
ta.setCoordinate (count++, p2);

pl = p2;

[Page 176]

The circular base of the cone is divided into n segments. The two points of each segment and the apex form a
triangle. Because the TriangleArray requires explicit specification of each vertex in each triangle, we need to
define 3n coordinates, even though there are only n + 1 distinct points.

The QuadArray class defines a surface of quadrilateral patches. Every four sequential vertices define a
quadrilateral. The four vertices are required to be on a plane. The following Quadarray object consists of two
squares not on the same plane, but the vertices of each square are on the same plane. (See Figure 6.8.)

QuadArray ga = new QuadArray (8, GeometryArray.COORDINATES) ;
Point3f[] coords = new Point3f[8];

coords[0] = new Point3f(0f, 0f, 0f);
coords[l] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords([4] = new Point3f(1f, 1£f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords|[6] = new Point3f(0f, 1f, 1f);
coords|[7] = new Point3f(1f, 1f, 1f);

ga.setCoordinates (0, coords);

Figure 6.8. A QuadArray geometry.

L/

Note that even though there are only six distinct points in this geometry, we still need to define eight vertices for
the guadarray object, because it is necessary to specify each quadrangle with four vertices.

Besides coordinates, other attributes of the vertices such as normals and colors may be set in a similar fashion.
For example, the following TriangleArray object contains color definitions for vertices as well as coordinates:

TriangleArray ta = new TriangleArray (6,
GeometryArray.COORDINATES | GeometryArray.COLOR 3);
Point3f[] coords = new Point3f[6];

coords[0] = new Point3f(0f, 0f, 0f);
coords[1l] = new Point3f(1f, 1f, 0f);
coords([2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords([4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f (3f, 0f, 0f);

ta.setCoordinates (0, coords);
Color3f[] colors = new Color3f[6];
colors[0] = new Color3f(lf, 0f, 0f);

colors([l] = new Color3f(0f, 1f, 0f);
colors([2] = new Color3f(0f, 0f, 1f);
colors[3] = new Color3f(lf, 1f, 0f);

colors[4] = new Color3f(0f, 1f, 1f);
Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
colors[5] = new Color3f(l1f, 0f, 1f);
ta.setColors (0, colors);

[Page 177]

Surface normals can also be specified for the vertices in a geometry array. The following Quadarray object
contains normal specifications:

QuadArray ga = new QuadArray (8,
GeometryArray.COORDINATES | GeometryArray.NORMALS) ;
Point3f[] coords = new Point3f([8];

coords[0] = new Point3f(0f, 0f, 0f);
coords([l] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1£f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(1f, 1f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(0f, 1f, 1f);
coords|[7] = new Point3f(1f, 1f, 1f);

ga.setCoordinates (0, coords);
Vector3f[] normals = new Vector3f[8];

normals[0] = new Vector3f(0f, 0f, 1f);
normals[l] = new Vector3f(0f, 0f, 1f);
normals[2] = new Vector3f(0f, 0f, 1f);
normals[3] = new Vector3f(0f, 0f, 1f);
normals[4] = new Vector3f(0f, 1f, 0f);
normals[5] = new Vector3f(0f, 1f, 0f);
normals[6] = new Vector3f(0f, 1f, 0f);
normals[7] = new Vector3f(0f, 1f, 0f);

ga.setNormals (0, normals);

6.3.2. GeometryStripArray

Often a vertex in an array is shared by several different polygons. Using TriangleArray or QuadArray would add
the shared vertices multiple times. Two approaches can improve the efficiency. The GeometryStripArray class
uses the idea of strips to allow the sharing of adjacent vertices. To define separate strips, the number of vertices
in each strip can be specified with an array of integers:

void setStripVertexCounts (int[] stripVertexCounts);

The length of the array is the number of strips. The number in each array entry represents the number of
vertices in a strip.

GeometryStripArray has three subclasses. The LineStripArray defines a strip as a polyline. A sequence of points
is used to specify the strip without duplicating the internal points. For example, the following code defines the
same geometry as shown in Figure 6.6 with a LineStripArray object:

int[] stripVertexCounts = {2, 3};

LineStripArray lsa = new LineStripArray (5, GeometryArray.COORDINATES,
stripVertexCounts) ;

Point3f[] coords = new Point3f[5];

coords[0] = new Point3f(0f, 0f, 0f);
coords[1l] = new Point3f(1f, 1f, 0f);
coords([2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords([4] = new Point3f (3f, 0f, 0f);

lsa.setCoordinates (0, coords);

The TriangleStripArray class defines strips of triangles. In each strip every three consecutive vertices define a
triangle. Figure 6.9 illustrates the geometry constructed from a TriangleStripArray object.

[Page 178]

Figure 6.9. A TriangleStripArray.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www verypdf.com to remove this watermark.

@/ @ Strip vertex counts: 5, 4

The TriangleFanArray class offers an alternative way to define strips of triangles. In each strip the first vertex
with every two consecutive vertices form a triangle. Figure 6.10 illustrates this approach.

Figure 6.10. A TriangleFanArray.

¥y Wy

!-"_1] Wi .
< 4 Strip vertex counts: 6, 4

¥ Vg

The geometry of a cone may be defined very naturally as a TriangleFanArray:

int n = 60; // number of triangle patches
int[] stripVertexCounts = {n+2}; // 1 strip
TriangleFanArray tfa = new TriangleFanArray
(n+t2, GeometryArray.COORDINATES, stripVertexCounts):;
Point3f apex = new Point3f (0, 0, 1);
tfa.setCoordinate (0, apex);
for (int ii = 0; ii <= n; 1ii++) {
float x = (float)Math.cos (ii*2*Math.PI/n);
float y = (float)Math.sin(ii*2*Math.PI/n);
Point3f p = new Point3f(x, y, 0);
ta.setCoordinate (ii+1l, p);

The n triangle patches are defined by only n + 2 points in a single strip.
6.3.3. IndexedGeometryArray

Another approach to avoid duplicated vertices is to use IndexedGeometryArray. Instead of defining a polygon by
specifying the vertices directly, an IndexedGeometryArray object specifies the indices of the vertices in an array of
points. Consequently a vertex needs to be defined only once, but it may be referenced several times through its
index. For example, the following IndexedQuadArray object defines a geometry of two squares, as shown in
Figure 6.8. It uses only six vertices instead of eight as needed by the GeometryaArray. Each quadrangle is specified
with four indices corresponding to the corner vertices.

IndexedQuadArray iga = new IndexedQuadArray
(6, GeometryArray.COORDINATES, 8);
Point3f[] coords = new Point3f[6];

coords[0] = new Point3f(0f, 0f, 0f);
coords[1l] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords([4] = new Point3f(0f, 1f, 1f);
coords[5] = new Point3f(1f, 1f, 1f);

[Page 179]
iga.setCoordinates (0, coords);
int[] indices = {0, 1, 2, 3, 2, 3, 4, 5};
iga.setCoordinateIndices (0, indices);

Other attributes such as normals and colors can be indexed in a similar way.

There is also an IndexedGeometryStripArray class with its subclasses Indexed LineStripArray,
IndexedTriangleStripArray, and IndexedTriangleFanArray. These classes add indices to the strip arrays and
combine the features of strip arrays and indexed arrays. To define separate strips, a stripIndexCounts array can

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.
be specified in the constructor or with the following method:

void setStripIndexCounts (int[] stripIndexCounts)

The following code shows an example of constructing an IndexedTriangleStripArray object:

int[] stripIndexCounts = {4, 4};
IndexedTriangleStripArray itsa = new IndexedTriangleStripArray (7,
GeometryArray.COORDINATES, 8, stripIndexCounts) ;
Point3f[] coords = new Point3f[7];
coords[0] = new Point3f(0f, 0f, 0f);
coords|[1l] = new Point3f(0f, 1f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(-1f, 0f, 0f);
coords[5] = new Point3f(-1f, -1£f, 0f);
coords[6] = new Point3f(-2f, -1f, 0f)
itsa.setCoordinates (0, coords);
int[] indices = {0, 1, 2, 3, 0, 4, 5, 6};
itsa.setCoordinateIndices (0, indices);

’

The resulting geometry is shown in Figure 6.11.

Figure 6.11. An IndexedTriangleStripArray geometry.

Listing 6.1 constructs a regular tetrahedron using the IndexedTriangleArray class. The tetrahedron is one of the
five regular polyhedrons known as the Platonic solids. This example defines a tetrahedron as a subclass of
IndexedTriangleArray. A tetrahedron is a solid consisting of four faces of congruent equilateral triangles. A test
program in Listing 6.2 displays an instance of the tetrahedron rotating in space to view it from different angles.

Listing 6.1. Tetrahedron.java
(This item is displayed on pages 179 - 180 in the print version)

1 package chaptero6;
2
3 import javax.vecmath.*;
4 import javax.media.j3d.*;
[Page 180]
5
6 public class Tetrahedron extends IndexedTriangleArray {
7 public Tetrahedron () {
8 super (4, TriangleArray.COORDINATES | TriangleArray.NORMALS, 12);
9 setCoordinate (0, new Point3f(1f,1f,1f));

10 setCoordinate (1, new Point3f(1f,-1,-1f))
11 setCoordinate (2, new Point3f(-1f,1f,-1f)
(3, new Point3f(-1f,-1f,1f)
= }

)i
)

12 setCoordinate (3,

13 int[] coords {0,1,2,0,3,1,1,3,2,2,3,0
14 float n = (float) (1.0/Math.sqrt(3));

15 setNormal (0, new Vector3f(n,n,-n));

16 setNormal (1, new Vector3f(n,-n,n));

17 setNormal (2, new Vector3f(-n,-n,-n));
18 setNormal (3, new Vector3f(-n,n,n));

19 int[] norms = {0,0,0,1,1,1,2,2,2,3,3,3};
20 setCoordinateIndices (0, coords);

21 setNormalIndices (0, norms);

22 }

23 '}

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 6.2. TestTetrahedron.java
(This item is displayed on pages 180 - 181 in the print version)

1 package chapter6;
2
3 import javax.vecmath.*;
4 import java.awt.*;
5 import java.awt.event.*;
6 import javax.media.j3d.*;
7 import com.sun.j3d.utils.universe.*;
8 import com.sun.j3d.utils.geometry.*;
9 import Jjava.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestTetrahedron extends Applet {
13 public static void main(String[] args) {
14 new MainFrame (new TestTetrahedron(), 640, 480);
15 }
16
17 public void init () {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout (new BorderLayout());
23 add (cv, BorderLayout.CENTER) ;
24 BranchGroup bg = createSceneGraph();
25 bg.compile () ;
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform() .setNominalViewingTransform() ;
28 su.addBranchGraph (bg) ;
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup () ;
33 TransformGroup spin = new TransformGroup () ;
34 spin.setCapability (TransformGroup.ALLOW TRANSFORM WRITE) ;
35 root.addChild (spin) ;
36 // object
37 Appearance ap = new Appearance();
38 ap.setMaterial (new Material());
[Page 181]
39 Shape3D shape = new Shape3D(new Tetrahedron (), ap):
40 // rotating object
41 Transform3D tr = new Transform3D();
42 tr.setScale(0.25);
43 TransformGroup tg = new TransformGroup (tr) ;
44 spin.addChild (tqg) ;
45 tg.addChild (shape) ;
46 Alpha alpha = new Alpha (-1, 4000);
47 RotationInterpolator rotator =
48 new RotationInterpolator (alpha, spin);
49 BoundingSphere bounds = new BoundingSphere () ;
50 rotator.setSchedulingBounds (bounds) ;
51 spin.addChild(rotator);
52 // light and background
53 Background background = new Background(l1.0f, 1.0f, 1.0f);
54 background.setApplicationBounds (bounds) ;
55 root.addChild (background) ;
56 AmbientLight light = new AmbientLight
57 (true, new Color3f(Color.red));
58 light.setInfluencingBounds (bounds) ;
59 root.addChild (light) ;
60 PointLight ptlight = new PointLight (new Color3f(Color.green),
6l new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
62 ptlight.setInfluencingBounds (bounds) ;
63 root.addChild (ptlight) ;
64 PointLight ptlight2 = new PointLight (new Color3f (Color.orange),
65 new Point3f (-2f,2f,2f), new Point3f(1f,0f,0f));
66 ptlight2.setInfluencingBounds (bounds) ;
67 root.addChild (ptlight2);
68 return root;
69 }
70 }

Figure 6.12. A tetrahedron.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

- A O T — b

A A

[Page 182]

Two classes are defined in this example: Tetrahedron and TestTetrahedron. The Tetrahedron class extends the
IndexedTriangleArray class (line 6) so it can be used as a geometry node component for a Shape3D node in a
scene graph. The vertices of the tetrahedron have the coordinates

(1,1,1),(,-1,-1),(-1,1,-1),(-1,-1,1)

Four triangle faces are specified by an array of 12 indexes pointing to the corresponding vertices:
0,1,2,0,3,1,1,3,2,2,3,0

Four normals for the four faces are specified as four vectors in the directions:
(1,1,-1),(1,-1,1),(-1,-1,-1),(-1,1,1)

The vectors are divided by 1’5 to obtain unit normal vectors. Each vertex of a face is specified as a normal
corresponding to the normal of the face.

The TestTetrahedron class is a typical Java 3D applet/application program that is used to test the Tetrahedron
class. It creates an instance of Tetrahedron and associates it with a shape3D node. The scene graph o