

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Computer Graphics Using Java™ 2D and 3D
by Hong Zhang, Y. Daniel Liang - Armstrong Atlantic State University

Publisher: Prentice Hall
Pub Date: December 06, 2006
Print ISBN-10: 0-13-035118-0
Print ISBN-13: 978-0-13-035118-0
eText ISBN-10: 0-13-232920-4
eText ISBN-13: 978-0-13-232920-0
Pages: 632

Overview

This Java based graphics text introduces advanced graphic features to a student audience mostly trained in the
Java language. Its accessible approach and in-depth coverage features the high-level Java 2D and Java 3D APIs–
offering an elegant and easy-to-understand presentation of 2D and 3D graphics without compromising the
fundamentals of the subject.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page iii]

Copyright
[Page iv]

Library of Congress Cataloging-in-Publication Data

Zhang, Hong.
 Computer graphics using Java 2 and 3D / Hong Zhang, Y. Daniel Liang
 p.cm.
 Includes index.
 ISBN 0-13-035118-0
 1. Java (Computer program language) 2. Computer graphics. I. Liang, Y. Daniel. II.
Title

QA76.73.J38Z43 2006
005.13'3—dc22
 2006049804

Vice President and Editorial Director, ECS: Marcia J. Horton
Executive Editor: Tracy Dunkelberger
Associate Editor: Carole Snyder
Editorial Assistant: Christianna Lee
Executive Managing Editor: Vince O'Brien
Managing Editor: Camille Trentacoste
Production Editor: Donna Crilly
Director of Creative Services: Paul Belfanti
Creative Director: Juan Lopez
Art Director and Cover Manager: John Christiana
Interior Design: JMC Desig
Cover Design: Kiwi Design
Managing Editor, AV Management and Production: Patricia Burns
Art Editor: Xiaohong Zhu
Director, Image Resource Center: Melinda Reo
Manager, Rights and Permissions: Zina Arabia
Manager, Visual Research: Beth Brenzel
Manager, Cover Visual Research and Permissions: Karen Sanatar
Manufacturing Manager, ESM: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell
Executive Marketing Manager: Robin O'Brien
Marketing Assistant: Mack Patterson

Cover Image: Albert J Copley / Photodisc Green / Getty Images, Inc.

Chapter Opener Image: Philip Colmentz / Brand X Pictures

© 2007 Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission
in writing from the publisher.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

All other trademarks or product names are the property of their respective owners.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The
author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or
the documentation contained in this book. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

[Page v]

Dedication
To My Parents, Xuemei Sun and Zhongyi Zhang

—HZ

To Samantha, Michael, and Michelle

—YDL

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page xi]

Preface
On March 3, 2001, the first Oscar of the new millennium was awarded to three computer scientists, Rob Cook,
Loren Carpenter, and Ed Catmull, "for their significant advancements to the field of motion picture rendering as
exemplified in Pixar's 'RenderMan.'" This incredible event symbolizes the emergence of computer graphics and its
applications, once an esoteric research subject, as an essential part of the digital community. The rapid
development of computer hardware, graphical applications, and network technologies has made computer
graphics indispensable in mainstream computing.

Modeling and rendering virtual graphics objects with digital computers are the main objectives of computer
graphics. The topics involved in this process span a wide range of disciplines from mathematics and computer
science to psychology and arts. From the big model of the universe to the small details of rasterizing a graphical
primitive, sophisticated and ingenious methods, algorithms, and paradigms have been developed to address the
problems of modeling and rendering in computer graphics. A thorough treatment of this subject, therefore, would
require a broad and deep coverage of many related areas. A traditional computer graphics course, due to its
complexity and mathematical sophistication, is usually beyond the scope of a standard undergraduate computer
science curriculum.

However, we believe that the new technological developments and the availability of well-designed and easy-to-
use graphics programming packages have made an elementary graphics course feasible. This development is
analogous to the evolution of programming languages. Programming used to be a very tedious task when only
low-level languages such as machine instructions were available. The development of high-level languages freed
programmers from the low-level technical details. Programs at the more abstract levels are much more
manageable and logical. The performance loss due to the abstraction has become negligible with the
improvement of hardware and compiler technologies. Most programmers today may never need to program in
machine or assembly languages. Computer graphics programming is going through a similar process. High-level,
portable systems are rapidly replacing the tedious low-level approaches in many aspects of computer graphics.
The rapid development of hardware technologies is also erasing the performance gap.

The primary focus of this book is the fundamental concepts of computer graphics and applications of Java 2D and
Java 3D to graphics programming. Rather than studying the technical details of low-level implementations, we
will emphasize the techniques of developing practical applications using existing graphics packages. This approach
enables us to provide an introductory computer graphics text that is accessible to undergraduate computer
science and engineering students and most computer professionals.

Java 2D and Java 3D are the ideal graphics packages for such a purpose. They are high-level comprehensive
graphics packages that offer a much-needed layer of abstraction. They are also platform independent and provide
state-of-the-art graphics programming capabilities.

Java 2D and Java 3D are parts of the Java platform. Java is a relatively new programming language, yet it has
quickly gained popularity because of its unique characteristics and features, such as platform independence,
simplicity, and object-oriented programming support. Java 2D and Java 3D provide powerful, natural, and object-
oriented interfaces for graphics modeling and rendering.

This book is intended for students and computer professionals who want to learn basic computer graphics
concepts and techniques and to get started in programming with Java 2D and Java 3D. However, it is not just
another tutorial on Java 2D or Java 3D. Its purpose is to introduce the fundamentals of computer graphics to the
readers, and the powerful Java packages serve as useful and convenient tools to achieve the goal.

[Page xii]

The prerequisite of this book is a basic knowledge of programming with Java, including GUI programming (AWT
and Swing). Appendix B, "GUI Programming with AWT and Swing," illustrates the differences in programming
with AWT and Swing components. Basic mathematical courses in geometry and linear algebra will be helpful but
are not required. Appendix A, "Mathematical Background for Computer Graphics," provides a brief review of some
relevant mathematical concepts.

Companion Website
The companion website at www.cs.armstrong.edu/liang/graphics contains the following resources:

Answers to review questions

Solutions to even-numbered programming exercises

Source code for the examples in the book

Resource links

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.cs.armstrong.edu/liang/graphics

Errata

Instructor Resource Website
The Instructor Resource website accessible from www.prenhall.com/liang or
www.cs.armstrong.edu/liang/graphics contains the following resources:

Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted source code and
to run programs without leaving the slides.

Sample exams.

Solutions to all the exercises. Students will have access to the solutions of even-numbered exercises in the
book's companion website.

Some readers have requested the materials from the Instructor Resource Website. Please understand that these
are for instructors only. Such requests will not be answered.

Acknowledgments
The computer science department at Armstrong Atlantic State University is a great place to work. We thank Ray
Greenlaw and our colleagues at Armstrong Atlantic State University for their support of this book.

Our thanks to anonymous reviewers and our students for their critics, comments, and suggestions, which have
greatly improved this book.

It is a great pleasure and privilege to work with the legendary computer science team at Prentice Hall. We thank
Marcia Horton, Tracy Dunkelburger, Robin O'Brien, Christianna Lee, Jennifer Cappello, Barrie Reinhold, Mack
Patterson, Vince O'Brien, Camille Trentacoste, Donna Crilly, Xiaohong Zhu, and their colleagues for organizing,
managing, and promoting this project, and Robert Lentz for copy editing.

Hong Zhang (hong@armstrong.edu)

Y. Daniel Liang (liang@armstrong.edu)

www.cs.armstrong.edu/liang/graphics

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.prenhall.com/liang
http://www.cs.armstrong.edu/liang/graphics
mailto:hong@armstrong.edu
mailto:liang@armstrong.edu
http://www.cs.armstrong.edu/liang/graphics

[Page 1]

Chapter 1. Overview of Computer Graphics
(This item omitted from WebBook edition)

Objectives
To understand the basic objectives and scope of computer graphics.

To identify computer graphics applications.

To understand the basic structures of 2D and 3D graphics systems.

To understand evolution of graphics programming environments.

To identify common graphics APIs.

To understand the roles of Java language and the Java 2D and Java 3D packages.

To identify fields related to computer graphics.

[Page 2]

1.1. Introduction
Computer graphics studies the theory and techniques of modeling, processing, and rendering of graphical objects
in computers. The basic objective of computer graphics is to build a virtual world of graphics objects and to render
a scene of the virtual model from a specific view onto a graphic device, as shown in Figure 1.1.

Figure 1.1. Main tasks of computer graphics: modeling a virtual world and rendering a scene.

A graphics system typically consists of two major components: a modeler and a renderer. The modeler is
responsible for the construction of the virtual world models and the renderer performs the rendering of a scene. A
"retained-mode" system maintains a persistent model of graphics objects and the modeler's function is explicit.
An "immediate-mode" system renders the objects immediately and the model is more transient. This view of the
modeling–rendering paradigm is convenient for studying graphics systems, even if the separation may not be
clear in some systems.

Typically the graphics objects to be modeled are in either a 2D or a 3D space. This common space to host all the
graphics objects is often called the world space. A rendered scene of the world space, the main output of a
graphics system, is typically in a 2D form. Consequently the techniques involved in 2D and 3D graphics are
considerably different. Because 3D graphics problems are significantly more complex, 2D and 3D graphics are
often treated as separate topics.

The graphics objects to be modeled in a world space are usually geometric entities such as lines and surfaces, but
they also include other special objects such as lights, texts and images. The graphics objects may possess many
characteristics and properties such as color, transparency and texture.

Various mathematical representations are used to model geometric objects. Straight-line segments and simple
polygon meshes provide simple and compact representations. Only the vertices of the structures need to be
stored and they are easy to implement. More sophisticated representations include spline curves and surfaces.
They are versatile and require only the storage of relatively few control points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Geometric transformations are applied to the objects to achieve the proper placement of the objects in the virtual
space. Transformations of this type are called object transformations. Transformations are also used for the
viewing; these are known as viewing transformations. A useful family of the geometric transforms is the affine
transforms, which include the most common types such as translations, rotations, scalings and reflections. A
more general set of transforms, the projective transformations, are useful for 3D viewing.

A view is used to see the model in the virtual world from a specific perspective. A 2D viewing process is relatively
simple. The viewing transformation is usually indistinguishable from the object transformation. Rendering
features such as composition rules and clipping paths may be applied. A 3D view is much more complicated. Like
eyes or cameras, 3D viewing involves a projection process that maps 3D objects to a 2D plane. Many parameters
such as the projection, view position, orientation, and field of view could affect the 3D rendering.

[Page 3]

In order to achieve a realistic rendering of the virtual world, numerous rendering issues need to be addressed.
Relative locations of the objects need to be correctly reflected in the rendered images. For example, an object
may be hidden behind another object, and the hidden portion should not be shown in the image. Light sources of
various characteristics should be considered. The properties of the materials of the objects will affect the
appearance. Many of the methods for solving the problems have significant computational demands.

The capabilities and characteristics of hardware devices have great impact on graphics systems. The most
common output devices for displaying the results of the graphics rendering are video monitors and printers. Other
output devices include plotters and holographic projectors. For input devices, mice, joysticks and tablets with pens
are widely available. There are also more sophisticated input devices and sensors such as six-degree-of-freedom
trackers.

Animation is also an important part of computer graphics. Instead of still images, animation produces dynamic
graphics contents and rendering. In applications such as movie-scene rendering and gaming, animation plays a
crucial role. Another dynamic aspect of computer graphics is interaction. In response to user inputs, the graphics
model may change accordingly. The fundamental principle of GUI (graphical user interface) is based on the user
interactions with graphics systems. Another example of extensive application of interaction is video games.

Computer graphics has a wide range of applications. The popularity of GUI environments has made graphics an
integral part of ordinary user programs. CAD (computer-aided design) and other engineering applications depend
heavily on graphics systems. Data visualization and other scientific applications also make extensive use of
graphics. With the rapid development of new computer-based instrumentation such CT (computer tomography),
PET (positron emission tomography), and MRI (magnetic resonance imaging), medical systems have increasingly
employed computer graphics technologies. Computer graphics is also a crucial ingredient in video games and
other entertainment applications.

Traditionally computer graphics has to deal with implementation details, using the low-level algorithms to convert
primitives such as lines to pixels, to determine the surfaces hidden from the view, to calculate the color values of
points on a surface, and so on. These algorithms and methods have made the subject technically difficult and
complex. In this book we shall rely on the Java 2D and Java 3D packages to avoid dealing with most of the low-
level details directly. This will enable us to focus on the big picture of modeling and rendering problems in
graphics, rather than the tedious implementation details.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 3 (continued)]

1.2. Evolution of Computer Graphics Programming
Graphics programming has appeared in almost every level of computer architecture. Generally it is moving from
low-level, platform-dependent methods toward abstract, high-level, and portable environments.

Figure 1.2 gives examples of graphics programming environments at various levels of computer architecture. The
subsections that follow discuss the characteristics of graphics programming at the different levels.

Figure 1.2. Graphics programming at different levels.

Platform independent (Java 2D and Java 3D)

Graphics standard (GKS, PHIGS, OpenGL)

OS (WIN32, X, Mac OS)

Hardware (direct register/video buffer programming)

[Page 4]

1.2.1. Hardware Level

Computer graphics programs depend on output devices with graphical capabilities. The most common display
devices for computer graphics are CRT (cathode ray tube) monitors and LCD (liquid crystal display) panels. These
are 2D raster devices that provide a display surface consisting of a rectangular array of discrete dots. A display
device of this kind is usually driven by a dedicated graphics board with its own processor and memory.

Lower-level graphics applications often program the graphics hardware directly. In the popular environment of
personal computers running MS-DOS, for example, most graphics applications directly access the display memory.
Even though BIOS and DOS provide certain primitive support for graphics functions, they are considered too slow
for graphics-intensive programs. Such programs are typically written in assembly language and manipulate the
hardware registers and video buffers in a highly machine-dependent way.

Listing 1.1 gives an assembly program that demonstrates low-level graphics programming. It uses Microsoft
Macro Assembler and can be executed on any IBM PC compatible machine with a VGA graphics card. It draws a
circle by directly writing to the memory locations of the video buffer. An ideal circle centered at the origin has the
equation:

x2 + y2 = R2

A computer monitor only displays discrete pixels. Therefore a set of pixels approximating the curve must be
computed. Only one-eighth of the circle needs to be calculated; other portions can be obtained through
symmetry. As illustrated in Figure 1.3, the algorithm generates a series of pixels close to the curve. Consider the
top right arc of the circle. Starting from the top pixel (x = 0, y = R), the algorithm attempts to obtain the next
pixel to the right of the current one. There are only two possible directions of movement: "east" or "southeast."
Between the two pixels, the one closer to the curve is selected. The two cases can be decided by testing the
midpoint (x + 1, y - 0.5). If the midpoint is inside the circle, the "east" pixel should be chosen; if it is outside, the
"southeast" pixel is the closer one. The equation of the circle is used to perform the test. By using certain
difference variables, the actual operations of the test can be further simplified to only integer additions.

Listing 1.1. Circle.asm
(This item is displayed on pages 4 - 7 in the print version)

 1 .model small,stdcall
 2 .stack 100h
 3 .386
 4
 5 .data
 6 saveMode BYTE ? ; saved video mode
 7 xc WORD ? ; center x
 8 yc WORD ? ; center y
 9 x SWORD ? ; x coordinate
 10 y SWORD ? ; y coordinate
 11 dE SWORD ? ; east delta
 12 dSE SWORD ? ; southeast delta
 13 w WORD 320 ; screen width
 14
 15 .code
 16 main PROC
 17 mov ax,@data
 18 mov ds,ax
 19
 20 ;Set Video Mode 320X200

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 21 mov ah,0Fh ; get current video mode
 22 int 10h
 23 mov saveMode,al ; save mode
 24

[Page 5]
 25 mov ah,0 ; set new video mode
 26 mov al,13h ; mode 13h
 27 int 10h
 28
 29 push 0A000h ; video segment address
 30 pop es ; ES = A000h (video segment)
 31
 32 ;Set Background
 33 mov dx,3c8h ; video palette port (3C8h)
 34 mov al,0 ; set palette index
 35 out dx,al
 36
 37 ;Set screen background color to dark blue
 38 mov dx,3c9h ; port address 3C9h
 39 mov al,0 ; red
 40 out dx,al
 41 mov al,0 ; green
 42 out dx,al
 43 mov al,32 ; blue (32/63)
 44 out dx,al
 45
 46 ; Draw Circle
 47 ; Change color at index 1 to yellow (63,63,0)
 48 mov dx,3c8h ; video palette port (3C8h)
 49 mov al,1 ; set palette index 1
 50 out dx,al
 51
 52 mov dx,3c9h ; port address 3C9h
 53 mov al,63 ; red
 54 out dx,al
 55 mov al,63 ; green
 56 out dx,al
 57 mov al,0 ; blue
 58 out dx,al
 59
 60 mov xc,160 ; center of screen
 61 mov yc,100
 62
 63 ; Calculate coordinates
 64 mov x, 0
 65 mov y, 50 ; radius 50
 66 mov bx, -49 ; 1-radius
 67 mov dE, 3
 68 mov dSE, -95
 69
 70 DRAW:
 71 call Draw_Pixels ; Draw 8 pixels
 72
 73 cmp bx, 0 ; decide E or SE
 74 jns MVSE
 75
 76 add bx, dE ; move east
 77 add dE, 2
 78 add dSE, 2
 79 inc x
 80 jmp NXT
 81 MVSE:
 82 add bx, dSE ; move southeast
 83 add dE, 2
 84 add dSE, 4
 85 inc x

[Page 6]
 86 dec y
 87 NXT:
 88 mov cx, x ; continue if x < y
 89 cmp cx, y
 90 jb DRAW
 91
 92 ; Restore Video Mode
 93 mov ah,10h ; wait for keystroke
 94 int 16h
 95 mov ah,0 ; reset video mode
 96 mov al,saveMode ; to saved mode
 97 int 10h
 98
 99 .EXIT
100 main ENDP
101

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

102 ; Draw 8 pixels symmetrical about the center
103 Draw_Pixels PROC
104 ; Calculate the video buffer offset of the pixel.
105 mov ax, yc
106 add ax, y
107 mul w
108 add ax, xc
109 add ax, x
110 mov di, ax
111 mov BYTE PTR es:[di],1; store color index
112 ; Horizontal symmetrical pixel
113 sub di, x
114 sub di, x
115 mov BYTE PTR es:[di],1; store color index
116 ; Vertical symmetrical pixel
117 mov ax, yc
118 sub ax, y
119 mul w
120 add ax, xc
121 add ax, x
122 mov di, ax
123 mov BYTE PTR es:[di],1; store color index
124 ; Horizontal pixel
125 sub di, x
126 sub di, x
127 mov BYTE PTR es:[di],1; store color index
128 ; Switch x, y to get other 4 pixels
129 mov ax, yc
130 add ax, x
131 mul w
132 add ax, xc
133 add ax, y
134 mov di, ax
135 mov BYTE PTR es:[di],1; store color index
136 sub di, y
137 sub di, y
138 mov BYTE PTR es:[di],1; store color index
139 mov ax, yc
140 sub ax, x
141 mul w
142 add ax, xc
143 add ax, y
144 mov di, ax
145 mov BYTE PTR es:[di],1; store color index

[Page 7]
146 sub di, y
147 sub di, y
148 mov BYTE PTR es:[di],1; store color index
149
150 ret
151 Draw_Pixels ENDP
152
153 END main

Figure 1.3. Determination of the pixels on a circle. From the current pixel, the next pixel will be
either to the "east" or to the "southeast."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The program first saves the current video mode and switches to mode 13h by using the BIOS interrupt 10h (line
27). The video mode 13h is an easy-to-use graphics mode with 320 by 200 pixels and 256 colors. Each pixel color
is represented by a byte value in the video buffer starting from the segment address A000h. Each byte value is a
color index to represent a color given in a color table. Because the aspect ratio of this mode does not match that
of a standard monitor, the display may appear to be stretched vertically and the circle may actually appear as an
ellipse.

The background color of the screen is set to a dark blue by writing to the register at port address 3c9h (lines
38�44). The color to the circle is set to yellow (lines 48�58).

The circle is centered at the middle of the screen and has a radius 50. The variables (xc, yc) define the center. A
loop starting at the label DRAW (line 70) is set to calculate and draw the pixels approximating the circle. The
variables (x, y) represent current pixel coordinates. The variables dE and dSE represent differences used for
deciding the next move. The loop calls the procedure Draw_Pixels to draw the current pixel and seven other
pixels in the symmetrical positions. It decides the movement for the next pixel and updates the variables. The
loop terminates when the calculation of one-eighth of the circle is completed.

The Draw_Pixels procedure (line 103) draws eight pixels corresponding to the current calculation. It writes a
color index to the memory locations corresponding to the pixels. A calculation of the proper offset in the video
buffer is necessary because the memory addresses of the pixels are organized linearly:

offset = 320*x + y

[Page 8]

The video buffer starts from the segment address A000h, which is placed in the register ES. To draw a pixel, the
pixel offset is calculated and placed in DI. The color index (the yellow color index 1 in this case) is directly written
to the memory address.

After the circle is drawn, the program waits for a keystroke from the user, using an interrupt 16h. Upon receiving
the keystroke, it will then restore the video mode and terminate.

1.2.2. Operating-System Level Support

The low-level graphics infrastructures provide basic facilities for programming the displays. However, directly
programming video buffers and hardware registers is not an effective approach for general graphics applications.
As illustrated in the previous section, programming at the hardware level requires intimate knowledge of the
devices. It is tedious even for simple tasks. Programs written at this level are not portable, even for different
devices in the same platform.

High-level programming interfaces are needed to ease the burden of graphics programming. Because of the
inherent complexities in graphics problems, it is certainly desirable to provide a layer of abstraction for application
programming. One natural place to add the abstraction is the operating system.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

With the development and widespread application of graphical user interface (GUI) in modern computer systems,
graphics support in operating systems has become common and extensive. Graphics APIs (application
programming interfaces) provided at the operating-system level offer a uniform interface for graphics
programming within the same platform. Typically hardware differences are accommodated by using device-specific
software drivers. A software driver implements a standard interface with the operating system for a particular
device. Application programs only need to call standard graphics functions provided by the operating system and
do not have to deal with hardware specifics.

WIN32 is the API for 32-bit Windows operating systems such as Windows 9x/ME/NT/2000/XP. The code example
in Listing 1.2 shows a WIN32 program that draws a circle (Figure 1.4). This example is a simple Windows
program written in the C language. The program creates a standard window and calls WIN32 API directly to draw
a circle in the client area of the main program window. The circle is centered in the window and the size is
adjusted automatically if the window is resized.

Listing 1.2. WinCircle.c
(This item is displayed on pages 8 - 10 in the print version)

 1 #include <windows.h>
 2 #include <string.h>
 3
 4 LRESULT CALLBACK
 5 MainWndProc (HWND hwnd, UINT nMsg, WPARAM wParam, LPARAM lParam) {
 6 HDC hdc; /* Device context used for drawing */
 7 PAINTSTRUCT ps; /* Paint structure used during drawing */
 8 RECT rc; /* Client area rectangle */
 9 int cx; /* Center x-coordinate */
 10 int cy; /* Center y-coordinate */
 11 int r; /* Radius of circle */
 12
 13 /* Message processing.*/
 14 switch (nMsg) {
 15

[Page 9]
 16 case WM_DESTROY:
 17 /* The window is being destroyed, close the application */
 18 PostQuitMessage (0);
 19 return 0;
 20
 21 case WM_PAINT:
 22 /* The window needs to be redrawn. */
 23 hdc = BeginPaint (hwnd, &ps);
 24 GetClientRect (hwnd, &rc);
 25 /* Calculate center and radius */
 26 cx = (rc.left + rc.right)/2;
 27 cy = (rc.top + rc.bottom)/2;
 28 if (rc.bottom - rc.top < rc.right - rc.left)
 29 r = (rc.bottom - rc.top) / 2 - 20;
 30 else
 31 r = (rc.right - rc.left) / 2 - 20;
 32
 33 Ellipse(hdc, cx-r, cy-r, cx+r, cy+r);
 34
 35 EndPaint (hwnd, &ps);
 36 return 0;
 37
 38 }
 39
 40 return DefWindowProc (hwnd, nMsg, wParam, lParam);
 41 }
 42
 43 int WINAPI
 44 WinMain (HINSTANCE hInst, HINSTANCE hPrev, LPSTR lpCmd, int nShow) {
 45 HWND hwndMain; /* Main window handle */
 46 MSG msg; /* Win32 message structure */
 47 WNDCLASSEX wndclass; /* Window class structure */
 48 char* szMainWndClass = "WinCircle"; /* The window class name */
 49
 50 /* Create a window class */
 51 /* Initialize the entire structure to zero */
 52 memset (&wndclass, 0, sizeof(WNDCLASSEX));
 53
 54 /* The class Name */
 55 wndclass.lpszClassName = szMainWndClass;
 56
 57 /* The size of the structure. */
 58 wndclass.cbSize = sizeof(WNDCLASSEX);
 59
 60 /* All windows of this class redraw when resized. */
 61 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 62
 63 /* All windows of this class use the MainWndProc window function. */

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 64 wndclass.lpfnWndProc = MainWndProc;
 65
 66 /* This class is used with the current program instance. */
 67 wndclass.hInstance = hInst;
 68
 69 /* Use standard application icon and arrow cursor */
 70 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION);
 71 wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION);
 72 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 73

[Page 10]
 74 /* Color the background white */
 75 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 76
 77 /* Register the window class */
 78 RegisterClassEx (&wndclass);
 79
 80 /* Create a window using the window class */
 81 hwndMain = CreateWindow (
 82 szMainWndClass, /* Class name */
 83 "Circle", /* Caption */
 84 WS_OVERLAPPEDWINDOW, /* Style */
 85 CW_USEDEFAULT, /* Initial x (use default) */
 86 CW_USEDEFAULT, /* Initial y (use default) */
 87 CW_USEDEFAULT, /* Initial x size (use default) */
 88 CW_USEDEFAULT, /* Initial y size (use default) */
 89 NULL, /* No parent window */
 90 NULL, /* No menu */
 91 hInst, /* This program instance */
 92 NULL /* Creation parameters */
 93);
 94
 95 /* Display the window */
 96 ShowWindow (hwndMain, nShow);
 97 UpdateWindow (hwndMain);
 98
 99 /* The message loop */
100 while (GetMessage (&msg, NULL, 0, 0)) {
101 TranslateMessage (&msg);
102 DispatchMessage (&msg);
103 }
104 return msg.wParam;
105 }

Figure 1.4. A WIN32 program in C displaying a circle.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 11]

This is a typical C program for WIN32 API. The WinMain function (line 44) is the entry point of the program. In
the method a window class named "WinCircle" is created with a set of commonly used options. The window class
is then registered with Windows. A window is created based on the registered window class. The window is
displayed and updated.

As in most GUI environments, Windows programming follows an event-driven model. Messages are sent to a
window and the message handler of the window performs certain actions in response to a message. The loop near
the end of WinMain function is a standard message loop which is set up to dispatch the messages received.

The function MainWndProc (line 5) is the window procedure responsible for handling the message events of the
window. It is a callback function specified in the definition of the window class. In this example, it handles two
types of messages: WM_DESTROY, which is usually sent when the user tries to close the window, and WM_PAINT,
which is sent when the system attempts to repaint the window. If a WM_DESTROY message is received, the handler
terminates the program by posting a quit message. When a WM_PAINT message is received, the handler draws a
circle in the window. The drawing is done through a device context obtained by a call to the BeginPaint function.
The Ellipse function (line 33) draws a circle when the width and the height are the same. The EndPaint
function ends the drawing. The center and radius of the circle are calculated based on the size of the window
client area, which is obtained by calling the function GetClientRect.

1.2.3. GKS and PHIGS

Graphics programming based on operating-system APIs is a major step forward from hardware-level approaches
in terms of device independency and convenience. However, graphics programs that rely on operating-system
functions are certainly not portable across platforms. Microsoft Windows and Mac OS, for example, are both
operating systems with graphical user interfaces (GUI). However, their APIs are different and incompatible at the
level of system calls.

It is easy to see the advantages of a standard interface for graphics programming. A graphics programming
standard will provide a layer of abstraction necessary for device and platform independence. In the short history
of computer graphics, several graphics standards have risen to the prominence. Graphics Kernel System (GKS) is
the first international standard for computer graphics. GKS (ISO 7942 1985) is a standard for 2D graphics. It
specifies basic graphics functions independent of computer platforms. Several levels are defined to accommodate
different capabilities of the hardware systems. A specific implementation of GKS in a programming language will
certainly require a syntax definition appropriate for the language. A language binding is used to define the specific
format of GKS in the programming language. The most common language binding for GKS is FORTRAN. Other
language bindings such as Pascal and C are also available.

GKS-3D (ISO 8805 1988) is an extension of GKS to support 3D graphics. GKS and GKS-3D APIs are designed
mainly for drawing individual objects with certain attributes. They are useful for static unstructured graphics
primitives, but they do not directly support more complex graphics models.

PHIGS (Programmer's Hierarchical Interactive Graphics System, ISO 9592 1991) is a graphics standard similar to
GKS. PHIGS and PHIGS+ include the capabilities of GKS, even though they are not strict supersets of GKS. They
have additional functionalities for hierarchical organizations of graphics primitives and dynamic editing.

Listing 1.3 demonstrates GKS programming in the FORTRAN binding. The simple FORTRAN program draws a red
circle using a GKS polyline primitive (Figure 1.5). The points on the circle are calculated with high-level
trigonometric functions provided by FORTRAN.

[Page 12]

x = x0 + r cos θ

y = y0 + r sin θ

Listing 1.3. circle.f

 1 PROGRAM CIRCLE
 2 C
 3 C Define error file, Fortran unit number, and workstation type,
 4 C and workstation ID.
 5 C
 6 PARAMETER (IERRF=6, LUNIT=2, IWTYPE=1, IWKID=1)
 7 PARAMETER (ID=121)
 8 DIMENSION XP(ID),YP(ID)
 9 C
10 C Open GKS, open and activate a workstation.
11 C
12 CALL GOPKS (IERRF,IDUM)
13 CALL GOPWK (IWKID,LUNIT,IWTYPE)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

14 CALL GACWK (IWKID)
15 C
16 C Define colors.
17 C
18 CALL GSCR(IWKID,0, 1.0, 1.0, 1.0)
19 CALL GSCR(IWKID,1, 1.0, 0.0, 0.0)
20 C
21 C Draw a circle.
22 C
23 X0 = .5
24 Y0 = .5
25 R = .3
26 JL = 120
27 RADINC = 2.*3.1415926/REAL(JL)
28 DO 10 J=1,JL+1
29 X = X0+R*COS(REAL(J)*RADINC)
30 Y = Y0+R*SIN(REAL(J)*RADINC)
31 XP(J) = X
32 YP(J) = Y
33 10 CONTINUE
34 CALL GSPLI(1)
35 CALL GSPLCI(1)
36 CALL GPL(JL+1,XP,YP)
37 C
38 C Deactivate and close the workstation, close GKS.
39 C
40 CALL GDAWK (IWKID)
41 CALL GCLWK (IWKID)
42 CALL GCLKS
43 C
44 STOP
45 END

[Page 13]

Figure 1.5. A simple GKS program displaying a circle.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The GKS routines usually have a "G" prefix in their names. The calls to GOPKS, GOPWK and GACWK (lines 12�14) set
up the GKS environment. The GSCR calls define color indices. The circle is defined as a polyline of 120 points,
which are calculated directly using COS and SIN functions. An extra point is added to close the curve. The GPL call
(line 36) draws the polyline.

The program is compiled under the Linux operating system using the NCAR graphics package.

1.2.4. OpenGL

OpenGL is a popular 2D/3D graphics API derived from GL (Graphics Library) of Silicon Graphics Inc. GL is the
graphics programming interface used on SGI's successful graphics workstations. OpenGL is designed to be an
open and vendor-neutral industry standard. It is available virtually on all computer platforms. In fact, many
hardware vendors offer OpenGL interfaces for their graphics cards and devices. With over 200 functions, OpenGL
provides a much more powerful graphics API than the earlier standards such as GKS.

OpenGL is a relatively low-level API with a procedural-oriented interface. Different language bindings for OpenGL
are possible, as for GKS. There is an official FORTRAN binding and currently there is a Java binding under
development. However, the deep root of OpenGL in the C language is still apparent. The C binding is the most
popular one.

OpenGL consists of two libraries: GL and GLU (OpenGL Utility Library). The GL library contains the core functions
for basic graphics features, and the GLU library contains higher-level utility functions built on top of GL functions.
OpenGL itself does not have functions for constructing a user interface. A simple portable package called GLUT
(OpenGL Utility Toolkit) can be used with OpenGL to construct a complete graphics program.

Listing 1.4 is a simple OpenGL example that draws a circle (Figure 1.6). The program uses GLUT to construct the
user interface and uses GL and GLU functions to construct the display. The function names from the GL, GLU,
and GLUT libraries usually have their library names as prefixes.

[Page 14]
Listing 1.4. OpenGLCircle.c

 1 #include <GL/glut.h>
 2 #include <math.h>
 3
 4 void display(void) {
 5 int i;
 6 int n = 80;
 7 float a = 2*3.1415926535/n;
 8 float x;
 9 float y;
10
11 glClear(GL_COLOR_BUFFER_BIT);
12 glColor3f(1.0,0,0);
13
14 glBegin(GL_LINE_LOOP);
15 for (i = 0; i < n; i++) {
16 x = cos(i*a);
17 y = sin(i*a);
18 glVertex2f(x, y);
19 }
20 glEnd();
21 glFlush();
22 }
23
24 int main(int argc, char** argv) {
25 glutInit(&argc, argv);
26 glutCreateWindow("Circle");
27 glutDisplayFunc(display);
28 glMatrixMode(GL_PROJECTION);
29 glLoadIdentity();
30 gluOrtho2D(-1.2, 1.2, -1.2, 1.2);
31 glClearColor(1.0, 1.0, 1.0, 0.0);
32 glutMainLoop();
33 }

Figure 1.6. An OpenGL circle program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 15]

The main function calls several GLUT functions to set up the display window, the display function, and the
message loop. The glutInit function (line 25) initializes GLUT. The glutCreateWindow function creates a window.
The glutDisplayFunc function sets the display function, which is a callback function for graphics drawing. The
glutMainloop function (line 32) starts the event loop.

The projection matrix of the display is set to a 2D orthogonal projection using several GL functions and the GLU
function gluOrtho2D.

The function display (line 4) is defined as the display function for this program. It draws a circle by using a
sequence of vertices in the mode GL_LINE_LOOP. The vertices are calculated with a parametric equation for the
circle and set with the function glVertex2f.

Of course OpenGL, as a 3D API, is capable of much more than drawing a circle. Another simple OpenGL example
is given in Listing 1.5. It displays a spinning 3D sphere (Figure 1.7).

Listing 1.5. OpenGLSphere.c

 1 #include <GL/glut.h>
 2
 3 GLUquadricObj* sphere;
 4
 5 void display(void) {
 6 glClear(GL_COLOR_BUFFER_BIT);
 7 glMatrixMode(GL_MODELVIEW);
 8 glRotatef(0.2, 0.0, 0.0, 1.0);
 9 gluSphere(sphere, 1.8, 24, 24);
10 glutSwapBuffers();
11 }
12
13 void idle(void) {
14 glutPostRedisplay();
15 }
16
17 int main(int argc, char** argv) {
18 glutInit(&argc, argv);
19 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
20 glutCreateWindow("Spinning Sphere");
21 glutDisplayFunc(display);
22 glMatrixMode(GL_PROJECTION);
23 glLoadIdentity();
24 glOrtho(-2.0, 2.0, -2.0, 2.0, -2.0, 2.0);
25 glClearColor(1.0, 1.0, 1.0, 0.0);
26 glColor3f(1.0, 0.5, 0.5);
27 sphere = gluNewQuadric();
28 gluQuadricDrawStyle(sphere, GLU_LINE);
29 glutIdleFunc(idle);
30 glEnable(GL_CULL_FACE);
31 glCullFace(GL_BACK);
32 glMatrixMode(GL_MODELVIEW);
33 glLoadIdentity();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

34 gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
35 glutMainLoop();
36 }

[Page 16]

Figure 1.7. An OpenGL program displaying a 3D spinning sphere.

Double buffering is applied in this example through the function glutInitDisplayMode (line 19). The projection
matrix of the display is set to an orthogonal projection using GL functions. The function call gluLookAt (line 34)
defines the view to have the eye positioned at (1, 1, 1) looking at (0, 0, 0). A sphere object is created with GLU
functions.

In this case, in addition to the display callback, an idle callback is also defined to drive the animation. The idle
function (line 13) calls glutPostRedisplay to request a call to the display function. In the display function, the
model view matrix is rotated by a small angle. The sphere is then redrawn on the hidden buffer. Finally the two
buffers are swapped to show the new drawing.

1.2.5. Java

OpenGL provides a standard and efficient rendering interface to graphics hardware. However, with the rapid
development of computer hardware and software technology, it can be argued that an even higher level
abstraction of graphics programming is now feasible. OpenGL offers a C-like procedural abstraction. It is not
designed to directly accommodate the graphics modeling in an object-oriented programming paradigm. A high-
level OOP-based graphics API (potentially built on top of OpenGL) may offer great benefits to application
programmers.

Java 2D and Java 3D are newer graphics APIs associated with the Java programming language. They are high-
level object-oriented APIs with high portability. Java 2D and Java 3D will be the APIs used in this book. Java 3D is
typically implemented on top of other lower-level APIs such as OpenGL. Figure 1.8 shows a typical graphics-
system layout.

Figure 1.8. Graphics-system
layers.

Graphics application

Java APIs Java 3D

Java VM OpenGL

OS

Display driver

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Graphics card

Display

An overview of the Java language and its graphics facilities is given in the next three sections.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 16 (continued)]

1.3. Java Programming Language
Java is a full-featured, general-purpose programming language that is capable of developing robust mission-critical
applications. In recent years, Java has gained enormous popularity and has quickly become the programming
language of choice for a wide range of applications. Today, it is used not only for Web programming, but also for
developing standalone applications across platforms on servers, desktops, and mobile devices.

[Page 17]

A Java program is compiled to a standard, platform-independent format called "byte code." The compiled byte
code can be executed without any change on any machine with a Java Virtual Machine. This platform
independence makes Java the ideal language for delivering applications over the Internet.

Java is designed from the ground up to support object-oriented programming (OOP). A Java program consists
entirely of class definitions. Object instantiations and interactions constitute the main actions of a Java program.

The Java language also maintains the simplicity, elegance, and efficiency of its predecessor, the C programming
language. At the same time, Java avoids many of the pitfalls and deficiencies of C and C++.

While the language itself is very simple, the Java platform offers a comprehensive set of APIs (application
programming interfaces). The Java APIs cover a wide range of tasks and applications: file I/O, graphics,
multimedia, database, network, security, and so on.

Java contains two nearly parallel sets of facilities for GUI programming: AWT and Swing. The early versions of
Java offered limited graphics support. Only minimal graphics features were included in JDK 1.x. Graphical user
interface (GUI) support and graphics drawing features were provided in the Abstract Window Toolkit (AWT)
package. GUI components in AWT are heavyweight—they are mapped to native components of the operating
system. Besides a simple set of features to create GUI elements, AWT offers capabilities to control certain
rendering attributes such as drawing color and to draw simple graphics primitives such as lines, rectangles, and
ovals. There is also some support for images. However, these features are severely limited. For example, there is
no way to control the width of drawing lines. Because of the limitations, early Java versions certainly did not
provide adequate support for modern computer graphics programming. The Swing package is a completely
redesigned GUI programming API included in the Java 2 platform. Most Swing components are lightweight—they
are not implemented as native components. The graphics support in Java 2 is also greatly enhanced. The Java 2D
package provides comprehensive 2D graphics features. Listing 1.6 shows a simple Java GUI program using AWT
only. A Swing example will be given in the next section.

The program in Listing 1.6 is a simple Java GUI application using only the drawing facilities provided by AWT
without more advanced features from Java 2D. It draws a circle in a frame (Figure 1.9). If the user clicks on the
frame, the circle will move to a new location with the center at the mouse pointer. A menu is added to the frame
with an item "Exit," which will terminate the program when selected.

Listing 1.6. AWTDemo.java
(This item is displayed on pages 17 - 18 in the print version)

 1 package chapter1;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5
 6 public class AWTDemo extends Frame implements ActionListener{
 7 int x = 100;
 8 int y = 100;
 9
10 public static void main(String[] args) {
11 Frame frame = new AWTDemo();
12 frame.setSize(640, 480);
13 frame.setVisible(true);
14 }
15
16 public AWTDemo() {
17 setTitle("AWT Demo");
18 // create menu
19 MenuBar mb = new MenuBar();

[Page 18]
20 setMenuBar(mb);
21 Menu menu = new Menu("File");
22 mb.add(menu);
23 MenuItem mi = new MenuItem("Exit");
24 mi.addActionListener(this);
25 menu.add(mi);
26 // end program when window is closed
27 WindowListener l = new WindowAdapter() {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

28 public void windowClosing(WindowEvent ev) {
29 System.exit(0);
30 }
31 };
32 this.addWindowListener(l);
33 // mouse event handler
34 MouseListener mouseListener = new MouseAdapter() {
35 public void mouseClicked(MouseEvent ev) {
36 x = ev.getX();
37 y = ev.getY();
38 repaint();
39 }
40 };
41 addMouseListener(mouseListener);
42 }
43
44 public void paint(Graphics g) {
45 g.drawOval(x-50, y-50, 100, 100);
46 }
47
48 public void actionPerformed(ActionEvent ev) {
49 String command = ev.getActionCommand();
50 if ("Exit".equals(command)) {
51 System.exit(0);
52 }
53 }
54 }

Figure 1.9. A simple Java GUI program with AWT.

[Page 19]

This program is a GUI application using AWT. It has a main window with a menu and a circle. The menu contains
only one item, "Exit," which closes the window when selected. The graphical drawing responds to a mouse click
by redrawing the figure at the mouse location.

The AWTDemo class is defined to be a subclass of Frame (line 6). It defines the main program window. The menu in
the frame is created with objects of the classes MenuBar, Menu, and MenuItem (lines 19–25). The AWTDemo class
implements the Action Listener interface to process the ActionEvent generated by menu selections. The
actionPerformed method defined in the interface is the handler for the events. When the "Exit" menu item is
selected, the program exits by calling the method System. exit(0).

Two other event handlers are defined in the constructor of the AWTDemo class. A WindowListener is defined as an
anonymous inner class from WindowAdapter (lines 27–32). It overrides the windowClosing method to terminate

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

the program upon receiving the closing event for the window. The other listener is a MouseListener, derived from
the MouseAdapter class (lines 34–41). The mouseClicked method is overridden to handle the mouse-click events.
In the mouseClicked method, the mouse location is saved to the variables x and y, and a call to the repaint
method is made to refresh the drawing and to move the figure to the new location.

The method paint (line 44) draws a circle of radius 50 with the method drawOval in the Graphics object. The
center of the circle is determined by the variables x and y.

The main method creates and displays an instance of AWTDemo. The frame is set to the size 640 by 480.

One graphics programming option for Java is OpenGL. There are several projects to develop Java language
bindings for OpenGL. JOGL is an implementation of JSR 231: Java language bindings for OpenGL. JOGL provides
the classes GL and GLU to encapsulate the functions in GL and GLU. The two components GLCanvas and GLJPanel
provide the drawing surfaces for the OpenGL calls. The GLCanvas is a heavyweight component that will use the
hardware acceleration. The GLJPanel is a lightweight component implemented in memory. No hardware
acceleration is available to GLJPanel. A typical procedure for programming JOGL is outlined below.

1. Create a GLCanvas or GLJPanel object through the GLDrawableFactory class.

2. Add a GLEvent listener to the canvas object.

3. Implement the listener by implementing the four methods: init, display, reshape, and displayChanged.

Listing 1.7 is the JOGL equivalent of Listing 1.4.

Listing 1.7. JOGLDemo.java
(This item is displayed on pages 19 - 20 in the print version)

 1 package chapter1;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import net.java.games.jogl.*;
 7
 8 public class JOGLDemo {
 9
10 public static void main(String[] args) {
11 Frame frame = new Frame("JOGL Demo");
12 GLCapabilities cap = new GLCapabilities();

[Page 20]
13 GLCanvas canvas =
14 GLDrawableFactory.getFactory().createGLCanvas(cap);
15 canvas.setSize(300, 300);
16 canvas.addGLEventListener(new Renderer());
17 frame.add(canvas);
18 frame.pack();
19 frame.addWindowListener(new WindowAdapter() {
20 public void windowClosing(WindowEvent e) {
21 System.exit(0);
22 }
23 });
24 frame.show();
25 }
26
27 static class Renderer implements GLEventListener {
28 private GL gl;
29 private GLU glu;
30 private GLDrawable gldrawable;
31
32 public void init(GLDrawable drawable) {
33 gl = drawable.getGL();
34 glu = drawable.getGLU();
35 this.gldrawable = drawable;
36 gl.glMatrixMode(GL.GL_PROJECTION);
37 gl.glLoadIdentity();
38 glu.gluOrtho2D(-1.2, 1.2, -1.2, 1.2);
39 gl.glClearColor(1.0f, 1.0f, 1.0f, 0.0f);
40 }
41
42 public void display(GLDrawable drawable) {
43 int i;
44 int n = 80;
45 float a = (float)(2*3.1415926535/n);
46 float x;
47 float y;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

48
49 gl.glClear(GL.GL_COLOR_BUFFER_BIT);
50 gl.glColor3f(1.0f,0,0);
51 gl.glBegin(GL.GL_LINE_LOOP);
52 for (i = 0; i < n; i++) {
53 x = (float)Math.cos(i*a);
54 y = (float)Math.sin(i*a);
55 gl.glVertex2f(x, y);
56 }
57 gl.glEnd();
58 gl.glFlush();
59 }
60
61 public void reshape(GLDrawable drawable, int x, int y, int width,
62 int height) {}
63 public void displayChanged(GLDrawable drawable,
64 boolean modeChanged, boolean deviceChanged) {}
65 }
66 }

JOGL, as a language binding for OpenGL, has the same advantages and shortcomings as OpenGL. It is an efficient
renderer, but it does not offer a full-fledged modeler with Java's OOP features.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 21]

1.4. Java 2D
The Java 2 platform brings significant improvements in graphics capabilities with the introduction of Swing and
Java 2D and 3D APIs. The well-designed APIs offer comprehensive support for many tasks of computer graphics.
Together with the unique advantages of the Java programming language, they have made the combination of
Java with Java 2D and Java 3D a very attractive option for graphics programming and learning computer graphics.

The graphics support in early versions of Java is very primitive and limited. Java 2D provides a rather complete set
of functionalities to manipulate and render 2D graphics. Specifically the enhancements include:

A separate class hierarchy for geometric objects is defined in Java 2D.

The rendering process is much more refined.

Completely new image-processing features are introduced.

Color models, fonts, printing, and other graphics-related supports are also greatly improved.

The Graphics2D class, a subclass of the Graphics class, is the rendering engine for Java 2D. It provides methods
to render geometric shapes, images, and texts. The rendering process can be controlled by selecting
transformation, paint, line properties, composition, clipping path, and other properties.

The Swing components and Java 2D included in the Java 2 platform are more advanced than the graphics
facilities in earlier Java platforms. The Java 2D examples in this book will use the Swing classes and avoid the old
AWT components whenever possible.

Listing 1.8 is a simple demonstration of Java 2D graphics features. It uses certain advanced capabilities of Java 2D
such as transparency, gradient paint, transformation, and font glyphs that are not available in AWT. (See Figure
1.10.)

Listing 1.8. Demo2D.java
(This item is displayed on pages 21 - 22 in the print version)

 1 package chapter1;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.font.*;
 7 import java.awt.geom.*;
 8
 9 public class Demo2D extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame();
12 frame.setTitle("Java 2D Demo");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 JApplet applet = new Demo2D();
15 applet.init();
16 frame.getContentPane().add(applet);
17 frame.pack();
18 frame.setVisible(true);
19 }
20
21 public void init() {
22 JPanel panel = new Panel2D();
23 getContentPane().add(panel);
24 }
25 }
26
27 class Panel2D extends JPanel{

[Page 22]
28 public Panel2D() {
29 setPreferredSize(new Dimension(500, 400));
30 setBackground(Color.white);
31 }
32
33 public void paintComponent(Graphics g) {
34 super.paintComponent(g);
35 Graphics2D g2 = (Graphics2D)g;
36 // draw an ellipse
37 Shape ellipse = new Ellipse2D.Double(150, 100, 200, 200);
38 GradientPaint paint =
39 new GradientPaint(100,100, Color.white, 400, 400, Color.gray);
40 g2.setPaint(paint);
41 g2.fill(ellipse);
42 // set transparency

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 AlphaComposite ac =
44 AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.4f);
45 g2.setComposite(ac);
46 g2.setColor(Color.blue);
47 // draw transparent text
48 Font font = new Font("Serif", Font.BOLD, 120);
49 g2.setFont(font);
50 g2.drawString("Java", 120, 200);
51 // get outline of text glyph
52 FontRenderContext frc = g2.getFontRenderContext();
53 GlyphVector gv = font.createGlyphVector(frc, "2D");
54 Shape glyph = gv.getOutline(150,300);
55 // draw rotated glyph
56 g2.rotate(Math.PI/6, 200, 300);
57 g2.fill(glyph);
58 }
59 }

Figure 1.10. A Java 2D program. The circle is filled with a gradient paint and the text is
semitransparent.

The class names of Swing components typically have a prefix "J." The class Panel2D (line 27) extends the JPanel
class and overrides the paintComponent method (line 33). The Graphics parameter in the method is cast to
Graphics2D to take advantage of the extended functionality in Java 2D. A circle is drawn with a gradient paint
that changes its color based on locations. The composite rule is then set to achieve a degree of transparency. The
font glyphs for text string "2D" are retrieved and the outlines are used as geometric shapes. The shape for the
string "2D" is rotated 30 degrees (p/6). The details of Java 2D programming are introduced in the later chapters.

[Page 23]

A Java program can often be written as both an applet and an application. This program is an example of such
"dual-purpose" programs. The Demo2D class is a subclass of JApplet (line 9) and can be executed as an applet.
However, it also contains a main method (line 10) so it can also be executed as an application. The main method
creates an instance of JFrame and adds an instance of Demo2D to the frame. It simulates the execution of the
applet by calling the init method. The results from the application and the applet are almost identical. Most
examples in this book will use this format.

Java 2D is a standard part of the core Java 2 platform. Any Java 2 Standard Edition (J2SE) Software Development

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Kit (SDK) or Java Runtime Environment (JRE) installation automatically includes Java 2D. This example can be
compiled under such an SDK without additional packages.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 23 (continued)]

1.5. Java 3D
Java 3D is an optional package of the Java platform. It can be obtained from the site:
http://www.javasoft.com/java3d. Java 3D provides an incredibly comprehensive framework for 3D graphics,
including such advanced features as animation, 3D interaction, and sophisticated viewing. Yet it still provides a
relatively simple and intuitive programming interface.

The Java 3D programming paradigm is very different from that of Java 2D. It closely follows the modeling–
rendering paradigm. An abstract model known as the scene graph is used to organize and retain the visual
objects and behaviors in the virtual scene. The scene graph contains the complete information of the virtual
graphics world. The Java 3D rendering engine renders the scene graph automatically.

Java 3D renders a scene on a Canvas3D object. Canvas3D is a heavyweight component that does not work well
with the new Swing components. For this reason, the Java 3D examples in this book will use AWT objects.

Note

The reason that Java 3D still does not have a lightweight canvas is to take advantage
of hardware acceleration. With heavyweight components, the hardware graphics
acceleration provided through the native platform support is automatically used. It is
possible to mix heavyweight and lightweight components, but care must be taken to
avoid some undesirable effects. See Appendix B for more details.

Listing 1.9 is a simple Java 3D application. It displays a rotating globe and a 3D text string "Java 3D" in front of
the globe as shown in Figure 1.11.

Listing 1.9. Demo3D.java
(This item is displayed on pages 23 - 25 in the print version)

 1 package chapter1;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.applet.*;
 6 import java.awt.event.*;
 7 import java.net.URL;
 8 import javax.media.j3d.*;
 9 import com.sun.j3d.utils.universe.*;
10 import com.sun.j3d.utils.geometry.*;
11 import com.sun.j3d.utils.image.*;
12 import com.sun.j3d.utils.applet.MainFrame;
13 public class Demo3D extends Applet {
14 public static void main(String[] args) {

[Page 24]
15 new MainFrame(new Demo3D(), 480, 480);
16 }
17
18 private SimpleUniverse su;
19
20 public void init() {
21 GraphicsConfiguration gc =
22 SimpleUniverse.getPreferredConfiguration();
23 Canvas3D cv = new Canvas3D(gc);
24 setLayout(new BorderLayout());
25 add(cv);
26 BranchGroup bg = createSceneGraph();
27 bg.compile();
28 su = new SimpleUniverse(cv);
29 su.getViewingPlatform().setNominalViewingTransform();
30 su.addBranchGraph(bg);
31 }
32
33 public void destroy() {
34 su.cleanup();
35 }
36
37 private BranchGroup createSceneGraph() {
38 BranchGroup root = new BranchGroup();
39 TransformGroup spin = new TransformGroup();
40 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
41 root.addChild(spin);
42 // 3d text
43 Appearance ap = new Appearance();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.javasoft.com/java3d

44 ap.setMaterial(new Material());
45 Font3D font = new Font3D(new Font("Helvetica", Font.PLAIN, 1),
46 new FontExtrusion());
47 Text3D text = new Text3D(font, "Java 3D");
48 Shape3D shape = new Shape3D(text, ap);
49 // transform for text
50 Transform3D tr = new Transform3D();
51 tr.setScale(0.2);
52 tr.setTranslation(new Vector3d(-0.35,-0.15,0.75));
53 TransformGroup tg = new TransformGroup(tr);
54 root.addChild(tg);
55 tg.addChild(shape);
56 // globe
57 ap = createAppearance();
58 spin.addChild(new Sphere(0.7f,
59 Primitive.GENERATE_TEXTURE_COORDS, 50, ap));
60 // rotation
61 Alpha alpha = new Alpha(-1, 6000);
62 RotationInterpolator rotator =
63 new RotationInterpolator(alpha, spin);
64 BoundingSphere bounds = new BoundingSphere();
65 rotator.setSchedulingBounds(bounds);
66 spin.addChild(rotator);
67 // background and lights
68 Background background = new Background(1.0f, 1.0f, 1.0f);
69 background.setApplicationBounds(bounds);
70 root.addChild(background);
71 AmbientLight light =
72 new AmbientLight(true, new Color3f(Color.red));
73 light.setInfluencingBounds(bounds);
74 root.addChild(light);

[Page 25]
75 PointLight ptlight = new PointLight(new Color3f(Color.white),
76 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
77 ptlight.setInfluencingBounds(bounds);
78 root.addChild(ptlight);
79 return root;
80 }
81
82 private Appearance createAppearance(){
83 Appearance ap = new Appearance();
84 URL filename =
85 getClass().getClassLoader().getResource("images/earth.jpg");
86 TextureLoader loader = new TextureLoader(filename, this);
87 ImageComponent2D image = loader.getImage();
88 Texture2D texture =
89 new Texture2D(Texture.BASE_LEVEL, Texture.RGBA,
90 image.getWidth(), image.getHeight());
91 texture.setImage(0, image);
92 texture.setEnable(true);
93 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
94 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
95 ap.setTexture(texture);
96 return ap;
97 }
98 }

Figure 1.11. A Java 3D program that displays a rotating globe and a 3D text string.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

This is a typical Java 3D application. The main task of the program is centered on the construction of a conceptual
data structure called scene graph. The visual effects of the program are achieved by creating a scene graph and
placing the appropriate graphics elements into it. The scene graph for the program is shown in Figure 1.12. It is a
treelike structure containing objects such as the sphere, the 3D text, appearance, transforms, background, lights,
and so on.

[Page 26]

Figure 1.12. The scene graph of the Java 3D program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The rendering of the scene is done automatically by the Java 3D engine. The results are shown in Figure 1.11.
The concepts and techniques of programming Java 3D with scene graphs will be introduced in the later chapters.

The program is also constructed as a dual-purpose applet/application. The class Demo3D is defined as a subclass of
Applet. A main method also exists in Demo3D to run the class as an application. The utility class MainFrame (line
16) included in Java 3D provides the necessary functionality to run an applet in a frame.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 26 (continued)]

1.6. Related Fields
Computer graphics, image processing, and computer vision are all computer-related fields that deal with graphical
objects. They are different in their objectives and techniques. However, close relationships exist among them, and
the lines between them have been increasingly blurred.

Image processing is concerned with techniques of processing digital raster images. It typically deals with problems
such as image enhancement, noise reduction, image compression, and edge detection. Image processing takes
an existing image as input and performs appropriate actions. Computer graphics, on the other hand, generates
synthetic images from a virtual world.

Image processing is closely related to computer graphics. The results of graphics rendering are usually images.
Raster images are used extensively in computer graphics as graphics primitives. They are also used as textures to
enhance graphics rendering. Listing 1.9 shows a globe that is constructed as a sphere with an earth image
mapped on its surface. Examples of basic image-processing techniques will be given in Chapter 4.

Computer vision attempts to derive an understanding from images of the real world. In a way a computer vision
system is the inverse of a computer graphics system. Its main goal is to reconstruct a virtual world from real-
world images. Therefore, computer vision and computer graphics are complementary to each other. They provide
different perspectives to a common system.

[Page 27]

The theory and practice of computer graphics depend heavily on certain important mathematical concepts.
Closely related mathematics areas include analytic geometry and linear algebra. Analytic geometry provides a
numerical representation for graphical objects. Linear algebra studies the operations and transformations of
vector spaces, which are important in many fundamental problems of computer graphics. Relevant mathematical
topics will be introduced in the chapters associated with the graphics problems. Appendix A provides a summary of
graphics-related mathematical background.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 27 (continued)]

1.7. Resources
A classical reference for computer graphics is:

J. Foley, A. van Dam, S. Feiner, and J. Hughs, Computer Graphics, Principles and Practices, 2d ed., Reading,
MA: Addison-Wesley, 1990.

Many current computer graphics textbooks use OpenGL:

E. Angel, Interactive Computer Graphics, A Top-Down Approach with OpenGL, 2d ed., Reading, MA:
Addison-Wesley, 2000.

D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3d ed., Upper Saddle River, NJ: Prentice Hall,
2003.

F. S. Hill, Computer Graphics Using OpenGL, 2d ed., Upper Saddle River, NJ: Prentice Hall, 2001.

GKS and other ISO standards are available at the ISO site:

http://www.iso.ch/

The NCAR Graphics package contains an implementation of GKS and is available at:

http://ngwww.ucar.edu/ng4.4/

The classical OpenGL books include:

OpenGL Architecture Review Board, OpenGL Programming Guide, 4th ed., Reading, MA: Addison-Wesley,
2004.

OpenGL Architecture Review Board, OpenGL Reference Manual, 4th ed., Reading, MA: Addison-Wesley,
2004.

Many websites for OpenGL are available. The official OpenGL site contains useful information and links:

http://opengl.org/

The website for the JOGL project is:

http://jogl.dev.java.net/

You may find tutorials, documentations, software downloads, and other useful information at the official
Java developer site:

http://java.sun.com/

A useful reference book on Java 3D is the API specification:

H. Sowizral, K. Rushforth, and M. Deering, The Java 3D API Specification, 2d ed., Reading, MA: Addison-
Wesley, 2000.

[Page 28]

Web resources for Java 3D include:

http://java.sun.com/products/java-media/3D/index.jsp

http://j3d.org/

https://java3d.dev.java.net/

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://www.iso.ch/
http://ngwww.ucar.edu/ng4.4/
http://opengl.org/
http://jogl.dev.java.net/
http://java.sun.com/
http://java.sun.com/products/java-media/3D/index.jsp
http://j3d.org/
https://java3d.dev.java.net/

[Page 28 (continued)]

Key Classes and Methods
javax.swing.JFrame A Swing class for the main window of an application.

javax.swing.JFrame.setDefaultCloseOperation(int) A method to set the operation in response to the
window close event.

java.lang.System.exit(int) A method to end the program.

java.awt.Frame An AWT class for the main window of an application.

javax.swing.JPanel A Swing component that can be used as a container or a base class for a custom
drawing canvas.

javax.awt.Graphics A class for all graphics drawing facilities in AWT.

javax.awt.event.MouseListener An interface for listening and handling mouse events.

javax.awt.event.MouseListener.mouseClicked(MouseEvent) The method to implement the handler for
mouse clicking.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 28 (continued)]

Key Terms
modeling

The process of constructing a graphics model.

rendering

The process of constructing an image of a scene from a graphics model.

virtual world

A graphics model constructed in a computer.

API

Application Programmer's Interface. A standardized software interface to specify the usage of functionalities
provided by a software package.

GKS

Graphics Kernel System. A standard graphics API.

PHIGS

Programmer's Hierarchical Interactive Graphics System. A graphics API.

OpenGL

A popular graphics API derived from Silicon Graphics' GL (Graphics Library). It has a programming interface
typically associated with the C language.

JOGL

A Java language binding for OpenGL.

image processing

A field of electrical engineering and computer science to study the computer processing of digital images.

computer vision

A computer and engineering field to study the perception and reconstruction of a scene from captured
images.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

AWT

Abstract Window Toolkit. A Java graphics package existing since the early versions of Java API.

Swing

A new enhanced Java graphics package.

OOP

Object-oriented programming. A software engineering paradigm that views a program as a system of
interrelated objects.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 28 (continued)]

Chapter Summary
This chapter provides an overview of computer graphics, its basic structures, its applications, its
relationships with other fields, and the graphics supports in the Java platform.

[Page 29]

The fundamental objectives of computer graphics include the construction of a virtual world of graphics
objects and the rendering of a scene from the virtual world. Modeling and rendering are the two major
topics of computer graphics.

The characteristics of problems involved in 2D and 3D graphics systems may be quite different. Usually 2D
and 3D graphics systems have different structures and they may be implemented as separate packages.
This is the case in the Java platform. Java 2D and Java 3D are separate packages with different
programming models.

The graphics programming environment has been evolving from low-level hardware-specific methods to
high-level object-oriented paradigms. To reduce platform dependency and to achieve high levels of
abstraction, many graphics APIs have been developed. Examples of the standard graphics packages include
GKS, PHIGS, OpenGL, Java 2D, and Java 3D.

Unlike early Java versions, the Java 2 platform offers extensive graphics support. The Java 2D and Java 3D
packages are high-level, full-featured graphics systems. This book will use Java 2D and Java 3D as the
main tools to introduce graphics programming.

Computer graphics, as a computer discipline, is different from image processing and computer vision. But it
maintains close ties to these fields, which also deal with visual images.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 29 (continued)]

Review Questions

1.1 List three applications that use 2D computer graphics.

1.2 Name a nongame application that uses 3D computer graphics.

1.3 Search the Internet to assemble a list of movies that have applied computer graphics.

1.4 Identify the fields (computer graphics, image processing, and computer vision) that are applicable
to the following applications:

a. Locate small bright spots in a mammogram image.

b. Construct a 3D model of a building from a set of its pictures.

c. Display a simulation of the solar system with the sun and nine planets in
motion.

d. Recognize the brain region in a MRI scan and display a 3D model of the brain.

e. Use computers to generate the scene of a car collision.

f. Make a computer identification of a person from a photograph.

1.5 Search the Internet to find an example program that uses GKS.

1.6 Search the Internet to find an example program that uses PHIGS.

1.7 Compare OpenGL and Java 3D. List the advantages of each API.

1.8 Discuss the advantages and disadvantages of including graphics support in a standard language
platform such as Java.

1.9 List the major GUI components of AWT and find their approximate equivalents in Swing.

1.10 Read the documentation of Java 3D and list the Java packages in Java 3D.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 30]

Programming Exercises

1.1 Write a console-based Java program that fills a double array with 100 random values and prints
their mean and standard deviation.

1.2 Write a Java AWT program that draws a circle in the middle of the window.

1.3 Write a Java Swing program that draws a circle in the middle of the window.

1.4 Write a Java GUI program that responds to a mouse click by drawing a filled circle at the mouse
location.

1.5 Edit, compile, and run the Java 2D program in Listing 1.8 on your local machine.

1.6 Edit, compile, and run the Java 3D program in Listing 1.9 on your local machine.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 31]

Chapter 2. 2D Graphics: Basics
(This item omitted from WebBook edition)

Objectives
To understand the architecture and operations of a 2D graphics system.

To understand 2D coordinate systems and equations of graphs.

To be able to identify the various coordinate spaces in a rendering pipeline.

To understand Java 2D program structure and the Graphics2D object.

To graph equations with Java programs.

To use basic 2D geometric primitives.

To construct custom shapes using the GeneralPath class.

To construct geometric shapes through constructive area geometry.

[Page 32]

2.1. Introduction
This chapter introduces basic concepts of 2D computer graphics systems and the Java 2D package. A 2D graphics
system models the virtual world with a two-dimensional space. Compared to 3D graphics, 2D graphics is simpler
in both modeling and rendering. 2D objects are easier to create and manipulate. The 2D rendering usually does
not involve any complicated projections such as those in 3D graphics. Even though a 2D model cannot completely
capture the full nature of a 3D space, 2D computer graphics is widely applied because of its simplicity and
efficiency. It is an essential ingredient of modern GUI-based programs.

The key concepts related to 2D graphics include the rendering pipeline, the object space, the world space, the
device space, coordinate systems, graphics primitives, geometric transformations, colors, clipping, composition
rules, and other topics. Java 2D provides comprehensive support for 2D graphics. This chapter covers the basic
structures of Java 2D programs and the geometric-object models. Additional topics for 2D graphics and Java 2D
programming will be discussed in the next two chapters.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 32 (continued)]

2.2. 2D Rendering Process
In 2D graphics, the virtual world space and the viewing space are both two dimensional. The rendering involves
composing various objects through some relatively straightforward transformations. Often the 2D world space is
not even needed in order to explicitly model the relationships among the graphics objects. However, to achieve
the clarity of system structures and to keep the analogy with 3D graphics, the notion of a virtual world space will
be retained.

Conceptually, a graphics object can be defined in its own object space and then placed in the 2D world space by
an object transformation. A 2D rendering takes a snapshot of the world and produces an image representing a
particular view in a device space.

Figure 2.1 shows a typical procedure for 2D graphics rendering.

Figure 2.1. A 2D graphics object is processed in a pipeline of transformation and viewing.

The essential components of a 2D graphics system include the 2D object model to be rendered, the geometric
transformations applied to the objects, and the rendering engine that creates a particular view of the virtual world
on a display device. The basic steps for rendering graphics in a simple 2D graphics program can be outlined as
follows:

1. Construct the 2D objects.

2. Apply transformations to the objects.

3. Apply color and other rendering properties.

4. Render the scene on a graphics device.

The graphics objects in the model are two dimensional. Besides geometric objects constructed from basic
primitives such as lines, polygons, and ellipses, the model may also include objects such as texts and images.

The transformations involved in 2D graphics are usually affine transforms. The object transformations change the
shapes and locations of the visual objects to which the transforms are applied. The viewing transformations do
not change the virtual world model, but they change the views of the entire scene on the world space. For
example, in a virtual model with a circle and a triangle, a translation applied to the circle as an object
transformation will move only the circle without changing the triangle. A translation as a viewing transformation,
on the other hand, will move the entire view.

[Page 33]

In addition to the geometry, many other attributes will affect the rendering of a scene. Colors, transparency,
textures, and line styles are examples of such attributes. A 2D graphics system will render a scene based on the
geometry information, transformation, and a graphics context involving other attributes.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 33 (continued)]

2.3. 2D Geometry and Coordinate Systems
The fundamental components of a graphics model are geometric objects. In order to represent geometry precisely
and efficiently in computers, coordinate systems are employed. The most commonly used 2D coordinate system
employs rectangular (Cartesian) coordinates, as illustrated in Figure 2.2.

Figure 2.2. The 2D coordinate system with the x-axis and y-axis.

Two perpendicular axes are placed in the plane. Each axis is labeled with the set of real numbers. The horizontal
axis is customarily called the x-axis and the vertical axis the y-axis. The intersection of the axes is identified with
the number 0 on both axes and is called the origin. Each point on the plane is associated with a pair of real
numbers (x, y) known as the x-coordinate and the y-coordinate. The coordinates measure the horizontal and
vertical position of the point relative to the axes.

A 2D geometric object is a set of points in the plane. The number of points in the set that constitutes the
geometric object is usually infinite. To effectively represent such an object, an equation is used to define the
relation that the x- and y-coordinates of a point in the object must satisfy.

For example, a line (see Figure 2.3) can be represented by a polynomial equation of degree 1 (a linear equation):

Figure 2.3. A line can be represented by a linear equation.

[Page 34]

A circle centered at the origin with radius R is represented by the equation:

x2 + y2 = R2

More generally, an ellipse centered at (x0, y0) has the standard equation:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Another common type of equation to represent a curve is the parametric equation. Instead of an equation
relating x and y, a third variable, t, is introduced. Both x and y are expressed as functions of t.

x = f(t)

y = g(t)

An advantage of parametric equations is that they provide explicit functional forms for evaluating the coordinates.
The ellipse shown in Figure 2.4 can also be expressed using the parametric equation:

x = x0 + a cos t

y = y0 + b sin t

Figure 2.4. An ellipse can be represented by a quadratic equation.

The collection of all points or coordinates is also known as a space. Three types of spaces are typically involved in a
graphics system: object space, world space, and device space. Each space is usually characterized by its own
coordinate system. Geometric objects in one space can be mapped to another by transformations.

An object coordinate system, also known as local or modeling coordinate system, is associated with the definition
of a particular graphics object or primitive. In constructing such an object, it is usually convenient to choose a
coordinate system that is natural to the object without concerning its final destination and appearance in the
world space. For example, when we define a circle primitive, we may choose to have the origin of the coordinate
system at the center of the circle and simply define a unit circle (a circle of radius 1). The circle can later be placed
anywhere in the world space through a transformation called translation. Its radius can be changed to any value
by scaling. It can even be transformed to an ellipse by using a nonuniform scaling.

The world coordinate system, or user coordinate system, defines a common reference space for all the objects in
a graphics model. It represents the virtual world shared by the modeling and rendering subsystems. Geometric
objects are placed into this space through object transforms. The rendering system takes a snapshot of the space
and produces a rendered image on an output device.

[Page 35]

The device coordinate system represents the display space of an output device such as a screen or a printer.
Figure 2.5 shows a typical example of such a coordinate system. The origin is located at the upper left corner, and
the positive direction of the y-axis is pointing downward. The coordinate values are usually integers only. This
choice is obviously different from the usual mathematical representation, but it is more natural for most
computer display devices.

Figure 2.5. Java 2D's coordinate system originates from origin (0, 0) with the x-axis increasing
rightward and the y-axis increasing downward.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

By default, Java 2D's world coordinates coincide with the device coordinates. With the available transformation
facilities in a graphics system, it is easy to define a different world space that may be more appropriate for a
particular application.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 35 (continued)]

2.4. The Graphics2D Class
In Java 2D, the rendering engine is accessed through the class Graphics2D. In early versions of Java, graphics
drawings are obtained through the class java.awt.Graphics. The Graphics class contains basic methods for
rendering graphics primitives and controlling the rendering modes. Java 2D uses the more extensive Graphics2D
class for its graphics rendering. Graphics2D extends the Graphics class to maintain compatibility with the early
AWT rendering in GUI components.

Graphics and Graphics2D classes are abstract, because their implementations will necessarily be platform
dependent. Consequently, you cannot directly instantiate the Graphics2D class. There are two ways to retrieve a
Graphics2D object. It can be obtained as the parameter in the paintComponent method or by calling the
getGraphics method. The standard approach to draw graphics in a JComponent object is to override the
paintComponent method:

void paintComponent(Graphics g)

The parameter g is declared to be Graphics, but it is also a Graphics2D object. It can be cast to a Graphics2D
object. The paintComponent method is called automatically by Java Virtual Machine whenever the display needs
to be redrawn, such as when the window is restored after it is minimized. Therefore the drawing made in the
method will appear to be persistent.

Java does not explicitly provide a "retained-mode" modeling facility for 2D graphics. The custom code in the
paintComponent method may be regarded implicitly as a model for the graphics system.

Another way to obtain a reference to a Graphics2D object is to call the method getGraphics in the class
Component.

Graphics getGraphics()

[Page 36]

Again the Graphics object returned from the method can be cast to a Graphics2D, and it can be used to perform
graphics rendering. However, usually the drawings obtained this way will not be persistent.

In AWT, the Graphics class provides the methods to control all aspects of rendering. It contains methods to set
colors and fonts, to translate the coordinates, to set XOR mode, and to draw primitives such as lines and ovals
directly. Some of the methods in Graphics are listed below.

void setColor(Color c)
void setFont(Font f)
void setXORMode(Color c)
void setPaintMode()
void translate(int x, int y)
void drawLine(int x1, int y1, int x2, int y2)
void drawRect(int x1, int y1, int width, int height)
void drawOval(int x1, int y1, int width, int height)
void drawArc(int x1, int y1, int width,
 int height, int start, int arc)
void drawRoundRect(int x1, int y1,
 int width, int height, int arcW, int arcH)
void drawPolygon(int[] xPoints, int[] yPoints, int nPoints)
void fillRect(int x1, int y1, int width, int height)
void fillOval(int x1, int y1, int width, int height)
void fillArc(int x1, int y1, int width,
 int height, int start, int arc)
void fillRoundRect(int x1, int y1, int width,
 int height, int arcW, int arcH)
void fillPolygon(int[] xPoints, int[] yPoints, int nPoints)
void drawString(String str, int x, int y)

There is no clear separation between the modeler and the renderer in AWT. For example, a single method
drawOval is responsible for both defining (modeling) an ellipse and drawing (rendering) the ellipse.

Java 2D, on the other hand, is required to handle much more sophisticated graphics objects. Therefore, instead of
bundling all rendering functions into a single class, the modeling and transformation features are implemented

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

bundling all rendering functions into a single class, the modeling and transformation features are implemented
with additional classes separated from the Graphics2D class. Graphics2D provides some generic methods such as
draw(Shape) and fill(Shape) to render separately defined objects. The objects to be drawn are implemented as
Shape objects. Similarly, the transformations can be constructed with the AffineTransform class. Graphics2D
provides the method setTransform(AffineTransform) to set the current transformation to the separately
defined transformation object. A partial list of Graphics2D methods is given below.

void draw(Shape s)
void fill(Shape s)
void setTransform(AffineTransform Tx)
void transform(AffineTransform Tx)
void setPaint(Paint p)
void setStroke(Stroke s)
void clip(Shape s)
void setComposite(Composite c)
void addRenderingHints(Map hints)

The separation of modeling and rendering is more apparent in Graphics2D. For example, to draw an ellipse you
will create an instance of Ellipse2D (which implements the Shape interface) and call the draw method to render
it.

[Page 37]

A typical Java 2D graphics program uses the JPanel class as the drawing canvas. By overriding the
paintComponent method, custom painting is achieved. The associated Graphics2D object can be configured for
proper settings such as colors, paints, strokes, and transformations. A graphical object is constructed as an
instance of a class implementing the Shape interface. It can be rendered through the Graphics2D object.

Listing 2.1 shows a simple Java 2D program. It illustrates the basic structure of a Java 2D program and the use of
the Graphics2D class. The program displays a transformed circle and a text string with a blue color, as shown in
Figure 2.6.

Listing 2.1. Hello2D.java

 1 package chapter2;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class Hello2D extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Hello 2D");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new Hello2D();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);
18 }
19
20 public void init() {
21 JPanel panel = new Hello2DPanel();
22 getContentPane().add(panel);
23 }
24 }
25
26 class Hello2DPanel extends JPanel {
27 public Hello2DPanel() {
28 setPreferredSize(new Dimension(640, 480));
29 }
30
31 public void paintComponent(Graphics g) {
32 super.paintComponent(g);
33 Graphics2D g2 = (Graphics2D)g;
34 g2.setColor(Color.blue);
35 Ellipse2D e = new Ellipse2D.Double(-100, -50, 200, 100);
36 AffineTransform tr = new AffineTransform();
37 tr.rotate(Math.PI / 6.0);
38 Shape shape = tr.createTransformedShape(e);
39 g2.translate(300,200);
40 g2.scale(2,2);
41 g2.draw(shape);
42 g2.drawString("Hello 2D", 0, 0);
43 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

44 }

[Page 38]

Figure 2.6. A simple Java 2D application draws a rotated ellipse and a text string.

The program is written to run as both an applet and an application. The Hello2D class extends JApplet. A main
method is also included that creates a JFrame window and adds an instance of Hello2D to the window. The applet
contains an instance of the Hello2DPanel. The Hello2DPanel class extends the JPanel class and overrides the
paintComponent method to draw the graphics display.

The main graphics functions are carried out inside the paintComponent method (line 31). The paintComponent
method of the superclass is invoked first to handle the necessary cleanup operations. The Graphics object g is
cast into a Graphics2D object g2 to use the Java 2D features (line 33). The parameter g is declared as Graphics,
but it is actually a Graphics2D object in all versions of Java that include Java 2D. The drawing color is then set to
blue by calling the method setColor() in the Graphics object. More sophisticated drawing attributes that exist in
the Graphics2D class will be introduced later in this chapter.

An ellipse is created using the Ellipse2D.Double class (line 35). A rotation of p/6 is constructed as an
AffineTransfrom object. The rotation is an object transformation applied only to the ellipse. The transformed
shape is obtained by calling the createTransformedShape method of the AffineTransform object.

The viewing transformation consists of a translation by (300, 200) and a scaling of factor 2. The transformation is
achieved by directly calling the methods translate and scale in the Graphics2D object.

Using the draw method the rotated ellipse is drawn to the screen (line 41). A string "Hello 2D" is drawn with the
method drawString in the Graphics2D object.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 38 (continued)]

2.5. Graphing Equations
Mathematical equations are important in modeling graphics objects. Conversely, graphical plots offer a useful tool
for studying mathematical functions and equations. Plotting an equation is a simple graphics application.

A simple way to graph an equation is to generate a sequence of coordinates satisfying the equation and then plot
the points. For a function of the form y = f(x), it is straightforward to choose a set of x-coordinates and calculate
the corresponding y-coordinates. An equation of the implicit form F(x,y) = 0 is more difficult to calculate, because,
given a value of the x- (or y-) coordinate, it would in general require solving an equation to find the other
coordinate. Certain equations can be expressed in the parametric form that is convenient for calculations.

[Page 39]

A sample run of the program is shown in Figure 2.7.

Figure 2.7. A spirograph plot using a parametric equation.

Listing 2.2 plots a spirograph based on a parametric equation. Consider a circle rolling on another circle. The curve
formed by a pen attached to the rolling circle is called an epicycloid or spirograph. Using the angle of rolling as the
parameter, a parametric equation can be derived:

x = (r1 + r2) cos t - p cos((r1 + r2)t/r2)

y = (r1 + r2) sin t - p sin((r1 + r2)t/r2)

The radii of the fixed circle and the rolling circle are denoted by r1 and r2. The offset of the pen position relative
to the center of the rolling circle is p. A variety of curves can be generated by changing the values of r1, r2, and
p.

Listing 2.2. Spirograph.java
(This item is displayed on pages 39 - 40 in the print version)

 1 package chapter2;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class Spirograph extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Spirograph");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new Spirograph();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);
18 }
19

[Page 40]
20 public void init() {
21 JPanel panel = new SpiroPanel();
22 getContentPane().add(panel);
23 }
24 }
25
26 class SpiroPanel extends JPanel{
27 int nPoints = 1000;
28 double r1 = 60;
29 double r2 = 50;
30 double p = 70;
31
32 public SpiroPanel() {
33 setPreferredSize(new Dimension(400, 400));
34 setBackground(Color.white);
35 }
36
37 public void paintComponent(Graphics g) {
38 super.paintComponent(g);
39 Graphics2D g2 = (Graphics2D)g;
40 g2.translate(200,200);
41 int x1 = (int)(r1 + r2 - p);
42 int y1 = 0;
43 int x2;
44 int y2;
45 for (int i = 0; i < nPoints; i++) {
46 double t = i * Math.PI / 90;
47 x2 = (int)((r1+r2)*Math.cos(t)-p*Math.cos((r1+r2)*t/r2));
48 y2 = (int)((r1+r2)*Math.sin(t)-p*Math.sin((r1+r2)*t/r2));
49 g2.drawLine(x1, y1, x2, y2);
50 x1 = x2;
51 y1 = y2;
52 }
53 }
54 }

The SpiroPanel class is defined as a subclass of JPanel. The plotting is performed inside the paintComponent
method (line 37). The variable nPoints defines the number of points to evaluate. The variables for the parametric
equation are set to the values:

r1 = 60
r2 = 50
p = 70

The parameter t is initialized to 0 and incremented by p/90 for each point. The x- and y-coordinates are
calculated based on the parametric equation. A line segment is drawn between two adjacent points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 40 (continued)]

2.6. Geometric Models
2D graphics objects that constitute a virtual world model may include geometric shapes, text objects, and images.
More detailed discussions on fonts, texts, and images will be presented later in Chapters 3 and 4. This section will
focus on the geometric objects.

2.6.1. Shapes

In Java 2D, a geometric object can be rendered by Graphics2D if it implements the Shape interface. Graphics2D
contains draw(Shape s) and fill(Shape s) methods that draws the outline of the shape or fills the interior of
the shape. Java 2D provides facilities to construct basic shapes and to combine them to form more complex
shapes. The Shape class hierarchy is shown in Figure 2.8.

[Page 41]

Figure 2.8. Java 2D defines various shapes.

The classes Line2D, QuadCurve2D, CubicCurve2D, Rectangle2D, RoundRectangle2D, Arc2D, and Ellipse2D are
abstract classes. Each has two concrete inner subclasses named X.Double and X.Float that represent the
coordinates using double or float data types, respectively. For example, Line2D.Double and Line2D.Float are
subclasses of Line2D and they are also inner classes of Line2D. The two inner subclasses both represent lines, but
they differ in their data types for coordinate representation. To create a Line2D object with double data type, you
may use the following constructor:

Line2D line = new Line2D.Double(x1, y1, x2, y2);

QuadCurve2D represents a quadratic curve, which is mathematically defined as a quadratic polynomial and
specified by three control points. The first and last control points are the endpoints of the curve. The middle
control point usually is not on the curve but instead defines the trend of the quadratic curve, as shown in Figure
2.9. A QuadCurve2D object may be created using a constructor as shown below. The coordinates of the three
control points are specified with the six parameters.

QuadCurve2D quad = new QuadCurve2D.Double(x1, y1, x2, y2, x3, y3);

Figure 2.9. A quadratic curve is specified by three control points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 42]

CubicCurve2D represents a cubic B�zier curve, which is defined as a cubic polynomial and specified by four
control points. As in the quadratic curves, the first and last control points are the endpoints of the curve. The
middle two control points define the shape of the curve but are not necessarily on the curve, as shown in Figure
2.10. An example of constructing a CubicCurve2D object is given below.

CubicCurve2D cubic = new CubicCurve2D.Float(x1,y1,x2,y2,x3,y3,x4,y4);

Figure 2.10. A cubic B�zier curve is specified by four control points.

The Rectangle2D class defines rectangles with horizontal and vertical sides. The Rectangle class defined in JDK
1.1 has been integrated into Java 2D. Rectangle is now a subclass of Rectangle2D. Rectangle uses integer
coordinates. Rectangle2D.Double and Rectangle2D.Float, the other subclasses of Rectangle2D, use double and
float, respectively, to represent coordinates. The following code fragment creates three Rectangle2D objects
with different data type. The upper left corner of the rectangles is (20, 30) and the dimension is (100, 80).

Rectangle2D ri = new Rectangle(20,30,100,80);
Rectangle2D rd = new Rectangle2D.Double(20.0,30.0,100.0,80.0);
Rectangle2D rf = new Rectangle2D.Float(20f,30f,100f,80f);

RoundRectangle2D defines rectangles with round corners. The constructor for a RoundRectangle2D object may
contain two more parameters that specify the width and height of the arch. For example, the arch in the
following round rectangle has dimension 5 by 5:

RoundRectangle2D rrect = new RoundRectangle2D.Double(20,30,100,80,5,5);

Ellipse2D represents a full ellipse. The parametric equation of the ellipse centered at the origin can be written as

x = a cos θ

y = b sin θ

The parameter θ varies from 0 to 2p or 0 to 360 degrees. The location and size of an Ellipse2D object are
specified using its bounding rectangle. An Ellipse2D object with float data type can be created with the
following constructor. The upper left corner of the bounding rectangle is (20, 30) and the dimension is (100, 80).

Ellipse2D ellipse = new Ellipse2D.Float(20f, 30f, 100f, 80f);

[Page 43]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Arc2D defines an elliptic arc. The underlying ellipse is defined in the same way as Ellipse2D and can be
represented with the same parametric equation. The portion of the arc is specified by a range on the parameter θ.
Arc2D defines three ways to close an arc: OPEN, CHORD, and PIE. For example, the following code constructs an arc
with the parameter ranging from θ = 30 degrees to θ = 75 degrees, and the arc is closed with a pie shape.

Arc2D arc = new Arc2D.Float(20f, 30f, 100f, 80f, 30f, 45f, Arc2D.PIE);

Note

The angle θ is specified in degrees instead of radians. The parameter θ in general
does not correspond to the radial angle of a given point. For example, when θ = 45
degrees, the line from the center to the point on the ellipse corresponds to the
diagonal of the bounding rectangle, as shown in Figure 2.11. Clearly the angle of the
line is not 45 degrees, unless the ellipse is a circle.

Figure 2.11. The geometric angle of the radial line for a point on the ellipse is not necessarily equal
to the parameter value.

The classes Rectangle2D, RoundRectangle2D, Ellipse2D, and Arc2D provide only for the construction of objects
that have their bounding rectangles parallel to the x- and y- axes. However, this is not a severe limitation,
because the general "rotated" versions of these objects can be obtained easily with proper transformations. A
detailed discussion of transformations will be given in the next chapter.

The Polygon class, similar to the Rectangle class, comes from the old AWT, and it supports only integer
coordinates. To construct a Polygon object you may use the following constructor:

Polygon(int[] xcoords, int[] ycoords, int npoints);

The two integer arrays define the vertices of the polygon. The first point and last point are joined to form a closed
path.

2.6.2. Example

Listing 2.3 is an interactive drawing program. It allows a user to draw various geometric shapes in Java 2D,
including rectangles, round rectangles, ellipses, arcs, lines, quadratic curves, cubic curves, and polygons (Figure
2.12). A menu is used to select drawing shapes, and the user draws a particular shape on the screen by dragging
the mouse. The drawings are persistent�that is, they will not disappear when the window is repainted.

[Page 44]

Listing 2.3. DrawShapes.java
(This item is displayed on pages 44 - 48 in the print version)

 1 package chapter2;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.swing.*;
 8
 9 public class DrawShapes extends JApplet implements ActionListener {
 10 public static void main(String s[]) {
 11 JFrame frame = new JFrame();
 12 frame.setTitle("Drawing Geometric Shapes");

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 14 JApplet applet = new DrawShapes();
 15 applet.init();
 16 frame.getContentPane().add(applet);
 17 frame.pack();
 18 frame.setVisible(true);
 19 }
 20
 21 JavaDraw2DPanel panel = null;
 22
 23 public void init() {
 24 JMenuBar mb = new JMenuBar();
 25 setJMenuBar(mb);
 26 JMenu menu = new JMenu("Objects");
 27 mb.add(menu);
 28 JMenuItem mi = new JMenuItem("Rectangle");
 29 mi.addActionListener(this);
 30 menu.add(mi);
 31 mi = new JMenuItem("RoundRectangle");
 32 mi.addActionListener(this);
 33 menu.add(mi);
 34 mi = new JMenuItem("Ellipse");
 35 mi.addActionListener(this);
 36 menu.add(mi);
 37 mi = new JMenuItem("Arc");
 38 mi.addActionListener(this);
 39 menu.add(mi);
 40 mi = new JMenuItem("Line");
 41 mi.addActionListener(this);
 42 menu.add(mi);
 43 mi = new JMenuItem("QuadCurve");
 44 mi.addActionListener(this);
 45 menu.add(mi);
 46 mi = new JMenuItem("CubicCurve");
 47 mi.addActionListener(this);
 48 menu.add(mi);
 49 mi = new JMenuItem("Polygon");
 50 mi.addActionListener(this);
 51 menu.add(mi);
 52 panel = new JavaDraw2DPanel();
 53 getContentPane().add(panel);
 54 }
 55
 56 public void actionPerformed(ActionEvent ev) {
 57 String command = ev.getActionCommand();
 58 if ("Rectangle".equals(command)) {
 59 panel.shapeType = panel.RECTANGLE;

[Page 45]
 60 } else if ("RoundRectangle".equals(command)) {
 61 panel.shapeType = panel.ROUNDRECTANGLE2D;
 62 } else if ("Ellipse".equals(command)) {
 63 panel.shapeType = panel.ELLIPSE2D;
 64 } else if ("Arc".equals(command)) {
 65 panel.shapeType = panel.ARC2D;
 66 } else if ("Line".equals(command)) {
 67 panel.shapeType = panel.LINE2D;
 68 } else if ("QuadCurve".equals(command)) {
 69 panel.shapeType = panel.QUADCURVE2D;
 70 } else if ("CubicCurve".equals(command)) {
 71 panel.shapeType = panel.CUBICCURVE2D;
 72 } else if ("Polygon".equals(command)) {
 73 panel.shapeType = panel.POLYGON;
 74 }
 75 }
 76 }
 77
 78 class JavaDraw2DPanel extends JPanel
 79 implements MouseListener, MouseMotionListener {
 80 private Vector shapes = new Vector();
 81 static final int RECTANGLE = 0;
 82 static final int ROUNDRECTANGLE2D = 1;
 83 static final int ELLIPSE2D = 2;
 84 static final int ARC2D = 3;
 85 static final int LINE2D = 4;
 86 static final int QUADCURVE2D = 5;
 87 static final int CUBICCURVE2D = 6;
 88 static final int POLYGON = 7;
 89 static final int GENERAL = 8;
 90 static final int AREA = 9;
 91
 92 int shapeType = RECTANGLE;
 93 // vector of input points
 94 Vector points = new Vector();
 95 int pointIndex = 0;
 96 Shape partialShape = null;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 97 Point p = null;
 98
 99 public JavaDraw2DPanel() {
100 super();
101 setBackground(Color.white);
102 setPreferredSize(new Dimension(640, 480));
103 addMouseListener(this);
104 addMouseMotionListener(this);
105 }
106
107 public void paintComponent(Graphics g) {
108 super.paintComponent(g);
109 Graphics2D g2 = (Graphics2D)g;
110 for (int i = 0; i < shapes.size(); i++) {
111 Shape s = (Shape)shapes.get(i);
112 g2.draw(s);
113 }
114 }
115 public void mouseClicked(MouseEvent ev) {
116 }
117
118 public void mouseEntered(MouseEvent ev) {
119 }
120

[Page 46]
121 public void mouseExited(MouseEvent ev) {
122 }
123
124 public void mousePressed(MouseEvent ev) {
125 points.add(ev.getPoint());
126 pointIndex++;
127 p = null;
128 }
129
130 public void mouseReleased(MouseEvent ev) {
131 Graphics g = getGraphics();
132 Point p1 = (Point)(points.get(pointIndex-1));
133 p = ev.getPoint();
134 Shape s = null;
135 switch (shapeType) {
136 case RECTANGLE:
137 s = new Rectangle(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
138 break;
139 case ROUNDRECTANGLE2D:
140 s = new RoundRectangle2D.Float(p1.x, p1.y,
141 p.x-p1.x, p.y-p1.y, 10, 10);
142 break;
143 case ELLIPSE2D:
144 s = new Ellipse2D.Float(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
145 break;
146 case ARC2D:
147 s = new Arc2D.Float(p1.x, p1.y, p.x-p1.x,
148 p.y-p1.y, 30, 120, Arc2D.OPEN);
149 break;
150 case LINE2D:
151 s = new Line2D.Float(p1.x, p1.y, p.x, p.y);
152 break;
153 case QUADCURVE2D:
154 if (pointIndex > 1) {
155 Point p2 = (Point)points.get(0);
156 s = new QuadCurve2D.Float(p2.x, p2.y, p1.x, p1.y, p.x, p.y);
157 }
158 break;
159 case CUBICCURVE2D:
160 if (pointIndex > 2) {
161 Point p2 = (Point)points.get(pointIndex-2);
162 Point p3 = (Point)points.get(pointIndex-3);
163 s = new CubicCurve2D.Float(p3.x, p3.y, p2.x, p2.y,
164 p1.x, p1.y, p.x, p.y);
165 }
166 break;
167 case POLYGON:
168 if (ev.isShiftDown()) {
169 s = new Polygon();
170 for (int i = 0; i < pointIndex; i++)
171 ((Polygon)s).addPoint(((Point)points.get(i)).x,
172 ((Point)points.get(i)).y);
173 ((Polygon)s).addPoint(p.x, p.y);
174 }
175
176 }
177 if (s != null) {
178 shapes.add(s);
179 points.clear();
180 pointIndex = 0;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 47]
181 p = null;
182 repaint();
183 }
184 }
185
186 public void mouseMoved(MouseEvent ev) {
187 }
188
189 public void mouseDragged(MouseEvent ev) {
190 Graphics2D g = (Graphics2D)getGraphics();
191 g.setXORMode(Color.white);
192 Point p1 = (Point)points.get(pointIndex-1);
193 switch (shapeType) {
194 case RECTANGLE:
195 if (p != null) g.drawRect(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
196 p = ev.getPoint();
197 g.drawRect(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
198 break;
199 case ROUNDRECTANGLE2D:
200 if (p != null) g.drawRoundRect(p1.x, p1.y,
201 p.x-p1.x, p.y-p1.y,10,10);
202 p = ev.getPoint();
203 g.drawRoundRect(p1.x, p1.y, p.x-p1.x, p.y-p1.y,10,10);
204 break;
205 case ELLIPSE2D:
206 if (p != null) g.drawOval(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
207 p = ev.getPoint();
208 g.drawOval(p1.x, p1.y, p.x-p1.x, p.y-p1.y);
209 break;
210 case ARC2D:
211 if (p != null) g.drawArc(p1.x, p1.y, p.x-p1.x, p.y-p1.y, 30, 120);
212 p = ev.getPoint();
213 g.drawArc(p1.x, p1.y, p.x-p1.x, p.y-p1.y, 30, 120);
214 break;
215 case LINE2D:
216 case POLYGON:
217 if (p != null) g.drawLine(p1.x, p1.y, p.x, p.y);
218 p = ev.getPoint();
219 g.drawLine(p1.x, p1.y, p.x, p.y);
220 break;
221 case QUADCURVE2D:
222 if (pointIndex == 1) {
223 if (p != null) g.drawLine(p1.x, p1.y, p.x, p.y);
224 p = ev.getPoint();
225 g.drawLine(p1.x, p1.y, p.x, p.y);
226 } else {
227 Point p2 = (Point)points.get(pointIndex-2);
228 if (p != null) g.draw(partialShape);
229 p = ev.getPoint();
230 partialShape = new QuadCurve2D.Float(p2.x, p2.y,
231 p1.x, p1.y, p.x, p.y);
232 g.draw(partialShape);
233 }
234 break;
235 case CUBICCURVE2D:
236 if (pointIndex == 1) {
237 if (p != null) g.drawLine(p1.x, p1.y, p.x, p.y);
238 p = ev.getPoint();
239 g.drawLine(p1.x, p1.y, p.x, p.y);
240 } else if (pointIndex == 2) {

[Page 48]
241 Point p2 = (Point)points.get(pointIndex-2);
242 if (p != null) g.draw(partialShape);
243 p = ev.getPoint();
244 partialShape = new QuadCurve2D.Float(p2.x, p2.y,
245 p1.x, p1.y, p.x, p.y);
246 g.draw(partialShape);
247 } else {
248 Point p2 = (Point)points.get(pointIndex-2);
249 Point p3 = (Point)points.get(pointIndex-3);
250 if (p != null) g.draw(partialShape);
251 p = ev.getPoint();
252 partialShape = new CubicCurve2D.Float(p3.x, p3.y,
253 p2.x, p2.y, p1.x, p1.y, p.x, p.y);
254 g.draw(partialShape);
255 }
256 break;
257 }
258 }
259 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 2.12. Drawing basic shapes defined in Java 2D.

This is a simple drawing program that does not have all the supporting features, such as file I/O, but does have
the essential functionality of a typical drawing package. It allows users to draw an arbitrary number of basic
shapes with the mouse operations.

The DrawShapes class defines an applet with a menu. The type of shape to be drawn is selected from the menu.
The JavaDraw2DPanel, a subclass of JPanel, implements the actual drawing logic. The variable panel holds an
instance of the JavaDraw2DPanel (line 52). The menu selection is handled in the DrawShapes class. The action
event handler sets the selected shape to the shapeType variable in panel.

[Page 49]

The JavaDraw2DPanel class contains a vector shapes that holds all the shapes drawn by the user. When the
drawing of a particular figure is completed, it is added to the vector. Because the Vector class defines a dynamic
data structure, the number of shapes is virtually unlimited. The paintComponent method is surprisingly simple. It
traverses the vector and calls the draw method on each shape regardless of the types of shapes (lines 110�112).
This elegant approach is made possible by the powerful polymorphism support of Java and the Graphics2D class.

The JavaDraw2DPanel class handles the mouse events to implement the drawing functions. The details of
drawing a shape depend on the type of the shape. Rectangles, rounded rectangles, ellipses, arcs, and lines are
defined by their bounding rectangles. They are drawn by dragging the mouse from one corner of the bounding
rectangle to the opposite. Quadratic curves are defined by three control points, and they are drawn by dragging
the mouse twice to define two line segments. Cubic curves are defined by four control points and are constructed
with three mouse drags. The polygons may have arbitrary numbers of points and are constructed by dragging the
mouse repeatedly and terminating with a double click.

During the construction of a shape, "rubber-banding" is implemented to provide a visual clue. As the user drags
the mouse, the shape corresponding to the current mouse location is displayed and updated continuously. This is
done inside the mouse event handlers and through the use of XOR drawing mode. When the mouse button is
pressed, the current mouse location is saved to the vector points (line 125). When the mouse is dragged, a
Graphics2D object is retrieved (line 190) and its XOR mode is set by calling the setXORMode method (line 191). A
temporary shape is drawn based on the shape type and current points. This temporary shape is erased by
subsequent calls and replaced with new a temporary shape, thus creating a dynamic "rubber-banding" effect. In
the XOR mode, drawing the same figure a second time will erase the first drawing. When the mouse is released
(line 130), a new point is created. If enough points are present for the current shape type, a new complete shape
is constructed and added to the shapes vector. If the number of points is not enough for the shape, a partial
shape is defined.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 49 (continued)]

2.7. Constructive Area Geometry
One way to create more complex shapes is to combine several existing shapes. This is known as constructive area
geometry. The class Area is designed to perform constructive area geometry. Four operations are supported:
union, intersection, difference, and symmetric difference. These set-theoretic operations are performed on the
regions of two areas, resulting in a new area. The union of two sets consists of all points that belong to either set.
The intersection of two sets consists of points that belong to both sets. The difference of two sets consists of
points that belong to the first set but not the second set. The symmetric difference of two sets consists of the
points that belong to exactly one of the two sets. An Area object can be constructed from any Shape object using
the following constructor:

Area(Shape s)

The four operations can be performed using the following methods of an Area object:

void add(Area a)
void intersect(Area a)
void subtract(Area a)
void exclusiveOr(Area a)

The results of the operations are placed in the current Area object. The second Area object passed as a parameter
to the methods will not be altered by the operations.

Listing 2.4 shows a program demonstrating the effects of four operations of constructive area geometry. Two
shapes are combined using the four operations to obtain four new shapes (Figure 2.13).

[Page 50]

Listing 2.4. AreaGeometry.java

 1 package chapter2;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class AreaGeometry extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Constructive Area Geometry");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new AreaGeometry();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);
18 }
19
20 public void init() {
21 JPanel panel = new AreaPanel();
22 getContentPane().add(panel);
23 }
24 }
25
26 class AreaPanel extends JPanel {
27 public AreaPanel() {
28 setPreferredSize(new Dimension(760, 400));
29 }
30
31 public void paintComponent(Graphics g) {
32 Graphics2D g2 = (Graphics2D)g;
33 Shape s1 = new Ellipse2D.Double(0, 0, 100, 100);
34 Shape s2 = new Ellipse2D.Double(60, 0, 100, 100);
35 Area a1;
36 Area a2 = new Area(s2);
37 g2.translate(20, 50);
38 g2.draw(s1);
39 g2.draw(s2);
40 g2.translate(0,200);
41 a1 = new Area(s1);
42 a1.add(a2);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 g2.fill(a1);
44 g2.translate(180,0);
45 a1 = new Area(s1);
46 a1.intersect(a2);
47 g2.fill(a1);
48 g2.translate(180,0);
49 a1 = new Area(s1);
50 a1.subtract(a2);
51 g2.fill(a1);
52 g2.translate(180,0);
53 a1 = new Area(s1);
54 a1.exclusiveOr(a2);
55 g2.fill(a1);
56 }
57 }

[Page 51]

Figure 2.13. Top row: Two shape objects. Bottom row: The results of four area operations: add,
intersect, subtract, exclusiveOr.

Two overlapping circles s1 and s2 are used as the original shapes, and they are drawn on the top of the screen.
Area objects a1 and a2 are created from the shapes (lines 35–36). Each of the four operations is applied to a1
and a2 by calling the methods add, intersect, subtract, and exclusiveOr. The resulting areas are displayed as
filled shapes in the bottom row (lines 42–55). Because the Area class implements the Shape interface, the Area
objects can be passed directly to the fill method of the Graphics2D object.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 51 (continued)]

2.8. General Path
The Graphics2D engine internally uses five basic types of curve segments or operations to render the borders of
any shape. The Shape interface provides methods to retrieve a PathIterator that is an interface describing the
path of the shape border using the five types of segments. PathIterator defines the five segment constants:

SEG_MOVETO
SEG_LINETO
SEG_QUADTO
SEG_CUBICTO
SEG_CLOSE

A powerful way to construct custom shapes is to use the GeneralPath class, which directly supports the path
construction with the five basic curve segments known to Graphics2D. The following methods in the
GeneralPath class perform the segment constructions corresponding to the five segment types:

void moveTo(float x, float y);
void lineTo(float x, float y);
void quadTo(float x1, float y1, float x2, float y2);
void curveTo(float x1, float y1, float x2,
float y2, float x3, float y3);
void closePath();

The process of the path construction can be viewed as drawing with a "pen." At any moment, the pen has a
"current location." The moveTo method moves the pen to the new location (x, y) without drawing anything. The
lineTo method draws a line from the current location to the point (x, y), and the pen takes the new point as its
current location. The quadTo method draws a quadratic curve from the current location to (x2, y2) using (x1, y1)
as the middle control point. The curveTo method draws a cubic curve from the current point to (x3, y3) using
(x1, y1) and (x2, y2) as its two middle control points. The closePath method draws a line back to the point
defined by the last moveTo method.

[Page 52]

For example, the following code segment constructs the shape shown in Figure 2.14.

GeneralPath path = new GeneralPath();
path.moveTo(-2f, 0f);
path.quadTo(0f, 2f, 2f, 0f);
path.quadTo(0f, -2f, -2f, 0f);
path.moveTo(-1f, 0.5f);
path.lineTo(-1f, -0.5f);
path.lineTo(1f, 0.5f);
path.lineTo(1f, -0.5f);
path.closePath();

Figure 2.14. A shape defined by a GeneralPath object.

The path defines the boundary or outline of a shape. To completely define the shape, however, we must specify
what constitutes the interior or the exterior of the shape. This information is needed, for example, in drawing a
filled figure of the shape. Because multiple regions with complicated relationships may be formed from the path,
the interior region problem is not always trivial. The winding rules define the conditions in which a region is

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

considered inside the shape. Two winding rules are defined by PathIterator:

WIND_EVEN_ODD
WIND_NON_ZERO

To determine whether a particular region formed by the path is in the interior, draw a line through the region and
consider the number of crossings with the path from the outside to reach the region. With the even–odd rule, the
region is in the interior if the number of crossings is odd and exterior if the number is even. Essentially the path is
considered as the boundary separating the interior from the exterior, and consequently the designation of interior
and exterior alternates every time the line crosses the path.

With the nonzero rule, the direction of the path crossing is taken into consideration, and the crossing number can
be positive or negative. If the line crosses the path from left to right as you view it in the direction of the path,
the crossing number is increased by 1, otherwise it is decreased by 1. The region is interior if the signed crossing
number is not zero. The nonzero rule essentially defines the left side of the path, when you move along the path,
as the interior and the right side as the exterior.

For example, Figure 2.15 shows a path that consists of two squares. With the even–odd rule, the inner square
region is considered "outside" because the crossing number is even. With the nonzero rule, if the path is oriented
as shown, the inner square is considered "inside" because the crossing number is not zero.

[Page 53]

Figure 2.15. Even–odd rule and nonzero rule for interior definition.

Another example is given in Figure 2.16. With the even–odd rule, both triangles in the region are considered to
be in the exterior. They are holes in the curved region. With the nonzero rule, however, only one triangle is
considered a hole. The triangle on the right is considered to be inside, because the orientation of its path is in the
same direction as the outer path and the crossing numbers do not cancel out as a line goes through them.

Figure 2.16. Left: Even–odd rule. Right: Nonzero rule.

The program in Listing 2.5 shows the construction of shapes using the GeneralPath and the effects of the
winding rules. Two shapes are created, and they are displayed in three different styles: path only, even–odd rule,
and nonzero rule (Figure 2.17).

Listing 2.5. CustomPath.java
(This item is displayed on pages 53 - 54 in the print version)

 1 package chapter2;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class CustomPath extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("GeneralPath and Winding Rules");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new CustomPath();
14 applet.init();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);
18 }
19
20 public void init() {
21 JPanel panel = new PathPanel();
22 getContentPane().add(panel);
23 }
24 }
25

[Page 54]
26 class PathPanel extends JPanel {
27 public PathPanel() {
28 setPreferredSize(new Dimension(640, 480));
29 }
30
31 public void paintComponent(Graphics g) {
32 super.paintComponent(g);
33 Graphics2D g2 = (Graphics2D)g;
34 GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
35 float x0 = 1.0f;
36 float y0 = 0.0f;
37 float x1 = (float)Math.cos(2*Math.PI/5.0);
38 float y1 = (float)Math.sin(2*Math.PI/5.0);
39 float x2 = (float)Math.cos(4*Math.PI/5.0);
40 float y2 = (float)Math.sin(4*Math.PI/5.0);
41 float x3 = (float)Math.cos(6*Math.PI/5.0);
42 float y3 = (float)Math.sin(6*Math.PI/5.0);
43 float x4 = (float)Math.cos(8*Math.PI/5.0);
44 float y4 = (float)Math.sin(8*Math.PI/5.0);
45 path.moveTo(x2,y2);
46 path.lineTo(x0,y0);
47 path.lineTo(x3,y3);
48 path.lineTo(x1,y1);
49 path.lineTo(x4,y4);
50 path.closePath();
51 AffineTransform tr = new AffineTransform();
52 tr.setToScale(100,100);
53 g2.translate(120,120);
54 path = (GeneralPath)tr.createTransformedShape(path);
55 g2.draw(path);
56 g2.translate(200,0);
57 g2.fill(path);
58 path.setWindingRule(GeneralPath.WIND_NON_ZERO);
59 g2.translate(200,0);
60 g2.fill(path);
61
62 path.reset();
63 path.moveTo(x0, y0);
64 path.lineTo(x1, y1);
65 path.lineTo(x2, y2);
66 path.lineTo(x3, y3);
67 path.lineTo(x4, y4);
68 path.closePath();
69 path.moveTo(x0, y0);
70 path.quadTo(x4, y4, x1, y1);
71 path.quadTo(x2, y2, x3, y3);
72 path.closePath();
73 path.moveTo(x4,y4);
74 path.curveTo(x1,y1,x3,y3,x2,y2);
75 path.curveTo(x1,y1,x3,y3,x4,y4);
76 path = (GeneralPath)tr.createTransformedShape(path);
77 g2.translate(-400,220);
78 g2.draw(path);
79 path.setWindingRule(GeneralPath.WIND_EVEN_ODD);
80 g2.translate(200,0);
81 g2.fill(path);
82 path.setWindingRule(GeneralPath.WIND_NON_ZERO);
83 g2.translate(200,0);
84 g2.fill(path);
85 }
86 }

[Page 55]

Figure 2.17. General paths and regions formed with the even–odd rule and the nonzero rule.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Two shapes are constructed with the GeneralPath class. The star is formed entirely by line segments. The
vertices of the star are calculated by dividing a circle into five equally spaced parts (lines 35–44). The method
reset clears the path in a GeneralPath object (line 62). The other shape is a pentagon with several segments of
lines, quadratic curves, and cubic curves. Three versions of each shape are displayed in three columns. First the
draw method is called to draw the outline path of the shape (lines 55, 78). Then the winding rule of the shape is
set to even–odd and the fill method is called to display the shape with filled interior (lines 57, 81). Finally the
winding rule is changed to nonzero and the shape is displayed with a filled interior again in the third column (lines
60, 84). It is clear that the nonzero winding rule will often yield more interior regions than the even–odd rule.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 55 (continued)]

Key Classes and Methods
javax.swing.JComponent.paintComponent(Graphics) A method usually overridden to perform custom
painting for the component.

java.awt.Graphics2D A class providing an interface to the Java 2D rendering engine.

java.awt.Graphics2D.draw(Shape) A method to draw the outlines of a shape.

java.awt.Graphics2D.fill(Shape) A method to fill the interiors of a shape.

java.awt.Shape An interface for 2D geometric shapes.

java.awt.geom.GeneralPath A class to define a general 2D contour using all segment types in the Shape
interface.

java.awt.geom.Area A class for constructive area geometry.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 56]

Key Terms
coordinate system

A method to associate geometric points with algebraic quantities of ordered tuples of numbers.

parametric equation

A set of equations that express coordinate variables as functions of parameters.

world space

A common reference coordinate space for a graphics model.

object space

A local coordinate space associated with an individual object.

device space

A coordinate space used by a specific output device.

constructive area geometry

A method to create new geometric shapes by using set operations such as union and intersection on the
areas of existing shapes.

winding rule

A rule to determine the interior regions with given contours.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 56 (continued)]

Chapter Summary
In this chapter we discuss the basic principles of 2D graphics systems and Java 2D programming. A typical
2D graphics rendering pipeline involves three different coordinate spaces. In an object space, various visual
objects are defined in a local coordinate system convenient for object modeling. Through object
transformations the object spaces are mapped into a world space that is a common reference coordinate
system for all objects. The graphics scene modeled in the world space is mapped to a device space for
display. This transformation from the world space to the device space is known as the viewing
transformation.

A 2D curve can often be represented as an equation. Parametric equations are convenient for graphics
applications.

The geometric model of a visual object is constructed from primitive elements and constructive operations.
Java 2D provides a rich family of graphics primitives, including line, rectangle, rounded rectangle, ellipse,
arc, quadratic curve, and cubic curve. The Shape interface provides a general framework for the geometric
descriptions.

Constructive area geometry is a technique to create new shapes based on operations on existing areas.
Java 2D supports four set-theoretical operations for constructive area geometry.

Five basic operations are recognized in the Shape interface to define a path with different segments. The
GeneralPath class provides direct access to the five segment types. Two winding rules are available to
determine the interior of a region.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 56 (continued)]

Review Questions

2.1 What are the differences between object transformations and viewing transformations?

2.2 Plot the following points in a 2D coordinate system:

(1, 3), (-2,1.5), (0, -2), (0, 0)

2.3 Find the coordinates of the vertices of the triangle in Figure 2.18.

Figure 2.18. A triangle for Question 2.3.
(This item is displayed on page 57 in the print version)

2.4 Write the Java code to construct an ellipse of width 80 and height 100 centered at (100, 300).

2.5 Find the actual angle spanned by the following arc:

new Arc2D.Float(0, 0, 100, 200, 0, 45);

[Page 57]

2.6 Use the GeneralPath class to construct a shape of regular octagon.

2.7 Determine the interior of the shape in Figure 2.19 using the even–odd rule.

Figure 2.19. Define shape interior from the path.

2.8 Determine the interior of the shape in Figure 2.19 using the nonzero rule.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 57 (continued)]

Programming Exercises

2.1 Write a Java program to plot the following parametric equation:

x = t2

y = t3

2.2 Write a Java program to plot the following parametric equation:

x = 20t cos t

y = 20t sin t

0 t 8p

2.3 Write a Java program to display a square centered at the origin and rotated by 45°.

2.4 Write a Java program to draw an 8 x 8 chessboard.

2.5 Write a Java program to display the accompanying filled shape (Figure 2.20) using constructive
area geometry.

Figure 2.20. A moon shape.

[Page 58]

2.6 Write a program to display the figure shown in the preceding problem using a general path.

2.7 Write a Java program to draw a Ying-Yang symbol as shown in Figure 2.21. (Hint: Use
constructive area geometry.)

Figure 2.21. A Ying-Yang symbol.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 59]

Chapter 3. 2D Graphics: Rendering Details
(This item omitted from WebBook edition)

Objectives
To understand color spaces.

To use the Java Color class.

To be able to use different types of paints in drawing visual objects.

To apply stroke types.

To construct affine transforms including translation, rotation, scaling, shearing, and reflection.

To understand object transformations and viewing transformations.

To combine basic transformations to form more complex ones.

To identify the compositing rules.

To use clipping path.

To apply fonts and font metrics.

To understand glyph, ligature, and derived font.

[Page 60]

3.1. Introduction
This chapter introduces several important attributes associated with 2D graphics rendering and their
implementation in Java 2D. Besides the geometry that defines the structure of the graphics objects, many other
attributes and operations contribute significantly to the appearance of rendered images. Colors, stroke types,
transformations, compositing rules, clipping paths, and rendering hints are some of the factors affecting the
outcome of rendering.

Colors and paints are highly visible attributes. Colors are usually represented in numerical forms called color
spaces. Java defines the class Color to represents colors as objects. A generalization of color is the concept of
paint that can represent complex color patterns. Java 2D uses the Paint interface to unify different paints. The
classes Color, GradientPaint, and TexturePaint all implement the Paint interface and can be used by a
Graphics2D object.

Strokes define the details of painting pens such as the width, end style, join style, and dash type. Similar to
Paint, Graphics2D allows the selection of a Stroke object as one of its rendering attributes. The concrete class
BasicStroke implements the Stroke interface and provides common stroke settings.

Transformations are crucial parts of computer graphics. Transformations can be used to modify geometric objects
and to change the views. Affine transforms are the common family of transformations in computer graphics.
Transforms such as translation, rotation, scaling, reflection, and shearing are all examples of affine transforms.

Related to colors, transparency and more general compositing rules for overlapping objects are interesting
rendering attributes. A general set of compositing rules known as Porter–Duff rules are often applied in 2D
graphics. The recent versions of Java 2D fully support Porter–Duff rules.

Clip path is another rendering attribute. It defines a region in which the rendered objects will actually be visible.

Texts are special graphics objects that have very compact representations. The actual geometric shapes of texts
are predefined by fonts. Java 2D provides extensive support for fonts. In addition to the standard application of
drawing texts with various settings of fonts, advanced features such as retrieving the outline of a character are
also available.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 60 (continued)]

3.2. Colors and Paints
3.2.1. Color Space

Colors are important attributes in graphics systems. The color of light is associated with the wavelength or
frequency of the light. Usually light has a spectrum of frequencies whose exact description will be complex. In
practical terms, only colors visible and distinguishable to human eyes need to be defined in graphics systems. A
system called color space is often used to define visible colors with numerical values. Several different color spaces
exist to specify colors in a precise and quantitative way. The general approach is to select a small number of fixed
primary colors such as (red, green, blue) and represent an arbitrary color as a combination of the primary colors:

c = r · pr + g · pg + b · pb

The coefficients (r, g, b) represent the components of the color c in red, green, and blue. They provide a
convenient numerical specification for colors.

The CIEXYZ is a color standard that uses three primary colors, X, Y, and Z, instead of red, green, and blue. Any
visible color can be represented as a positive combination of X, Y, and Z. However, it is usually difficult to directly
implement CIEXYZ in physical devices.

Most monitors use RGB (red, green, blue) color spaces and printers typically use CMYK (cyan, magenta, yellow,
black) spaces. The combinations of the primary colors are used to represent different colors. These systems are
natural to the devices, but they are usually device dependent and they cannot represent all visible colors with
positive coefficients.

[Page 61]

sRGB (standard RGB) is an absolute device-independent color space. It uses the same type of red, green, and blue
components as other RGB systems, but it standardizes the color definitions so that they are independent of any
specific device.

3.2.2. Color

When the geometry of a shape is constructed, it can be rendered with the fill(Shape) or draw(Shape) methods
in Graphics2D. To set the color for rendering the object, the following method of the Graphics class may be used:

void setColor(Color c)

A Color object defines a color. The Color class by default uses the sRGB color space, a proposed standard color
space. A color contains Red, Green, Blue and Alpha components. The Alpha component defines the transparency
of the color. The Color class defines the following constant color values:

black
blue
cyan
darkGray
gray
green
lightGray
magenta
orange
pink
red
white
yellow

Note

These names do not follow the Java naming convention, which specifies that
constants should be in all capital letters. Since JDK 1.4, you can also use the new
constants: BLACK, BLUE, CYAN, DARK_GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE,
PINK, RED, WHITE, and YELLOW.

Other colors can be easily constructed using one of many constructors of the Color class. You may directly specify

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

the RGB values using the following constructors:

Color(int r, int g, int b);
Color(int rgb);
Color(float r, float g, float b);

The first version specifies the three-color components using int values in the range 0–255. The second version is
similar, but the three values are packed into a single int value. The third version uses float values in the range
0.0–1.0 to define the color components.

Besides RGB values, an alpha value related to the transparency of the color can be specified. The following
constructors allow alpha value specification:

Color(int r, int g, int b, int a);
Color(int rgba, boolean hasAlpha);
Color(float r, float g, float b, float a);

Another constructor of the Color class allows the specification of a color space.

Color(ColorSpace colorSpace, float[] components, float alpha);

The following code fragment draws three squares of different colors:

public void paintComponent(Graphics g) {
 g.setColor(Color.red);

[Page 62]
 g.draw(new Rectangle(0, 0, 100, 100));
 g.setColor(new Color(0, 255, 128));
 g.draw(new Rectangle(100, 0, 100, 100));
 g.setColor(new Color(0.5f, 0.0f, 1.0f));
 g.draw(new Rectangle(200, 0, 100, 100));
}

Listing 3.1 illustrates the combinations of primary colors and the usage of colors in Java 2D rendering. The
program displays three overlapping circles representing red, green, and blue. Seven different regions represent
various combinations of the three primary components. Three sliders on the right of the window control the
values of the red, green, and blue components (Figure 3.1).

Listing 3.1. TestColors.java
(This item is displayed on pages 62 - 64 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import javax.swing.event.*;
 7 import java.awt.geom.*;
 8
 9 public class TestColors extends JApplet {
 10 public static void main(String s[]) {
 11 JFrame frame = new JFrame();
 12 frame.setTitle("Colors");
 13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 14 JApplet applet = new TestColors();
 15 applet.init();
 16 frame.getContentPane().add(applet);
 17 frame.pack();
 18 frame.setVisible(true);
 19 }
 20
 21 ColorPanel panel;
 22 public void init() {
 23 panel = new ColorPanel();
 24 Container cp = getContentPane();
 25 cp.setLayout(new BorderLayout());
 26 cp.add(panel, BorderLayout.CENTER);
 27 JPanel p = new JPanel();
 28 cp.add(p,BorderLayout.EAST);
 29 p.setLayout(new GridLayout(1,3,30,10));
 30 JSlider slider = new JSlider(JSlider.VERTICAL,0,255,100);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 31 p.add(slider);
 32 slider.addChangeListener(new ChangeListener() {
 33 public void stateChanged(ChangeEvent ev) {
 34 panel.red = ((JSlider)(ev.getSource())).getValue();
 35 panel.repaint();
 36 }
 37 });
 38 slider = new JSlider(JSlider.VERTICAL,0,255,100);
 39 p.add(slider);
 40 slider.addChangeListener(new ChangeListener() {
 41 public void stateChanged(ChangeEvent ev) {
 42 panel.green = ((JSlider)(ev.getSource())).getValue();
 43 panel.repaint();
 44 }
 45 });

[Page 63]
 46 slider = new JSlider(JSlider.VERTICAL,0,255,100);
 47 p.add(slider);
 48 slider.addChangeListener(new ChangeListener() {
 49 public void stateChanged(ChangeEvent ev) {
 50 panel.blue = ((JSlider)(ev.getSource())).getValue();
 51 panel.repaint();
 52 }
 53 });
 54 }
 55 }
 56
 57 class ColorPanel extends JPanel{
 58 int red = 100;
 59 int green = 100;
 60 int blue = 100;
 61
 62 public ColorPanel() {
 63 setPreferredSize(new Dimension(500, 500));
 64 setBackground(Color.white);
 65 }
 66
 67 public void paintComponent(Graphics g) {
 68 super.paintComponent(g);
 69 Graphics2D g2 = (Graphics2D)g;
 70 Shape rc = new Ellipse2D.Double(100, 113, 200, 200);
 71 Shape gc = new Ellipse2D.Double(50, 200, 200, 200);
 72 Shape bc = new Ellipse2D.Double(150, 200, 200, 200);
 73 Area ra = new Area(rc);
 74 Area ga = new Area(gc);
 75 Area ba = new Area(bc);
 76 Area rga = new Area(rc);
 77 rga.intersect(ga);
 78 Area gba = new Area(gc);
 79 gba.intersect(ba);
 80 Area bra = new Area(bc);
 81 bra.intersect(ra);
 82 Area rgba = new Area(rga);
 83 rgba.intersect(ba);
 84 ra.subtract(rga);
 85 ra.subtract(bra);
 86 ga.subtract(rga);
 87 ga.subtract(gba);
 88 ba.subtract(bra);
 89 ba.subtract(gba);
 90 // fill the color regions
 91 g2.setColor(new Color(red,0,0));
 92 g2.fill(ra);
 93 g2.setColor(new Color(0,green,0));
 94 g2.fill(ga);
 95 g2.setColor(new Color(0,0,blue));
 96 g2.fill(ba);
 97 g2.setColor(new Color(red,green,0));
 98 g2.fill(rga);
 99 g2.setColor(new Color(0,green,blue));
100 g2.fill(gba);
101 g2.setColor(new Color(red,0,blue));
102 g2.fill(bra);
103 g2.setColor(new Color(red,green,blue));
104 g2.fill(rgba);
105 // draw three circles

[Page 64]
106 g2.setColor(Color.black);
107 g2.draw(rc);
108 g2.draw(gc);
109 g2.draw(bc);
110 }
111 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 3.1. Colors formed by combinations of red, green, and blue.

The ColorPanel class has three int fields red, green, and blue to represent the primary color components. In
the paintComponent method (line 67), the seven regions of the picture are formed from three circles using
constructive area geometry. Each region is filled with a combination of primary colors covering the region. For
example, the region covered by the red circle is filled with the red component. The region covered by the red and
blue circles is filled with the color composed of red and blue components. The center region covered by all three
circles is colored with all three components. The three circles are drawn in black.

Three vertical JSlider objects are placed on the right side of the window. They are used to control the values of
the fields red, green, and blue in the ColorPanel. The values of the slides have the range 0 to 255. When a
slider is changed, the corresponding ChangeListener implementation will change the color variable and repaint
the panel (lines 30–53).

3.2.3. Paint

The setColor(Color c) method belongs to the older Graphics class. It sets only a solid color for rendering. The
Graphics2D class of Java 2D contains a much more powerful setPaint(Paint p) method to control the rendering
colors. Paint is a generalization of color. The Paint interface is implemented by the Color class and also
implemented by other classes (see Figure 3.2) that can represent more attributes than simple solid colors.

[Page 65]

Figure 3.2. Paint class hierarchy.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The GradientPaint class defines a type of paint with varying colors. A gradient paint is specified by two points
and two colors. As the location moves from the first point to the second, the paint color changes gradually from
the first color to the second. A gradient paint can be cyclic or acyclic. A cyclic gradient paint repeats the same
pattern periodically. To create an acyclic gradient paint, the following constructors can be used:

GradientPaint(float x1, float y1, Color c1, float x2, float y2, Color c2);
GradientPaint(Point2D p1, Color c1, Point2D p2, Color c2);

In either version, two points are specified with their associated colors. The colors for points between the two given
points will change gradually from one specified color to the other color. Cyclic gradient paints can be created with
the following constructors.

GradientPaint(float x1, float y1, Color c1, float x2, float y2, Color c2,
 boolean cycl);
GradientPaint(Point2D p1, Color c1, Point2D p2, Color c2, boolean cycl);

Setting the last parameter to true will construct a cyclic gradient paint.

The TexturePaint class allows an object to be filled with a texture pattern. An image and an anchor rectangle are
used to define a texture paint. When painting with the texture, the image is repeatedly applied to the tiled
rectangular regions. A TexturePaint object is created with the following constructor:

TexturePaint(BufferImage image, Rectangle2D anchor);

The image defines the texture for painting. The anchor rectangle specifies the positioning of the image in the user
space.

Listing 3.2 demonstrates the effects of graphics drawing with gradient and texture paints. A sample run of the
program is shown in Figure 3.3.

Listing 3.2. TestPaints.java
(This item is displayed on pages 65 - 66 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.awt.image.*;
 6 import javax.swing.*;
 7 import java.awt.font.*;
 8 import java.awt.geom.*;
 9 import java.io.*;
10 import java.net.URL;
11 import javax.imageio.*;
12
13 public class TestPaints extends JApplet {
14 public static void main(String s[]) {
15 JFrame frame = new JFrame();

[Page 66]
16 frame.setTitle("Gradient and Texture Paints");
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 JApplet applet = new TestPaints();
19 applet.init();
20 frame.getContentPane().add(applet);
21 frame.pack();
22 frame.setVisible(true);
23 }
24
25 public void init() {
26 JPanel panel = new PaintPanel();
27 getContentPane().add(panel);
28 }
29 }
30
31 class PaintPanel extends JPanel{
32 private BufferedImage image;
33
34 public PaintPanel() {
35 setPreferredSize(new Dimension(500, 500));
36 setBackground(Color.white);
37 URL url = getClass().getClassLoader().getResource

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

38 ("images/earth.jpg");
39 try {
40 image = ImageIO.read(url);
41 } catch (IOException ex) {
42 ex.printStackTrace();
43 }
44 }
45
46 public void paintComponent(Graphics g) {
47 super.paintComponent(g);
48 Graphics2D g2 = (Graphics2D)g;
49 GradientPaint gp = new GradientPaint(100,50,
50 Color.white, 150, 50, Color.gray, true);
51 g2.setPaint(gp);
52 g2.fillRect(100, 40, 300, 20);
53 TexturePaint tp = new TexturePaint(image,
54 new Rectangle2D.Double(100, 100, image.getWidth(),
55 image.getHeight()));
56 g2.setPaint(tp);
57 Shape ellipse = new Ellipse2D.Double(100, 100, 300, 200);
58 g2.fill(ellipse);
59 GradientPaint paint = new GradientPaint(100, 300, Color.white,
60 400, 400, Color.black);
61 g2.setPaint(paint);
62 Font font = new Font("Serif", Font.BOLD, 144);
63 g2.setFont(font);
64 g2.drawString("Java", 100, 400);
65 }
66 }

Figure 3.3. Shapes drawn with cyclic gradient paint, texture paint, and acyclic gradient paint.
(This item is displayed on page 67 in the print version)

This program draws three visual objects in the paintComponent method (line 46). Three different types of paints

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

are used to draw the figures. The top rectangle is drawn with a cyclic gradient paint created by the following
constructor:

new GradientPaint(100,50, Color.white, 150, 50, Color.gray, true);

The gradient paint specifies a gradual change of colors from the white at the point (100, 50) to the gray at the
point (150, 50). The pattern is cyclically repeated. Because the two points have the same y-coordinates, you will
see a vertical pattern.

[Page 67]

The ellipse is filled with a texture paint defined by an image.

new TexturePaint(image, new Rectangle2D.Double(100, 100, image.getWidth(),
 image.getHeight()));

The image is a BufferedImage object loaded from a file using the read method of the ImageIO class.

The text string is drawn with an acyclic gradient paint:

new GradientPaint(100,300, Color.white, 400, 400, Color.black);

The gradient paint changes the color from white to black as the location moves from (100, 300) to (400, 400).
The paint is acyclic, and the color pattern does not repeat.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 67 (continued)]

3.3. Strokes
A line rendered in computer graphics is not an ideal line with zero width. To be practically realizable, lines must
have specific shapes. The attributes that define the fine details of such shapes are called strokes. A stroke may
include attributes such as the width of lines, the dash style of lines, the cap shape at the ends of lines, and the
style at the joins of lines.

Java 2D includes the interface Stroke to represent strokes. A concrete implementation of the Stroke interface is
the class BasicStroke. BasicStroke provides settings for width, end style, join style, and dash. The constructors
of BasicStroke are listed below.

BasicStroke()
BasicStroke(float width)
BasicStroke(float width, int cap, int join)
BasicStroke(float width, int cap, int join, float miterlimit)
BasicStroke(float width, int cap, int join, float miterlimit,
 float[] dash, float dashphase)

[Page 68]

The parameter width defines the width of the drawing pen. The parameter cap sets the end cap style and can
take values:

CAP_BUTT
CAP_ROUND
CAP_SQUARE

The parameter join defines the join style with values:

JOIN_BEVEL
JOIN_MITER
JOIN_ROUND

The miterlimit sets a limit for JOIN_MITER to prevent a very long join when the angle between the two lines is
small.

The dash array defines a dash pattern by specifying the lengths of the ON/OFF segments. The dashphase defines
the starting point in the dash pattern.

Graphics2D has the following method to set the current stroke:

void setStroke(Stroke s)

Listing 3.3 demonstrates the effects of graphics drawing with different stroke settings. Three end styles, three
join styles, and a dash array with two different dash phase values are illustrated. A sample run of the program is
shown in Figure 3.4.

Listing 3.3. TestStrokes.java
(This item is displayed on pages 68 - 69 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class TestStrokes extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Different Strokes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new TestStrokes();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

18 }
19
20 public void init() {
21 JPanel panel = new StrokePanel();
22 getContentPane().add(panel);
23 }
24 }
25
26 class StrokePanel extends JPanel {
27 public StrokePanel() {
28 setPreferredSize(new Dimension(700, 400));

[Page 69]
29 setBackground(Color.white);
30 }
31
32 public void paintComponent(Graphics g) {
33 super.paintComponent(g);
34 Graphics2D g2 = (Graphics2D)g;
35 GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
36 path.moveTo(0,120);
37 path.lineTo(80,0);
38 path.lineTo(160,120);
39 Stroke stroke = new BasicStroke(20, BasicStroke.CAP_BUTT,
40 BasicStroke.JOIN_BEVEL);
41 g2.setStroke(stroke);
42 g2.translate(50,50);
43 g2.draw(path);
44 g2.drawString("JOIN_BEVEL",100,0);
45 g2.drawString("CAP_BUTT", 40, 120);
46 stroke = new BasicStroke(20, BasicStroke.CAP_ROUND,
47 BasicStroke.JOIN_MITER);
48 g2.setStroke(stroke);
49 g2.translate(200,0);
50 g2.draw(path);
51 g2.drawString("JOIN_MITER",100,0);
52 g2.drawString("CAP_ROUND", 40, 120);
53 stroke = new BasicStroke(20, BasicStroke.CAP_SQUARE,
54 BasicStroke.JOIN_ROUND);
55 g2.setStroke(stroke);
56 g2.translate(200,0);
57 g2.draw(path);
58 g2.drawString("JOIN_ROUND",100,0);
59 g2.drawString("CAP_SQUARE", 40, 120);
60 float[] dashArray = {60,20,20,40};
61 float dashPhase = 0;
62 stroke = new BasicStroke(10, BasicStroke.CAP_BUTT,
63 BasicStroke.JOIN_BEVEL, 0, dashArray, dashPhase);
64 g2.setStroke(stroke);
65 g2.translate(-400,200);
66 g2.drawLine(100, 50, 550, 50);
67 g2.drawString("dash=60 20 20 40", 250, 10);
68 g2.drawString("phase=0", 0, 50);
69 dashPhase = 20;
70 stroke = new BasicStroke(10, BasicStroke.CAP_BUTT,
71 BasicStroke.JOIN_BEVEL, 0, dashArray, dashPhase);
72 g2.setStroke(stroke);
73 g2.translate(0,50);
74 g2.drawLine(100, 50, 550, 50);
75 g2.drawString("phase=20", 0, 50);
76 }
77 }

Figure 3.4. Examples of strokes with different end style, join style, and dash settings.
(This item is displayed on page 70 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A GeneralPath is constructed with two joining line segments (lines 34–37). The path is drawn three times on the
top row. Three BasicStroke instances with different end styles and join styles are applied to the drawings. The
width is set to 20 in order to show the details of stroke styles.

The bottom two rows display dashed lines. The dash array is defined to be {60, 20, 20, 40} (line 59), and the
width is 10 for both strokes, but the dash phase values are 0 and 20, respectively. The shifting of the dash
pattern due to nonzero dash phase is clearly visible.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 70]

3.4. Affine Transformation
Geometric objects go through a transformation stage before being rendered. A general family of geometric
transforms commonly used in computer graphics is called affine transforms. An affine transform preserves the
parallel lines. The affine transforms that also preserve distances are called isometries, Euclidean motions, or rigid
motions. The common affine transforms include:

Translation

Rotation

Reflection

Scaling

Shearing

A translation moves all points of the object by a fixed amount (see Figure 3.5). It is specified by the amounts of
movements in the x- and y-directions. A translation is an isometry, since it does not change lengths and angles.
Figure 3.5 shows a translation of (3, -1). The object is moved 3 units to the right and 1 unit up.

Figure 3.5. A translation of (3, -1).

[Page 71]

A rotation rotates the object about a point by an angle (see Figure 3.6). It is determined by the point and the
angle. A rotation is also an isometry, though it changes the orientation of the shape. Figure 3.6 shows a rotation
of 45 degrees about the origin.

Figure 3.6. A rotation about the origin.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A reflection maps the object to its mirror image about a line (see Figure 3.7). It is determined by the line. A
reflection is an isometry, though it changes the orientation of an angle. Figure 3.7 shows a reflection about the
45 degree line between the x- and y-axes.

Figure 3.7. A reflection about the diagonal line.

A scaling resizes the object by certain fixed factors in the x- and y-directions (see Figure 3.8). A scaling is not an
isometry, because it will change distances and angles. However, it preserves parallelism. Figure 3.8 shows a
scaling by the factors (1.5, 2).

Figure 3.8. A scaling by factors (1.5, 2).

[Page 72]

A shearing about a line shifts a point by an amount proportional to the signed distance to the line (see Figure
3.9). The movements of the points are parallel to the line. Points on the line are not moved. Points on the
opposite sides of the line are moved in the opposite directions. A shearing is not an isometry, but it still preserves
parallelism. Figure 3.9 shows a shearing by the factor 1.0 along the horizontal line y = 2.

Figure 3.9. A shearing by factor 1 along the dashed horizontal line.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Mathematically a 2D affine transformation can be represented as a 3 x 3 matrix. An affine transform requires a 3
x 3 instead of a 2 x 2 matrix, because transforms such as translations are not linear in a 2D space. Using the
concept of homogeneous coordinates, it is possible to treat all affine transforms in a linear framework by adding
one dimension to the vector representation of the points. A more detailed discussion on matrices and
homogeneous coordinates can be found in Appendix A.

For basic transforms, it is usually easy to find the transformation matrices directly. A rotation of an angle θ about
the origin is represented as the matrix:

A translation by the amount (a, b) has the matrix:

A scaling by the factors (a, �) has the matrix representation:

A reflection about the line y = kx is represented by the matrix:

[Page 73]

A shear along the x-axis by the factor s is given by the matrix:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Java 2D uses the AffineTransform class to define an affine transform. It offers convenient methods to set up
most of the basic affine transforms defined above. The following methods of AffineTransform directly set these
named transforms,

void setToIdentity()
void setToRotation(double theta)
void setToRotation(double theta, double x, double y)
void setToScale(double sx, double sy)
void setToShear(double shx, double shy)
void setToTranslation(double tx, double ty)

One transform missing from this list of methods is the reflection. However, you may define a reflection by setting
its matrix. The following matrix defines a reflection about the y-axis:

The AffineTransform class has constructors and methods to directly set the first two rows of the transformation
matrix.

AffineTransform(double m00, double m10, double m01,
 double m11, double m02, double m12)
AffineTransform(float m00, float m10,
 float m01, float m11, float m02, float m12)
AffineTransform(double[] flatmatrix)
AffineTransform(float[] flatmatrix)
void setTransform(double m00, double m10, double m01,
 double m11, double m02, double m12)

Because the last row of an affine transformation matrix is always (0 0 1), it is omitted in the parameter list. The
reflection matrix defined above may be set by the following method:

transform.setTransform(-1, 0, 0, 1, 0, 0);

Because the AffineTransform class allows a scaling with negative factors, the reflection can also be defined as a
special kind of scaling:

transform.setToScale(-1, 1);

An AffineTransform object can be used for both object transformations and viewing transformations. The
following methods of the AffineTransform class apply the transform to geometric objects:

Shape createTransformedShape(Shape shape)
void transform(double[] src, int srcOff, double[] dst,
 int dstOff, int numPts)
void transform(double[] src, int srcOff, float[] dst,
 int dstOff, int numPts)
void transform(float[] src, int srcOff, double[] dst,
 int dstOff, int numPts)
void transform(float[] src, int srcOff, float[] dst,
 int dstOff, int numPts)
Point2D transform(Point2D src, Point2D dst)

[Page 74]
Point2D transform(Point2D[] src, int srcOff, Point2D[] dst,

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 int dstOff, int numPts)
void deltaTransform(double[] src, int srcOff, double[] dst,
 int dstOff, int numPts)
Point2D deltaTransform(Point2D src, Point2D dst)

The createTransformedShape method transforms an entire shape. The transform methods perform the
transformation on a set of points. The deltaTransform methods perform the transformation on a set of vectors.

A viewing transformation can be realized with the transformation in the Graphics2D object. The Graphics2D class
has the following methods to manipulate its transformation:

void setTransform(AffineTransform tx)
void transform(AffineTransform tx)

The method setTransform replaces the current transformation with the given AffineTransform object. The
method transform concatenates the current transformation with the given AffineTransform object on the right.

Listing 3.4 illustrates the effects of affine transforms through an interactive approach. A user is allowed to
perform the transformations on a graphics object using the mouse. The affine transforms are selected with a
menu that includes translation, rotation, scaling, shearing, and reflection. A sample run of the program is shown
in Figure 3.10.

Listing 3.4. Transformations.java
(This item is displayed on pages 74 - 77 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.swing.*;
 8
 9 public class Transformations extends JApplet implements
 10 ActionListener {
 11 public static void main(String s[]) {
 12 JFrame frame = new JFrame();
 13 frame.setTitle("Affine Transforms");
 14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 15 JApplet applet = new Transformations();
 16 applet.init();
 17 frame.getContentPane().add(applet);
 18 frame.pack();
 19 frame.setVisible(true);
 20 }
 21
 22 TransformPanel panel = null;
 23
 24 public void init() {
 25 JMenuBar mb = new JMenuBar();
 26 setJMenuBar(mb);
 27 JMenu menu = new JMenu("Transforms");
 28 mb.add(menu);
 29 JMenuItem mi = new JMenuItem("Translation");
 30 mi.addActionListener(this);
 31 menu.add(mi);
 32 mi = new JMenuItem("Rotation");
 33 mi.addActionListener(this);
 34 menu.add(mi);

[Page 75]
 35 mi = new JMenuItem("Scaling");
 36 mi.addActionListener(this);
 37 menu.add(mi);
 38 mi = new JMenuItem("Shearing");
 39 mi.addActionListener(this);
 40 menu.add(mi);
 41 mi = new JMenuItem("Reflection");
 42 mi.addActionListener(this);
 43 menu.add(mi);
 44
 45 panel = new TransformPanel();
 46 getContentPane().add(panel);
 47 }
 48
 49 public void actionPerformed(ActionEvent ev) {
 50 String command = ev.getActionCommand();
 51 if ("Translation".equals(command)) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 52 panel.transformType = panel.TRANSLATION;
 53 } else if ("Rotation".equals(command)) {
 54 panel.transformType = panel.ROTATION;
 55 } else if ("Scaling".equals(command)) {
 56 panel.transformType = panel.SCALING;
 57 } else if ("Shearing".equals(command)) {
 58 panel.transformType = panel.SHEARING;
 59 } else if ("Reflection".equals(command)) {
 60 panel.transformType = panel.REFLECTION;
 61 }
 62 }
 63 }
 64
 65 class TransformPanel extends Jpanel
 66 implements MouseListener, MouseMotionListener {
 67 static final int NONE = 0;
 68 static final int TRANSLATION = 1;
 69 static final int ROTATION = 2;
 70 static final int SCALING = 3;
 71 static final int SHEARING = 4;
 72 static final int REFLECTION = 5;
 73
 74 int transformType = NONE;
 75 Shape drawShape = null;
 76 Shape tempShape = null;
 77 Point p = null;
 78 int x0 = 400;
 79 int y0 = 300;
 80
 81 public TransformPanel() {
 82 super();
 83 setPreferredSize(new Dimension(800, 600));
 84 setBackground(Color.white);
 85 drawShape = new Rectangle(-50, -50, 100, 100);
 86 addMouseListener(this);
 87 addMouseMotionListener(this);
 88 }
 89
 90 public void paintComponent(Graphics g) {
 91 super.paintComponent(g);
 92 Graphics2D g2 = (Graphics2D)g;
 93 g2.translate(x0, y0);
 94 g2.drawLine(-200, 0, 200, 0);

[Page 76]
 95 g2.drawLine(0, -200, 0, 200);
 96 g2.draw(drawShape);
 97 }
 98
 99 public void mouseClicked(MouseEvent ev) {
100 }
101
102 public void mouseEntered(MouseEvent ev) {
103 }
104
105 public void mouseExited(MouseEvent ev) {
106 }
107
108 public void mousePressed(MouseEvent ev) {
109 p = ev.getPoint();
110 }
111
112 public void mouseReleased(MouseEvent ev) {
113 Graphics g = getGraphics();
114 Point p1 = ev.getPoint();
115 AffineTransform tr = new AffineTransform();
116 switch (transformType) {
117 case TRANSLATION:
118 tr.setToTranslation(p1.x-p.x, p1.y-p.y);
119 break;
120 case ROTATION:
121 double a = Math.atan2(p1.y-y0, p1.x-x0) - Math.atan2
122 (p.y-y0, p.x-x0);
123 tr.setToRotation(a);
124 break;
125 case SCALING:
126 double sx = Math.abs((double)(p1.x-x0)/(p.x-x0));
127 double sy = Math.abs((double)(p1.y-y0)/(p.y-y0));
128 tr.setToScale(sx, sy);
129 break;
130 case SHEARING:
131 double shx = ((double)(p1.x-x0)/(p.x-x0))-1;
132 double shy = ((double)(p1.y-y0)/(p.y-y0))-1;
133 tr.setToShear(shx, shy);
134 break;
135 case REFLECTION:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

136 tr.setTransform(-1, 0, 0, 1, 0, 0);
137 break;
138 }
139 drawShape = tr.createTransformedShape(drawShape);
140 repaint();
141 }
142
143 public void mouseMoved(MouseEvent ev) {
144 }
145
146 public void mouseDragged(MouseEvent ev) {
147 Point p1 = ev.getPoint();
148 AffineTransform tr = new AffineTransform();
149 switch (transformType) {
150 case TRANSLATION:
151 tr.setToTranslation(p1.x-p.x, p1.y-p.y);
152 break;
153 case ROTATION:
154 double a = Math.atan2(p1.y-y0, p1.x-x0) - Math.atan2
155 (p.y-y0, p.x-x0);

[Page 77]
156 tr.setToRotation(a);
157 break;
158 case SCALING:
159 double sx = Math.abs((double)(p1.x-x0)/(p.x-x0));
160 double sy = Math.abs((double)(p1.y-y0)/(p.y-y0));
161 tr.setToScale(sx, sy);
162 break;
163 case SHEARING:
164 double shx = ((double)(p1.x-x0)/(p.x-x0))-1;
165 double shy = ((double)(p1.y-y0)/(p.y-y0))-1;
166 tr.setToShear(shx, shy);
167 break;
168 case REFLECTION:
169 tr.setTransform(-1, 0, 0, 1, 0, 0);
170 break;
171 }
172 Graphics2D g = (Graphics2D)getGraphics();
173 g.setXORMode(Color.white);
174 g.translate(x0, y0);
175 if (tempShape != null)
176 g.draw(tempShape);
177 tempShape = tr.createTransformedShape(drawShape);
178 g.draw(tempShape);
179 }
180 }

Figure 3.10. Affine transforms applied to a rectangle.

The program initially displays a set of axes for the coordinate system and a rectangle. A menu is defined to select
an affine transformation from a list including translation, rotation, scaling, shearing, and reflection (lines 25�43).
To perform a selected transformation, drag the mouse in the desired direction. The amount of mouse movement
is used to determine the corresponding transformation on the object.

Two classes are defined in this program, Transformations and TransformPanel. The Transformations class is a
subclass of JApplet and contains the menu for selecting the current affine transform. The class is also the action
event handler to handle the menu selection actions and to set the appropriate values for the transformType
variable in TransformPanel.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The TransformPanel class is a subclass of JPanel and it handles the mouse events. When a transform is
requested, an AffineTransform object is set to the value determined by the selected transform type and the
mouse movements. The transform is then applied to the shape as an object transformation using the method
createTransformedShape (line 139). The shape is initially a rectangle, but the transformations on the shape are
accumulative, and the newly transformed shape becomes the current shape. The transformations do not affect
other objects such as the axes, because they are object transformations applied locally to the shape only.

[Page 78]

The rubber-banding technique is also used to provide visual clues while the user is dragging the mouse. The
method is the same as that in Listing 2.3. The XOR drawing mode is applied to draw and erase the temporary
shapes.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 78 (continued)]

3.5. Compositions of Transformations
Transformations can be combined to form new transformations. For example, you may apply a translation
followed by a rotation and followed by another translation. Any composition of affine transforms is still an affine
transform. Any composition of rigid motions is still a rigid motion. Conversely, a transform may be decomposed
into a series of (usually simpler) transforms.

The transformation matrix of a composite transform is the product of matrices of the individual transforms. For
example, if M1, M2, M3 are the matrices for the affine transforms T1, T2, T3, respectively, then the matrix for the
composition T1 º T2 º T3 is M1M2M3. Note that the operation of transformation composition is noncommutative,
so the order of applying the transforms is significant. In our notation, the transforms in a composite transform
are applied from right to left. For example, when the composite transform T1 º T2 º T3 is applied to a point p, the
order of the transforms is T3, T2, T1:

(T1 º T2 º T3)(p) = T1(T2(T3(p)))

Composite transforms are useful in constructing complex transforms from simpler ones. If you need a rotation
about the point (3, 4) by 30 degrees, you may first perform a translation to move the point (3, 4) to the origin.
Then you may perform a 30-degree rotation about the origin. Finally you can translate the origin back to the
point (3, 4). Combining the three transforms, you will obtain the required transform. In the matrix form, the
translation that moves (3, 4) to the origin is given by:

The rotation of 30 degrees about the origin is

The second translation is

Combing three transforms, the final rotation has the transformation matrix:

In Java 2D, the AffineTransform class provides the following methods to support composite transforms:

void rotate(double theta)
void rotate(double theta, double x, double y)

[Page 79]
void scale(double sx, double sy)
void shear(double shx, double shy)
void translate(double tx, double ty)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Unlike the setTo* methods introduced in the previous section, these methods do not clear the existing
transforms in the current objects, but combine the current transforms with the newly specified transforms. The
new transforms are appended to the right of the current ones. Instead of the simple transformations listed above,
it is also possible to combine the current transform with another AffineTransform object:

void concatenate(AffineTransform tx)
void preConcatenate(AffineTransform tx)

The first method concatenates the other transform to the right of the current. The second concatenates the
other transform to the left of the current.

Note that the order of transform composition is from left to right, and the methods above (except for
preConcatenate) concatenate the transform from the right. If you create a composite transform by calling the
above methods, the transforms are applied in the opposite order of your calling sequence. For example, consider
the following code:

AffineTransform transform = new AffineTransform();
transform.rotate(Math.PI/3);
transform.scale(2, 0.3);
transform.translate(100, 200);

The first transform to be applied is the translation and the last transform is the rotation.

Listing 3.5 illustrates the use of transform composition. To rotate an ellipse about its center that is not located at
the origin, you may first translate the object to the origin. Then rotate around the origin. Finally, translate the
center of the rotated ellipse to its original point. (See Figure 3.11.)

Listing 3.5. Composition.java
(This item is displayed on pages 79 - 80 in the print version)

 1 package chapter3;
 2
 3 import javax.swing.*;
 4 import java.awt.*;
 5 import java.awt.geom.*;
 6
 7 public class Composition extends JApplet {
 8 public static void main(String s[]) {
 9 JFrame frame = new JFrame();
10 frame.setTitle("Transformation Composition");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 JApplet applet = new Composition();
13 applet.init();
14 frame.getContentPane().add(applet);
15 frame.pack();
16 frame.setVisible(true);
17 }
18
19 public void init() {
20 JPanel panel = new CompositionPanel();
21 getContentPane().add(panel);
22 }
23 }
24
25 class CompositionPanel extends JPanel {
26 public CompositionPanel() {

[Page 80]
27 setPreferredSize(new Dimension(640, 480));
28 this.setBackground(Color.white);
29 }
30
31 public void paintComponent(Graphics g) {
32 super.paintComponent(g);
33 Graphics2D g2 = (Graphics2D)g;
34 g2.translate(100,100);
35 Shape e = new Ellipse2D.Double(300, 200, 200, 100);
36 g2.setColor(new Color(160,160,160));
37 g2.fill(e);
38 AffineTransform transform = new AffineTransform();
39 transform.translate(-400,-250);
40 e = transform.createTransformedShape(e);
41 g2.setColor(new Color(220,220,220));
42 g2.fill(e);
43 g2.setColor(Color.black);
44 g2.drawLine(0, 0, 150, 0);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

45 g2.drawLine(0, 0, 0, 150);
46 transform.setToRotation(Math.PI / 6.0);
47 e = transform.createTransformedShape(e);
48 g2.setColor(new Color(100,100,100));
49 g2.draw(e);
50 transform.setToTranslation(400, 250);
51 e = transform.createTransformedShape(e);
52 g2.setColor(new Color(0,0,0));
53 g2.draw(e);
54 }
55 }

Figure 3.11. Composition of a translation, a rotation, and another translation.

The program shows a shape at different stages of a composite transformation. The shape is an ellipse originally
constructed with a bounding rectangle (300, 200, 200, 100), so its center is located at (400, 250) (line 35). The
objective is to rotate the ellipse by 30 degrees around the center (400, 250). To achieve this transformation, a
composition of three transformations is used. First a translation of (-400, -250) will move the ellipse so that it is
centered at the origin. Then a rotation of 30 degrees about the origin is applied. The ellipse is rotated and still
centered at the origin. Finally a translation of (400, 250) moves the ellipse back so that its center is again at
(400, 250). The composition of the three transforms is the desired transformation.

[Page 81]

To show all parts of the figures, a viewing transformation is used to move the origin of the world space from the
upper left corner of the screen to (100, 100) (line 34). The x- and y-axes are drawn to show the new origin. The
ellipse at each stage of the transformation is displayed with different gray levels. The rotated ellipses are not filled.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 81 (continued)]

3.6. Transparency and Compositing Rules
Compositing rules determine the results of rendering overlapped objects. Various visual effects such as different
degrees of transparency can be obtained by choosing compositing rules.

To establish the compositing rules, the concept of an a-channel is needed. The a-channel can be viewed as a part
of color properties that specifies the transparency. An a-channel is a number between 0.0 and 1.0, with 0.0
representing complete transparency and 1.0 complete opaqueness.

Given the source and destination pixel color and a-values, the Porter–Duff rules define the resulting color and a-
values as linear combinations of the source and destination values:

a
·
C

= Fs · as · Cs + Fd · ad · Cd

a = Fs · as + Fd · ad

Often the color components may have their a-values premultiplied to speed up the computation. The different
choices of the two coefficients Fs and Fd in the equation define the different compositing rules. There are twelve
Porter–Duff rules, having the coefficients shown in Table 3.1.

Table 3.1.
(This item is displayed on page 82 in the print version)

Porter–Duff Rule Fs Fd

Clear 0 0

SrcOver 1 1 - as

DstOver 1 - ad 1

SrcIn ad 0

DstIn 0 as

SrcOut 1 - ad 0

DstOut 0 1 - as

Src 1 0

Dst 0 1

SrcAtop ad 1 - as

DstAtop 1 - ad as

Xor 1 - ad 1 - as

The Porter–Duff rules can be derived systematically from a probabilistic model. The a-value of a color can be
interpreted as the probability that the color will be shown, or more concretely as the portion of the pixel area
covered by the specified color. To combine the source and destination colors with their respective a-values, four
different cases need to be considered: source color occurs only, destination color occurs only, both colors occur,
and neither color occurs. Figure 3.12 illustrates the four events, which occur with probabilities as(1 - ad), ad(1 -
as), asad, and (1 - as) (1 - ad), respectively. A compositing rule simply decides whether to retain a color when the
color occurs. In the source-color-only event, a rule can choose to retain the source color or to omit it. In the
destination-color-only event, the destination color can be selected or omitted. In the both-colors event, a rule can
choose the source color, the destination color, or no color. In the neither-color event, a rule can only select no
color. Therefore, the total number of rules based on this model is 2 x 2 x 3 x 1 = 12.

Figure 3.12. Four different events of color occurrence in the probabilistic model of compositing.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 82]

For example, the SrcOver rule chooses the source color in the event of source color only and the event of both
colors. It chooses the destination color in the destination-color-only event. It must choose no color in the neither-
color event. Consequently the probability of source color occurring in the combined color is as(1 - ad) + as ad = as,
and the probability of destination color is ad(1 - as). This leads to the selection of the coefficients Fs = 1, Fd = (1 -
as) as shown in Table 3.1.

Early versions of Java 2D supports the first eight rules in Table 3.1. Starting with J2SDK 1.4, all twelve rules are
supported. The AlphaComposite class encapsulates the rules. An instance of AlphaComposite for a rule can be
obtained by a static field of AlphaComposite with the name shown in Table 3.1. To apply a compositing rule to a
Graphics2D object, simply call the setComposite method. For example, the following statement sets the
compositing rule to SrcIn:

Graphics2D g2 = (Graphics2D)g;
g2.setComposite(AlphaComposite.SrcIn);

Listing 3.6 illustrates the application of the AlphaComposite class to implement Porter–Duff rules. This example
shows several visual objects rendered with the twelve different Porter–Duff compositing rules. The rules are
selected by clicking the mouse on the display panel. A sample run of the program is shown in Figure 3.13.

Listing 3.6. Compositing.java
(This item is displayed on pages 82 - 84 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.awt.image.*;
 6 import javax.swing.*;
 7 import java.awt.font.*;
 8 import java.awt.geom.*;
 9 import java.io.*;
10 import java.net.URL;

[Page 83]
11 import javax.imageio.*;
12
13 public class Compositing extends JApplet {
14 public static void main(String s[]) {
15 JFrame frame = new JFrame();
16 frame.setTitle("Compositing Rules");
17 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 JApplet applet = new Compositing();
19 applet.init();
20 frame.getContentPane().add(applet);
21 frame.pack();
22 frame.setVisible(true);
23 }
24
25 public void init() {
26 JPanel panel = new CompositePanel();
27 getContentPane().add(panel);
28 }
29 }
30

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

31 class CompositePanel extends JPanel implements MouseListener {
32 BufferedImage image;
33 int[] rules = {AlphaComposite.CLEAR, AlphaComposite.SRC_OVER,
34 AlphaComposite.DST_OVER, AlphaComposite.SRC_IN,
35 AlphaComposite.DST_IN, AlphaComposite.SRC_OUT,
36 AlphaComposite.DST_OUT, AlphaComposite.SRC,
37 AlphaComposite.DST, AlphaComposite.SRC_ATOP,
38 AlphaComposite.DST_ATOP, AlphaComposite.XOR};
39 int ruleIndex = 0;
40
41 public CompositePanel() {
42 setPreferredSize(new Dimension(500, 400));
43 setBackground(Color.white);
44 URL url =
45 getClass().getClassLoader().getResource("images/earth.jpg");
46 try {
47 image = ImageIO.read(url);
48 } catch (IOException ex) {
49 ex.printStackTrace();
50 }
51 addMouseListener(this);
52 }
53
54 public void paintComponent(Graphics g) {
55 super.paintComponent(g);
56 Graphics2D g2 = (Graphics2D)g;
57 g2.drawImage(image, 100, 100, this);
58 AlphaComposite ac =
59 AlphaComposite.getInstance(rules[ruleIndex], 0.4f);
60 g2.setComposite(ac);
61 Shape ellipse = new Ellipse2D.Double(50, 50, 120, 120);
62 g2.setColor(Color.red);
63 g2.fill(ellipse);
64 g2.setColor(Color.orange);
65 Font font = new Font("Serif", Font.BOLD, 144);
66 g2.setFont(font);
67 g2.drawString("Java", 90, 240);
68 }
69
70 public void mouseClicked(MouseEvent e) {

[Page 84]
71 ruleIndex++;
72 ruleIndex %= 12;
73 repaint();
74 }
75 public void mousePressed(MouseEvent e) {
76 }
77 public void mouseReleased(MouseEvent e) {
78 }
79 public void mouseEntered(MouseEvent e) {
80 }
81 public void mouseExited(MouseEvent e) {
82 }
83 }

Figure 3.13. Overlapping objects rendered with the SRC_OVER rule, one of the twelve compositing
rules demonstrated in this example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

This program demonstrates the twelve Porter–Duff compositing rules. The class Compositing extends the JPanel
class and implements the MouseListener interface.

The list of compositing rules is placed in an int array using the constants defined in the AlphaComposite class
(line 33). The variable ruleIndex points to the current compositing rule. The mouseClicked method rotates the
compositing rules by incrementing the ruleIndex modulo 12 (lines 71–72). A repaint method is called to refresh
the display with the new compositing rule. Therefore, every time the panel is clicked, the panel switches to a
different compositing rule.

In the constructor of CompositePanel an image is loaded from a disk file (line 41). In the paintComponent
method (line 54), the image is drawn first. The composite rule is then set to the current compositing rule with an
a-value of 0.4, using the static method getInstance of the AlphaComposite class. A red circle is drawn, and the
string "Java" is also drawn with a white color.

The on-screen drawing surface does not maintain an itself, and the a-value of any pixel is always implicitly
assumed to be 1.0. Consequently, as soon as an object is painted to the screen, the destination a becomes 1.0.
Because of this behavior, some of the compositing rules do not produce interesting results. For example, the rules
DstOver, DstOut, DstATop, and Xor will always ignore the source, since the destination a is 1. One way to show
more interesting effects is to draw on an off-screen image with an a-channel.

[Page 85]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 85 (continued)]

3.7. Clipping
A clipping path defines a region in which the objects will actually be visible. Graphics2D maintains a current
clipping region. When an object is drawn, it is clipped against the clipping path. Portions of the object falling
outside the clipping path will not be drawn. Any Shape object can be used for clipping. The following code segment
sets an ellipse as the clipping shape and draws an image. Only the portion of the image which lies inside the
ellipse will be visible.

Graphics2D g2 = (Graphics2D)g;
Shape ellipse = new Ellipse2D.Double(0, 0, 300,200);
g2.setClip(ellipse);
g2.drawImage(image, 0, 0, this);

Another method of Graphics2D that can change the clip region is:

void clip(Shape path)

This method will clip the current clipping region further with the specified shape.

Listing 3.7 demonstrates the use of clipping path. Another example will be given in the next section. In this
simple example, a special shape is created and used as the clip path for a Graphics2D object. The subsequent
drawings are clipped by the shape. A sample run of the program is shown in Figure 3.14.

Listing 3.7. TestClip.java
(This item is displayed on pages 85 - 86 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import javax.swing.*;
 5 import java.awt.geom.*;
 6
 7 public class TestClip extends JApplet {
 8 public static void main(String s[]) {
 9 JFrame frame = new JFrame();
10 frame.setTitle("Clip Path");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 JApplet applet = new TestClip();
13 applet.init();
14 frame.getContentPane().add(applet);
15 frame.pack();
16 frame.setVisible(true);
17 }
18
19 public void init() {
20 JPanel panel = new ClipPanel();
21 getContentPane().add(panel);
22 }
23 }
24
25 class ClipPanel extends JPanel {
26 public ClipPanel() {
27 setPreferredSize(new Dimension(500, 500));

[Page 86]
28 setBackground(Color.white);
29 }
30
31 public void paintComponent(Graphics g) {
32 super.paintComponent(g);
33 Graphics2D g2 = (Graphics2D)g;
34 GeneralPath path = new GeneralPath(GeneralPath.WIND_EVEN_ODD);
35 path.moveTo(100,200);
36 path.quadTo(250, 50, 400, 200);
37 path.lineTo(400,400);
38 path.quadTo(250,250,100,400);
39 path.closePath();
40 g2.clip(path);
41 g2.setColor(new Color(200,200,200));
42 g2.fill(path);
43 g2.setColor(Color.black);
44 g2.setFont(new Font("Serif", Font.BOLD, 60));
45 g2.drawString("Clip Path Demo",80,200);
46 g2.drawOval(50, 250, 400, 100);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

47 }
48 }

Figure 3.14. The gray area is enclosed by the clip path. Graphical drawings are clipped by the clip
path.

The program has a structure similar to that in the previous examples. An applet with a main method is created to
form an application as well as an applet. The ClipPanel class extends JPanel to form the drawing canvas of the
program.

In the paintComponent method (line 31), a GeneralPath object with two line segments and two quad curves is
constructed. The closed path is set as the current clip path of the Graphics2D object by calling the method clip.
The path is used again with the fill method to show the clip area in a light gray shade. Two graphics objects are
drawn: a text string "Clip Path Demo" and an ellipse. The effect of clipping is obvious. Only the portions of the
objects lying inside the clip path are visible.

[Page 87]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 87 (continued)]

3.8. Text and Font
In computer graphics, text represents a special type of geometric objects. A text string can be compactly
represented by a sequence of characters with standard coding schemes, such as ASCII and Unicode. The actual
rendering shapes of the characters are determined by predefined fonts. The geometry describing the shape of a
character is known as a glyph. A font is a collection of glyphs for an entire alphabet.

Note

The relation between characters and glyphs is not always one to one. Sometimes
one glyph may correspond to several characters, as in the case of a ligature. A
ligature occurs in some fonts when certain two-character sequences are rendered in
a combined fashion. A common ligature is "fi" in some fonts, as shown in Figure
3.15.

Figure 3.15. A common ligature.

Java 2D offers a rich set of font and text-manipulation features. The most common high-level usages of texts
involve creating a Font object and calling the methods setFont and drawString in Graphics2D.

A Font object can be created with the following constructor:

Font(String name, int style, int size)

The name parameter specifies the font face name or the logical name of a font. A font is identified by the font face
name (also called font name), such as "Times New Roman." The fonts available in an environment are platform
dependent. Java also supports logical fonts to improve portability. A logical font is mapped to a physical font on a
particular system. For example, the logical font "SansSerif" is mapped to "Arial" in a Windows system. Five logical
font families are always supported in Java.

Serif
SansSerif
Monospaced
Dialog
DialogInput

[Page 88]

The style parameter is a mask to select font styles. Three bit masks are defined in Font, and they may be
combined with the bitwise OR "|" operator:

PLAIN
ITALIC
BOLD

The size parameter specifies the point size of the font.

A Font object can be selected in a Graphics2D object with the method:

void setFont(Font font)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The font will take effect for subsequent calls to methods for drawing texts:

void drawString(String s, int x, int y)
void drawString(String s, float x, float y)

In addition to applying existing fonts in the system, it is also possible to derive new fonts from existing ones by
modifying certain attributes. The following methods in the Font class generate derived fonts:

Font deriveFont(int style)
Font deriveFont(float size)
Font deriveFont(int style, float size)
Font deriveFont(AffineTransform tx)
Font deriveFont(int style, AffineTransform tx)
Font deriveFont(Map attributes)

The point size of a font provides only a crude indication of the size of the text drawn. The actual size of the
rendered text usually depends on the characters in the string. In tasks such as centering the text, it may be
useful to know the actual geometric size of the text. Font metrics are measurements of rendered texts with a
specific font. The following methods of Font provide font metric information:

Rectangle2D getStringBounds(String str, FontRenderContext frc)
LineMetrics getLineMetrics(String str, FontRenderContext frc)

Because the precise metrics also depend on the options of rendering, the above methods use a
FontRenderContext object to obtain the additional information. The FontRender-Context object can be obtained
through a method in Graphics2D:

FontRenderContext getFontRenderContext()

The getStringBounds method returns a bounding rectangle for the string. The getLineMetrics method returns
a LineMetrics object that contains more detailed line metric data. The baseline is the reference line of a font.
The ascent is the amount that the font extends above the baseline. The descent is the amount extending below
the baseline. The leading is the extra space between the two lines. The following methods of LineMetrics
retrieve the metrics:

float getAscent()
float getDescent()
float getLeading()

Listing 3.8 demonstrates font-related features. The derived fonts and font metrics are demonstrated in this
example. Three lines of text are displayed. The first line is drawn with a derived font that is slanted to the left.
The second line shows the bounding rectangle together with the text. The third line displays the baseline, ascent,
descent, and leading for the text. A sample run of the program is shown in Figure 3.16.

[Page 89]

Listing 3.8. FontFun.java
(This item is displayed on pages 89 - 90 in the print version)

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import javax.swing.*;
 5 import java.awt.geom.*;
 6 import java.awt.font.*;
 7
 8 public class FontFun extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Fonts");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new FontFun();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

17 frame.setVisible(true);
18 }
19
20 public void init() {
21 JPanel panel = new FontPanel();
22 getContentPane().add(panel);
23 }
24 }
25
26 class FontPanel extends JPanel {
27 public FontPanel() {
28 setPreferredSize(new Dimension(640, 480));
29 setBackground(Color.white);
30 }
31
32 public void paintComponent(Graphics g) {
33 super.paintComponent(g);
34 Graphics2D g2 = (Graphics2D)g;
35 Font font = new Font("Serif", Font.BOLD, 36);
36 AffineTransform tx = new AffineTransform();
37 tx.shear(0.5, 0);
38 g2.setFont(font.deriveFont(tx));
39 g2.drawString("Derived font", 100, 100);
40
41 g2.setFont(font);
42 FontRenderContext frc = g2.getFontRenderContext();
43 String str = "String bounds";
44 Rectangle2D bounds = font.getStringBounds(str, frc);
45 g2.translate(100, 200);
46 g2.draw(bounds);
47 g2.drawString(str, 0, 0);
48
49 str = "Baseline, ascent, descent, leading";
50 g2.translate(0,100);
51 int w = (int)font.getStringBounds(str, frc).getWidth();
52 LineMetrics lm = font.getLineMetrics(str, frc);
53 g2.drawLine(0, 0, w, 0);
54 int y = -(int)lm.getAscent();
55 g2.drawLine(0, y, w, y);
56 y = (int)lm.getDescent();
57 g2.drawLine(0, y, w, y);
58 y = (int)(lm.getDescent()+lm.getLeading());

[Page 90]
59 g2.drawLine(0, y, w, y);
60
61 g2.drawString(str,0,0);
62 }
63 }

Figure 3.16. The first line shows the text drawn with a derived font. The second line draws the
bounding rectangle. The third line shows the baseline and the amounts of ascent, descent, and

leading.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Three lines of text are drawn in the paintComponent method of the FontPanel class (line 32). An
AffineTransform object is created to perform a horizontal shear. A new font is derived from a 36-point bold Serif
font with the transformation. The derived font is slanted to the left because of the shear transform. The text
string "Derived font" is drawn using the derived font.

A FontRenderContext object is obtained from the Graphics2D object (line 42). It is used in the method
getStringBounds of the Font object to retrieve the bounding rectangle for the string "String bounds." The string
is drawn together with the bounding rectangle.

The third line of text is the string "Baseline, ascent, descent, leading." The baseline of the text is drawn based on
the width of the text. The LineMetrics object for the string is retrieved through the method getLineMetrics
(line 52). The values for ascent, descent, and leading are obtained from the object, and the lines corresponding to
the values are drawn relative to the baseline.

Java 2D also provides advanced functions for font-related operations. In particular, glyphs of characters in a font
can be retrieved as Shape objects. This enables sophisticated processing and application of the glyphs to achieve
varieties of visual effects. The class Font represents a font. The class GlyphVector encapsulates the geometric
description of a sequence of glyphs. To obtain a GlyphVector object for a string corresponding to a font, use the
following method of Font:

[Page 91]

GlyphVector createGlyphVector(FontRenderContext frc, String str)

The FontRenderContext object defines certain measurements necessary to render a font. It can be obtained from
a Graphics2D object by calling the method getFontRender-Context. Once the GlyphVector object is created, the
Shape object corresponding to the glyphs can be obtained by the following methods of GlyphVector:

Shape getOutline()
Shape getOutline(float x, float y)

The x- and y-parameters specify the starting location for rendering the glyphs. The returned Shape object
corresponding to the glyphs can be processed and rendered like other Shape objects. Listing 3.9 illustrates the use
of glyphs as a clipping shape. The program shows the technique of retrieving the glyphs of a text string as a
Shape and use it as a clip path. A sample run of the program is shown in Figure 3.17.

Listing 3.9. GlyphClip.java
(This item is displayed on pages 91 - 92 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 1 package chapter3;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.font.*;
 7 import java.awt.geom.*;
 8
 9 public class GlyphClip extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame();
12 frame.setTitle("Glyph and Clip");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 JApplet applet = new GlyphClip();
15 applet.init();
16 frame.getContentPane().add(applet);
17 frame.pack();
18 frame.setVisible(true);
19 }
20
21 public void init() {
22 JPanel panel = new GlyphPanel();
23 getContentPane().add(panel);
24 }
25 }
26
27 class GlyphPanel extends JPanel {
28 public GlyphPanel() {
29 setPreferredSize(new Dimension(500, 400));
30 setBackground(Color.white);
31 }
32 public void paintComponent(Graphics g) {
33 super.paintComponent(g);
34 Graphics2D g2 = (Graphics2D)g;
35 Font font = new Font("Serif", Font.BOLD, 144);
36 FontRenderContext frc = g2.getFontRenderContext();
37 GlyphVector gv = font.createGlyphVector(frc, "Java");
38 Shape glyph = gv.getOutline(100,200);
39 g2.setClip(glyph);

[Page 92]
40 g2.setColor(Color.red);
41 for (int i = 0; i < 2000; i++) {
42 Shape shape = new Ellipse2D.Double(Math.random()*500,
43 Math.random()*400, 30, 20);
44 g2.draw(shape);
45 }
46 }
47 }

Figure 3.17. Two thousand random ellipses drawn on a clipping shape defined by the glyphs of the
string "Java."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The program displays the special figure in a subclass of JPanel. The paintComponent method is overridden to
perform the drawing. A bold, 144-point "Serif" font object is created. A FontRenderContext object is obtained
through the Graphics2D object.

The glyphs from the string "Java" are obtained from the font and font render context and they are kept in a
GlyphVector variable (line 37). The glyph vector is converted to a Shape object through the getOutline methods
(line 38). The shape is then set to the clipping path of the rendering by calling the method setClip of the
Graphics2D object.

Two thousand ellipses with random locations are drawn on the panel (lines 41–44). Only the portions inside the
glyphs are visible. The text string is never explicitly drawn, but the drawing inside the clipping region clearly
highlights the outline of the glyphs.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 92 (continued)]

Key Classes and Methods
java.awt.Color A class encapsulating colors.

java.awt.Paint An interface for Color, GradientPaint, and TexturePaint classes.

java.awt.GradientPaint A class for gradient paint.

java.awt.TexturePaint A class for texture paint.

java.awt.Stroke An interface for stroke definitions.

java.awt.BasicStroke An implementation of common strokes.

java.awt.geom.AffineTransform A class encapsulating 2D affine transformations.

javax.awt.AlphaComposite A class for alpha compositing rules.

[Page 93]

java.awt.Graphics2D.setClip(Shape) A method to set the current clipping path.

java.awt.Graphics2D.setComposite(AlphaComposite) A method to set the current compositing rule.

java.awt.Font A class encapsulating a font.

java.awt.font.LineMetrics A class for font metrics.

java.awt.font.GlyphVector A class encapsulating a series of glyphs for a text string.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 93 (continued)]

Key Terms
color space

A system to specify colors with numerical values.

affine transformation

A transform that preserves parallelism.

transform composition

A combining of two or more transforms to form a new one.

Porter–Duff rules

A method to create new geometric shapes by using set operations such as union and intersection on the
areas of existing shapes.

clip path

A shape defining a region to constrain rendering.

font

A design of the shapes for a set of characters.

font metrics

Measurements of the rendered text such as ascent, descent, and leading.

glyph

A geometric description of a text string in a specific font.

ligature

A special combination of multiple characters forming one glyph.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 93 (continued)]

Chapter Summary
In this chapter we discuss several important aspects of 2D graphics rendering and their implementations in
Java 2D. Main topics covered include colors, strokes, transformations, clip paths, compositing rules, and
fonts.

Colors and, more generally, paints are attributes that can be applied to visual objects when they are
rendered. Java 2D provides three types of paints using the classes Color, GradientPaint, and
TexturePaint.

Strokes define the details of line styles. Java 2D contains the Stroke interface for general stroke definitions
and a specific implementation BasicStroke for commonly used stroke attributes such as line width, end
cap style, and join style.

Affine transformations are a large set of transformations commonly used for object transformations and
viewing transformations. An affine transform preserves parallelism. Basic affine transforms include
translation, rotation, scaling, shearing, and reflection. Java 2D provides comprehensive supports for affine
transformation. The class AffineTransform defines an affine transform and contains many constructors
and methods to specify the transform. The method createTransformedShape provides a way to perform
the object transformations. An AffineTransform object can also be used by a Graphics2D object to set the
viewing transformation. Transformations can be combined to form more complex ones.

The Porter–Duff rules define the compositing operations with an The twelve compositing rules specify
various ways that colors from the source and the destination may be combined. Interesting visual effects
such as transparency can be achieved by using appropriate compositing rules.

[Page 94]

Clipping is a rendering facility that can produce complex visual effects. In Java 2D, a clipping path for a
Graphics2D object can be set to any Shape object.

Text strings are useful visual objects. A font defines the glyphs of all the characters. Besides the usual
rendering of texts with the drawString method, glyphs for a text string can be retrieved as a Shape object
that can be directly manipulated as other Shape objects.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 94 (continued)]

Review Questions

3.1 What is the wavelength range of visible color?

3.2 In an RGB system, if each of the red, green, and blue components is represented by a byte, how
many different colors can be formed?

3.3 Construct a Color object equivalent to the following using float parameters:

new Color(255, 0, 128);

3.4 Construct a Color object equivalent to the following using int parameters:

new Color(0f, 0.5f, 0.125f);

3.5 Construct a cyclic gradient paint that varies from the color red at the point (0, 0) to the color
blue at the point (100, 100).

3.6 Construct an acyclic gradient paint that varies from the color yellow at the point (100, 0) to the
color green at the point (800, 600).

3.7 What is the transformation matrix of the rotation of 45 degrees about the origin?

3.8 Construct an AffineTransform object for a general reflection about a line through the origin.

3.9 Is it possible to transform an ellipse to a circle using affine transformations? Rigid motions?

3.10 Is it possible to transform a trapezoid to a square using affine transformations? Rigid motions?

3.11 What is the inverse of the rotation of angle p/3 about the origin?

3.12 Find an affine transform that maps x-axis to y-axis and y-axis to x-axis.

3.13 Find the transformation matrix for the rotation ? of angle about the point (a, b).

3.14 Find the transformation matrix for the reflection about the line y = 2x.

3.15 Find the transformation matrix for the reflection about the line y = 2x - 1.

3.16 Find the transformation matrix for the shear along the y-axis with the factor 0.5.

3.17 Find the transformation matrix for the composition of a rotation of p/3 about the origin and a
reflection about the line y = 2x.

3.18 If the RGB and a-values of a source pixel are 0.5, 0.0, 0.8, and 0.4, and the values for the
destination pixel are 0.2, 1.0, 0.5, and 0.6, find the RGB and of the composite using the SrcOver
rule.

3.19 Repeat the previous problem using the DstOver rule.

3.20 Repeat the previous problem using the Src rule.

3.21 Repeat the previous problem using the Dst rule.

3.22 Repeat the previous problem using the SrcOut rule.

3.23 Repeat the previous problem using the DstOut rule.

[Page 95]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

3.24 If the destination color has an a-values 1.0, which compositing rules will not be affected by the
source color?

3.25 Write a code segment that draws the outline of a text string in the paintComponent method.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 95 (continued)]

Programming Exercises

3.1 Write a Java program to draw a series of rectangles filled with colors defined by the constants in
the Color class.

3.2 Write a Java program to draw the shape in Figure 3.18 filled with green color.

Figure 3.18. A filled shape.

3.3 Write a Java program to display the shape in Figure 3.18 using a gradient paint with colors
varying vertically from black to white.

3.4 Write a Java program to display the shape in Figure 3.18 using a texture paint.

3.5 Swing contains the class JColorChooser that allows interactive color selections through a dialog
box. Modify the program in Exercise 3.2 to allow the selection of drawing colors using the
JColorChooser class.

3.6 Draw a pentagon with a stroke of width 20 and a round join style.

3.7 Apply an AffineTransform to a Rectangle2D object to create a shape of a square centered at the
origin and rotated by 45 degrees. Display the shape.

3.8 Write a Java program to display the mirror image of the string "Hello 2D." (Hint: Use a
reflection.)

3.9 Write a Java program that performs a reflection about the line y = 2x. Draw an original rectangle
of size 100 by 50 at (0, 100). Apply the reflection to the rectangle and draw the transformed
shape in a different color.

3.10 Write a Java program to draw a circular text around the point (300, 300) as shown in Figure
3.19. (Hint: Use the drawString method for each character and apply a rotation repeatedly.)

Figure 3.19. A circular text.
(This item is displayed on page 96 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

3.11 Write a Java program that performs a scaling of factor 3 along the line y = x. Draw an original
square of size 100 centered at (0, 0). Apply the scaling to the square and draw the transformed
shape in a different color. (Hint: Decompose the transform into a standard scaling and two
rotations.)

3.12 Use the shape in Figure 3.18 as the clip path and draw the text string "Java 2D" with a large
font.

[Page 96]

3.13 Write a program to load an image and display only an elliptic region of the image. Use a clipping
path to achieve this effect.

3.14 Derive a font by a rotation of 45 degrees and draw a string with the font.

3.15 Use the glyph shapes and area geometry to display the outline of the superimposed glyphs of the
characters "N" and "Y."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 97]

Chapter 4. 2D Graphics: Advanced Topics (Optional)
(This item omitted from WebBook edition)

Objectives
To understand B-spline curves.

To construct custom shape primitives.

To apply basic image-processing techniques.

To create fractal images.

To create 2D animation.

To perform graphics printing.

[Page 98]

4.1. Introduction
In the preceding chapters we discussed basic concepts and techniques of 2D computer graphics systems and the
Java 2D package. In this chapter we discuss more advanced topics of 2D graphics and several features not directly
available in Java 2D.

Spline curves are important modeling tools for computer graphics. A B-spline curve is a smooth curve defined by a
sequence of control points. Java 2D does not offer direct support for drawing spline curves. However, a B-spline
curve can be converted to a series of Bézier curves. This technique is introduced in this chapter.

Java 2D offers a set of common graphics primitives through a class hierarchy implementing the Shape interface.
You may also implement your own primitives. This chapter will introduce a technique to implement a custom
Shape class so it can be passed to a Graphics2D object for rendering just like the built-in classes.

Even though image processing is a separate subject, it is closely related to computer graphics. Images are useful
objects in computer graphics, as you have seen from the example of texture paints. The image-handling features
of Java 2D will be introduced in this chapter. Java 2D offers an image model much improved over the previous
AWT model. Images can be conveniently loaded, processed, and saved through the support of Java APIs. It is also
possible to create an image from scratch. Fractal images will be used to illustrate image creation in Java.

Animation creates an images series of a dynamic scene. It adds a new dimension of time to the graphics system.
Java's multithreading capability provides crucial support for implementing animation in a Java 2D program.
Several examples of animation including cellular automata will be introduced.

Printing is a part of many graphics applications. Java 2D offers convenient printing support that is highly
consistent with the drawing on screen. We will discuss the implementation of graphics printing in Java.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 98 (continued)]

4.2. Spline Curves
A spline curve consists of a sequence of smoothly joined polynomial curves. A type of spline curves widely used in
CAD and other computer graphics applications is the B-spline curves. In particular, the cubic B-spline curves are
the most commonly used B-spline curves in computer graphics.

The mathematical definitions of Bézier curves can be given in parametric equations. A general Bézier curve of
degree n with control points p0, p1, ..., pn is given by

where Bn,i(t) is known as the Bernstein polynomials or Bernstein basis.

The quadratic curves and cubic curves supported in Java 2D are special cases of Bézier curves with degrees n = 2
and n = 3, respectively. Their equations may be expressed as follows:

s2(t) = (1 - t)2p0 + 2t(1 - t)p1 + t2p2

s3(t) = (1 - t)3p0 + 3t(1 - t)2p1 + 3t2(1 - t)p2 + t3p3

[Page 99]

A B-spline curve is defined by a sequence of control points. Like a Bézier curve, the B-spline curve follows the
general directions of the control points, but it need not always interpolate the points. A general B-spline curve of
degree k is defined by n + 1 control points p0, p1, ..., pn and a sequence of n + k + 2 parameter values known as

the knots: t0 t1 ��� tn+k+1. The parametric equation of the B-spline curve can be expressed as:

The curve is defined only over the interval [t3, tn+k-2). The functions Nk,i(t) are called the normalized B-spline
blending functions and may be defined recursively:

The B-spline curves are versatile modeling tools. The smoothness and continuity of a curve can be controlled by
the knots. When the differences between adjacent knot values are a constant: ti+1 - ti = c, the curve is called a
uniform B-spline. In general, the curve is a nonuniform B-spline. The B-spline formulation can also be applied to
homogeneous coordinates with the same blending functions for the w components. When the control points are
represented in homogeneous coordinates, the curve is known as a rational B-spline curve. The most general
family of B-spline curves is therefore called the NURBS (nonuniform rational B-spline).

In this section, we consider only a special type of cubic B-spline curves that are direct extensions of cubic Bézier
curves. The knots are chosen to be uniformly distributed, except that the first four and the last four knots are set
to be equal:

t0 = t1 = t2 = t3

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

ti+1 - ti = 1, i = 3,4,..., n

tn+1 = tn+2 = tn+3 = tn+4

The duplicated knots will cause the first and the last control points to be interpolated by the curve, similar to a
Bézier curve. In fact, if n = 3, a cubic B-spline of this type is exactly a regular cubic Bézier curve:

N0,0(t) = N0,1(t) = N0,2(t) = 0, N0,3(t) = X0,1, N0,4(t) = N0,5(t) = N0,6(t) = 0

N1,0(t) = N1,1(t) = 0, N1,2(t) =(1 - t)X0,1, N1,3(t) = X0,1, N1,4(t) = N1,5(t) = 0

N2,0(t) = 0 N2,1(t) = (1 - t)2X0,1, N2,2(t) = 2t(1 - t) X0,1, N2,3(t) = t2X0,1, N2,4(t) = 0

N3,0(t) = (1 - t)3X0,1, N3,1(t) = 3t(1 - t)2X0,1 N3,2(t) = 3t2(1 - t)X0,1, N3,3(t) = t3X0,1

[Page 100]

X0,1 denotes the characteristic function of the interval [0,1). The parametric equation of the B-spline is:

p(t) = (1 - t)3p0 + 3t(1 - t)2p1 + 3t2(1 - t)p2 + t3p3, t �[0,1)

This is exactly the equation for a cubic Bézier curve. When n > 3, the B-spline has more than one polynomial
segment and more control points than a Bézier curve.

Java 2D does not directly support B-spline curves. However, a cubic B-spline curve may be converted to a series of
cubic Bézier curves that can be rendered with the cubic Bézier curve support of Java 2D. Let p0, p1, ..., pn be the
control points of a B-spline. Each segment of the B-spline can be converted to a cubic Bézier curve. Let the control
points of a Bézier curve be b0, b1, b2, b3. Then, except for the first and the last segment, the conversion is given
by the following formula:

b-1 = (pi-1 + 2pi)/3

b1 = (2pi + pi+1)/3

b0 = (b-1 + b1)/2

b2 = (pi + 2pi+1)/3

b4 = (2pi+1 + pi+2)/3

b3 = (b2 + b4)/2

The first and the last segments are handled differently, because the first and last control points are the endpoints
of the curve. The conversion of the first segment is given by the following formula:

b0 = p0

b1 = p1

b2 = (p1 + p2)/2

b4 = (2b2 + p3)/3

b3 = (b2 + b4)/2

The last segment uses the following formula:

b-1 = (2pn-2 + pn-3)/3

b1 = (pn-1 + pn-2)/2

b0 = (b-1 + b1)/2

b2 = pn-1

b3 = pn

Listing 4.1 illustrates the conversion and rendering of a B-spline curve. In this example a B-spline curve is

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

converted to a series of cubic B�zier curves which is represented with a GeneralPath. A simple drawing program
is implemented to allow the user to input control points with a mouse. The B-spline and its control points are
displayed. A sample run of the program is shown in Figure 4.1.

[Page 101]

Listing 4.1. BSpline.java
(This item is displayed on pages 101 - 103 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.swing.*;
 8
 9 public class BSpline extends JApplet {
 10 public static void main(String s[]) {
 11 JFrame frame = new JFrame();
 12 frame.setTitle("B-Spline");
 13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 14 JApplet applet = new BSpline();
 15 applet.init();
 16 frame.getContentPane().add(applet);
 17 frame.pack();
 18 frame.setVisible(true);
 19 }
 20
 21 public void init() {
 22 JPanel panel = new BSplinePanel();
 23 getContentPane().add(panel);
 24 }
 25 }
 26
 27 class BSplinePanel extends Jpanel
 28 implements MouseListener, MouseMotionListener {
 29 Vector points = null;
 30 boolean completed = true;
 31
 32 public BSplinePanel() {
 33 setPreferredSize(new Dimension(640, 480));
 34 setBackground(Color.white);
 35 addMouseListener(this);
 36 addMouseMotionListener(this);
 37 points = new Vector();
 38 }
 39
 40 public void paintComponent(Graphics g) {
 41 super.paintComponent(g);
 42 Graphics2D g2 = (Graphics2D)g;
 43 Point p0 = null;
 44 Point p1 = null;
 45 Point p2 = null;
 46 Point p3 = null;
 47 float x1, y1, x2, y2, x3, y3, x4, y4;
 48 Iterator it = points.iterator();
 49 if (it.hasNext()) {
 50 p1 = (Point)(it.next());
 51 }
 52 while (it.hasNext()) {
 53 p2 = (Point)(it.next());
 54 g2.drawLine(p1.x, p1.y, p2.x, p2.y);
 55 p1 = p2;
 56 }
 57
 58 GeneralPath spline = new GeneralPath();

[Page 102]
 59 int n = points.size();
 60 if (n == 0) return;
 61 p1 = (Point)points.get(0);
 62 spline.moveTo(p1.x, p1.y);
 63 g2.drawRect(p1.x-3, p1.y-3, 6, 6);
 64 p1 = (Point)points.get(1);
 65 p2 = (Point)points.get(2);
 66 p3 = (Point)points.get(3);
 67 x1 = p1.x;
 68 y1 = p1.y;
 69 x2 = (p1.x + p2.x)/2.0f;
 70 y2 = (p1.y + p2.y)/2.0f;
 71 x4 = (2.0f*p2.x+p3.x)/3.0f;
 72 y4 = (2.0f*p2.y+p3.y)/3.0f;
 73 x3 = (x2+x4)/2.0f;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 74 y3 = (y2+y4)/2.0f;
 75 spline.curveTo(x1, y1, x2, y2, x3, y3);
 76 g2.drawRect((int)x1-3, (int)y1-3, 6, 6);
 77 g2.drawRect((int)x2-3, (int)y2-3, 6, 6);
 78 g2.drawRect((int)x3-3, (int)y3-3, 6, 6);
 79 for (int i = 2; i < n - 4; i++) {
 80 p1 = p2;
 81 p2 = p3;
 82 p3 = (Point)points.get(i+2);
 83 x1 = x4;
 84 y1 = y4;
 85 x2 = (p1.x+2.0f*p2.x)/3.0f;
 86 y2 = (p1.y+2.0f*p2.y)/3.0f;
 87 x4 = (2.0f*p2.x+p3.x)/3.0f;
 88 y4 = (2.0f*p2.y+p3.y)/3.0f;
 89 x3 = (x2+x4)/2.0f;
 90 y3 = (y2+y4)/2.0f;
 91 spline.curveTo(x1,y1,x2,y2,x3,y3);
 92 g2.drawRect((int)x1-3, (int)y1-3, 6, 6);
 93 g2.drawRect((int)x2-3, (int)y2-3, 6, 6);
 94 g2.drawRect((int)x3-3, (int)y3-3, 6, 6);
 95 }
 96 p1 = p2;
 97 p2 = p3;
 98 p3 = (Point)points.get(n-2);
 99 x1 = x4;
100 y1 = y4;
101 x2 = (p1.x+2.0f*p2.x)/3.0f;
102 y2 = (p1.y+2.0f*p2.y)/3.0f;
103 x4 = (p2.x+p3.x)/2.0f;
104 y4 = (p2.y+p3.y)/2.0f;
105 x3 = (x2+x4)/2.0f;
106 y3 = (y2+y4)/2.0f;
107 spline.curveTo(x1,y1,x2,y2,x3,y3);
108 g2.drawRect((int)x1-3, (int)y1-3, 6, 6);
109 g2.drawRect((int)x2-3, (int)y2-3, 6, 6);
110 g2.drawRect((int)x3-3, (int)y3-3, 6, 6);
111 p2 = p3;
112 p3 = (Point)points.get(n-1);
113 x1 = x4;
114 y1 = y4;
115 x2 = p2.x;
116 y2 = p2.y;
117 x3 = p3.x;
118 y3 = p3.y;

[Page 103]
119 spline.curveTo(x1,y1,x2,y2,x3,y3);
120 g2.drawRect((int)x1-3, (int)y1-3, 6, 6);
121 g2.drawRect((int)x2-3, (int)y2-3, 6, 6);
122 g2.drawRect((int)x3-3, (int)y3-3, 6, 6);
123 g2.draw(spline);
124 }
125 public void mouseClicked(MouseEvent ev) {
126 }
127
128 public void mouseEntered(MouseEvent ev) {
129 }
130
131 public void mouseExited(MouseEvent ev) {
132 }
133
134 public void mousePressed(MouseEvent ev) {
135 Graphics g = getGraphics();
136 if (completed) {
137 points.clear();
138 completed = false;
139 }
140 if (ev.getClickCount() == 1) {
141 Point p =ev.getPoint();
142 points.add(p);
143 g.fillOval(p.x-3, p.y-3, 6, 6);
144 }
145 }
146
147 public void mouseReleased(MouseEvent ev) {
148 if (ev.getClickCount() > 1) {
149 completed = true;
150 repaint();
151 }
152 }
153
154 public void mouseMoved(MouseEvent ev) {
155 }
156
157 public void mouseDragged(MouseEvent ev) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

158 }
159 }

Figure 4.1. A B-spline curve rendered with a series of Bézier curves. The polygon represents the
control points of the B-spline curve, and the small squares indicate the locations of control points of

the Bézier curves.
(This item is displayed on page 104 in the print version)

[Page 103]

Note

The B-spline curve conversion shown above is only for the simple type of B-spline
discussed in this section. More general types of B-splines with nonuniform knots can
also be converted to Bézier curves.

The class BSplinePanel extends the JPanel class and provides a panel for drawing a B-spline curve. A vector
points (line 29) is defined to hold the input control points of the B-spline curve. Mouse events are processed to
enter the control points. A single mouse click defines one control point, and the point is shown as a small filled
circle. A double click defines the last control point of the curve and completes the control-point entry. For
simplicity only one B-spline curve is defined at any moment. After all control points are entered, the B-spline
curve is drawn by the paintComponent method.

The conversion from the B-spline curve to Bézier curves is performed in the paintComponent method. The
conversion uses the formulas introduced in this section. A GeneralPath object is used to hold the converted
sequence of Bézier curves (line 58). The path is drawn after all curve segments are converted. The control
polygon formed by the control points is shown as a series of line segments (line 54). The small squares in the
display show the Bézier control points after the conversion.

[Page 104]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 104 (continued)]

4.3. Custom Primitives
As seen from the previous chapters, geometric primitives defined as classes in the Shape family can be
transformed and rendered in a uniform fashion. It is also possible to define your own primitives that behave just
like the built-in classes. The key is the Shape interface that has ten abstract methods.

public boolean contains(Rectangle2D rect)
public boolean contains(Point2D point)
public boolean contains(double x, double y)
public boolean contains(double x, double y, double w, double h)
public Rectangle getBounds()
public Rectangle2D getBounds2D()
public PathIterator getPathIterator(AffineTransform at)
public PathIterator getPathIterator(AffineTransform at, double flatness)
public boolean intersects(Rectangle2D rect)
public boolean intersects(double x, double y, double w, double h)

The contains methods test whether the given point or rectangle is entirely contained in the shape. The
intersects methods test for intersections. The getBounds and getBounds2D methods return the bounding
rectangle of the shape. The getPathIterator method returns a PathIterator object that describes the path
using the basic drawing segments.

Extending the class GeneralPath may appear to be an easy way to implement a custom primitive, because
GeneralPath provides an implementation for all the Shape methods and it allows all the basic drawing functions
for a path. Unfortunately, this approach is not possible, because GeneralPath is declared as a final class, so
further extension is not allowed. You may still take advantage of the GeneralPath implementation by wrapping it
in your class. The required methods declared in the Shape interface can be implemented simply by invoking the
corresponding methods in GeneralPath. Listing 4.2 illustrates this approach. This example shows the
construction of a custom Shape by wrapping a GeneralPath object. A heart shape is constructed with two cubic
curves (Figure 4.2).

[Page 105]
Listing 4.2. Heart.java

(This item is displayed on pages 105 - 106 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import javax.swing.*;
 6
 7 public class Heart implements Shape {
 8 GeneralPath path;
 9
10 public Heart(float x, float y, float w, float h) {
11 path = new GeneralPath();
12 float x0 = x + 0.5f*w;
13 float y0 = y + 0.3f*h;
14 float x1 = x + 0.1f*w;
15 float y1 = y + 0f * h;
16 float x2 = x + 0f * w;
17 float y2 = y + 0.6f * h;
18 float x3 = x + 0.5f * w;
19 float y3 = y + 0.9f * h;
20 float x4 = x + 1f * w;
21 float y4 = y + 0.6f * h;
22 float x5 = x + 0.9f * w;
23 float y5 = y + 0f * h;
24 path.moveTo(x0, y0);
25 path.curveTo(x1, y1, x2, y2, x3, y3);
26 path.curveTo(x4, y4, x5, y5, x0, y0);
27 }
28
29 public boolean contains(Rectangle2D rect) {
30 return path.contains(rect);
31 }
32
33 public boolean contains(Point2D point) {
34 return path.contains(point);
35 }
36
37 public boolean contains(double x, double y) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

38 return path.contains(x, y);
39 }
40
41 public boolean contains(double x, double y, double w, double h) {
42 return path.contains(x, y, w, h);
43 }
44
45 public Rectangle getBounds() {
46 return path.getBounds();
47 }
48
49 public Rectangle2D getBounds2D() {
50 return path.getBounds2D();
51 }

[Page 106]
52
53 public PathIterator getPathIterator(AffineTransform at) {
54 return path.getPathIterator(at);
55 }
56
57 public PathIterator getPathIterator(AffineTransform at,
58 double flatness) {
59 return path.getPathIterator(at, flatness);
60 }
61
62 public boolean intersects(Rectangle2D rect) {
63 return path.intersects(rect);
64 }
65
66 public boolean intersects(double x, double y, double w, double h) {
67 return path.intersects(x, y, w, h);
68 }
69 }

Figure 4.2. A heart-shape primitive constructed with a GeneralPath object using two symmetric cubic
curves.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The class Heart implements the Shape interface so it can be used like other geometric primitives in the Shape
family. A GeneralPath object is created and stored in the variable path (line 8). The ten required methods in
Shape are implemented by calling the corresponding methods in path.

The Heart class defines a constructor that specifies a bounding rectangle for the shape. In the constructor (line
10), the GeneralPath object is constructed and the path of the heart shape is defined. Two symmetric cubic
curves define the left and right sides of the heart. The control points are calculated and the curves are
constructed with the curveTo method of the GeneralPath class. The closed path forms a region that can be filled.

[Page 107]

In Listing 4.3, an applet TestHeart with a main method is included to test the Heart primitive. An anonymous
subclass of JPanel is created and added to the applet. The panel overrides the paintComponent method to paint a
Heart object filled with the color red.

Listing 4.3. TestHeart.java

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class TestHeart extends JApplet {
 9 public static void main(String s[]) {
10 JFrame frame = new JFrame();
11 frame.setTitle("Heart");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13 JApplet applet = new TestHeart();
14 applet.init();
15 frame.getContentPane().add(applet);
16 frame.pack();
17 frame.setVisible(true);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

18 }
19
20 public void init() {
21 JPanel panel = new JPanel() {
22 public void paintComponent(Graphics g) {
23 super.paintComponent(g);
24 Heart h = new Heart(0,0,500,500);
25 g.setColor(Color.red);
26 ((Graphics2D)g).fill(h);
27 }
28 };
29 panel.setBackground(Color.white);
30 panel.setPreferredSize(new Dimension(500,500));
31 getContentPane().add(panel);
32 }
33 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 107 (continued)]

4.4. Image Processing
A digital image is a raster representation of a 2D picture and is defined by an array of point values called pixels.
Each pixel value represents the color, gray level, and other attributes of the corresponding point. Even though
image processing is a separate specialized subject, it does have a close connection with computer graphics.
Images are useful objects in graphics rendering. The output of graphics rendering is typically an image. Java 2D
offers powerful image-processing facilities.

In AWT, an image is represented by the Image class. AWT uses a "push" model for images. The data for the image
is not necessarily available when the Image is created. An object implementing the ImageProducer interface is a
producer, and an object implementing the ImageConsumer is a consumer. A producer acts as the source of the
image, and a consumer receives the data from a producer. Between a producer and a consumer, there can also be
a chain of filters that implement both ImageProducer and ImageConsumer. A producer pushes the data to the
consumer in an asynchronous fashion. The consumer cannot request data. The data transfer process can be
monitored by an instance of ImageObserver. This model is designed with the idea of loading images over a
network. However, the "push" model is not very convenient for image processing.

[Page 108]

Java 2D introduces a new "immediate" model. The new image class BufferedImage is used to represent an image
with an immediately available data store. A BufferedImage contains a Raster and a ColorModel. A Raster
represents pixel values in numerical forms and a ColorModel specifies the mapping between the numerical values
in the Raster and the actual colors.

Note

Java Advanced Image (JAI) is an optional package that offers even more advanced
and comprehensive image-processing capabilities. JAI is not covered in this book.

A typical image-processing cycle is illustrated in Figure 4.3.

Figure 4.3. An image-processing system.

The source image is usually given as a file in one of many image-file formats. An image object is created in the
Java program to represent an image. The external image file needs to be read into the image object. The image
may be displayed in a device such as a screen or a printer. The next step is to process the image through one or
more image-processing operators. The result is another image object. The processed image can be displayed and
written to an external image file.

A Java 2D image processing program usually uses BufferedImage to represent images. A BufferedImage object
can be created using one of its constructors. For example, the following statement creates a blank buffered
image:

BufferedImage bi = new BufferedImage(300, 400, BufferedImage.
 TYPE_INT_RGB);

To draw on a BufferedImage, we need to obtain a Graphics2D object:

Graphics2D g2 = (Graphics2D)(bi.createGraphics());

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

With the Graphics2D object g2 you may perform all types of graphics renderings on the BufferedImage, just like
drawing to the screen.

In J2SDK versions prior to 1.4, standard Java 2D does not directly support loading a BufferedImage from external
files or network sources. To load an image from a file to an Image object, we can use the old AWT facilities, as
follows:

Image image = Toolkit.getDefaultToolkit().getImage(imageFileName);

In an applet, instead of using the Toolkit object, an image can be loaded from a network URL using the
getImage(url) method of the Applet class.

[Page 109]

In the push model, the images are loaded asynchronously. The above call will return immediately without waiting
for the image loading to complete. If we want to be sure that the image is fully loaded, we may use a
MediaTracker object to force the loading and wait for its completion.

MediaTracker tracker = new MediaTracker(new Component() {});
tracker.addImage(image, 0);
try {
 tracker.waitForID(0);
} catch (InterruptedException ex) {
}

The constructor of MediaTracker requires a parameter of class Component. Because Component is an abstract
class, it is not possible to create a generic instance of Component. Instead, the above code uses an instance of an
anonymous subclass new Component() {} as the parameter.

The above procedure only reads an external image to an Image object image. To convert the externally loaded
Image to a BufferedImage, you may use the Graphics2D object g2 associated with the BufferedImage object bi.
The drawImage method of g2 allows the drawing of the image into bi.

g2.drawImage(image, 0, 0, new Component() {});

If the size of bi is the same as that of image, the effect of the above method call is a conversion from an Image
object to a BufferedImage object. The last parameter of the drawImage method is an ImageObserver. Because
the class Component implements the ImageObserver interface, the anonymous subclass can be used as a generic
parameter. You may also use null for the image observer. If this code is in a GUI application, then a GUI
component such a JPanel object is usually used as the image observer. The purpose of the ImageObserver object
is to support asynchronous loading of images in the original AWT push model. The default implementation for
ImageObserver in Component is to repaint the component so that the image can be drawn incrementally as the
image data arrives.

J2SDK 1.4 includes the new ImageIO API that offers support for direct reading and writing of BufferedImage. To
read an image from a file, you can simply call the following static method:

BufferedImage bi = ImageIO.read(file);

Once we have a BufferedImage object properly set up, we may apply image-processing operations to it. Java 2D
contains a set of classes for image operations. These classes implement the BufferedImageOp interface, as shown
in Figure 4.4.

Figure 4.4. BufferedImageOp is a common interface for buffered image operations.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 110]

RescaleOp performs pixel-by-pixel rescaling of the pixel values by a linear function. A pixel value is multiplied by a
scaling factor and then an offset is added. If f (x, y) and g(x, y) represent the pixel values of the images before
and after the processing, then the rescale operation can be written as

g(x, y) = af(x, y) + b

ColorConvertOp performs pixel-by-pixel conversions of colors. The operation can be specified with color spaces.

LookupOp performs pixel-by-pixel conversions of pixel values based on lookup tables. The operator can be
expressed as

g(x, y) = T(f(x, y))

AffineTransformOp performs affine transforms on the image. The operator does not change the value of a pixel,
but it moves the pixel to a different location. The AffineTransform object is used to set the transform. The
formula for affine transform operator is

g(x, y) = f(A(x, y))

ConvolveOp defines convolution operators. A convolution is a linear transformation. If an image is represented
mathematically by a function f(x, y), the convolution can be expressed as

where K is a fixed function known as the kernel. The property of the convolution is determined by the kernel. By
choosing appropriate kernels, you may achieve various effects on the images, such as smoothing, sharpening,
and edge detection.

For digital images, the integrals become summations.

The indices i, j run through the entire image. To improve the efficiency, the kernel is often chosen to have a finite
support; that is, K is 0 except for a neighborhood of the origin. For example, K(i, j) may have only nine nonzero
values when -1 i, j 1. In this case, the above convolution formula becomes

At each point, only the nine pixels around the point need to be considered for the calculation.

In Java 2D, to apply an operator to a BufferedImage, simply call the filter method of the operator object.

dst = op.filter(src, null);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A BufferedImage can be displayed using the drawImage method of the Graphics object. For example,

public void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.drawImage(bi, 0, 0, this);
}

This code segment may be inside a component such as JPanel. The drawImage call paints the BufferedImage
starting at the location (0, 0).

Prior to J2SDK 1.4, Java 2D does not contain direct support for exporting a BufferedImage to an external file or
encoding the image in a standard image file format. The new ImageIO class offers the static write method to
store the image to an external file:

ImageIO.write(bi, "png", file);

[Page 111]

The first parameter is the BufferedImage object to be saved. The second parameter is a string specifying the file
format. The third object is a File object representing the external file to write.

Listing 4.4 shows a complete image-processing program with I/O, processing, and display. A user may load an
image from a disk file, perform several common image-processing operations, and save the processed image to a
disk file. A sample run of the program is shown in Figure 4.5.

Listing 4.4. ImageProcessing.java
(This item is displayed on pages 111 - 114 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import java.awt.image.*;
 6 import java.awt.color.*;
 7 import java.awt.geom.*;
 8 import java.io.*;
 9 import javax.swing.*;
 10 import javax.imageio.*;
 11
 12 public class ImageProcessing extends JFrame implements
 13 ActionListener {
 14 public static void main(String[] args) {
 15 JFrame frame = new ImageProcessing();
 16 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 17 frame.pack();
 18 frame.setVisible(true);
 19 }
 20
 21 ImagePanel imageSrc, imageDst;
 22 JFileChooser fc = new JFileChooser();
 23
 24 public ImageProcessing() {
 25 JMenuBar mb = new JMenuBar();
 26 setJMenuBar(mb);
 27
 28 JMenu menu = new JMenu("File");
 29 JMenuItem mi = new JMenuItem("Open image");
 30 mi.addActionListener(this);
 31 menu.add(mi);
 32 mi = new JMenuItem("Open image (awt)");
 33 mi.addActionListener(this);
 34 menu.add(mi);
 35 mi = new JMenuItem("Save image");
 36 mi.addActionListener(this);
 37 menu.add(mi);
 38 menu.addSeparator();
 39 mi = new JMenuItem("Exit");
 40 mi.addActionListener(this);
 41 menu.add(mi);
 42 mb.add(menu);
 43
 44 menu = new JMenu("Process");
 45 mi = new JMenuItem("Copy");
 46 mi.addActionListener(this);
 47 menu.add(mi);
 48 mi = new JMenuItem("Smooth");

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 49 mi.addActionListener(this);
 50 menu.add(mi);
 51 mi = new JMenuItem("Sharpen");
 52 mi.addActionListener(this);
 53 menu.add(mi);

[Page 112]
 54 mi = new JMenuItem("Edge");
 55 mi.addActionListener(this);
 56 menu.add(mi);
 57 mi = new JMenuItem("Rescale");
 58 mi.addActionListener(this);
 59 menu.add(mi);
 60 mi = new JMenuItem("Rotate");
 61 mi.addActionListener(this);
 62 menu.add(mi);
 63 mi = new JMenuItem("Gray scale");
 64 mi.addActionListener(this);
 65 menu.add(mi);
 66 mb.add(menu);
 67
 68 Container cp = this.getContentPane();
 69 cp.setLayout(new FlowLayout());
 70 imageSrc = new ImagePanel();
 71 imageDst = new ImagePanel();
 72 cp.add(imageSrc);
 73 cp.add(imageDst);
 74 }
 75
 76 public void actionPerformed(ActionEvent ev) {
 77 String cmd = ev.getActionCommand();
 78 if ("Open image".equals(cmd)) {
 79 int retval = fc.showOpenDialog(this);
 80 if (retval == JFileChooser.APPROVE_OPTION) {
 81 try {
 82 BufferedImage bi = ImageIO.read(fc.getSelectedFile());
 83 imageSrc.setImage(bi);
 84 pack();
 85 } catch (IOException ex) {
 86 ex.printStackTrace();
 87 }
 88 }
 89 } else if ("Open image (awt)".equals(cmd)) {
 90 int retval = fc.showOpenDialog(this);
 91 if (retval == JFileChooser.APPROVE_OPTION) {
 92 Toolkit tk = Toolkit.getDefaultToolkit();
 93 Image img = tk.getImage(fc.getSelectedFile().getPath());
 94 MediaTracker tracker = new MediaTracker(new Component() {});
 95 tracker.addImage(img, 0);
 96 try {
 97 tracker.waitForID(0);
 98 } catch (InterruptedException ex) {}
 99 BufferedImage bi = new BufferedImage(img.getWidth(this),
100 img.getHeight(this), BufferedImage.TYPE_INT_RGB);
101 bi.getGraphics().drawImage(img, 0, 0, this);
102 imageSrc.setImage(bi);
103 }
104 } else if ("Save image".equals(cmd)) {
105 int retval = fc.showSaveDialog(this);
106 if (retval == JFileChooser.APPROVE_OPTION) {
107 try{
108 ImageIO.write(imageDst.getImage(), "png",
109 fc.getSelectedFile());
110 } catch (IOException ex) {
111 ex.printStackTrace();
112 }
113 }

[Page 113]
114 } else if ("Exit".equals(cmd)) {
115 System.exit(0);
116 } else if ("Copy".equals(cmd)) {
117 imageSrc.setImage(imageDst.getImage());
118 } else {
119 process(cmd);
120 }
121 }
122
123 void process(String opName) {
124 BufferedImageOp op = null;
125 if (opName.equals("Smooth")) {
126 float[] data = new float[9];
127 for (int i = 0; i < 9; i++) data[i] = 1.0f/9.0f;
128 Kernel ker = new Kernel(3,3,data);
129 op = new ConvolveOp(ker);
130 } else if (opName.equals("Sharpen")) {
131 float[] data = {0f, -1f, 0f, -1f, 5f, -1f, 0f, -1f, 0f};

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

132 Kernel ker = new Kernel(3,3,data);
133 op = new ConvolveOp(ker);
134 } else if (opName.equals("Edge")) {
135 float[] data = {0f, -1f, 0f, -1f, 4f, -1f, 0f, -1f, 0f};
136 Kernel ker = new Kernel(3,3,data);
137 op = new ConvolveOp(ker);
138 } else if (opName.equals("Rescale")) {
139 op = new RescaleOp(1.5f, 0.0f, null);
140 } else if (opName.equals("Gray scale")) {
141 op = new ColorConvertOp(ColorSpace.getInstance
142 (ColorSpace.CS_GRAY), null);
143 } else if (opName.equals("Rotate")) {
144 AffineTransform xform = new AffineTransform();
145 xform.setToRotation(Math.PI/6);
146 op = new AffineTransformOp(xform, AffineTransformOp.
147 TYPE_BILINEAR);
148 }
149 BufferedImage bi = op.filter(imageSrc.getImage(), null);
150 imageDst.setImage(bi);
151 pack();
152 }
153 }
154
155 class ImagePanel extends JPanel {
156 BufferedImage image = null;
157
158 public ImagePanel() {
159 image = null;
160 setPreferredSize(new Dimension(256, 256));
161 }
162
163 public ImagePanel(BufferedImage bi) {
164 image = bi;
165 }
166
167 public void paintComponent(Graphics g) {
168 Graphics2D g2 = (Graphics2D)g;
169 if (image != null)
170 g2.drawImage(image, 0, 0, this);
171 else
172 g2.drawRect(0, 0, getWidth()-1, getHeight()-1);
173 }

[Page 114]
174
175 public BufferedImage getImage() {
176 return image;
177 }
178
179 public void setImage(BufferedImage bi) {
180 image = bi;
181 setPreferredSize(new Dimension(bi.getWidth(), bi.getHeight()));
182 invalidate();
183 repaint();
184 }
185 }

Figure 4.5. Image sharpening is one of the operations supported by this image-processing example
program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

This program is an example of image-processing systems. It provides basic functions of image I/O, operations, and
displays. The main frame of the program contains two menus. The "File" menu has items to open an image file,
to open an image file using AWT facilities, to save an image to a file, and to exit the program. The "Process" menu
contains items to select various image-processing operations. The content pane of the frame contains two
ImagePanel objects, the source image on the left and the processed image on the right.

The ImagePanel class extends the JPanel class and it displays a BufferedImage. An image can be passed to the
ImagePanel by a constructor or by the method setImage.

The program implements two different ways to load image files. One method uses the static method read of the
ImageIO class to load an image file directly to a BufferedImage object (line 82). The other uses AWT image
loading and a BufferedImage is obtained by drawing the image (lines 92–101). A JFileChooser object is used to
allow the user to select an image file to open.

Several operations are implemented to perform common image-processing tasks including: smooth, sharpen,
edge detection, rescale, rotation, and grayscale. The smooth operator is a convolution defined by the following 3 x
3 kernel:

[Page 115]

The sharpen operator is defined with the kernel

The edge-detection operator has the kernel

The rescale operation uses the RescaleOp class. It is designed to brighten the image.

The rotation operation uses the AffineTransformOp class. A rotation of p/6 is defined by an AffineTransform

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

object and applied to the AffineTransformOp object.

The grayscale operation uses the ColorConvertOp class to convert the source image to a grayscale image.

The copy operation simply copies the processed image back to the source image so that additional processing can
be applied.

The processed image can be saved to a disk file in PNG format. A JFileChooser is used to select a file to write.
The ImageIO static method save is used to save an image.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 115 (continued)]

4.5. Creating Fractal Images
In the last section, we discussed how to create, load, save, process, and display a BufferedImage. It is also
possible to perform low-level operations and directly manipulate the pixels in a BufferedImage.

The Raster class encapsulates the pixel data of the BufferedImage. The WritableRaster is a subclass of Raster
that is writable. To obtain a WritableRaster object from a BufferedImage, you may use the getRaster method:

BufferedImage bi = new BufferedImage(640, 480, BufferedImage.TYPE_ARGB);
WritableRaster raster = bi.getRaster();

The Raster class provides a number of methods to get pixel data, and WritableRaster adds methods to set pixel
data.

int[] getPixel(int x, int y, int[] data);
float[] getPixel(int x, int y, float[] data);
double[] getPixel(int x, int y, double[] data);
int[] getPixels(int x, int y, int w, int h, int[] data);
float[] getPixels(int x, int y, int w, int h, float[] data);
double[] getPixels(int x, int y, int w, int h, double[] data);
void setPixel(int x, int y, int[] data);
void setPixel(int x, int y, float[] data);
void setPixel(int x, int y, double[] data);
void setPixels(int x, int y, int w, int h, int[] data);
void setPixels(int x, int y, int w, int h, float[] data);
void setPixels(int x, int y, int w, int h, double[] data);

The parameters x, y specify the location of the pixel and w, h define the dimension of a rectangle of pixels. The
data array holds the pixel data. The size of the array depends on the type of the image. For example, if the
BufferedImage is TYPE_INT_RGB, then the data array for each pixel has three elements containing the RGB
values.

[Page 116]

Through the WritableRaster object, the contents of an image can be created at the pixel level. This method of
pixel-by-pixel image generation may be illustrated by the example of building a fractal image. A fractal is a self-
similar geometric structure. Fractals often exhibit a great deal of complexity, even though they might be
generated by some rather simple procedures. The Mandelbrot set is a well-known example of fractals. It is defined
on the complex plane. A complex number has the form

x + iy

where x and y are real numbers and i satisfies the equation i2 = -1. The addition and multiplication of two
complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are defined as:

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1x2 - y1y2) + i(x1y2 + y1x2)

The absolute value of a complex number is . A complex number can be interpreted as
a point on a 2D plane by identifying the (x, y) values as the coordinates of the point. The absolute value of the
complex number corresponds to the distance of the point to the origin.

To define the Mandelbrot set, we consider the iteration on the complex plane:

c is a complex number, and the starting point of iteration is z0 = 0. For a given c the iteration will produce a
sequence of complex numbers: z0, z1, ..., zn, It can be shown that the sequence either tends to infinity or
stays bounded. The Mandelbrot set is defined to be the set of points c such that the iteration sequence is
bounded. The Mandelbrot set is surprisingly complex. It contains recursively self-similar substructures. It is known

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

that the Mandelbrot set is contained in the circle of radius 2 centered at the origin, and if at any step of the
iteration the point goes outside the circle, the sequence will escape to infinity and the corresponding c does not
belong to the Mandelbrot set.

Listing 4.5 illustrates a way to build an image based on the Mandelbrot set. This example creates an image
approximating the Mandelbrot set. The iteration process is carried out for each pixel and the number of iterations
is color coded to create the image. A sample run of the program is shown in Figure 4.6

Listing 4.5. Mandelbrot.java
(This item is displayed on pages 116 - 117 in the print version)

 1 package chapter4;
 2
 3 import javax.swing.*;
 4 import java.awt.*;
 5 import java.awt.image.*;
 6
 7 public class Mandelbrot extends JApplet {
 8 public static void main(String s[]) {
 9 JFrame frame = new JFrame();
10 frame.setTitle("Mandelbrot set");
11 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 JApplet applet = new Mandelbrot();
13 applet.init();
14 frame.getContentPane().add(applet);
15 frame.pack();

[Page 117]
16 frame.setVisible(true);
17 }
18
19 public void init() {
20 JPanel panel = new MandelbrotPanel();
21 getContentPane().add(panel);
22 }
23 }
24
25 class MandelbrotPanel extends JPanel{
26 BufferedImage bi;
27
28 public MandelbrotPanel() {
29 int w = 500;
30 int h = 500;
31 setPreferredSize(new Dimension(w, h));
32 setBackground(Color.white);
33 bi = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB);
34 WritableRaster raster = bi.getRaster();
35 int[] rgb = new int[3];
36 float xmin = -2;
37 float ymin = -2;
38 float xscale = 4f/w;
39 float yscale = 4f/h;
40 for (int i = 0; i < h; i++) {
41 for (int j = 0; j < w; j++) {
42 float cr = xmin + j * xscale;
43 float ci = ymin + i * yscale;
44 int count = iterCount(cr, ci);
45 rgb[0] = (count & 0x07) << 5;
46 rgb[1] = ((count >> 3) & 0x07) << 5;
47 rgb[2] = ((count >> 6) & 0x07) << 5;
48 raster.setPixel(j, i, rgb);
49 }
50 }
51 }
52
53 private int iterCount(float cr, float ci) {
54 int max = 512;
55 float zr = 0;
56 float zi = 0;
57 float lengthsq = 0;
58 int count = 0;
59 while ((lengthsq < 4.0) && (count < max)) {
60 float temp = zr * zr - zi * zi + cr;
61 zi = 2 * zr * zi + ci;
62 zr = temp;
63 lengthsq = zr * zr + zi * zi;
64 count++;
65 }
66 return max-count;
67 }
68
69 public void paintComponent(Graphics g) {
70 super.paintComponent(g);
71 g.drawImage(bi, 0, 0, this);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

72 }
73 }

[Page 118]

Figure 4.6. The Mandelbrot set colored with the number of iterations.

This program creates an image depicting the Mandelbrot set in the complex plane over the square:

-2 x, y 2

A BufferedImage is created with the size 500 x 500 and with the integer RGB pixel type. A WritableRaster
object is obtained from the image (line 34). The pixels of the image are set through the raster. The pixel indices
are mapped to the coordinates on the complex plane by linear functions.

The iterations are carried out by the method iterCount. A complex number is represented by two float
variables. The iteration terminates if the value goes outside the circle zn > 2 (or, equivalently, zn

2 > 4). The
maximum number of iterations for each pixel is limited to 512, so the iteration count is in the range [1, 512].
The complement of the counter max-count is used to color a pixel. It has the range [0, 511]. The 9-bit counter
value is divided into three 3-bit RGB components.

The paintComponent method draws the completed image to MandelbrotPanel, a subclass of JPanel. Because of
the large number of calculations required in generating the Mandelbrot image, it may take a while for the image
to appear in the window.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 118 (continued)]

4.6. Animation
Animation introduces dynamic changes to graphics contents and often creates a visual effect of motion. An
animation produces a series of rendered images (frames) that depicts the changes in a scene. When the frames
are displayed consecutively at certain rate (for example, 60 frames per second), we may perceive continuous
motion in the scene rather than discrete images. Animation adds a dimension of time to the graphics model. Each
rendered frame at a specific time instance is essentially a regular still image. However, the content of the frames
may change over time. Higher frame rates represent smoother animations, but the frame rate of an animation is
limited by the capability of the rendering system.

Implementing animation in Java usually requires additional threads to handle the time-related changes. Because
an animation typically runs indefinitely, placing all animation code in the event dispatch thread will make the GUI
program not responsive. However, when using Swing components to display graphics animation, you need to
avoid direct manipulation of the Swing components from the thread other than the event dispatch thread,
because Swing components are not thread safe. For example, in the animation thread, you should not call
getGraphics() method and use the Graphics object to do graphics painting. There are several methods of Swing
components that are safe to call from other threads:

[Page 119]

public void repaint()
public void revalidate()

Therefore, a proper way to create an animation on Swing components is to separate the rendering from the
model changes. The rendering code is placed in the paintComponent method of the Swing component only. The
animation logic is placed in the separate thread without actual rendering. When the data for a frame is ready, the
method repaint() is called to trigger the rendering. An outline of a typical multithread animation is shown below.

public void paintComponent(Graphics g) {
 <* render a frame *>
}
public void run() {
 while(true) {
 <* update frame data *>
 repaint();
 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException ex) {}
 }
}

The paintComponent method contains all the rendering code to generate a frame. The run method of the
Runnable interface or the Thread class is overridden to perform the animation. It typically contains an infinite
loop to continuously generate the frames. A frame is rendered by calling the repaint method. Between two
frames, the thread typically goes to sleep for a specific period of time. The sleep method of Thread specifies a
sleep time in milliseconds.

Listing 4.6 creates a simple scene of simulated rain. Numerous vertical line segments are moving downward. The
locations and the lengths of the lines are random. A sample run of the program is shown in Figure 4.7.

Listing 4.6. Rain.java
(This item is displayed on pages 119 - 120 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.swing.*;
 8
 9 public class Rain extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame();
12 frame.setTitle("Rain");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

[Page 120]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

14 JApplet applet = new Rain();
15 applet.init();
16 frame.getContentPane().add(applet);
17 frame.pack();
18 frame.setVisible(true);
19 }
20
21 public void init() {
22 JPanel panel = new RainPanel();
23 getContentPane().add(panel);
24 }
25 }
26
27 class RainPanel extends JPanel implements Runnable{
28 Point2D.Double[] pts = new Point2D.Double[1200];
29
30 public RainPanel() {
31 setPreferredSize(new Dimension(640, 480));
32 setBackground(Color.gray);
33 for (int i = 0; i < pts.length; i++) {
34 pts[i] = new Point2D.Double(Math.random(), Math.random());
35 }
36 Thread thread = new Thread(this);
37 thread.start();
38 }
39
40 public void paintComponent(Graphics g) {
41 super.paintComponent(g);
42 g.setColor(Color.white);
43 for (int i = 0; i < pts.length; i++) {
44 int x = (int)(640*pts[i].x);
45 int y = (int)(480*pts[i].y);
46 int h = (int)(25*Math.random());
47 g.drawLine(x, y, x, y+h);
48 }
49 }
50
51 public void run() {
52 while(true) {
53 for (int i = 0; i < pts.length; i++) {
54 double x = pts[i].getX();
55 double y = pts[i].getY();
56 y += 0.1*Math.random();
57 if (y > 1) {
58 y = 0.3*Math.random();
59 x = Math.random();
60 }
61 pts[i].setLocation(x, y);
62 }
63 repaint();
64 try {
65 Thread.sleep(100);
66 } catch (InterruptedException ex) {}
67 }
68 }
69 }

[Page 121]

Figure 4.7. A rainy animation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The class RainPanel extends JPanel and implements Runnable interface. An array pts of Point2D.Double is used
to store the locations of the lines (line 28). They are initialized to random values.

The paintComponent method draws the vertical lines based on the values in the pts array (scaled to component
size) and random lengths.

A new thread is created in the constructor of Rain to execute the code provided by the run method in the same
class. The run method (line 51) contains an infinite loop that updates line locations in the pts array. Each point is
increased by a random amount in the y-coordinate, so the line drops down. When a line reaches the bottom, the
point is reset to a random location in the top region. After the array is updated, the repaint method is called to
redraw the panel. The thread then goes to sleep for 100 milliseconds.

An instance of RainPanel is placed in the applet Rain. A standard main method is included to run the animation
as an application.

An alternative to creating your own thread is to use the Timer class provided by Swing. A Timer object periodically
generates an action event at a predefined rate. The events will trigger the listeners, which may perform the
rendering of a frame. To set up a Timer object, you may specify its period and listeners in its constructor and call
its start() method:

Timer timer = new Timer(period, listener);
timer.start();

The ActionListener object should implement the rendering in its actionPerformed method:

public void actionPerformed(ActionEvent event) {
 <* do frame rendering *>
}

The Timer class provides a more convenient approach for animation than explicit creation of threads. Because the
actionPerformed method is invoked in the event dispatch thread, it is safe to perform rendering on Swing
components in the method.

[Page 122]

Listing 4.7 demonstrates the application of the Timer class. A real-time analog clock is displayed as shown in
Figure 4.8. The time of the clock is from the system time. The clock is updated continuously to achieve the visual
effect of clock movements.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 4.7. Clock2D.java
(This item is displayed on pages 122 - 123 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.util.Calendar;
 7 import javax.swing.*;
 8
 9 public class Clock2D extends JApplet {
10 public static void main(String s[]) {
11 JFrame frame = new JFrame();
12 frame.setTitle("Clock");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 JApplet applet = new Clock2D();
15 applet.init();
16 frame.getContentPane().add(applet);
17 frame.pack();
18 frame.setVisible(true);
19 }
20
21 public void init() {
22 JPanel panel = new ClockPanel();
23 getContentPane().add(panel);
24 }
25 }
26
27 class ClockPanel extends JPanel implements ActionListener{
28 AffineTransform rotH = new AffineTransform();
29 AffineTransform rotM = new AffineTransform();
30 AffineTransform rotS = new AffineTransform();
31
32 public ClockPanel() {
33 setPreferredSize(new Dimension(640, 480));
34 setBackground(Color.white);
35 Timer timer = new Timer(500, this);
36 timer.start();
37 }
38
39 public void paintComponent(Graphics g) {
40 super.paintComponent(g);
41 Graphics2D g2 = (Graphics2D)g;
42 g2.translate(320,240);
43 // clock face
44 Paint paint = new GradientPaint
45 (-150,-150,Color.white,150,150,Color.gray);
46 g2.setPaint(paint);
47 g2.fillOval(-190, -190, 380, 380);
48 g2.setColor(Color.gray);
49 g2.drawString("Java 2D", -20, 80);
50 Stroke stroke = new BasicStroke(3);
51 g2.setStroke(stroke);
52 g2.drawOval(-190, -190, 380, 380);
53 for (int i = 0; i < 12; i++) {
54 g2.rotate(2*Math.PI/12);

[Page 123]
55 g2.fill3DRect(-3, -180, 6, 30, true);
56 }
57 // clock hands
58 Shape hour = new Line2D.Double(0, 0, 0, -80);
59 hour = rotH.createTransformedShape(hour);
60 Shape minute = new Line2D.Double(0, 0, 0, -120);
61 minute = rotM.createTransformedShape(minute);
62 Shape second = new Line2D.Double(0, 0, 0, -120);
63 second = rotS.createTransformedShape(second);
64 g2.setColor(Color.black);
65 g2.setStroke(new BasicStroke(5,
66 BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND));
67 g2.draw(hour);
68 g2.draw(minute);
69 g2.setStroke(new BasicStroke(2));
70 g2.draw(second);
71 }
72
73 public void actionPerformed(ActionEvent e) {
74 int hour = Calendar.getInstance().get(Calendar.HOUR);
75 int min = Calendar.getInstance().get(Calendar.MINUTE);
76 int sec = Calendar.getInstance().get(Calendar.SECOND);
77 rotH.setToRotation(Math.PI * (hour+min/60.0)/6.0);
78 rotM.setToRotation(Math.PI * min /30.0);
79 rotS.setToRotation(Math.PI * sec /30.0);
80 repaint();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

81 }
82 }

Figure 4.8. A real-time analog clock.

The class ClockPanel extends JPanel and implements ActionListener interface. Three AffineTransform fields
define the rotations for the hour, minute, and second hands (lines 28–30).

[Page 124]

The paintComponent method paints the clock face and the three hands. The face consists of a circle filled with a
gradient paint and drawn with a gray color, twelve tick marks created with filled 3D rectangles, and a text string
"Java 2D." The hour, minute, and second hands are drawn as lines. Their positions are determined by the rotation
fields that specify the correct angles for the current time. The rotations are applied to the corresponding hands
that start from the 12 o'clock position.

A Timer object is created and started in the constructor of ClockPanel. It uses the ClockPanel object as the
listener and sets a period of 500 ms (line 35). Responding to the action events generated by the Timer, the
actionPerformed method (line 73) implements the animation functions. It uses the Calendar class to get the
current system time and sets appropriate angles for the three rotations. After the rotations are updated, a
repaint method call is made to update the display.

A cellular automaton is a simple iterative system on a grid that evolves based on a fixed set of rules. Many cellular
automata generate surprisingly complex patterns. A 2D cellular automaton is defined on a 2D grid. Each cell has
two states: black and white (also called live and dead). A cell has eight neighbors. In some systems, only four
neighbors are considered. The iteration of the system proceeds by assigning the next state of each cell based on
the previous configuration. Each cell follows the same set of rules, and the new state depends only upon the
current states of the same cell and its neighbors. For example, Figure 4.9 shows one iteration step with the rule:
"A cell is black if exactly one of its neighbors in the current configuration is black."

Figure 4.9. One step in the evolution of a cellular automaton.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A well-known example of cellular automata is Conway's Game of Life, as illustrated in Listing 4.8. A sample run of
the program is shown in Figure 4.10.

Figure 4.10. Game of Life.
(This item is displayed on page 126 in the print version)

The Game of Life is a 2D cellular automaton. The rules are quite simple:

1. (birth). A dead cell becomes live if it has exactly three live neighbors.

2. (survival). A live cell remains live if it has two or three live neighbors.

3. (death). Otherwise, a cell dies.

Listing 4.8. Life.java
(This item is displayed on pages 124 - 126 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import java.awt.geom.*;
 7
 8 public class Life extends JApplet {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 125]
 9 public static void main(String s[]) {
 10 JFrame frame = new JFrame();
 11 frame.setTitle("Game of Life");
 12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13 JApplet applet = new Life();
 14 applet.init();
 15 frame.getContentPane().add(applet);
 16 frame.pack();
 17 frame.setVisible(true);
 18 }
 19
 20 public void init() {
 21 JPanel panel = new LifePanel();
 22 getContentPane().add(panel);
 23 }
 24 }
 25
 26 class LifePanel extends JPanel implements ActionListener{
 27 int n = 30;
 28 boolean[][] cells1;
 29 boolean[][] cells2;
 30
 31 public LifePanel() {
 32 setPreferredSize(new Dimension(400, 400));
 33 setBackground(Color.white);
 34 cells1 = new boolean[n][n];
 35 cells2 = new boolean[n][n];
 36 for (int i = 0; i < n; i++) {
 37 for (int j = 0; j < n; j++) {
 38 cells1[i][j] = Math.random() < 0.1;
 39 cells2[i][j] = false;
 40 }
 41 }
 42 Timer timer = new Timer(1000, this);
 43 timer.start();
 44 }
 45
 46 public void paintComponent(Graphics g) {
 47 super.paintComponent(g);
 48 Graphics2D g2 = (Graphics2D)g;
 49
 50 g2.setColor(Color.lightGray);
 51 int p = 0;
 52 int c = 16;
 53 int len = c*n;
 54 for (int i = 0; i <= n; i++) {
 55 g2.drawLine(0, p, len, p);
 56 g2.drawLine(p, 0, p, len);
 57 p += c;
 58 }
 59 g2.setColor(Color.black);
 60 for (int i = 0; i < n; i++) {
 61 for (int j = 0; j < n; j++) {
 62 if (cells1[i][j]) {
 63 int x = i*c;
 64 int y = j*c;
 65 g2.fillOval(x, y, c, c);
 66 }
 67 }
 68 }

[Page 126]
 69 }
 70
 71 public void actionPerformed(ActionEvent e) {
 72 boolean[][] cells = cells1;
 73 for (int i = 0; i < n; i++) {
 74 for (int j = 0; j < n; j++) {
 75 cells2[i][j] = cells[i][j];
 76 int nb = neighbors(cells, i, j);
 77 if (nb == 3)
 78 cells2[i][j] = true;
 79 if (nb < 2 || nb > 3)
 80 cells2[i][j] = false;
 81 }
 82 }
 83
 84 cells1 = cells2;
 85 cells2 = cells;
 86 repaint();
 87 }
 88
 89 private int neighbors(boolean[][] cells, int x, int y) {
 90 int x1 = (x>0)?x-1:x;
 91 int x2 = (x<n-1)?x+1:x;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 92 int y1 = (y>0)?y-1:y;
 93 int y2 = (y<n-1)?y+1:y;
 94 int count = 0;
 95 for (int i = x1; i <= x2; i++) {
 96 for (int j = y1; j <= y2; j++) {
 97 count += (cells[i][j])?1:0;
 98 }
 99 }
100 if (cells[x][y]) count--;
101 return count;
102 }
103 }

[Page 127]

The program creates an n-by-n board to display the game. A 2D array of boolean is used to hold the states of the
cells. The initial configuration is set randomly, with the probability of live cells being 0.1.

A timer of 1000 milliseconds is used to animate the progress of the game (line 42). The LifePanel object is the
action listener for the timer. Every time the event is fired, one step of the game is performed. In order to avoid
repeated creation of arrays, only two arrays for the cell configurations are used (lines 28–29). cells1 references
the array for the currently displayed cells. cells2 is for the next configuration. After the computation for a board
update is completed, the two arrays are swapped.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 127 (continued)]

4.7. Printing
Printing is a common task in computer applications. The rendering problems involved in printing graphics are
essentially the same as those in drawing on the screen. However, printing does present some special problems
such as pagination. Java API provides convenient facilities for printing.

The PrinterJob class can be used to manage a printing process. The following static method returns an instance
of PrinterJob:

static PrinterJob getPrinterJob();

At the beginning of a print job the user is usually presented with a printer selection dialog box. You may do that
by simply invoking the method of PrinterJob:

boolean printDialog();

The method returns true if the user chooses to proceed with the printing. You may initiate the printing by calling
the following method:

void print() throws PrinterException;

The actual graphics contents of printing are defined using the Printable interface. An object implementing
Printable is selected to a PrinterJob through the method:

void setPrintable(Printable painter);

The Printable interface provides a callback structure to define the custom drawing of the printing job. The
interface contains the following method for custom implementation:

int print(Graphics g, PageFormat pf, int pageIndex);

The implementation of this method is very similar to that of paintComponent. The code can often be shared
between the two methods. The Graphics parameter, which can be cast to a Graphics2D object, provides access
to the 2D rendering engine. All the drawing, transformation, and other features are available to printing.

The pageIndex parameter provides the page number of the page currently being rendered. It starts with 0. The
implementation of the method should return either the value NO_SUCH_PAGE if the page should not be printed or
the value PAGE_EXISTS if the page is rendered.

The PageFormat object contains information about the printer's page settings. The following are some of the
methods in PageFormat:

int getOrientation();
double getWidth();
double getHeight();
double getImageableX();

[Page 128]
double getImageableY();
double getImageableWidth();
double getImageableHeight();

The last four methods retrieve the rectangle of the printable area of the page.

Listing 4.9 demonstrates the usage of these classes in implementing printing functionalities in Java applications.
The program displays a window containing a panel with the text "Welcome!" and a button labeled "Print." If the
button is clicked, a printer selection dialog box is displayed. When a printer is chosen, the same text string will be
printed on two pages, as shown in Figure 4.11. The rendered image is cut against the printable area, but the
fragments are properly aligned across the pages.

Listing 4.9. Printing.java

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

(This item is displayed on pages 128 - 129 in the print version)

 1 package chapter4;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.awt.print.*;
 7 import javax.swing.*;
 8
 9 public class PrintGraphics extends JFrame implements ActionListener {
10 public static void main(String[] args) {
11 JFrame frame = new PrintGraphics();
12 frame.setTitle("Printing");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 frame.pack();
15 frame.setVisible(true);
16 }
17
18 PrinterJob pj;
19 PrintPanel painter;
20
21 public void actionPerformed(ActionEvent e) {
22 if (pj.printDialog()) {
23 try {
24 pj.print();
25 } catch (PrinterException ex) {
26 ex.printStackTrace();
27 }
28 }
29 }
30
31 public PrintGraphics() {
32 Container cp = this.getContentPane();
33 cp.setLayout(new BorderLayout());
34 JButton button = new JButton("Print");
35 cp.add(button, BorderLayout.SOUTH);
36 button.addActionListener(this);
37 painter = new PrintPanel();
38 cp.add(painter, BorderLayout.CENTER);
39 pj = PrinterJob.getPrinterJob();
40 pj.setPrintable(painter);
41 }
42 }
43

[Page 129]
44 class PrintPanel extends JPanel implements Printable {
45 public PrintPanel() {
46 setPreferredSize(new Dimension(800, 400));
47 setBackground(Color.white);
48 }
49
50 public int print(Graphics g, PageFormat pf, int pageIndex) {
51 switch (pageIndex) {
52 case 0:
53 draw(g);
54 break;
55 case 1:
56 g.translate(-(int)pf.getImageableWidth(), 0);
57 draw(g);
58 break;
59 default:
60 return NO_SUCH_PAGE;
61 }
62 return PAGE_EXISTS;
63 }
64
65 public void paintComponent(Graphics g) {
66 super.paintComponent(g);
67 draw(g);
68 }
69
70 private void draw(Graphics g) {
71 g.setFont(new Font("Serif", Font.BOLD, 144));
72 g.drawString("Welcome!", 200, 300);
73 }
74 }

Figure 4.11. Printing over multiple pages.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 130]

The class PrintPanel extends JPanel and implements the Printable interface. An instance of PrintPanel is
added to the main frame of the program. It is also used for printing. The panel paints the string "Welcome!" using
a 144-point font. A private method draw is defined to perform the drawing (line 70). Both paintComponent and
print methods call the draw method.

The print method has additional logic to handle the page split. The first page (pageIndex = 0) is printed without
change. In the second page, a translation is performed to move the page so that it covers the area to the right of
the first page. To determine the precise offset, we use the PageFormat object to retrieve the width of the
printable area (line 56).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 130 (continued)]

Key Classes and Methods
javax.awt.geom.GeneralPath.curveTo(...) A method to construct a cubic curve segment.

javax.awt.image.BufferedImage A class encapsulating an image.

javax.awt.image.BufferedImageOp An interface for image-processing operators.

java.swing.Timer A class generating action events in a periodic fashion.

java.lang.Runnable An interface to define code executable as a separate thread.

java.lang.Thread A class encapsulating a thread of execution of a program.

java.lang.Thread.sleep(long ms) A method to place the thread to sleep for a specified time period.

java.util.Calendar A class encapsulating a calendar for date and time.

java.awt.image.Raster A class encapsulating image data.

java.awt.image.WritableRaster A class encapsulating writable image data.

java.awt.print.PrinterJob A class for printing management.

java.awt.print.Printable An interface to define print contents.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 130 (continued)]

Key Terms
B-spline curve

A curve defined as a parametric equation of piecewise polynomials blending with a sequence of control
points.

Bézier curve

A curve defined as a parametric equation of polynomials blending with control points.

NURBS

Nonuniform rational B-spline.

image processing

Computer manipulation of digital images to enhance or extract information.

convolution

A type of linear operations often used in signal and image processing.

kernel

A function to define a convolution.

complex numbers

An extension of real numbers.

complex plane

The set of complex numbers interpreted as points on a plane.

frame rate

The speed of an animation measured in frames per second (fps).

thread

A line of execution in a running program. In a multithreading environment a single program may have
several threads running simultaneously.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

cellular automata

A dynamic system on a grid of cells, evolving based a simple set of rules that specify the next state of a cell
using the previous states of itself and its neighbors.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 130 (continued)]

Chapter Summary
In this chapter we present several advanced techniques in 2D computer graphics.

B-spline curves are important tools in modeling 2D geometry. A B-spline curve can be converted to a
sequence of Bézier curves, which may then be rendered directly by the Graphics2D object. The control
points of each Bézier curve are linear combinations of the control points of the B-spline curve.

[Page 131]

Java 2D provides a basic set of graphics primitives. We discussed how to build custom primitives by
implementing the Shape interface. Even though it is not possible to extend the GeneralPath class, you
may still include it in your own class to take advantage of its implementation.

A brief introduction to image processing is given in this chapter. Java 2D provides supports for image
reading, writing, rendering, and processing. The BufferedImage class is the main representation for images
in Java 2D. Image-processing operators implementing the BufferedImageOp interface provides convenient
ways to process BufferedImage objects.

Images can also be created and manipulated in a program at the pixel level. Raster and WritableRaster
classes offer access to the pixel data in a BufferedImage. An example in constructing an image for the
Mandelbrot set is given.

Animation is an important part of computer graphics. Implementing a 2D animation in Java usually
requires multiple threads to separate the continuous rendering from the regular user interface handling.
The Thread class and the Runnable interface provide essential multithreading support. The Timer class of
the Swing package provides a convenient utility to trigger the periodic frame rendering.

Printing in Java fits the general rendering scheme of Java 2D quite well. The same Graphics2D class
provides the rendering engine. The Printable interface allows for the necessary callback structure for
defining the graphics output. The PrinterJob class facilitates the special tasks in printing.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 131 (continued)]

Review Questions

4.1 Given a cubic B-spline curve as defined in this chapter with n control points, how many Bézier
curves will be generated from the conversion?

4.2 Another kind of B-spline curve does not impose special restrictions of the endpoints of the curves.
The first and the last segments are treated in the same way as other segments. It uses the
same formula for the conversion to Bézier curves on every segment. Consequently, the first and
the last control points are not necessarily interpolated by the curve. Find the conversion formula
for this type of B-spline curve.

4.3 If you apply a smoothing operator to an image followed by a sharpening operator, will you recover
the original image?

4.4 Perform five iterations in the Mandelbrot set definition for c = i.

4.5 Perform five iterations in the Mandelbrot set definition for c = 1.

4.6 If it takes 0.01 second to complete a frame rendering, and the thread sleeps for 50 milliseconds
for each frame, calculate the frame rate.

4.7 How many different rules are there for cellular automata with four neighbors?

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 131 (continued)]

Programming Exercises

4.1 Implement the type of B-spline curve defined in Review Question 4.2.

4.2 Add the Heart primitive to the program in Listing 2.3 so it can be selected and drawn like other
shapes.

[Page 132]

4.3 Write a Triangle class that implements the Shape interface. Provide a constructor to define the
three vertices of the triangle.

4.4 Implement a regular n-gon primitive. Define the class to implement the Shape interface and
provide a constructor to specify the number of sides n.

4.5 Add an invert operation to the program in Listing 4.4. The color of every pixel is turned to its
opposite color; that is, a color with components r, g, b is changed to 1 - r, 1 - g, 1 - b.

4.6 Write a Java program with a text field, a button, and a text area as shown in Figure 4.12. A user
may enter a string in the text field. When the button "Print" is clicked, the text area will display
the pattern of the string formed with the character '*'.

Figure 4.12. ASCII art.

4.7 Modify the program in Listing 4.5 to allow a general rectangular region of the complex plane to be
viewed in the image. The user may select the rectangle by dragging the mouse.

4.8 The Julia set uses the same type of iterations as in the Mandelbrot set. The constant c is always
fixed. The starting point of the iteration is not necessarily 0. A point is in the Julia set if the
sequence generated by the iteration starting at the point is bounded. Write a Java program to
display the Julia set when c = -0.672 + 0.435i.

4.9 Modify the program in Listing 3.6 so that the drawing with compositing rules is done on an off-
screen image that supports the a-channel. The image is drawn to the screen after the drawing is
completed.

4.10 Write a program to display a running fan with four blades.

4.11 Write a Java 2D program that animates a ball bouncing inside a rectangle, as illustrated in Figure

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4.11 Write a Java 2D program that animates a ball bouncing inside a rectangle, as illustrated in Figure
4.13. The ball initially moves on a randomly chosen line. When the ball hits a side of the
rectangle, it bounces back in another random direction.

[Page 133]

Figure 4.13. A bouncing ball.

4.12 Write a Java program simulating an analog stopwatch. Use mouse clicking to operate the
stopwatch which cycles through three states: Start–Stop–Reset.

4.13 Implement a cellular automaton with the following rules based on the four-neighbors of a cell:

1. A white cell becomes black if the number of its black neighbors is not 1;

2. A black cell stays black if the number of its black neighbors is either 1 or 3;

3. Otherwise, the cell becomes white.

Starting from a single black cell at the center of the board, the amazing pattern shown in Figure
4.14 will emerge. Use a Timer object to animate the process, and allow the user to stop the
animation by a mouse click.

Figure 4.14. A pattern generated by a simple cellular automaton.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

4.14 Write a Java program to print an analog clock showing the current time.

4.15 Add a "Print" menu item to the drawing program in Listing 2.3. When selected, it will initiate a
printing of the current drawing.

[Page 134]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 135]

Chapter 5. Basic 3D Graphics
(This item omitted from WebBook edition)

Objectives
To describe the 3D rendering process.

To present an overview of Java 3D programs.

To define the Java 3D scene graph.

To classify components of a scene graph.

To apply background nodes.

To understand and apply bounds.

To make changes in live scene graphs.

[Page 136]

5.1. Introduction
Our perception of the physical world is clearly three dimensional. However, the visual images that we see through
our eyes are two dimensional. A special type of mapping called perspective projections is the underlying
mechanism to capture a 3D scene to a 2D image. The basic objective of 3D computer graphics is to simulate this
process in computers.

3D computer graphics studies the modeling and rendering of a 3D world. The geometric objects in the 3D space
may have dimension 0 (points), dimension 1 (curves), dimension 2 (surfaces), or dimension 3 (solids). The
objects may have different kinds of material properties. There may exist light sources of various characteristics
illuminating the scene in the virtual space. The virtual cameras that capture the scenes of the virtual world may
be placed at different locations in the space and have different characteristics. A 3D computer graphics system
needs to address many problems in representing the graphics objects and their properties, facilitating
transformations, organizing all the components, and rendering the scene.

Java 3D is an object-oriented API for 3D computer graphics. The entire graphics model of a Java 3D program is
organized in a structure called the scene graph. Each node of the scene graph is an object of a class representing
one of many graphics entities. The scene graph provides a systematic model for the Java 3D rendering engine to
automatically render a scene constructed by a Java 3D program.

In this chapter, we will introduce the basic concepts of a 3D graphics system. In particular you will learn the
overall architecture of Java 3D, the concept of a Java 3D scene graph, and an overview of different categories of
scene-graph components. You will be able to construct Java 3D scene graphs and write simple Java 3D programs.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 136 (continued)]

5.2. 3D Rendering Process
Rendering a 3D scene to produce an image (typically 2D) is an inherently complex process. Unlike 2D graphics, a
rendered image of a 3D object is significantly different from its original 3D version. To directly model the object
based on its rendered image would not be feasible. Therefore, a 3D graphics system invariably involves the
construction of a virtual world in which various graphics objects and light sources are defined. Rather than
constructing the scene "on the fly," as often seen in the 2D cases, a persistent "retained" model of the virtual
world separated from the rendering engine is often needed. The scene is then viewed in a structured way within
the virtual world, and the rendering engine produces the image of the view. A simple illustration of 3D graphics
concepts is shown in Figure 5.1.

Figure 5.1. 3D graphics model and view.

The rendering process of a static graphics scene is similar to that of a real camera taking a picture. The virtual
world contains visual objects that reflect light from various light sources. The camera is located at a specific point
in the virtual world and projects the visible portions of the virtual world along a specific direction onto a 2D plane.
The graphics objects as well as the views may be dynamic. Consequently, the scene and the rendered images
may continuously change over time. There may be interactions between the virtual world and the real physical
world. User and sensor inputs may affect the virtual models.

[Page 137]

In order to implement or use such a 3D graphics system, we have to consider many problems related to the
modeling of the virtual world and the rendering of a scene—for example,

Geometry of the graphics objects.

Location and position of the objects.

Geometric transformations applied to objects and views.

Material properties and texture of the objects.

Lights and their characteristics.

Type of projections in a view.

View position, field of view, and other properties.

Illumination and shading models.

Dynamic behaviors of various components.

Reactions to the user inputs

Geometric descriptions of the graphics objects are the most fundamental aspect of building a virtual world in a 3D
graphics system. Basic building blocks for 3D graphics objects include points, lines, surfaces, and solids. Simple
polygon meshes are commonly used to approximate complex objects. A 3D graphics system usually offers
convenient facilities to generate certain high-level geometries such 3D texts and geometric primitives (for
example, spheres, cones, and boxes). More advanced modeling tools include spline curves and surfaces.

Transformation is an important tool in a graphics system. Geometric transforms are used to place the geometric
objects in the virtual world space and to change their shapes, sizes, and positions when necessary. 3D affine
transforms are the commonly used family of transforms in the virtual world space. Another family known as
projective transforms is more general. Projective transforms are important parts of a 3D viewing process.

Besides its geometry, a graphics object also has appearance properties that determine how the object is rendered.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

These properties may include colors, textures, and material properties for more sophisticated shading. The
lighting, illumination, or shading policy controls the way that colors and light intensities on objects are calculated.
The choice of illumination model also influences the outcome of rendering. Certain geometric information such as
the surface normals is closely related to the appearance in some illumination models. The normal at a point of the
surface is the direction perpendicular (vertical) to the tangent plane at the point. In the Phong illumination model
that considers specular reflection, for example, the light intensity at the point is associated with the angle
between the direction of the view and the direction of the light reflection. The reflection vector is determined by
the direction of the light and the surface normal. The details of illumination and shading models will be introduced
in Chapter 9.

The 3D viewing process typically involves a projective transformation that maps a 3D scene to a 2D plane. A view
can have many parameters to control its characteristics. The projection may be parallel or perspective. For a
particular view, the visible volume of the virtual world is usually finite, and this volume is known as the view
frustum. Simply applying a mathematical transformation of projection may not be enough for the rendering. For
example, the relative positions among the objects may also be important to the rendering process. A portion of an
object may be hidden by another object. These problems need to be properly addressed to achieve acceptable
visual results.

Of course, the 3D rendering is not limited to a static scene. The virtual world can change over time. The viewing
system may be associated with a dynamic device such as a head-mounted display. The dynamic effects of the
rendering process may include animation and interaction. Interaction is an alteration of the scene resulting from
user feedbacks. Animation is a change designed internally in the virtual world. The distinction between the two
types of dynamics is often blurred. The dynamic behaviors may be originated from the changes in the graphics
objects in the virtual world or from the changes of the viewer. The viewers (cameras or eyes) may themselves be
objects located in the virtual world and may dynamically change their positions, directions, and other properties.

[Page 138]

Java 3D API provides a comprehensive implementation of the basic graphics algorithms, enabling us to
concentrate on the main concepts and problems in graphics instead of tedious details of lower-level
implementations. This book uses the Java 3D package as the tool to study and implement 3D graphics systems
and applications.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 138 (continued)]

5.3. Java 3D API Overview
Java 3D provides a high-level API for modeling and rendering 3D graphics scenes. The Java 3D rendering engine
automatically renders a scene with all the structures and properties specified by the programmer. Programming
with Java 3D API, therefore, will require only the specifications of the desired graphics scene and the associated
properties, and will not need to implement the highly complex and tedious low-level rendering process.

Java 3D takes advantage of the object-oriented programming features of the Java programming language. Almost
all elements involved in the graphics rendering (such as geometry, transformation, light, and animation) are
implemented as Java classes. Such objects are created simply by instantiating the corresponding classes.

In order to organize all the objects involved in rendering a scene, Java 3D uses a special structure called a scene
graph. This, with its superstructure objects, node objects, and node components, defines the entire virtual
graphics world to be rendered. The Java 3D rendering engine will traverse the scene graph to continuously
perform the actual rendering. The scene graph defines geometries, appearances, transformations, lights, and
views in a 3D scene. It may also include animations, interactions, and sounds.

5.3.1. A Simple Example

Listing 5.1 shows a simple Java 3D applet and application. It demonstrates the basic structure of a Java 3D
program. The program displays a solid 3D text "Hello 3D" illuminated by a point light (Figure 5.2).

Listing 5.1. Hello3D.java
(This item is displayed on pages 138 - 139 in the print version)

 1 package chapter5;
 2
 3 import java.awt.*;
 4 import java.applet.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import javax.vecmath.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Hello3D extends Applet {
13 public static void main(String s[]) {
14 new MainFrame(new Hello3D(), 640, 480);
15 }
16
17 public void init() {
18 GraphicsConfiguration gc =
19 SimpleUniverse.getPreferredConfiguration();
20 Canvas3D cv = new Canvas3D(gc);
21 setLayout(new BorderLayout());
22 add(cv, BorderLayout.CENTER);
23 BranchGroup bg = createSceneGraph();

[Page 139]
24 bg.compile();
25 SimpleUniverse su = new SimpleUniverse(cv);
26 su.getViewingPlatform().setNominalViewingTransform();
27 su.addBranchGraph(bg);
28 }
29
30 private BranchGroup createSceneGraph() {
31 BranchGroup root = new BranchGroup();
32 // object
33 Appearance ap = new Appearance();
34 ap.setMaterial(new Material());
35 Font3D font = new Font3D(new Font("SansSerif", Font.PLAIN, 1),
36 new FontExtrusion());
37 Text3D text = new Text3D(font, "Hello 3D");
38 Shape3D shape = new Shape3D(text, ap);
39 // transformation
40 Transform3D tr = new Transform3D();
41 tr.setScale(0.5);
42 tr.setTranslation(new Vector3f(-0.95f, -0.2f, 0f));
43 TransformGroup tg = new TransformGroup(tr);
44 root.addChild(tg);
45 tg.addChild(shape);
46 // light
47 PointLight light = new PointLight(new Color3f(Color.white),
48 new Point3f(1f,1f,1f),
49 new Point3f(1f,0.1f,0f));
50 BoundingSphere bounds = new BoundingSphere();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

51 light.setInfluencingBounds(bounds);
52 root.addChild(light);
53 return root;
54 }
55 }

Figure 5.2. A simple Java 3D program displays a 3D text string.

[Page 140]

This example is a complete Java 3D program. It shows a frame containing a 3D text string "Hello 3D." You can
see the depths of the characters and the illumination of the characters originated from a light. The background of
the scene is black.

Besides the AWT packages, the program imports the following packages from Java 3D API:

javax.media.j3d
javax.vecmath
com.sun.j3d.utils.universe
com.sun.j3d.utils.geometry

javax.media.j3d is the main package of Java 3D. javax.vecmath contains classes for vectors, matrices, and
other mathematical objects that are useful for Java 3D. The other two packages contain many convenient utility
classes for building primitives, views, and other objects in Java 3D, even though the com.sun.j3d.* packages are
not considered in the core of Java 3D.

The visual components used in the program Hello3D are the old-style AWT components instead of the Swing
components. For example, an Applet object is used instead of JApplet. This is because the GUI component
Canvas3D used for Java 3D rendering is a heavyweight component. Even though it is possible to place
heavyweight components into a Swing component JFrame, doing so may cause some irregularities in the display.
For example, the menu may not be shown properly.

An applet derived from the Applet class can be implemented as an application as well by adding the applet to a
Frame instance in a main method, similar to the Swing implementation. Because the Frame class does not have
the setDefaultCloseOperation method, the window-closing operation for the frame needs to be implemented by
handling the WindowEvent. The class com.sun.j3d.utils.applet.MainFrame provides an implementation for
running an applet as an application (line 14). Hello3D and most subsequent examples will use this convenient
utility class to create the dual-purpose program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A Canvas3D object is created to display the 3D rendering (line 20). Canvas3D is a subclass of the AWT component
Canvas and therefore the Canvas3D object can be added to this Frame. The method createSceneGraph defines the
scene graph for the application. It returns a BranchGroup object that can be attached to a SimpleUniverse
object. The utility class SimpleUniverse provides a basic framework for Java 3D rendering. Once the scene graph
branch is attached to the SimpleUniverse object, the rendering will begin.

In the createSceneGraph method (line 30), first a BranchGroup object is created to act as the root. The visual
object to be displayed is a 3D text string represented by a Text3D object. It is constructed with a 3D font and an
appearance. A transformation is then defined with the Transform3D class. It performs a scaling and a translation.
The transformation is applied to the Text3D object. A light is constructed and placed in the scene. The influence of
the light is limited to a region defined by a BoundingSphere object.

To fully understand the Java 3D program, it is necessary first to understand Java 3D scene graphs. The details of
Java 3D scene graphs will be introduced in the next sections, and the complete analysis of the scene graph
contained in this example will be given later in the chapter.

5.3.2. Install Java 3D

To compile and execute a Java 3D program, you need a Java software development environment and the Java 3D
package. Java 3D is an optional package of the Java 2 platform. A standard Java installation does not
automatically include it. You may download the Java 3D package at the site:

http://java.sun.com/products/java-media/3D/

Java 3D is available for various platforms including Solaris, Windows, Linux, and Mac OS. After installing the Java
3D package on top of a Java 2 software development kit, you will be able to compile and run a Java 3D program
such as the one in Listing 5.1.

[Page 141]

A Java 3D distribution includes native code and Java libraries. The Java classes are packaged in four jar files:

j3dcore.jar
j3dutils.jar
j3daudio.jar
vecmath.jar

In a Windows installation, the jar files are typically placed in the directory:

<j2sdk directory>/jre/lib/ext

The native code is implemented in three dynamic link libraries: J3D.dll, j3daudio.dll, and J3DUtils.dll under
the directory:

<j2sdk directory>/jre/bin

You may also build Java 3D programs in IDEs such as JBuilder and Netbeans. Additional configurations may be
required to use the Java 3D packages. In JBuilder, you need to create a new library to include the four jar files
above, using the Tools menu item Configure Libraries. After the library is created, you may set the Project
properties to use the library. In Netbeans (Sun ONE Studio, Forte), you will be able to compile and run Java 3D
applications as soon as the Java 3D package is installed to the J2SDK associated with the Netbeans installation.
However, to take advantage of the context-sensitive code-completion feature of the IDE, you may need to update
the parser database for the jar files. This can be done by mounting the four jar files and selecting "Update Parser
Database" on each. This step is not necessary for newer versions of Netbeans.

A Java 3D application can be executed in a Java Runtime Environment (JRE) with the Java 3D package installed. A
Java 3D program may also be built as an applet. To view a Java 3D applet in a browser, you need to install a Java
plug-in associated with a JRE for Java 2 environment and install the Java 3D package on top of the JRE.

Java 3D is usually built on top of other low-level graphics API such as OpenGL. For example, there are two Java
3D distributions for the Windows environment: one for OpenGL and the other DirectX. Rendering 3D graphics is
usually a computationally intensive task. To achieve better performance, Java 3D will attempt to take advantage
of the acceleration features offered by the graphics hardware. Because of the large variety of different graphics
boards, software drivers, and vendors, you may encounter some compatibility problems when using Java 3D on
certain platforms. The following suggestions may help you resolve some of the problems:

Update your video driver to the latest stable version.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

http://java.sun.com/products/java-media/3D/

Use the most recent release of Java 3D.

Set the depth buffer in the OpenGL options of your graphics card to 24 bits or higher.

Turn off hardware acceleration of the graphics card.

Join the Java 3D interest group: java3d-interest@java.sun.com

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

mailto:java3d-interest@java.sun.com

[Page 141 (continued)]

5.4. Java 3D Scene Graphs
In order to organize various elements in the 3D rendering effectively, Java 3D uses the concept of scene graph to
build a virtual universe that includes everything relevant to a 3D rendering. A scene graph is an abstract
mathematical model for the organization of a scene. It is not a picture or an image of the scene. The scene graph
can be conceptually drawn as a diagram, but its actual implementation is done in the program through object
instantiation and method invocation. The scene graph enables programmers to specify complex graphics
structures and actions in a uniform manner. It also enables the Java 3D rendering engine to process the scene
systematically and efficiently.

[Page 142]

A scene graph is a treelike data structure known as DAG (directed acyclic graph). A directed graph consists of a
set of vertices (or nodes) connected with directed edges (or links). Figure 5.3 shows a directed graph with 6
vertices and 8 edges. A (directed) path in a directed graph is a vertex-edge sequence that moves along the edges
of the graph. For example, in Figure 5.3, b-c-f-e is a path. A cycle in a directed graph is a closed path—that is, a
path having the same initial and terminal vertex. For example, in Figure 5.3, a-c-f-e-a is a cycle. A DAG is a
directed graph without any cycles. Therefore Figure 5.3 is not a DAG. However, if the edge e-a is removed, then it
becomes a DAG.

Figure 5.3. A directed graph.

A (directed) tree is a special type of DAG. A tree is constructed starting from one vertex known as the root of the
tree. There can be a number of edges originated from the root leading to other distinct vertices called the children
of the root. Each child can then have a number of edges leading to its children in the same fashion. This process
can iterate an arbitrary number of steps to produce a tree. Figure 5.4 shows an example of a tree. The vertex a is
the root of the tree. In a tree, a vertex may have any number of children (including 0), but it cannot have more
than one parent. A vertex that has no child is called a leaf. A nonleaf vertex is called an internal node. In Figure
5.4, the nodes e, h, c, g are leaves and the nodes a, b, d, f are internal nodes.

Figure 5.4. A directed tree.

The nodes of a scene graph represent objects of the various classes related to graphics functions. The links

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

between nodes represent the logical relationships between them. In an actual Java 3D program, the nodes are
created by instantiation of the classes defined in the Java 3D API, or the classes derived from the API classes and
interfaces. The links are created by calling the appropriate methods or constructor in the classes. Figure 5.5
shows a very simple Java 3D scene graph.

[Page 143]

Figure 5.5. A scene graph as a DAG.

Different types of nodes and links are represented by different symbols in the diagram drawing of a scene graph.
Figure 5.6 shows the symbols conventionally used for scene graph nodes and edges.

Figure 5.6. Legend of scene graphs.

A scene graph has three major parts. On the top is the superstructure, which consists of objects from
VirtualUniverse and Locale classes. The main body of the scene graph is a tree of objects belonging to the Node
class. The third part is a set of NodeComponent objects. The leaf nodes in the tree structure can reference the
node component objects. One NodeComponent object may be referenced by several Leaf objects. Therefore, the
overall structure of a scene graph is not a tree but only a DAG.

The main class hierarchy for the scene graph elements is shown in Figure 5.7. The VirtualUniverse and Locale
are classes for the superstructure and they are not derived from the SceneGraphObject abstract class. The tree
nodes in a scene graph are defined by the subclasses of the abstract class Node. The NodeComponent abstract class
serves as the base class for various node components.

[Page 144]

Figure 5.7. Scene-graph class hierarchy.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 144 (continued)]

5.5. The Superstructure
The VirtualUniverse and Locale objects are the superstructure objects of scene graphs. A Java 3D program
typically has only one VirtualUniverse object. The VirtualUniverse is designed to potentially represent the
entire space that is of interest to any Java 3D program. In order to accommodate the size and precision of a
"universe," VirtualUniverse uses three high-resolution 256-bit fixed-point numbers to represent its coordinates.
A high-resolution fixed-point number has its binary point at the middle of the 256 bits, so it has 128 bits for the
integer part and 128 bits for the fractional part. The number 1.0 represents the unit of 1 meter. Numbers of this
type can provide a distance measure as high as 2127 meters with a resolution of 2-128 meters. This should be
adequate to measure any real objects in the universe. For example, the distance from the Earth to the Sun is
only about 237 meters and the radius of a proton is believed to be about 2-50 meters.

The class HiResCoord is defined to represent such a high-resolution coordinate. It contains three 256-bit high-
resolution fixed-point numbers to represent the x-, y-, z-coordinates of a location.

While the VirtualUniverse is capable of modeling essentially the entire universe known to us through the
HiResCoord numbers, it is clearly very inefficient to represent all coordinates using HiResCoord objects.
Therefore, Java 3D uses the Locale class to represent smaller local spaces and to achieve much greater efficiency.
A Locale object defines a local coordinate system anchored at a specific location specified by HiResCoord in the
virtual universe. Within a specific locale, the coordinates of the points are represented by usual floating-point
numbers. A VirtualUniverse contains one or more Locale objects. A Locale may have branch graphs attached
to it. When a branch graph is attached to a Locale, the Java 3D rendering engine will start to render the branch,
and the graph becomes live. A Locale object is always attached to one VirtualUniverse object. This association
is established with constructors of Locale.

Locale(VirtualUniverse vu)
Locale(VirtualUniverse vu, HiResCoord location)
Locale(VirtualUniverse vu, int[] x, int[] y, int[] z)

The location of a Locale object in the universe can be specified using a HiResCoord object or three int arrays
specifying the high-resolution numbers. The default location is (0, 0, 0). The following statements will create a
superstructure for a scene graph:

VirtualUniverse universe = new VirtualUniverse();
Locale locale = new Locale(universe);

[Page 145]

Branches of a scene graph rooted at BranchGroup objects can be attached to a Locale object by using the
following method in Locale:

void addBranchGraph(BranchGroup branch)

The branches can be edited with the following methods:

void replaceBranchGraph(BranchGroup oldBranch, BranchGroup newBranch)
void removeBranchGraph(BranchGroup branch)

The following methods return the number of branches and all the branches in a Locale:

int numBranchGraphs()
Enumeration getAllBranchGraphs()

The class SimpleUniverse is a utility class derived from VirtualUniverse. It includes a Locale object and a set of
objects to define a standard view. A SimpleUniverse object can be combined with the visual content branch to
quickly form a complete scene graph. The world coordinate system in Java 3D is a right-handed rectangular
system. The default view position is located on the z-axis looking toward the negative z-axis. From the viewer's
perspective, the x-axis is pointing to the right and the y-axis up.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 145 (continued)]

5.6. The Nodes
The Node objects are the nodes in the main tree structure of a scene graph. There are two main categories of
nodes: the Group nodes and the Leaf nodes. The Group nodes are internal nodes of the tree representing certain
relations and operations for the child nodes. The Leaf nodes are leaves of the tree representing certain graphics
entities. The leaf nodes in a scene graph usually reference some NodeComponent object to define its attributes and
properties. The node components may be shared among different leaf nodes.

5.6.1. The Group Nodes

Group nodes are the internal nodes in a scene graph. The main group-node class hierarchy is given in Figure 5.8.
Group nodes are the main building blocks of the scene-graph tree structures. They may have children. A child of a
group node can be a leaf node or another group node. Because of the tree structure imposed on the Node objects
in a scene graph, two group nodes cannot share the same child-node object. A child node has only one parent,
and there is a unique path from the root to a leaf node.

Figure 5.8. The Group-node classes.

[Page 146]

A Group node maintains a list of children. To add a child node to a Group node, you may call the following
methods:

void addChild(Node child)
void insertChild(Node child, int index)

A child can be accessed through an index.

Node getChild(int index)
void setChild(Node child, int index)

The methods to retrieve information about children include

int numChildren()
int indexOfChild(Node child)

Other methods related to children of a Group node include

Enumeration getAllChildren()
void removeChild(Node child)
void removeChild(int index)
void removeAllChildren()

A BranchGroup node is the root of a branch of a scene graph. It is the only type of node that can be attached to a
Locale object. Therefore, there must be at least one BranchGroup node in a scene graph. A BranchGroup node
does not perform any special operations other than bringing its children together.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

An OrderedGroup node specifies an order of rendering on its children. The Java 3D rendering engine renders a
scene by traversing the scene graph from the root to all the leaf nodes. Normally at a particular node the order of
visiting the children is not specified. Java 3D may choose to render the children in any order. The OrderedGroup
node provides a way to enforce a specific ordering on traversing the children. The children of an OrderedGroup
node are guaranteed to be rendered in the order of their indices. For example, the following code constructs a
portion of a scene graph in which the three shapes will be guaranteed to render in the order shape1, shape2,
shape3. The corresponding scene graph is shown in Figure 5.9.

Shape3D shape1 = new Shape3D();
Shape3D shape2 = new Shape3D();
Shape3D shape3 = new Shape3D();
OrderedGroup group = new OrderedGroup();
group.addChild(shape1);
group.addChild(shape2);
group.addChild(shape3);

Figure 5.9. An OrderedGroup node and its children.

[Page 147]

A Primitive node represents a complete geometric primitive such as a sphere. It is a utility class in the package
com.sun.j3d.utils.geometry. Primitives will be discussed in Chapter 6, "Graphics Contents."

A SharedGroup node is the root of a branch graph that can be shared by several Link leaf nodes. It is not
uncommon that certain branches of a scene graph are identical. But the common branch cannot be shared
among group nodes, because of the requirement of tree structure. In this case, you may define the common
branch using a SharedGroup object as the root. This branch can then be shared by several Link leaf nodes
through references, instead of the parent–child relations. Consider the simple example in Figure 5.10. In the
scene graph on the left, two branches have the same structure and attributes. To share the common branch, a
SharedGroup node is added as the root of the shared branch. Two Link nodes referencing the shared branch are
introduced to replace the original common branches. The result is the scene graph on the right. Note that this
structure does not violate the requirement for a tree, because the SharedGroup node is not a child of the Link
nodes.

Figure 5.10. Identical branches may be shared through a SharedGroup node and Link leaf nodes.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A Switch node acts as a switch to select a particular set of children of the node for rendering. In the list children
of a Switch node, you may turn on the rendering of a specific child, none of the children, all of the children, or a
set of children using the following method:

void setWhichChild(int whichChild)

The parameter whichChild may be a nonnegative integer specifying the index of a child, or one of the predefined
constants: CHILD_NONE, CHILD_ALL, CHILD_MASK. If the constant CHILD_MASK is used, then the set of selected
children is defined by a mask. The mask may be set with the following method:

void setChildMask(BitSet mask)

[Page 148]

For example, the following code segment selects the shape1 and shape3 for rendering:

Shape3D shape1 = new Shape3D();
Shape3D shape2 = new Shape3D();
Shape3D shape3 = new Shape3D();
Switch group = new Switch();
group.addChild(shape1);
group.addChild(shape2);
group.addChild(shape3);
BitSet mask = new BitSet();
mask.set(0);
mask.set(2);
group.setChildMask(mask);
group.setWhichChild(Switch.CHILD_MASK);

A TransformGroup node represents a geometric transform that applies to all of its children. A TransformGroup
node uses a Transform3D object for the specification of a transform. Transformations will be covered in Chapter 7,
"Geometric Transformation."

5.6.2. The Leaf Nodes

The Leaf class is an abstract subclass of Node. Leaf nodes generally represent various geometric objects, sounds,
and other graphics objects in a scene graph. They have no child node, but they usually do contain references to
node component objects. The class hierarchy of leaf nodes is given in Figure 5.11.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 5.11. Leaf-node class.

A Shape3D leaf node represents a graphics object to be rendered. It holds the references to node components that
describe the geometry and appearance of the object. The details about the Shape3D and its subclasses can be
found in Chapter 6.

The Behavior class encapsulates the actions that can be defined in a scene graph to achieve dynamic effects. It is
the foundation for animation and interaction. The details of animation and interaction are covered in Chapters 10
and 11.

A Morph node is similar to Shape3D, but it facilitates the blending of multiple geometries. A Morph node can be
used with a Behavior object to achieve morphing effects on an object.

A Light leaf node defines a light that illuminates the scene when lighting is enabled. Lighting models are
discussed in Chapter 9, "Lighting and Texturing."

The Fog node provides a special rendering effect of blending object colors with another color. The degree of
blending is related to the distance to the viewer. This creates an effect of fading or fog. The details about Fog class
will be presented in Chapter 9.

[Page 149]

A ViewPlatform node represents the positioning of a view in the scene graphs. It is a part of the sophisticated
Java 3D viewing system and is associated with a View object. Views are discussed in Chapter 8, "Views."

The Background node defines a background for a scene. The usage of Background is discussed later in this
chapter.

The BoundingLeaf node defines a bound that limits the influences of certain nodes such as backgrounds, lights,
and behaviors. The concept of bounds will be covered later in this chapter.

Clip and ModelClip nodes define planes that clip the view. A Clip node specifies the far clip plane. Anything
beyond the plane is clipped and excluded from rendering. A ModelClip node specifies six planes to clip the view.

The Link node is used to reference a SharedGroup node of a shared branch in a scene graph, as introduced
before.

An AlternateAppearance node overrides the appearance of visual objects. Shape3D and Morph nodes will have
their appearance overridden by an AlternateAppearance node if they are in the influence bound of the node and
they allow the appearance to be overridden.

Sound and SoundScape nodes represent audio objects. Java 3D allows incorporation of sounds in a scene graph.
This is a useful feature for applications such as video games.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 149 (continued)]

5.7. The Node Components
Group nodes and leaf nodes define the structure of a scene, but usually the attributes of the nodes are defined
separately by other objects. Most of the attribute objects belong to the NodeComponent class. The NodeComponent
objects define certain attributes such as geometries, colors, textures, and materials. The NodeComponent objects
themselves are not nodes in the main tree structure of a scene graph, but they are usually referenced by leaf
nodes in the scene graph. The class hierarchy of NodeComponent is shown in Figure 5.12.

Figure 5.12. The NodeComponent classes.

The Geometry class (and its subclasses) defines the geometry of a graphics object. A Shape3D leaf node depends
on Geometry objects to define its geometric attributes.

The Appearance class controls the appearances of the rendered objects by holding references to other attribute
objects. An Appearance object defines the complete rendering states of a Shape3D node. It holds other attribute
objects including ColoringAttributes, TransparencyAttributes, Material, PointAttributes, LineAttributes,
PolygonAttributes, RenderingAttributes, Texture, TextureAttributes, and TexCoordGeneration. Geometry
and Appearance are discussed in Chapter 6.

The ColoringAttributes class defines the color and shading model for rendering a visual object.

The TransparencyAttributes class sets the transparency properties including transparency mode, blend
function, and blend value.

[Page 150]

The Material class defines more sophisticated material properties than does ColoringAttributes. Material
objects are used in lighting and illumination models. Detailed discussions of material attributes and their effects
can be found in Chapter 9.

RenderingAttributes specify certain rendering-related parameters such as depth buffer and alpha test.

PointAttributes, LineAttributes, and PolygonAttributes objects define attributes related to the rendering of
points, lines, and polygons. The point attributes include the point size and antialiasing setting. The line attributes
include line width, line pattern, and antialiasing. The polygon attributes include polygon rendering related property
settings such as polygon drawing mode, culling, backface normal flip, and offset.

The classes Texture, TextureAttributes, TextureUnitState are related to a rendering technique known as
texture mapping. Texture mapping allows images to be used in rendering details of visual objects. The
ImageComponent class encapsulates the images for the mapping. An ImageComponent object can also be used to
set the background of a scene. The TexCoordGeneration class facilitates automatic generations of texture
coordinates that are important parts of texture mapping. The details of texture mapping are presented in
Chapters 9 and 12.

The AuralAttributes class defines certain parameters related to audio rendering. The MediaContainer class is
used to define sound data. Examples of using sounds in Java 3D can be found in Chapter 12.

An Alpha object converts time values to floating-point numbers between 0 and 1 (alpha-values). It acts as a
signal or waveform generator that can trigger certain actions. Alpha objects are useful in animations. Animations
are covered in Chapter 11, "Animation."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The DepthComponent class encapsulates the concept of a depth buffer (also known as a z-buffer)—that is, a 2D
array to store the depth values (z-values).

The Font3D class defines a solid 3D font. A Font3D object is based on an AWT Font object that defines the 2D
glyphs of the font and a FontExtrusion object that defines the extrusion path in the third dimension.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 150 (continued)]

5.8. The Structure of a Java 3D Program
In a simplistic view, to write a Java 3D program is essentially to assemble a scene graph. Of course it is necessary
to create the usual user interface elements and other features relevant to an application, but the 3D modeling
and rendering of the graphics program mainly consists of the construction of the scene graph. The scene graph is
a complete specification of all the graphics objects and their attributes in the system and it is also linked to AWT
components for displaying rendered images.

A Java 3D program needs to create a Canvas3D object. Canvas3D is a subclass of java.awt.Canvas, so its
instances can be placed in AWT containers in the same way as any other AWT components. A Canvas3D object
serves as the panel to display a rendered scene of the virtual world.

The Java 3D program should build a complete and correct scene graph using the objects of the classes provided or
derived from the API. A VirtualUniverse object and a Locale object are needed for the superstructure of the
scene graph.

A viewing branch of the scene graph is needed to set up a view of the scene. Typically it contains objects of
BranchGroup, TransformGroup, ViewPlatform, View, PhysicalBody, and PhysicalEnvironment. The viewing
branch is attached to the Locale and is linked to the Canvas3D object to deliver the rendered view.

At least one other branch of the scene graph should be constructed for the graphics contents of the virtual world.
This content branch should have a BranchGroup node as its root, so that it can be attached to the Locale. Other
nodes can be added to build the virtual world. Shape3D, Light, and other nodes can be used to create graphics
objects. A Shape3D node can establish its geometry and appearance by referencing appropriate Geometry and
Appearance objects. TransformGroup nodes can be used to apply necessary transformations to the child nodes.

[Page 151]

To simplify the process of scene graph creation, Java 3D provides a convenient utility class SimpleUniverse.
SimpleUniverse creates a VirtualUniverse, a Locale, and objects for a standard view. The SimpleUniverse is
adequate for setting up the superstructures and views in most Java 3D applications using an ordinary video
monitor display.

With a basic understanding of Java 3D scene graphs, we can now examine the structure of the program in Listing
5.1. The scene graph corresponding to the Java 3D application in Listing 5.1 is shown in Figure 5.13.

Figure 5.13. The scene graph for Listing 5.1.

The SimpleUniverse object contains objects of classes VirtualUniverse, Locale, BranchGroup, TransformGroup,
ViewPlatform, View, PhysicalBody, and PhysicalEnvironment. The branch outside SimpleUniverse is a content

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

branch that defines graphics objects in the virtual world. To attach the branch graph to the Locale object, use
the method attachBranchGraph() in SimpleUniverse.

The View object inside SimpleUniverse is associated with a Canvas3D object that is an AWT component. The
Canvas3D object is created separately, and it can be placed in an AWT container to display the rendered view. The
View object in the SimpleUniverse defines a set of default parameters. A partial list of the parameters is given
below.

Projection policy PERSPECTIVE_PROJECTION

Field of view p/4

Front clip distance 0.1

Back clip distance 10.0

The PhysicalBody and PhysicalEnvironment objects are also created with default values appropriate for the
normal screen views. The viewing branch of the scene graph inside SimpleUniverse consists of a BranchGroup
node, a TransformGroup node, and a ViewPlatform leaf. The BG object is the required node to attach the viewing
branch the Locale. The TG node defines a transform for the ViewPlatform. The default view has the view plane
pass through the origin. This is not convenient if some objects in the scene are also near the origin. One way to
avoid the problem is to move the view back along the z-axis by changing the view transform. This procedure is
done by the setNominalViewingTransform method in ViewingPlatform class. The following line from Listing 5.1
retrieves the ViewingPlatform from the SimpleUniverse and calls this method to move the view:

[Page 152]

su.getViewingPlatform().setNominalViewingTransform();

The content branch in this program contains a BranchGroup node BG as the root. The left child of BG is a
TransformGroup node TG that performs an affine transform on its children. The transform is a scaling of 0.5 and a
translation by (-0.95, -0.2, 0). There is one leaf node, a Shape3D object, under the TG node. The Shape3D object
references a geometry that is a Text3D object. The Text3D node component is set to represent text "Hello 3D."
The appearance is set to reference a Material object with default parameters. With the Material object set, the
lighting mode is enabled. The 3D text is illuminated by a light defined in the scene.

A light leaf node is another child of the BG node. The light is defined as a point light of white color located at (3, 3,
3) with an attenuation of (1, 0, 0). For computational efficiency, we may limit the range of the light. There is only
one Shape3D object in the program, so it is reasonable to limit the influence of the light to a local region enough
to cover the 3D text.

The branch graph can be compiled to improve the performance. Once it is attached to the Locale, it becomes
"live." A live scene graph will be rendered by the Java 3D rendering engine automatically. The objects in a live
scene graph can no longer be edited unless specific permissions are given.

Listing 5.2 illustrates the construction of the entire scene-graph with scene-graph objects without using the
utility class SimpleUniverse. This example is functionally equivalent to Listing 5.1. However, instead of using the
SimpleUniverse utility class, it builds a complete scene graph from the basic objects of node, node component,
and other related classes.

Listing 5.2. Hello3DfullGraph.java
(This item is displayed on pages 152 - 153 in the print version)

 1 package chapter5;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.media.j3d.*;
 6 import javax.vecmath.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Hello3DFullGraph extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new Hello3DFullGraph(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24
25 // create superstructure
26 VirtualUniverse vu = new VirtualUniverse();
27 Locale loc = new Locale(vu);

[Page 153]
28
29 // create view branch
30 BranchGroup bgView = createViewBranch(cv);
31 bgView.compile();
32 loc.addBranchGraph(bgView);
33
34 // create content branch
35 BranchGroup bg = createContentBranch();
36 bg.compile();
37 loc.addBranchGraph(bg);
38 }
39
40 private BranchGroup createViewBranch(Canvas3D cv) {
41 View view = new View();
42 view.setProjectionPolicy(View.PERSPECTIVE_PROJECTION);
43 ViewPlatform vp = new ViewPlatform();
44 view.addCanvas3D(cv);
45 view.attachViewPlatform(vp);
46 view.setPhysicalBody(new PhysicalBody());
47 view.setPhysicalEnvironment(new PhysicalEnvironment());
48 Transform3D trans = new Transform3D();
49 Point3d eye = new Point3d(0, 0, 1/Math.tan(Math.PI/8));
50 Point3d center = new Point3d(0, 0, 0);
51 Vector3d vup = new Vector3d(0, 1, 0);
52 trans.lookAt(eye, center, vup);
53 trans.invert();
54 TransformGroup tg = new TransformGroup(trans);
55 tg.addChild(vp);
56 BranchGroup bgView = new BranchGroup();
57 bgView.addChild(tg);
58 return bgView;
59 }
60
61 private BranchGroup createContentBranch() {
62 BranchGroup root = new BranchGroup();
63 // object
64 Appearance ap = new Appearance();
65 ap.setMaterial(new Material());
66 Font3D font = new Font3D(new Font("SansSerif", Font.PLAIN, 1),
67 new FontExtrusion());
68 Text3D text = new Text3D(font, "Hello 3D");
69 Shape3D shape = new Shape3D(text, ap);
70 // transformation
71 Transform3D tr = new Transform3D();
72 tr.setScale(0.5);
73 tr.setTranslation(new Vector3f(-0.95f, -0.2f, 0f));
74 TransformGroup tg = new TransformGroup(tr);
75 root.addChild(tg);
76 tg.addChild(shape);
77 // light
78 PointLight light = new PointLight(new Color3f(Color.white),
79 new Point3f(1f,1f,1f),
80 new Point3f(1f,0.1f,0f));
81 BoundingSphere bounds = new BoundingSphere();
82 light.setInfluencingBounds(bounds);
83 root.addChild(light);
84 return root;
85 }
86 }

[Page 154]

This example is essentially equivalent to Listing 5.1. Its scene graph is the same as that of Listing 5.1, as shown
in Figure 5.13. The difference is that the superstructure and view branch are created explicitly without using the
SimpleUniverse class.

The superstructure objects of VirtualUniverse and Locale are created with default settings (lines 26–27). The
Locale object is anchored at the default location (0, 0, 0). The content branch is identical to that in Listing 5.1.
The view branch is new, and its construction is done in the method createViewBranch (line 40). As shown in

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 5.13, the view branch consists of objects of BranchGroup, TransformGroup, View, ViewPlatform,
PhysicalBody, and PhysicalEnvironment.

The TransformGroup uses a Transform3D object to represent the transform. The transform is constructed using
the methods lookAt and invert (lines 52–53). lookAt sets up a transform based on the eye position, view
direction and view up direction. The inverse of this transform is used for setting the view transform group. The
transformation settings used in this example are the same as those in SimpleUniverse with the
setNominalViewingTransform call. Consequently the display of this example is identical to that of Listing 5.1, as
shown in Figure 5.2.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 154 (continued)]

5.9. Backgrounds and Bounds
The default background in a scene is black. If you do not place any visual object or light in the scene graph, you
will see a black canvas. The background can be changed by using the Background leaf nodes. A Background leaf
may define a solid background color or a background image. It may even define a background geometry. A
background will be rendered behind all other visual objects. The constructors of Background are listed below.

Background()
Background(Color3f color)
Background(float r, float g, float b)
Background(ImageComponent2D image)
Background(BranchGroup geometry)

Listing 5.3 shows an application using a Background node. This program is similar to Listing 5.1. Instead of the
default black color, the background color of the rendered scene is white.

Listing 5.3. Hello3Dbackground.java
(This item is displayed on pages 154 - 155 in the print version)

 1 package chapter5;
 2
 3 import java.awt.*;
 4 import java.applet.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import javax.vecmath.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Hello3DBackground extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new Hello3DBackground(), 640, 480);
15 }
16
17 public void init() {
18 GraphicsConfiguration gc =
19 SimpleUniverse.getPreferredConfiguration();
20 Canvas3D cv = new Canvas3D(gc);
21 setLayout(new BorderLayout());
22 add(cv, BorderLayout.CENTER);

[Page 155]
23 BranchGroup bg = createSceneGraph();
24 bg.compile();
25 SimpleUniverse su = new SimpleUniverse(cv);
26 su.getViewingPlatform().setNominalViewingTransform();
27 su.addBranchGraph(bg);
28 }
29
30 private BranchGroup createSceneGraph() {
31 BranchGroup root = new BranchGroup();
32 // object
33 Appearance ap = new Appearance();
34 ap.setMaterial(new Material());
35 Font3D font = new Font3D(new Font("SansSerif", Font.PLAIN, 1),
36 new FontExtrusion());
37 Text3D text = new Text3D(font, "Hello 3D");
38 Shape3D shape = new Shape3D(text, ap);
39 // transformation
40 Transform3D tr = new Transform3D();
41 tr.setScale(0.5);
42 tr.setTranslation(new Vector3f(-0.95f, -0.2f, 0f));
43 TransformGroup tg = new TransformGroup(tr);
44 root.addChild(tg);
45 tg.addChild(shape);
46 // light
47 PointLight light = new PointLight(new Color3f(Color.white),
48 new Point3f(1f,1f,1f),
49 new Point3f(1f,0.1f,0f));
50 BoundingSphere bounds = new BoundingSphere();
51 light.setInfluencingBounds(bounds);
52 root.addChild(light);
53 // background
54 Background background = new Background(1.0f, 1.0f, 1.0f);
55 background.setApplicationBounds(bounds);
56 root.addChild(background);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

57 return root;
58 }
59 }

This example is similar to Listing 5.1. The visible difference is that the background of the scene is changed to
white, as shown in Figure 5.14.

Figure 5.14. A simple Java 3D program with a white background.
(This item is displayed on page 156 in the print version)

The new scene graph is given in Figure 5.15. A Background leaf node is added to the content branch of the scene
graph (lines 54–56). The background is created with a constructor that specifies color RGB values:

Background background = new Background(1.0f, 1.0f, 1.0f);
background.setApplicationBounds(bounds);
root.addChild(background);

Figure 5.15. The scene graph for Listing 5.3.
(This item is displayed on page 156 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The application bound of the background is a BoundingSphere object shared with the light.

Environmental nodes such as Background and Light may potentially influence the entire universe. To achieve a
reasonable rendering efficiency it is necessary to limit the influence. The bounds for environmental nodes can be
set in two different ways: through the Bounds objects or the BoundingLeaf leaf nodes. Bounds objects are node
components and BoundingLeaf objects are leaf nodes of a scene graph. The main difference between the two
approaches is the coordinates of the bounds. A node that sets a bound by directly referencing a Bounds object will
have the bound positioned relative to the node. A BoundingLeaf node has its own position defined for the bound.
A node referencing the BoundingLeaf will acquire a bound positioned according to the BoundingLeaf.

[Page 156]

The Bounds classes are shown in Figure 5.16. The abstract class Bounds has three subclasses BoundingBox,
BoundingSphere, and BoundingPolytope to represent different types of bounding volumes.

[Page 157]

Figure 5.16. The Bounds class hierarchy.

The BoundingBox class defines a bound as a rectangular box with edges parallel to the axes. The BoundingSphere
class defines a sphere as the bounding volume. The Bound-ingPolytope class defines a bounding volume of a
general polytope.

The following statements create three bounds of different types:

Point3d lower = new Point3d(0,0,0); // lower corner of box
Point3d upper = new Point3d(1.0,0.5,1.5); // upper corner of box
BoundingBox box = new BoundingBox(lower, upper); // a bounding box
BoundingSphere sphere = new BoundingSphere(lower, 2);
 // a bounding sphere
BoundingPolytope polytope = new BoundingPolytope(); // a polytope

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A BoundingLeaf object is leaf node in the tree of a scene graph and has a specific location in the locale of the
scene. A BoundingLeaf object uses a Bounds object to define its bounding region. This bounding region is
positioned according to the position of the BoundingLeaf node. If several nodes located at different places in the
virtual world need to reference a common bounding region, it is easier to use a BoundingLeaf node.

Consider an example of setting the influence bound of a light. The two different approaches are illustrated below.

// set bounds directly
BoundingSphere bounds = new BoundingSphere(); // a bounding sphere
light.setInfluencingBounds(bounds);
// set bounds by referencing a BoundingLeaf
BoundingSphere bounds = new BoundingSphere(); // a bounding sphere
BoundingLeaf leaf = new BoundingLeaf(bounds);
root.addChild(leaf); // add to scene graph
light.setInfluencingBoundingLeaf(leaf);

In the first case, a unit BoundingSphere is created and the influencing bound of a light is set directly to the
bound. The sphere will be centered at the origin in the coordinate space of the light.

In the second case, a similar BoundingSphere is created, but it is referenced by a BoundingLeaf node. The
influencing bound of the light is set to the BoundingLeaf node. The bounding sphere will be centered at the origin
in the local coordinate system of the leaf node, which may be different from the local coordinate system of the
light. The distinction between Bounds and BoundingLeaf will be more apparent if several lights under different
transformation paths in the scene graph reference the same Bounds or BoundingLeaf objects. With direct Bounds
references, their actual influencing bounds defined by the object are different. With a BoundLeaf, the actual
bounds defined will be the same.

Listing 5.4 demonstrates the effects of Bounds objects on a light. A scene with an image background, three
spheres and a light is created and rendered as shown in Figure 5.17. The spheres are lit by the light when they
are within the influencing bounds of the light. When a user clicks the mouse on the panel, the influencing bound
of the light is changed to the next of the three bounds. The first click will reduce the bounds, avoiding the left
sphere. The second click reduces the bounds further to include only the right sphere. The third click will return to
the original bounds.

[Page 158]

Listing 5.4. TestBounds.java
(This item is displayed on pages 158 - 159 in the print version)

 1 package chapter5;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.media.j3d.*;
 6 import javax.vecmath.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.awt.image.*;
10 import java.io.*;
11 import java.net.URL;
12 import javax.imageio.*;
13 import java.applet.*;
14 import com.sun.j3d.utils.applet.MainFrame;
15
16 public class TestBounds extends Applet {
17 public static void main(String[] args) {
18 new MainFrame(new TestBounds(), 640, 480);
19 }
20
21 Light light = null;
22 Bounds[] bounds = new Bounds[3];
23 int bIndex = 0;
24
25 public void init() {
26 // create canvas
27 GraphicsConfiguration gc =
28 SimpleUniverse.getPreferredConfiguration();
29 Canvas3D cv = new Canvas3D(gc);
30 setLayout(new BorderLayout());
31 add(cv, BorderLayout.CENTER);
32 cv.addMouseListener(new MouseAdapter() {
33 // change background color and image on mouse click
34 public void mouseClicked(MouseEvent ev) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

35 bIndex = (bIndex+1) % 3;
36 System.out.println(bIndex);
37 light.setInfluencingBounds(bounds[bIndex]);
38 }
39 });
40 BranchGroup bg = createSceneGraph();
41 bg.compile();
42 SimpleUniverse su = new SimpleUniverse(cv);
43 su.getViewingPlatform().setNominalViewingTransform();
44 su.addBranchGraph(bg);
45 }
46
47 private BranchGroup createSceneGraph() {
48 BranchGroup root = new BranchGroup();
49 // first sphere
50 Sphere sphere = new Sphere();
51 Transform3D tr = new Transform3D();
52 tr.setScale(0.1);
53 TransformGroup tg = new TransformGroup(tr);
54 root.addChild(tg);
55 tg.addChild(sphere);
56 // second sphere
57 sphere = new Sphere();
58 tr.setTranslation(new Vector3f(-0.4f, 0f, 0f));

[Page 159]
59 tg = new TransformGroup(tr);
60 root.addChild(tg);
61 tg.addChild(sphere);
62 // third sphere
63 sphere = new Sphere();
64 tr.setTranslation(new Vector3f(-0.8f, 0f, 0f));
65 tg = new TransformGroup(tr);
66 root.addChild(tg);
67 tg.addChild(sphere);
68 // light
69 light = new PointLight(new Color3f(Color.white),
70 new Point3f(1f,1f,1f),
71 new Point3f(1f,0f,0f));
72 light.setCapability(Light.ALLOW_INFLUENCING_BOUNDS_WRITE);
73 // bounds
74 bounds[0] = new BoundingSphere(new Point3d(0,0,0), 1);
75 bounds[1] = new BoundingSphere(new Point3d(0,0,0), 0.6);
76 bounds[2] = new BoundingSphere(new Point3d(0,0,0), 0.2);
77 light.setInfluencingBounds(bounds[0]);
78 root.addChild(light);
79 // background
80 URL url = getClass().getClassLoader().getResource
81 ("images/bg.jpg");
82 BufferedImage bi = null;
83 try {
84 bi = ImageIO.read(url);
85 } catch (IOException ex) {
86 ex.printStackTrace();
87 }
88 ImageComponent2D image =
89 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
90 Background background = new Background(image);
91 background.setApplicationBounds(bounds[0]);
92 root.addChild(background);
93 return root;
94 }
95 }

Figure 5.17. The effects of influencing bounds. Left: The light has influencing bounds including all
three spheres. Center: The light has influencing bounds including only two spheres. Right: The

influencing bounds of the light are further reduced to cover only one sphere.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The abbreviated scene graph is shown in Figure 5.18. Three Sphere objects are added to the scene graph. Each
sphere is attached to a TransformGroup node to scale it down in size and to translate the sphere to a different
location. The amounts of translations for the three spheres are different so they do not overlap (lines 49–67).

[Page 160]

Figure 5.18. The scene graph for Listing 5.4.

A light is placed at (1, 1, 1) to illuminate the spheres. The light has influencing bounds that determines whether
an object is lit by the light. Three different BoundingSphere objects of radii 1, 0.6, and 0.2 are created and stored
in the bounds array (lines 74–76). An integer field bIndex is an index to keep track of the current bounds.
Initially bounds[0] is used by the light, and it is large enough to include all three spheres.

A MouseListener is added to the Canvas3D object to handle the mouse events. In an event of a mouse click, the
current bounds index is changed:

bIndex = (bIndex + 1) % 3;
light.setInfluencingBounds(bounds[bIndex]);

Therefore, the elements in the bounds array are selected in a cyclic way in response to mouse clicks. When
bounds[1] is selected, the left sphere is outside the influencing bounds of the light, and it becomes black. When
bounds[2] is selected, only the right sphere remains in the bounds, and the other two spheres are black.

The background is defined using a Background leaf node. The background is set to an image loaded from an image
file. The Background node also needs a Bounds object to limit its application. In this example the BoundingSphere
object in bounds[0] is also used by the background node for its application bounds:

background.setApplicationBounds(bounds[0]);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 160 (continued)]

5.10. Compiling Scene Graphs and Capability Bits
A scene graph rooted at a BranchGroup node can be compiled before it is attached to a Locale and becomes live.
The BranchGroup class contains a method compile for compiling the scene graph. Compiling a scene graph
converts it to an internal representation that will be more efficient for the Java 3D rendering engine to use in
rendering the scene. Compiling the scene graph also gives Java 3D an opportunity to perform certain
optimizations that can speed up the rendering. The optimizations are not defined by the Java 3D specification and
may be implementation dependent.

You may change a scene graph after it is live, but to do so you have to explicitly get permission for every
operation attempted on a live scene-graph object. The permissions are expressed in the form of capability bits
that exist in the node and node-component objects. Each individual operation in an individual object has an
independent capability bit. By default, all capability bits are turned off to improve the rendering performance. In
order to make a dynamic change on any aspect of a live scene graph, you need to turn on the corresponding
capability bit in advance. The capability bits must be set before the scene graph is compiled with the method call
compile. If an operation is performed without the appropriate capability bit being set, a runtime exception will be
thrown.

[Page 161]

The capability bits can be set with the following method of the SceneGraphObject class,

public final void setCapability(int bit);

The capability bits are defined as constants in individual classes. If multiple capability bits need to be set, you have
to make several calls to the setCapability method. Each call can set only one bit. It is not allowed to combine
multiple capability bits into one and to make only one call. For example, to allow the change of color in a
ColoringAttributes object, you need to set the corresponding capability bit:

coloring.setCapability(ColorAttributes.ALLOW_COLOR_WRITE);

To read the color when the scene graph is live, you need to give the read permission:

coloring.setCapability(ColorAttributes.ALLOW_COLOR_READ);

To be able to read and write the color, you need to set the two bits:

coloring.setCapability(ColorAttributes.ALLOW_COLOR_READ);
coloring.setCapability(ColorAttributes.ALLOW_COLOR_WRITE);

If you need to modify the geometry of a Shape3D node, you must set the capability bit:

shape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);

Listing 5.5 shows the use of capability bits and the modification of the background in a live scene graph. This
program demonstrates the process of changing the attributes of a live scene graph. The background image and
color in the scene are changed in response to mouse clicks. (See Figure 5.19.)

Listing 5.5. ChangeBackground.java
(This item is displayed on pages 161 - 163 in the print version)

 1 package chapter5;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.media.j3d.*;
 6 import javax.vecmath.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.awt.image.*;
10 import java.io.*;
11 import java.net.URL;
12 import javax.imageio.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

13 import java.applet.*;
14 import com.sun.j3d.utils.applet.MainFrame;
15
16 public class ChangeBackground extends Applet {
17 public static void main(String[] args) {
18 new MainFrame(new ChangeBackground(), 640, 480);
19 }
20
21 Background background = null;

[Page 162]
22 ImageComponent2D image = null;
23
24 public void init() {
25 GraphicsConfiguration gc =
26 SimpleUniverse.getPreferredConfiguration();
27 Canvas3D cv = new Canvas3D(gc);
28 setLayout(new BorderLayout());
29 add(cv, BorderLayout.CENTER);
30 cv.addMouseListener(new MouseAdapter() {
31 // change background color and image on mouse click
32 public void mouseClicked(MouseEvent ev) {
33 if (background.getImage() == null)
34 background.setImage(image);
35 else {
36 background.setImage(null);
37 float r = (float)Math.random();
38 float g = (float)Math.random();
39 float b = (float)Math.random();
40 background.setColor(r, g, b);
41 }
42 }
43 });
44 BranchGroup bg = createSceneGraph();
45 bg.compile();
46 SimpleUniverse su = new SimpleUniverse(cv);
47 su.getViewingPlatform().setNominalViewingTransform();
48 su.addBranchGraph(bg);
49 }
50
51 private BranchGroup createSceneGraph() {
52 BranchGroup root = new BranchGroup();
53 // object
54 Appearance ap = new Appearance();
55 ap.setMaterial(new Material());
56 Font3D font = new Font3D(new Font("SansSerif", Font.PLAIN, 1),
57 new FontExtrusion());
58 Text3D text = new Text3D(font, "Hello 3D");
59 Shape3D shape = new Shape3D(text, ap);
60 // transformation
61 Transform3D tr = new Transform3D();
62 tr.setScale(0.5);
63 tr.setTranslation(new Vector3f(-0.95f, -0.2f, 0f));
64 TransformGroup tg = new TransformGroup(tr);
65 root.addChild(tg);
66 tg.addChild(shape);
67 // light
68 PointLight light = new PointLight(new Color3f(Color.white),
69 new Point3f(1f,1f,1f),
70 new Point3f(1f,0.1f,0f));
71 BoundingSphere bounds = new BoundingSphere();
72 light.setInfluencingBounds(bounds);
73 root.addChild(light);
74 // background
75 background = new Background(1.0f, 1.0f, 1.0f);
76 background.setApplicationBounds(bounds);
77 // load image
78 URL url = getClass().getClassLoader().
79 getResource("images/bg.jpg");
80 BufferedImage bi = null;

[Page 163]
81 try {
82 bi = ImageIO.read(url);
83 } catch (IOException ex) {
84 ex.printStackTrace();
85 }
86 image = new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
87 // set capability bit to allow color and image change
88 background.setCapability(Background.ALLOW_COLOR_WRITE);
89 background.setCapability(Background.ALLOW_IMAGE_READ);
90 background.setCapability(Background.ALLOW_IMAGE_WRITE);
91 root.addChild(background);
92 return root;
93 }
94 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 5.19. The background toggles between a sky image and a random solid color.

This example is similar to Listing 5.2. They have the identical scene graph. Two kinds of backgrounds are applied
in this example: an image and a solid color.

An image is read from a file "bg.jpg" to a BufferedImage object and is then passed to an ImageComponent2D
object (lines 77–84). The Background node has the following capability bits set to allow live changes of its color
and image and to read its image (lines 88–90):

ALLOW_COLOR_WRITE
ALLOW_IMAGE_READ
ALLOW_IMAGE_WRITE

In the constructor, the Canvas3D object is set to listen to mouse events. In the mouse-click handler,
mouseClicked, the background is checked for the existence of a background image. If there is no image in the
background, the loaded image is assigned to the background. If there is already an image in the background, the
image of the background is set to null and the color of the background is changed to a random color. Therefore,
successive clicking of the canvas will toggle the background between the image and a random solid color.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 163 (continued)]

Key Classes and Methods
com.sun.j3d.util.applet.MainFrame A utility class to display an applet in a frame.

javax.media.j3d.VirtualUniverse A class encapsulating a coordinate space of the entire virtual universe.

[Page 164]

javax.media.j3d.Locale A class defining a coordinate space with float data type anchored in the virtual
universe.

javax.media.j3d.HiResCoord A fixed-point data type to represent high-resolution coordinates of the
virtual universe.

com.sun.j3d.util.universe.SimpleUniverse A convenience class with a default implementation of the
virtual universe, a locale, and a view branch of the scene graph.

javax.media.j3d.SceneGraphObject An abstract class served as the root class for all scene-graph
elements.

javax.media.j3d.Node A class for nodes in a scene graph.

javax.media.j3d.NodeComponent A class for node components in a scene graph.

javax.media.j3d.Group A class for group nodes in a scene graph.

javax.media.j3d.Leaf A class for leaf nodes in a scene graph.

javax.media.j3d.SceneGraphObject.setCapability(int) A method to allow certain manipulations of
the object in a live scene graph.

javax.media.j3d.Group.addChild(Node) A method to add child nodes in a scene graph.

javax.media.j3d.BranchGroup A special type of group nodes that can be attached to a locale.

javax.media.j3d.BranchGroup.compile() A method to compile the scene graph to improve the
performance.

javax.media.j3d.Background A leaf node defining the background color, image, and geometry of a scene.

javax.media.j3d.Bounds A node-component class encapsulating a spatial volume that is used by
environmental nodes to limit their scope of activation.

javax.media.j3d.BoundingLeaf A leaf class encapsulating a spatial volume that is used by environmental
nodes to limit their scope of activation.

javax.media.j3d.BoundingBox A class encapsulating box-shaped bounds.

javax.media.j3d.BoundingSphere A class encapsulating spherical bounds.

javax.media.j3d.BoundingPolytope A class encapsulating polytope bounds.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 164 (continued)]

Key Terms
geometry

A structural definition of a visual object.

appearance

A collection of rendering attributes of a visual object.

DAG

(directed acyclic graph) A directed graph with no directed cycles.

scene graph

A DAG specifying the graph scene to be rendered.

tree

A graph formed by recursively adding distinct child nodes.

leaf node

A node in a tree that has no children.

internal node

A node in a tree that has children.

primitive

A basic visual object that may be used to build a model.

capability bit

A flag in SceneGraphObject that gives permission to performing a specific operation in a live scene graph.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 164 (continued)]

Chapter Summary
In this chapter, we discuss the fundamental concepts of 3D computer graphics and the basic architecture
of the Java 3D system.

In a 3D graphics system, a virtual world is built to model a 3D graphics scene. The model is viewed from a
particular perspective to produce a rendering of the scene.

[Page 165]

The Java 3D API is built on the key concept of scene graphs. A scene graph incorporates all the graphics
descriptions and attributes of a scene to be rendered into a single data structure.

The rules for constructing the scene graphs and their building blocks are introduced. A scene graph is a
DAG, with nodes being objects from classes of superstructures, nodes, and node components.

The overall structure of a Java 3D program is presented. By using a scene graph and its related objects, we
can build a 3D graphics model and let Java 3D render the scene automatically.

The background of a scene can be changed using the Background leaf node. Environmental nodes such as
Light and Background need to set bounds to limit their influence in rendering. Bounds and BoundingLeaf
objects are two ways of setting bounds.

A branch graph can be compiled to improve rendering efficiency. A component of a live scene graph can be
modified only if appropriate capability bits are set.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 165 (continued)]

Review Questions

5.1 If a tree has 15 nodes, how many links does it have?

5.2 Is the following graph (Figure 5.20) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.20. A graph for Problem 5.2.

5.3 Is the following graph (Figure 5.21) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.21. A graph for Problem 5.3.

[Page 166]

5.4 Is the following graph (Figure 5.22) a tree? Is it a DAG? If it is a tree, identify its root, leaves,
and internal nodes.

Figure 5.22. A graph for Problem 5.4.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

5.5 Draw a scene graph corresponding to the following Java 3D code segment:

BranchGroup root = new BranchGroup();
TransformGroup trans = new TransformGroup();
root.addChild(trans);
Shape3D shape1 = new Shape3D();
Shape3D shape2 = new Shape3D();
Shape3D shape3 = new Shape3D();
trans.addChild(shape1);
trans.addChild(shape2);
root.addChild(shape3);

5.6 Draw a scene graph corresponding to the following Java 3D code segment:

BranchGroup root = new BranchGroup();
TransformGroup trans1 = new TransformGroup();
TransformGroup trans2 = new TransformGroup();
root.addChild(trans1);
root.addChild(trans2);
Light light = new PointLight();
trans1.addChild(light);
Switch switch = new Switch();
Trans2.addChild(switch);
Shape3D shape1 = new Shape3D();
Shape3D shape2 = new Shape3D();
switch.addChild(shape1);
switch.addChild(shape2);
Appearance appear = new Appearance();
shape1.setAppearance(appear);
shape2.setAppearance(appear);

5.7 Write a Java 3D code segment corresponding to the scene graph branch shown in Figure 5.23.
[Page 167]

Figure 5.23. Scene graph for Problem 5.7.

5.8 Write a Java 3D code segment corresponding to the scene graph branch shown in Figure 5.24.

Figure 5.24. Scene graph for Problem 5.8.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 167 (continued)]

Programming Exercises

5.1 The ColorCube class is a subclass of Shape3D and can be used as a leaf node to represent a cube
with colored faces. Write a Java 3D application that displays a ColorCube object using the
SimpleUniverse class.

5.2 Write a Java 3D program to display a ColorCube as in Exercise 5.1 without using the
SimpleUniverse class. Draw a complete scene-graph diagram for the program.

[Page 168]

5.3 Add a blue background to the program in Exercise 5.1 using a Background leaf node. Set the
application bounds of the background directly with a bounding sphere.

5.4 Write a Java 3D program similar to Exercise 5.3, but use a BoundingLeaf node to set the
application bounds to a bounding box.

5.5 Write a Java 3D program similar to Listing 5.4, but use a BoundingLeaf node for the influencing
bounds of the light.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 169]

Chapter 6. Graphics Contents
(This item omitted from WebBook edition)

Objectives
To understand geometry and appearance, the basic attributes of visual objects.

To describe the representations of points and vectors.

To apply the GeometryArray family of classes for constructing geometry.

To apply the GeometryInfo class for constructing geometry.

To use geometric primitives.

To use texts and fonts as geometric objects.

To use the Appearance class and the associated node-component classes.

[Page 170]

6.1. Introduction
The fundamental graphics building blocks in a 3D graphics model are the visual shape objects. They constitute the
visible objects in a rendered scene. A shape object is defined by its geometry and its appearance. The geometry
provides a mathematical description of the object's shape, size, and other structural properties. The appearance
defines the object's color, texture, material properties, and other attributes.

The geometry of a visual object may be constructed from a set of simple objects such as triangles. More complex
but useful objects such as cubes and spheres may be prebuilt as reusable objects known as primitives. Primitives
provide a level of abstraction that will simplify the construction of many complex objects. Text objects based on
fonts provide another source of geometry objects. Both 2D and 3D text objects are useful elements of a 3D
graphics scene.

Java 3D provides the leaf node class Shape3D to represent shape objects. The geometry and appearance of a
Shape3D node are defined by referencing the Geometry and Appearance objects. The Geometry class has a number
of subclasses to help define various types of geometries in different ways. The Appearance class holds references
to various other attribute objects to define different aspects of the appearance. Commonly used primitives such
as boxes, spheres, cylinders, and cones are also provided by Java 3D. Java 3D offers supports to use 2D and 3D
texts as geometric objects.

In this chapter, we will introduce the construction of visual objects using geometry and appearance specifications.
Java 3D's facilities for the low-level construction of geometries are examined. The high-level constructs of
primitives and text objects are also presented. We will discuss the basic structure and usage of Java 3D
appearance attributes in this chapter. The attributes that are related to more advanced rendering options such as
lighting and texturing will be covered in greater detail in later chapters.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 170 (continued)]

6.2. Points and Vectors
The modeling of geometry begins with the modeling of a point. To precisely represent points in computers, the
algebraic concept of vectors and vector spaces is commonly used. An n-dimensional vector is an n-tuple of
numbers:

(x1,x2,...,xn)

The collection of all the n-dimensional vectors forms an n-dimensional space Rn. In a 3D space, a point can be
represented by a 3D vector (x, y, z). Using homogeneous coordinates, a point is associated with a 4D vector (x, y,
z, w).

There is also a geometric concept of vectors that represents quantities with directions. Examples of such vectors
include the direction of a line, force, velocity, and acceleration. A geometric vector is also represented as an n-
tuple. Algebraically there is no distinction between a geometric point and a geometric vector. The difference exists
only in the interpretations of general mathematical quantities.

In 3D graphics, geometry construction and transformation depend heavily on the mathematical notion of vectors.
Java provides an extensive set of classes for representing points, vectors, and matrices in the package
javax.vecmath. Java 3D classes frequently use the vector math classes, and the javax.vecmath package is
included in the distribution of Java 3D.

The package javax.vecmath contains many variations of vector and matrix classes. A partial list of the vector
classes is given below in Figure 6.1.

[Page 171]

Figure 6.1. Vector math classes.

The suffixes in the class names indicate the dimensions and the data types of the components. The data type
suffixes are listed below:

f: float
d: double
i: int
b: byte

For example, "4d" represents a four-dimensional tuple of double values. The stems of the class names indicate

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

the categories of their usage.

Tuple* classes: the abstract base classes for the tuples.

Color* classes: color representations.

Point* classes: geometric points.

Vector* classes: geometric vectors.

TexCoord* classes: texture-mapping coordinates.

Quat* classes: quaternions.

Besides the data representation, the vector classes contain methods for standard operations related to their
categories. For example, the Tuple4f class includes methods:

void add(Tuple4f t1)— Add another tuple.

void sub(Tuple4f t1)— Subtract another tuple.

void scale(float k)— Scale the tuple.

void negate()— Negate all components of the tuple.

[Page 172]

Point3d class adds distance-related methods:

void distance(Point3d p1)— Find the distance to another point.

void distanceL1(Point3d p1)— Find the L1 distance to another point.

void distanceLinf(Point3d p1)— Find the L distance to another point.

Vector3d class includes methods for vector operations:

double dot(Vector3d v1)— Find the dot product with another vector.

double cross(Vector3d v1, Vector3d v2)— Calculate the cross product of the two vectors.

double length()— Find the length of the vector.

double angle(Vector3d v1)— Find the angle with another vector.

The vector math objects are easy to create and manipulate. The following example creates two Point3d objects
and finds the distance between them:

Point3d p1 = new Point3d(1.0, 2.3, 0.0);
Point3d p2 = new Point3d(0.0, –0.5, 1.2);
double dist = p1.distance(p2);

To find the angle between two vectors, you can call the angle method:

Vector3f v1 = new Vector3f(1.0, 2.3, 0.0);
Vector3f v2 = new Vector3f(0.0, –0.5, 1.2);
double angle = v1.angle(v2);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 172 (continued)]

6.3. Geometry
The basic geometric shapes of 3D objects are typically modeled as points, lines, and surfaces. Points and lines
(including curves) are relatively simple to define because they are usually straightforward extensions of the
corresponding 2D models. The surface models present some real challenges. 3D solid objects can usually be
modeled as surfaces. Mathematically a surface can often be represented by an implicit equation on the
coordinates:

F (x, y, z) = 0

Alternatively, a parametric equation with two parameters is usually more convenient for graphics applications:

x = f(u, v)

y = g(u, v)

z = h(u, v)

Because of the obvious complexity involved in representing an arbitrary 3D surface, it is often necessary to use a
collection of simpler surfaces as an approximation. A commonly used representation is a mesh of simple polygons,
such as triangles and quadrilaterals. Another versatile and powerful representation tool for surfaces is the
polynomial and spline surfaces. Figure 6.2 shows an example of polygon meshes representing a surface.

Figure 6.2. A sphere represented by triangle meshes of different resolutions.
(This item is displayed on page 173 in the print version)

Java 3D offers direct support for arrays of points, lines, and triangles or quadrilaterals as the basic tools for
geometry construction. It also offers support for high-level geometries such as primitives and 3D text.

In a Java 3D scene graph, a visual object is usually represented by a Shape3D leaf node. The Shape3D object
references a Geometry object that defines the shape and other geometric characteristics of the visual object. The
Shape3D node also references Appearance objects to define its appearance in rendering. A typical scene-graph
Shape3D node configuration is shown in Figure 6.3.

[Page 173]

Figure 6.3. A typical scene-graph shape node.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The Geometry class is an abstract class with a large number of descendants. Figure 6.4 shows the class hierarchy
of the Geometry classes.

Figure 6.4. Geometry class hierarchy.

[Page 174]

6.3.1. GeometryArray
The GeometryArray family of classes provides facilities to directly construct geometries with arrays of simple
polygons, lines, or points. A GeometryArray defines the vertices and specifies the structural relationships among
the vertices.

In a GeometryArray object, the definitions for vertices always include their coordinates, but they may also include
other types of data components such as surface normals and colors. The presence of a particular type of vertex
data component is indicated by a corresponding bit mask.

COORDINATES – the coordinates of vertices.

NORMALS – the surface normals of vertices.

COLOR_3 – the colors of vertices without

COLOR_4 – the colors of vertices with

TEXTURE_COORDINATE_2 – the 2D texture coordinates.

TEXTURE_COORDINATE_3 – the 3D texture coordinates.

TEXTURE_COORDINATE_4 – the 4D texture coordinates.

These masks can be combined using bitwise OR operator "|". The masks can be set in the constructors of
GeometryArray classes. The data components, if present, are assigned to each vertex. Color specifications at the
vertices may be used to determine the colors of the visual objects under given shading models. The surface
normals are necessary to calculate light reflections in illuminated models. Texture coordinates define the
coordinates in texture space. Lighting models and texture mapping are discussed in Chapter 9.

Typically an object in the GeometryArray family is created by calling an appropriate constructor with the specified
data components and the array sizes. Then the vertex data are set through method calls. GeometryArray
provides a variety of different methods to set the coordinates and other data. For example, a coordinate can be
set individually or an array of coordinates can be set in one method:

void setCoordinate(int index, Point3f coord)
void setCoordinates(int startIndex, Point3f[] coords)

The PointArray class defines a geometry consisting of a set of points. Each vertex specification corresponds to a
point in the geometry. For example, the following code fragment defines a PointArray geometry with three

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

points. The geometry is shown in Figure 6.5.

Figure 6.5. A PointArray geometry.

PointArray pa = new PointArray(3, GeometryArray.COORDINATES);
pa.setCoordinate(0, new Point3f(0f, 0f, 0f));
pa.setCoordinate(1, new Point3f(1f, 0f, 0f));
pa.setCoordinate(2, new Point3f(0f, 1f, 0f));

The LineArray class defines a geometry of line segments. Every two vertices specified sequentially correspond to
a line segment in the geometry:

[Page 175]
LineArray la = new LineArray(6, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
la.setCoordinates(0, coords);

The line geometry defined above is illustrated in Figure 6.6.

Figure 6.6. A LineArray geometry.

The TriangleArray class defines a surface consisting of triangle patches. Every three vertices define a triangle.
The following code fragment defines a geometry object of two triangles:

TriangleArray ta = new TriangleArray(6, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
ta.setCoordinates(0, coords);

The geometry defined in the TriangleArray is shown in Figure 6.7.

Figure 6.7. A TriangleArray geometry.

The geometry of a cone may be defined as a series of triangles using a TriangleArray:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

int n = 60; // number of triangle patches
TriangleArray ta = new TriangleArray(3*n, GeometryArray.COORDINATES);
Point3f apex = new Point3f(0, 0, 1);
Point3f p1 = new Point3f(1, 0, 0);
int count = 0;
for (int ii = 1; ii <= n; ii++) {
 float x = (float)Math.cos(ii*2*Math.PI/n);
 float y = (float)Math.sin(ii*2*Math.PI/n);
 Point3f p2 = new Point3f(x, y, 0);
 ta.setCoordinate(count++, apex);
 ta.setCoordinate(count++, p1);
 ta.setCoordinate(count++, p2);
 p1 = p2;
}

[Page 176]

The circular base of the cone is divided into n segments. The two points of each segment and the apex form a
triangle. Because the TriangleArray requires explicit specification of each vertex in each triangle, we need to
define 3n coordinates, even though there are only n + 1 distinct points.

The QuadArray class defines a surface of quadrilateral patches. Every four sequential vertices define a
quadrilateral. The four vertices are required to be on a plane. The following QuadArray object consists of two
squares not on the same plane, but the vertices of each square are on the same plane. (See Figure 6.8.)

QuadArray qa = new QuadArray(8, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(1f, 1f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(0f, 1f, 1f);
coords[7] = new Point3f(1f, 1f, 1f);
qa.setCoordinates(0, coords);

Figure 6.8. A QuadArray geometry.

Note that even though there are only six distinct points in this geometry, we still need to define eight vertices for
the QuadArray object, because it is necessary to specify each quadrangle with four vertices.

Besides coordinates, other attributes of the vertices such as normals and colors may be set in a similar fashion.
For example, the following TriangleArray object contains color definitions for vertices as well as coordinates:

TriangleArray ta = new TriangleArray(6,
 GeometryArray.COORDINATES | GeometryArray.COLOR_3);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
ta.setCoordinates(0, coords);
Color3f[] colors = new Color3f[6];
colors[0] = new Color3f(1f, 0f, 0f);
colors[1] = new Color3f(0f, 1f, 0f);
colors[2] = new Color3f(0f, 0f, 1f);
colors[3] = new Color3f(1f, 1f, 0f);
colors[4] = new Color3f(0f, 1f, 1f);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

colors[5] = new Color3f(1f, 0f, 1f);
ta.setColors(0, colors);

[Page 177]

Surface normals can also be specified for the vertices in a geometry array. The following QuadArray object
contains normal specifications:

QuadArray qa = new QuadArray(8,
 GeometryArray.COORDINATES | GeometryArray.NORMALS);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(1f, 1f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(0f, 1f, 1f);
coords[7] = new Point3f(1f, 1f, 1f);
qa.setCoordinates(0, coords);
Vector3f[] normals = new Vector3f[8];
normals[0] = new Vector3f(0f, 0f, 1f);
normals[1] = new Vector3f(0f, 0f, 1f);
normals[2] = new Vector3f(0f, 0f, 1f);
normals[3] = new Vector3f(0f, 0f, 1f);
normals[4] = new Vector3f(0f, 1f, 0f);
normals[5] = new Vector3f(0f, 1f, 0f);
normals[6] = new Vector3f(0f, 1f, 0f);
normals[7] = new Vector3f(0f, 1f, 0f);
qa.setNormals(0, normals);

6.3.2. GeometryStripArray
Often a vertex in an array is shared by several different polygons. Using TriangleArray or QuadArray would add
the shared vertices multiple times. Two approaches can improve the efficiency. The GeometryStripArray class
uses the idea of strips to allow the sharing of adjacent vertices. To define separate strips, the number of vertices
in each strip can be specified with an array of integers:

void setStripVertexCounts(int[] stripVertexCounts);

The length of the array is the number of strips. The number in each array entry represents the number of
vertices in a strip.

GeometryStripArray has three subclasses. The LineStripArray defines a strip as a polyline. A sequence of points
is used to specify the strip without duplicating the internal points. For example, the following code defines the
same geometry as shown in Figure 6.6 with a LineStripArray object:

int[] stripVertexCounts = {2, 3};
LineStripArray lsa = new LineStripArray(5, GeometryArray.COORDINATES,
 stripVertexCounts);
Point3f[] coords = new Point3f[5];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(3f, 0f, 0f);
lsa.setCoordinates(0, coords);

The TriangleStripArray class defines strips of triangles. In each strip every three consecutive vertices define a
triangle. Figure 6.9 illustrates the geometry constructed from a TriangleStripArray object.

[Page 178]

Figure 6.9. A TriangleStripArray.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The TriangleFanArray class offers an alternative way to define strips of triangles. In each strip the first vertex
with every two consecutive vertices form a triangle. Figure 6.10 illustrates this approach.

Figure 6.10. A TriangleFanArray.

The geometry of a cone may be defined very naturally as a TriangleFanArray:

int n = 60; // number of triangle patches
int[] stripVertexCounts = {n+2}; // 1 strip
TriangleFanArray tfa = new TriangleFanArray
 (n+2, GeometryArray.COORDINATES, stripVertexCounts);
Point3f apex = new Point3f(0, 0, 1);
tfa.setCoordinate(0, apex);
for (int ii = 0; ii <= n; ii++) {
 float x = (float)Math.cos(ii*2*Math.PI/n);
 float y = (float)Math.sin(ii*2*Math.PI/n);
 Point3f p = new Point3f(x, y, 0);
 ta.setCoordinate(ii+1, p);
}

The n triangle patches are defined by only n + 2 points in a single strip.

6.3.3. IndexedGeometryArray
Another approach to avoid duplicated vertices is to use IndexedGeometryArray. Instead of defining a polygon by
specifying the vertices directly, an IndexedGeometryArray object specifies the indices of the vertices in an array of
points. Consequently a vertex needs to be defined only once, but it may be referenced several times through its
index. For example, the following IndexedQuadArray object defines a geometry of two squares, as shown in
Figure 6.8. It uses only six vertices instead of eight as needed by the GeometryArray. Each quadrangle is specified
with four indices corresponding to the corner vertices.

IndexedQuadArray iqa = new IndexedQuadArray
 (6, GeometryArray.COORDINATES, 8);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(0f, 1f, 1f);
coords[5] = new Point3f(1f, 1f, 1f);

[Page 179]
iqa.setCoordinates(0, coords);
int[] indices = {0, 1, 2, 3, 2, 3, 4, 5};
iga.setCoordinateIndices(0, indices);

Other attributes such as normals and colors can be indexed in a similar way.

There is also an IndexedGeometryStripArray class with its subclasses Indexed LineStripArray,
IndexedTriangleStripArray, and IndexedTriangleFanArray. These classes add indices to the strip arrays and
combine the features of strip arrays and indexed arrays. To define separate strips, a stripIndexCounts array can

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

be specified in the constructor or with the following method:

void setStripIndexCounts(int[] stripIndexCounts)

The following code shows an example of constructing an IndexedTriangleStripArray object:

int[] stripIndexCounts = {4, 4};
IndexedTriangleStripArray itsa = new IndexedTriangleStripArray(7,
 GeometryArray.COORDINATES, 8, stripIndexCounts);
Point3f[] coords = new Point3f[7];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(0f, 1f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(-1f, 0f, 0f);
coords[5] = new Point3f(-1f, -1f, 0f);
coords[6] = new Point3f(-2f, -1f, 0f);
itsa.setCoordinates(0, coords);
int[] indices = {0, 1, 2, 3, 0, 4, 5, 6};
itsa.setCoordinateIndices(0, indices);

The resulting geometry is shown in Figure 6.11.

Figure 6.11. An IndexedTriangleStripArray geometry.

Listing 6.1 constructs a regular tetrahedron using the IndexedTriangleArray class. The tetrahedron is one of the
five regular polyhedrons known as the Platonic solids. This example defines a tetrahedron as a subclass of
IndexedTriangleArray. A tetrahedron is a solid consisting of four faces of congruent equilateral triangles. A test
program in Listing 6.2 displays an instance of the tetrahedron rotating in space to view it from different angles.

Listing 6.1. Tetrahedron.java
(This item is displayed on pages 179 - 180 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import javax.media.j3d.*;

[Page 180]
 5
 6 public class Tetrahedron extends IndexedTriangleArray {
 7 public Tetrahedron() {
 8 super(4, TriangleArray.COORDINATES | TriangleArray.NORMALS, 12);
 9 setCoordinate(0, new Point3f(1f,1f,1f));
10 setCoordinate(1, new Point3f(1f,-1,-1f));
11 setCoordinate(2, new Point3f(-1f,1f,-1f));
12 setCoordinate(3, new Point3f(-1f,-1f,1f));
13 int[] coords = {0,1,2,0,3,1,1,3,2,2,3,0};
14 float n = (float)(1.0/Math.sqrt(3));
15 setNormal(0, new Vector3f(n,n,-n));
16 setNormal(1, new Vector3f(n,-n,n));
17 setNormal(2, new Vector3f(-n,-n,-n));
18 setNormal(3, new Vector3f(-n,n,n));
19 int[] norms = {0,0,0,1,1,1,2,2,2,3,3,3};
20 setCoordinateIndices(0, coords);
21 setNormalIndices(0, norms);
22 }
23 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 6.2. TestTetrahedron.java
(This item is displayed on pages 180 - 181 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestTetrahedron extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new TestTetrahedron(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 TransformGroup spin = new TransformGroup();
34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
35 root.addChild(spin);
36 // object
37 Appearance ap = new Appearance();
38 ap.setMaterial(new Material());

[Page 181]
39 Shape3D shape = new Shape3D(new Tetrahedron(), ap);
40 // rotating object
41 Transform3D tr = new Transform3D();
42 tr.setScale(0.25);
43 TransformGroup tg = new TransformGroup(tr);
44 spin.addChild(tg);
45 tg.addChild(shape);
46 Alpha alpha = new Alpha(-1, 4000);
47 RotationInterpolator rotator =
48 new RotationInterpolator(alpha, spin);
49 BoundingSphere bounds = new BoundingSphere();
50 rotator.setSchedulingBounds(bounds);
51 spin.addChild(rotator);
52 // light and background
53 Background background = new Background(1.0f, 1.0f, 1.0f);
54 background.setApplicationBounds(bounds);
55 root.addChild(background);
56 AmbientLight light = new AmbientLight
57 (true, new Color3f(Color.red));
58 light.setInfluencingBounds(bounds);
59 root.addChild(light);
60 PointLight ptlight = new PointLight(new Color3f(Color.green),
61 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
62 ptlight.setInfluencingBounds(bounds);
63 root.addChild(ptlight);
64 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
65 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
66 ptlight2.setInfluencingBounds(bounds);
67 root.addChild(ptlight2);
68 return root;
69 }
70 }

Figure 6.12. A tetrahedron.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 182]

Two classes are defined in this example: Tetrahedron and TestTetrahedron. The Tetrahedron class extends the
IndexedTriangleArray class (line 6) so it can be used as a geometry node component for a Shape3D node in a
scene graph. The vertices of the tetrahedron have the coordinates

(1, 1, 1), (1, –1, –1), (–1, 1, –1), (–1, –1, 1)

Four triangle faces are specified by an array of 12 indexes pointing to the corresponding vertices:

0, 1, 2, 0, 3, 1, 1, 3, 2, 2, 3, 0

Four normals for the four faces are specified as four vectors in the directions:

(1, 1, –1), (1, –1, 1), (–1, –1, –1), (–1, 1, 1)

The vectors are divided by to obtain unit normal vectors. Each vertex of a face is specified as a normal
corresponding to the normal of the face.

The TestTetrahedron class is a typical Java 3D applet/application program that is used to test the Tetrahedron
class. It creates an instance of Tetrahedron and associates it with a Shape3D node. The scene graph of the Java
3D program is given in Figure 6.13.

Figure 6.13. The scene graph for Listing 6.2.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A Shape3D object represents the tetrahedron in the scene graph (line 39). It references the Tetrahedron object
as its geometry and an Appearance object. The Appearance object references a Material object to apply lighting.

The Shape3D node is attached to a TransformGroup node to apply a scaling to the tetrahedron. The
TransformGroup is attached to another TransformGroup node, which is controlled by a Behavior object called
RotationInterpolator to perform the rotation.

[Page 183]

A background node is defined to create a white background. Three different lights are defined to illuminate the
scene. The behavior, the background, and the light nodes all share the same Bounds object, which is a sphere of
radius 1.0.

6.3.4. Normals

Surface normals are important geometric attributes for sophisticated rendering modes such as lighting. The
normal of a plane is a vector that is perpendicular to the plane (Figure 6.14). The normal of a surface at a point is
the normal of the surface's tangent plane at the point.

Figure 6.14. The surface normal is perpendicular to the tangent plane.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Because the cross product of two vectors is perpendicular to both vectors, it can often be used to calculate
normals. For example, given three distinct points P0, P1, P2 in a plane, we can form two vectors in the plane: v1 =
P1 – P0, v2 = P2 – P0 (Figure 6.15). The cross product v1 x v2 is the normal of the plane.

Figure 6.15. Calculating the normal with the cross product.

Usually the surface normals are represented with unit vectors (vectors of length 1). Any nonzero vector v can be
rescaled to a unit vector: v/||v|| This is known as the normalization.

The Vector3f and Vector3d classes have the cross method to calculate the cross product of two three-
dimensional vectors. The normalize methods of the classes perform the normalization on the vectors. For
example, the following code snippet calculates the normal of the plane determined by three points:

Point3f p0 = new Point3f(1,1,1);
Point3f p1 = new Point3f(1,-1,-1);
Point3f p2 = new Point3f(-1,1,-1);
p1.sub(p0);
p2.sub(p0);

[Page 184]
Vector3f v1 = new Vector3f(p1);
Vector3f v2 = new Vector3f(p2);
Vector3f normal = new Vector3f();
normal.cross(v1, v2);
normal.normalize();

For a geometry formed with planar faces, such as the tetrahedron, the normal for each face can be calculated
separately using the method illustrated above. For a smooth surface approximated by a polygon mesh, the
normal at a vertex should be calculated from the original surface rather than a polygon. Consider the case that a
surface is represented by a parametric equation:

x = f(u, v)

y = g(u, v)

z = h(u, v)

Two vectors in the tangent plane can be obtained from the derivatives:

(dx/du, dy/du, dz/du) = (fu, gu, hu)

(dx/dv, dy/dv, dz/dv) = (fv, gv, hv)

The surface normal at a point can be found by taking their cross product:

n = (fu, gu, hu) x (fv,gv,hv)

For example, an elliptic paraboloid has the following parametric equation:

x = u cos v

y = u sin v

z = u2

The partial derivatives are given by:

(cos v, sin v, 2u)

(–u sin v, u cos v, 0)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Therefore the surface normal at a point defined by (u, v) is:

(cos v, sin v, 2u) x (–u sin v, u cos v, 0) = (–2u2 cos v, 2u2 sin v, u)

The mathematical background related to surfaces and normals is discussed in Appendix A.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 184 (continued)]

6.4. GeometryInfo
6.4.1. Using the GeometryInfo Class

An alternative to GeometryArray classes for generating geometry is the GeometryInfo class. This class does not
have the methods to partially set the vertex data, but it allows the definitions of more general polygon faces.
Using the utility classes NormalGenerator and Stripifier, it is also possible to automatically generate surface
normals and stripify the geometry on GeometryInfo objects.

One constructor of GeometryInfo takes a GeometryArray parameter. It provides a conversion from a
GeometryArray object to a GeometryInfo object:

public GeometryInfo(GeometryArray ga)

Another constructor of GeometryInfo creates an empty GeometryInfo object with a given primitiveType:

[Page 185]
public GeometryInfo(int primitiveType)

The primitiveType is one of:

TRIANGLE_ARRAY
TRIANGLE_FAN_ARRAY
TRIANGLE_STRIP_ARRAY
QUAD_ARRAY
POLYGON_ARRAY

The triangle and quad arrays are interpreted the same way as the corresponding GeometryArray classes. To set
vertex data, an entire array of data values must be supplied. For example,

void setCoordinates(Point3f[] coords)

Indexed representation can be achieved by simply setting an index array:

void setCoordinateIndices(int[] indices)
void setNormalIndices(int[] indices)
void setColorIndices(int[] indices)
void setTextureCoordinateIndices(int[] indices)

Similar to the GeometryArray classes, a stripCounts array is used to define separate strips for GeometryInfo
objects with TRIANGLE_FAN_ARRAY and TRIANGLE_STRIP_ARRAY flags.

A polygon array with the POLYGON_ARRAY flag can be used to define complex polygons with more than four sides
and with holes. A polygon consists of one or more contours. The first contour defines the outer boundary of the
polygon and subsequent contours define the holes in the polygon.

The stripCounts array for a POLYGON_ARRAY specifies the number of vertices of each contour. The contourCounts
array specifies the number of contours for each polygon. For example, Figure 6.16 shows the strip counts and
contour counts for the given polygon array.

Figure 6.16. Constructing geometry using the GeometryInfo class.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Internally the GeometryInfo class will convert polygons in a POLYGON_ARRAY primitive to triangles. This
triangulation is done automatically using the class Triangulator.

The surface normals of a GeometryInfo object can be generated automatically using the class NormalGenerator.
The surface normals are necessary for rendering the objects by considering illumination from light sources. The
automatic normal generation can help you avoid some tedious calculations. The NormalGenerator class has a
method to generate normals for a GeometryInfo object:

[Page 186]
public void generateNormals(GeometryInfo gi);

To generate normals for a GeometryInfo object gi, you may create an instance of NormalGenerator and call the
generateNormals method:

NormalGenerator ng = new NormalGenerator();
ng.generateNormals(gi);

The other helper class Stripifier helps you change the geometry in a GeometryInfo object to triangle strips.
The usage of Stripifier is similar to that of NormalGenerator:

Stripifier st = new Stripifier();
st.stripify(gi);

Listing 6.3 uses GeometryInfo class to define a dodecahedron, another Platonic solid. This example demonstrates
the use of GeometryInfo class. Listing 6.4 shows a test program for the dodecahedron.

Listing 6.3. Dodecahedron.java

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.geometry.*;
 8
 9 public class Dodecahedron extends Shape3D{
10 public Dodecahedron() {
11 GeometryInfo gi = new GeometryInfo(GeometryInfo.POLYGON_ARRAY);
12 double phi = 0.5*(Math.sqrt(5)+1);
13 Point3d[] vertices = {new Point3d(1,1,1),
14 new Point3d(0,1/phi,phi),
15 new Point3d(phi,0,1/phi),new Point3d(1/phi,phi,0),
16 new Point3d(-1,1,1),
17 new Point3d(0,-1/phi,phi),new Point3d(1,-1,1),
18 new Point3d(phi,0,-1/phi),
19 new Point3d(1,1,-1),new Point3d(-1/phi,phi,0),
20 new Point3d(-phi,0,1/phi),
21 new Point3d(-1,-1,1),new Point3d(1/phi,-phi,0),
22 new Point3d(1,-1,-1),
23 new Point3d(0,1/phi,-phi),new Point3d(-1,1,-1),
24 new Point3d(-1/phi,-phi,0),
25 new Point3d(-phi,0,-1/phi),new Point3d(0,-1/phi,-phi),
26 new Point3d(-1,-1,-1)};
27 int[] indices = {0,1,5,6,2, 0,2,7,8,3, 0,3,9,4,1,
28 1,4,10,11,5, 2,6,12,13,7, 3,8,14,15,9,

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

29 5,11,16,12,6, 7,13,18,14,8, 9,15,17,10,4,
30 19,16,11,10,17, 19,17,15,14,18, 19,18,13,12,16};
31 gi.setCoordinates(vertices);
32 gi.setCoordinateIndices(indices);
33 int[] stripCounts = {5,5,5,5,5,5,5,5,5,5,5,5};
34 gi.setStripCounts(stripCounts);
35 NormalGenerator ng = new NormalGenerator();
36 ng.generateNormals(gi);
37 this.setGeometry(gi.getGeometryArray());
38 }
39 }

[Page 187]

Listing 6.4. TestDodecahedron.java
(This item is displayed on pages 187 - 188 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestDodecahedron extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new TestDodecahedron(), 640, 480);
15 }
16
17 public void init() {
18 GraphicsConfiguration gc =
19 SimpleUniverse.getPreferredConfiguration();
20 Canvas3D cv = new Canvas3D(gc);
21 setLayout(new BorderLayout());
22 add(cv, BorderLayout.CENTER);
23 BranchGroup bg = createSceneGraph();
24 bg.compile();
25 SimpleUniverse su = new SimpleUniverse(cv);
26 su.getViewingPlatform().setNominalViewingTransform();
27 su.addBranchGraph(bg);
28 }
29
30 private BranchGroup createSceneGraph() {
31 BranchGroup root = new BranchGroup();
32 TransformGroup spin = new TransformGroup();
33 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
34 root.addChild(spin);
35
36 // object
37 Appearance ap = new Appearance();
38 ap.setMaterial(new Material());
39 Shape3D shape = new Dodecahedron();
40 shape.setAppearance(ap);
41
42 Transform3D tr = new Transform3D();
43 tr.setScale(0.25);
44 TransformGroup tg = new TransformGroup(tr);
45 spin.addChild(tg);
46 tg.addChild(shape);
47
48 Alpha alpha = new Alpha(-1, 4000);
49 RotationInterpolator rotator =
50 new RotationInterpolator(alpha, spin);
51 BoundingSphere bounds = new BoundingSphere();
52 rotator.setSchedulingBounds(bounds);
53 spin.addChild(rotator);
54
55 // background and light
56 Background background = new Background(1.0f, 1.0f, 1.0f);
57 background.setApplicationBounds(bounds);
58 root.addChild(background);

[Page 188]
59 AmbientLight light = new AmbientLight
60 (true, new Color3f(Color.red));
61 light.setInfluencingBounds(bounds);
62 root.addChild(light);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

63 PointLight ptlight = new PointLight(new Color3f(Color.green),
64 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
65 ptlight.setInfluencingBounds(bounds);
66 root.addChild(ptlight);
67 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
68 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
69 ptlight2.setInfluencingBounds(bounds);
70 root.addChild(ptlight2);
71 return root;
72 }
73 }

Figure 6.17. A dodecahedron.

The Dodecahedron class is defined as a subclass of Shape3D. The dodecahedron has 20 vertices and 12 pentagon
faces. A GeometryInfo object is created to define the faces and to automatically generate the normals. Vertex
coordinates are set directly in the array vertices. The 20 vertices have the following coordinates:

(1, 1, 1),

(0, 1/f, f), (f, 0, 1/f), (1/f, f, 0),

(-1, 1, 1), (0, -1/f, f), (1, -1, 1),

(f, 0, -1/f), (1, 1, -1), (-1/f, f, 0),

(-f, 0, 1/f), (-1, -1, 1), (1/f, -f, 0),

(1, -1, -1), (0, 1/f, -f), (-1, 1, -1),

(-1/f, -f, 0), (-f, 0, -1/f), (0, -1/f, -f),

(-1, -1, -1)

[Page 189]

where The 12 faces are defined with indices to the vertices:

(0, 1, 5, 6, 2), (0, 2, 7, 8, 3), (0, 3, 9, 4, 1),

(1, 4, 10, 11, 5), (2, 6, 12, 13, 7), (3, 8, 14, 15, 9),

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

(5, 11, 16, 12, 6), (7, 13, 18, 14, 8), (9, 15, 17, 10, 4),

(19, 16, 11, 10, 17), (19, 17, 15, 14, 18), (19, 18, 13, 12, 16)

The stripCount array (line 33) defines the number of polygons and the number of vertices in each polygon face:

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

A NormalGenerator object is created and applied on the GeometryInfo object to generate the normals for the
faces (lines 35–36). Finally the geometry constructed in the GeometryInfo object is retrieved to be used as the
geometry of the current Shape3D object.

The test program TestDodecahedron is nearly identical to the test program in Listing 6.2. The only significant
difference is that the Dodecahedron object is added directly to the scene graph as a leaf node, because it is a
Shape3D object.

6.4.2. Creating Polygon Meshes

A general curved surface typically requires an array of many small polygon patches to obtain a good
approximation. For a surface defined by a parametric equation,

x = f (u, v)

y = g(u, v)

z = h(u, v)

with the two parameters varying in the rectangle a u b, c v d, we can usually divide the parameter
range into an m x n grid to form the patches. The vertices of the grid are defined by the points:

ui = a + i(b – a)/m, i = 0, 1, 2, ... , m

vj = c + j(d – c)/n, j = 0, 1, 2, ... , n

A quadrilateral patch is defined by four vertices with parameter values:

(ui, vj), (ui+1, vj), (ui+1, vj+1), (ui, vj+1)

It may be further divided into two triangles:

(ui, vj), (ui+1, vj), (ui+1, vj+1) and (ui, vj), (ui+1, vj+1), (ui, vj+1)

Because of the obvious overlapping of vertices among the adjacent polygons, indexed arrays are often used to
improve the efficiency.

Note that the methods for setting vertex coordinates in the GeometryInfo and GeometryArray classes do not
accept two-dimensional arrays. Consequently, the vertices in the grid must be specified in a linear fashion.

Listing 6.5 illustrates the procedure of generating an approximation to a surface with an array of polygons. It
uses a GeometryInfo class to generate the geometry for a data set sampled from a two-variable function.

Data visualization is an important application of computer graphics. As the dimension of a dataset increases, the
comprehension of the data becomes more difficult. 3D graphical data plotting may greatly enhance the
representation of data sets. This example shows a 3D surface plot of a function of two variables:

[Page 190]

Even though the data set used in this example is generated from a fixed function, the method can be easily
adapted to plot data from other sources. The plot is rotated continuously about a vertical axis. (See Figure 6.18.)

Figure 6.18. A 3D plot of a two-variable function.
(This item is displayed on page 192 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 6.5. ViewData.java
(This item is displayed on pages 190 - 191 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class ViewData extends Applet {
 13 public static void main(String[] args) {
 14 new MainFrame(new ViewData(), 640, 480);
 15 }
 16
 17 public void init() {
 18 // create canvas
 19 GraphicsConfiguration gc =
 20 SimpleUniverse.getPreferredConfiguration();
 21 Canvas3D cv = new Canvas3D(gc);
 22 setLayout(new BorderLayout());
 23 add(cv, BorderLayout.CENTER);
 24 BranchGroup bg = createSceneGraph();
 25 bg.compile();
 26 SimpleUniverse su = new SimpleUniverse(cv);
 27 su.getViewingPlatform().setNominalViewingTransform();
 28 su.addBranchGraph(bg);
 29 }
 30
 31 private BranchGroup createSceneGraph() {
 32 BranchGroup root = new BranchGroup();
 33 TransformGroup spin = new TransformGroup();
 34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 35 root.addChild(spin);
 36
 37 // object
 38 Appearance ap = new Appearance();
 39 ap.setMaterial(new Material());
 40 Shape3D shape = new Shape3D(createGeometry(), ap);
 41
 42 Transform3D tr = new Transform3D();
 43 tr.setScale(0.2);
 44 TransformGroup tg = new TransformGroup(tr);
 45 spin.addChild(tg);
 46 tg.addChild(shape);
 47

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 47
 48 Alpha alpha = new Alpha(-1, 12000);
 49 RotationInterpolator rotator = new RotationInterpolator
 50 (alpha, spin);

[Page 191]
 51 BoundingSphere bounds = new BoundingSphere();
 52 rotator.setSchedulingBounds(bounds);
 53 spin.addChild(rotator);
 54
 55 // background and light
 56 Background background = new Background(1.0f, 1.0f, 1.0f);
 57 background.setApplicationBounds(bounds);
 58 root.addChild(background);
 59 AmbientLight light = new AmbientLight
 60 (true, new Color3f(Color.red));
 61 light.setInfluencingBounds(bounds);
 62 root.addChild(light);
 63 PointLight ptlight = new PointLight(new Color3f(Color.green),
 64 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
 65 ptlight.setInfluencingBounds(bounds);
 66 root.addChild(ptlight);
 67 return root;
 68 }
 69
 70 private Geometry createGeometry() {
 71 int m = 40;
 72 int n = 40;
 73 Point3f[] pts = new Point3f[m*n];
 74 int idx = 0;
 75 for (int i = 0; i < m; i++) {
 76 for (int j = 0; j < n; j++) {
 77 float x = (i - m/2)*0.2f;
 78 float z = (j - n/2)*0.2f;
 79 float y = 2f * (float)(Math.cos(x*x) * Math.sin(z*z))/
 80 ((float)Math.exp(0.25*(x*x+z*z)))-1.0f;
 81 pts[idx++] = new Point3f(x, y, z);
 82 }
 83 }
 84
 85 int[] coords = new int[2*n*(m-1)];
 86 idx = 0;
 87 for (int i = 1; i < m; i++) {
 88 for (int j = 0; j < n; j++) {
 89 coords[idx++] = i*n + j;
 90 coords[idx++] = (i-1)*n + j;
 91 }
 92 }
 93
 94 int[] stripCounts = new int[m-1];
 95 for (int i = 0; i < m-1; i++) stripCounts[i] = 2*n;
 96
 97 GeometryInfo gi = new GeometryInfo
 98 (GeometryInfo.TRIANGLE_STRIP_ARRAY);
 99 gi.setCoordinates(pts);
100 gi.setCoordinateIndices(coords);
101 gi.setStripCounts(stripCounts);
102
103 NormalGenerator ng = new NormalGenerator();
104 ng.generateNormals(gi);
105
106 return gi.getGeometryArray();
107 }
108 }

[Page 192]

We use the data points sampled from the function to construct the geometry. A rectangular grid of m x n values
in the xz-plane is created to evaluate the function. The function values give the y-coordinates of the points. The
resulting points are stored in a one-dimensional array pts (line 73). The surface formed by this grid of points is
defined as strips of triangles. Every two adjacent rows of points define one strip of triangles.

The geometry of the surface is created using a GeometryInfo object with the primitive data type
TRIANGLE_STRIP_ARRAY (line 98). The GeometryInfo object is indexed. The array pts specifies the vertex
coordinates. The actual triangle strips are defined by a separate array of indices coords and an array of strip
counts stripCounts. The coords array defines the triangle strips with the indices to the vertex array. Because
the grid has m values in the x- direction, there are m –1 strips. Each strip is defined by 2n points in two rows.
Therefore, the array coords contains 2n(m – 1) indices. The indices are specified alternately from the two rows.
For example, the first strip has indices

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

n, 0, n + 1, n + 2, 2,...

The second strip has indices

2n, n, 2n + 1, 2n + 2, n + 2,...

Of course all indices are stored in the single array coords. To break the one-dimensional index array into separate
strips, the stripCounts array is applied to specify m – 1 strips with 2n indices in each strip.

To generate the surface normals the utility class NormalGenerator is used. The resulting geometry is used by a
Shape3D object to define the surface.

The scene graph of this example is similar to that of Listing 6.2. Only two lights are used in this program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 193]

6.5. Primitives
For convenience, Java 3D offers utility classes for commonly used geometric primitives. The abstract class
Primitive is a subclass of Group and encapsulates predefined geometry attributes. They can be used as high-
level components in a scene graph without setting complex geometry, using separate low-level structures such as
GeometryArray or GeometryInfo objects.

Figure 6.19 shows the class hierarchy of the primitives defined in the package com.sun.j3d.utils.geometry. The
appearance of a primitive can be set through the following methods:

void setAppearance()
void setAppearance(Appearance appearance)
void setAppearance(int subpart, Appearance appearance)

Figure 6.19. Primitive classes.

The sizes of the primitives can be set with some of their constructors. For example,

Box(float xdim, float ydim, float zdim, Appearance appearance)
Cone(float radius, float height)
Cylinder(float radius, float height)
Sphere(float radius)

The Primitive class is a subclass of Group. Therefore a primitive object can be added directly to a scene graph as
a node.

Listing 6.6 demonstrates the applications of primitives. This program displays instances of the four basic
primitives provided by Java 3D utility packages. (See Figure 6.20.)

Figure 6.20. Four primitives.
(This item is displayed on page 195 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 6.6. TestPrimitives.java
(This item is displayed on pages 193 - 195 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestPrimitives extends Applet {
13 public static void main(String[] args) {

[Page 194]
14 new MainFrame(new TestPrimitives(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 TransformGroup spin = new TransformGroup();
34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
35 root.addChild(spin);
36
37 // primitives
38 Appearance ap = new Appearance();
39 ap.setMaterial(new Material());
40 Box box = new Box(1.2f, 0.3f, 0.8f, ap);
41 Sphere sphere = new Sphere();
42 Cylinder cylinder = new Cylinder();
43 Cone cone = new Cone();
44
45 Transform3D tr = new Transform3D();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

46 tr.setScale(0.2);
47 TransformGroup tg = new TransformGroup(tr);
48 spin.addChild(tg);
49 tg.addChild(box);
50 tr.setIdentity();
51 tr.setTranslation(new Vector3f(0f,1.5f,0f));
52 TransformGroup tgSphere = new TransformGroup(tr);
53 tg.addChild(tgSphere);
54 tgSphere.addChild(sphere);
55 tr.setTranslation(new Vector3f(-1f,-1.5f,0f));
56 TransformGroup tgCylinder = new TransformGroup(tr);
57 tg.addChild(tgCylinder);
58 tgCylinder.addChild(cylinder);
59 tr.setTranslation(new Vector3f(1f,-1.5f,0f));
60 TransformGroup tgCone = new TransformGroup(tr);
61 tg.addChild(tgCone);
62 tgCone.addChild(cone);
63
64 Alpha alpha = new Alpha(-1, 4000);
65 RotationInterpolator rotator =
66 new RotationInterpolator(alpha, spin);
67 BoundingSphere bounds = new BoundingSphere();
68 rotator.setSchedulingBounds(bounds);
69 spin.addChild(rotator);
70
71 // background and light
72 Background background = new Background(1.0f, 1.0f, 1.0f);

[Page 195]
73 background.setApplicationBounds(bounds);
74 root.addChild(background);
75 AmbientLight light =
76 new AmbientLight(true, new Color3f(Color.red));
77 light.setInfluencingBounds(bounds);
78 root.addChild(light);
79 PointLight ptlight = new PointLight(new Color3f(Color.green),
80 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
81 ptlight.setInfluencingBounds(bounds);
82 root.addChild(ptlight);
83 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
84 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
85 ptlight2.setInfluencingBounds(bounds);
86 root.addChild(ptlight2);
87 return root;
88 }
89 }

Four instances of the primitives—a box, a sphere, a cylinder, and a cone—are created and placed in the scene
graph as shown in Figure 6.21. The transformation nodes on top of the three primitive nodes help separate the
objects in the virtual world. The details of applying transformation nodes will be presented in Chapter 7.

Figure 6.21. Scene graph for Listing 6.4.
(This item is displayed on page 196 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The default constructors are used for creating the Cone, Sphere, and Cylinder objects. The objects will have the
surface normals generated and set up for lighting. The Box object is created with a constructor specifying its x-, y-
, z-dimensions and its appearance (lines 40–43).

All four objects are attached to a TransformGroup which performs a scaling. Once again, the entire scene is
rotated by a RotationInterpolator object through a TransformGroup node. The background and light
configuration are similar to those in previous examples.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 196]

6.6. Fonts and Texts
Fonts provide a rich source for geometry. The glyphs of text strings are complex geometric shapes predefined in
the fonts.

Java 3D provides Text3D and Text2D classes. Text3D extends the Geometry class, so a Text3D object can be used
by a Shape3D node to define its geometry. A Text3D object is determined by a 3D font and a string for the text. A
Font3D object is a 3D version of a font. A Font3D object is constructed from a regular 2D AWT font and an
extrusion defined by the FontExtrusion class. The following is a typical procedure to create a Text3D object:

Create a java.awt.Font object.

Create a FontExtrusion object.

Create a Font3D object using the Font and FontExtrusion objects.

Create a Text3D object using the Font3D and a String.

For example, the following statements create a 3D text of "Hello" using a bold Serif font of size 1 with a default
extrusion:

Font font = new Font("Serif", Font.BOLD, 1);
FontExtrusion extrusion = new FontExtrusion();
Font3D font3d = new Font3D(font, extrusion);
Text3D text = new Text3D(font3d, "Hello");

[Page 197]

Text2D is a subclass of Shape3D, so it can be used as a leaf node in a scene graph. A Text2D object is implemented
as a rectangle with the text string painted as an image. The following code defines a Text2D object of the string
"Hello" with a blue italic Serif font of size 16:

Text2D text = new Text2D("Hello", Color.blue, "Serif", 16, Font.Italic);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 197 (continued)]

6.7. Appearance and Attributes
Besides geometry, graphics objects possess attributes that define the appearance when rendered. Different
models for the graphics object's appearance exist with significant differences in rendering quality and efficiency.

Color is perhaps the most fundamental attribute. However, there are different ways to generate colors for parts of
a graphics object. A simple way is to specify a solid color for each unit of the object, such as points, lines, or
polygon faces.

Another approach is to assign different colors for different points by interpolations. This is known as Gouraud
shading. Colors are specified for vertices of a polygon. At other points the colors are calculated by interpolating the
color values at the vertices.

More realistic coloring schemes need to consider the influences of environment elements such as lights as well as
the properties of the objects. Colors on an object may be determined by such factors as the reflective properties
of the object, the geometry, the light sources, the emissive light, the ambient light, and the view position.

Texture mapping is a powerful technique to achieve sophisticated appearance. For objects with a great deal of
detail it is usually more efficient to store the appearance as a raster image and place the image onto the object
during rendering.

In Java 3D the Appearance node component specifies the attributes related to the rendering of the node. An
Appearance object holds a set of references to attribute objects. Figure 6.22 lists the classes related to
appearance.

Figure 6.22. Appearance components.

A ColoringAttributes object defines a color to be used to color the associated geometric object when lighting is
not applied and vertex colors are not defined. This color is ignored if vertex colors for the geometry are defined. It
is also not used if lighting is enabled. ColoringAttributes also defines a shading model.

SHAD_FLAT— The flat shading assigns a fixed color to every point on a polygon or a line.

SHAD_GOURAUD— Gouraud shading interpolates the colors at the vertices of a polygon or a line to produce a
color at an interior point. The colors on a polygon are not constant. They change smoothly to give a more
realistic appearance.

[Page 198]

SHAD_FASTEST— This constant selects the fastest shading model for the current platform.

SHAD_NICEST— This constant selects the nicest shading model for the current platform.

A PointAttributes object defines the attributes related to rendering of points. The size of points and antialiasing
can be specified with PointAttributes class.

A LineAttributes object defines the attributes related to rendering of lines. Line attributes include the line
width, line pattern, and antialiasing. Line patterns are defined by the constants in the class:

PATTERN_SOLID
PATTERN_DASH
PATTERN_DOT
PATTERN_DASH_DOT

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

PATTERN_USER_DEFINED

A PolygonAttributes object defines the attributes related to rendering of polygons. The polygon drawing mode
controls the way that a polygon is rendered. Three polygon modes are defined:

POLYGON_POINT
POLYGON_LINE
POLYGON_FILL

The polygon drawing mode can be set in constructors or by the method setPolygonMode.

The TransparencyAttributes node component provides a way to render the visual object with a certain degree
of transparency. For example, the following TransparencyAttributes object will cause the visual object to be
rendered at a transparency value of 0.6:

int tMode = TransparencyAttributes.BLENDED;
float tValue = 0.6f;
TransparencyAttributes ta = new TransparencyAttributes(tMode, tValue);
Appearance ap = new Appearance();
ap.setTransparencyAttributes(ta);

A transparency value of 1.0 indicates complete transparency and a value of 0.0 is completely opaque. Note that
the transparency value is the opposite of the alpha value in color specifications.

The material settings of an appearance are related to illumination and shading of the objects. Chapter 9 will
discuss the details of lighting and illumination. Texture mapping is discussed in Chapters 9 and 12.

The appearance attribute settings are related. The rules for applying geometric drawing modes are given below.

1. If the polygon drawing mode of PolygonAttributes is set to POLYGON_POINT, only the vertices of a polygon
are rendered. In this mode the PointAttributes settings determine the point rendering characteristics.

2. If the polygon drawing mode of PolygonAttributes is set to POLYGON_LINE, the edges of a polygon are
rendered. The visual objects appear in a wireframe form. In this mode the LineAttributes settings control
the appearance of the lines.

3. If the polygon drawing mode of PolygonAttributes is set to POLYGON_FILL, the polygons are filled.

The coloring of the rendered object depends on the lighting model, the ColoringAttributes settings, and the
vertex data of the geometry.

[Page 199]

1. The lighting model is applied if the Appearance references a valid Material object and the Material object
enables lighting. The following method of Material can be used to enable or disable lighting:

void setLightingEnable(boolean enable)

In this mode, colors of the object are rendered based on the interactions between light sources and visual
objects.

2. If vertex colors are present and not ignored, they are used to render the polygons. The enabling of the
vertex colors is controlled by a RenderingAttributes object. The following method sets this state:

void setIgnoreVertexColors(boolean ignore)

When vertex colors are used, the shading mode of the polygons is determined by the ColoringAttributes
object. A flat shading assigns a single color to a polygon and a Gouraud shading interpolates the vertex
colors in the interior of a polygon.

3. If lighting is not enabled and the vertex colors of the geometry are not present or ignored, the color
specified by the ColoringAttributes object will be used for coloring the geometry.

Listing 6.7 is a class for tetrahedron with color specification. Listing 6.8 demonstrates the effects of various
appearance attributes. A rotating tetrahedron is displayed in the main window. The appearance of the tetrahedron
is controlled by Polygon Mode buttons that select rendering modes: point, line, polygon, and by Coloring Attribute
buttons that select coloring options: single, flat, Gouraud, lighting. (See Figure 6.23.)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 6.23. Rendering a tetrahedron with different appearance attributes.
(This item is displayed on page 200 in the print version)

Listing 6.7. ColorTetrahedron.java

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import javax.media.j3d.*;
 5
 6 public class ColorTetrahedron extends IndexedTriangleArray{
 7 public ColorTetrahedron() {
 8 super(4, TriangleArray.COORDINATES | TriangleArray.NORMALS |
 9 GeometryArray.COLOR_3, 12);
10 setCoordinate(0, new Point3f(1f,1f,1f));
11 setCoordinate(1, new Point3f(1f,-1,-1f));
12 setCoordinate(2, new Point3f(-1f,1f,-1f));
13 setCoordinate(3, new Point3f(-1f,-1f,1f));
14 int[] coords = {0,1,2,0,3,1,1,3,2,2,3,0};
15 float n = (float)(1.0/Math.sqrt(3));
16 setNormal(0, new Vector3f(n,n,-n));
17 setNormal(1, new Vector3f(n,-n,n));
18 setNormal(2, new Vector3f(-n,-n,-n));
19 setNormal(3, new Vector3f(-n,n,n));
20 int[] norms = {0,0,0,1,1,1,2,2,2,3,3,3};
21 setCoordinateIndices(0, coords);
22 setNormalIndices(0, norms);
23 setColor(0, new Color3f(1f, 0f, 0f));
24 setColor(1, new Color3f(0f, 1f, 0f));
25 setColor(2, new Color3f(0f, 0f, 1f));
26 setColor(3, new Color3f(1f, 1f, 1f));
27 setColorIndices(0, coords);
28 }
29 }

[Page 200]

Listing 6.8. TestAppearance.java
(This item is displayed on pages 200 - 203 in the print version)

 1 package chapter6;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class TestAppearance extends Applet implements
 13 ActionListener {
 14 public static void main(String[] args) {
 15 new MainFrame(new TestAppearance(), 640, 480);
 16 }
 17
 18 public void init() {
 19 setLayout(new BorderLayout());
 20 Panel p = new Panel();
 21 p.setLayout(new GridLayout(12,1,10,5));
 22 add(p, BorderLayout.EAST);
 23 p.add(new Panel());
 24 p.add(new Label("Polygon Mode"));
 25 Button button = new Button("Point");
 26 p.add(button);
 27 button.addActionListener(this);
 28 button = new Button("Line");
 29 p.add(button);
 30 button.addActionListener(this);

[Page 201]
 31 button = new Button("Polygon");
 32 p.add(button);
 33 button.addActionListener(this);
 34
 35 p.add(new Panel());
 36 p.add(new Label("Coloring Attribute"));
 37 button = new Button("Single");
 38 p.add(button);
 39 button.addActionListener(this);
 40 button = new Button("Flat");
 41 p.add(button);
 42 button.addActionListener(this);
 43 button = new Button("Gouraud");
 44 p.add(button);
 45 button.addActionListener(this);
 46 button = new Button("Lighting");
 47 p.add(button);
 48 button.addActionListener(this);
 49
 50 GraphicsConfiguration gc =
 51 SimpleUniverse.getPreferredConfiguration();
 52 Canvas3D cv = new Canvas3D(gc);
 53 add(cv, BorderLayout.CENTER);
 54 BranchGroup bg = createSceneGraph();
 55 bg.compile();
 56 SimpleUniverse su = new SimpleUniverse(cv);
 57 su.getViewingPlatform().setNominalViewingTransform();
 58 su.addBranchGraph(bg);
 59 }
 60
 61 Appearance ap;
 62 private BranchGroup createSceneGraph() {
 63 BranchGroup root = new BranchGroup();
 64 TransformGroup spin = new TransformGroup();
 65 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 66 root.addChild(spin);
 67
 68 // allow appearance change
 69 ap = new Appearance();
 70 ap.setCapability(Appearance.ALLOW_COLORING_ATTRIBUTES_WRITE);
 71 ap.setCapability(Appearance.ALLOW_POINT_ATTRIBUTES_WRITE);
 72 ap.setCapability(Appearance.ALLOW_LINE_ATTRIBUTES_WRITE);
 73 ap.setCapability(Appearance.ALLOW_POLYGON_ATTRIBUTES_WRITE);
 74 ap.setCapability(Appearance.ALLOW_RENDERING_ATTRIBUTES_WRITE);
 75 ap.setCapability(Appearance.ALLOW_MATERIAL_WRITE);
 76 Shape3D shape = new Shape3D(new ColorTetrahedron(), ap);
 77
 78 Transform3D tr = new Transform3D();
 79 tr.setScale(0.25);
 80 TransformGroup tg = new TransformGroup(tr);
 81 spin.addChild(tg);
 82 tg.addChild(shape);
 83
 84 Alpha alpha = new Alpha(-1, 4000);
 85 RotationInterpolator rotator =
 86 new RotationInterpolator(alpha, spin);
 87 BoundingSphere bounds = new BoundingSphere();
 88 rotator.setSchedulingBounds(bounds);
 89 spin.addChild(rotator);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 90
[Page 202]

 91 // background and light
 92 Background background = new Background(1f, 1f, 1f);
 93 background.setApplicationBounds(bounds);
 94 root.addChild(background);
 95 AmbientLight light = new AmbientLight
 96 (true, new Color3f(Color.red));
 97 light.setInfluencingBounds(bounds);
 98 root.addChild(light);
 99 PointLight ptlight = new PointLight(new Color3f(Color.cyan),
100 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
101 ptlight.setInfluencingBounds(bounds);
102 root.addChild(ptlight);
103 return root;
104 }
105
106 public void actionPerformed(ActionEvent actionEvent) {
107 String cmd = actionEvent.getActionCommand();
108 if ("Point".equals(cmd)) {
109 ap.setPolygonAttributes(new PolygonAttributes(
110 PolygonAttributes.POLYGON_POINT,
111 PolygonAttributes.CULL_BACK,0));
112 ap.setPointAttributes(new PointAttributes(10, false));
113 } else if ("Line".equals(cmd)) {
114 ap.setPolygonAttributes(new PolygonAttributes(
115 PolygonAttributes.POLYGON_LINE,
116 PolygonAttributes.CULL_BACK,0));
117 ap.setLineAttributes(new LineAttributes(3,
118 LineAttributes.PATTERN_DASH, false));
119 } else if ("Polygon".equals(cmd)) {
120 ap.setPolygonAttributes(new PolygonAttributes(
121 PolygonAttributes.POLYGON_FILL,
122 PolygonAttributes.CULL_BACK,0));
123 } else if ("Single".equals(cmd)) {
124 ColoringAttributes ca = new ColoringAttributes();
125 ca.setColor(0.5f, 0.5f, 0.5f);
126 ap.setColoringAttributes(ca);
127 ap.setMaterial(null);
128 RenderingAttributes ra = new RenderingAttributes();
129 ra.setIgnoreVertexColors(true);
130 ap.setRenderingAttributes(ra);
131 } else if ("Flat".equals(cmd)) {
132 ColoringAttributes ca = new ColoringAttributes();
133 ca.setShadeModel(ColoringAttributes.SHADE_FLAT);
134 ap.setColoringAttributes(ca);
135 ap.setMaterial(null);
136 RenderingAttributes ra = new RenderingAttributes();
137 ra.setIgnoreVertexColors(false);
138 ap.setRenderingAttributes(ra);
139 } else if ("Gouraud".equals(cmd)) {
140 ColoringAttributes ca = new ColoringAttributes();
141 ca.setShadeModel(ColoringAttributes.SHADE_GOURAUD);
142 ap.setColoringAttributes(ca);
143 ap.setMaterial(null);
144 RenderingAttributes ra = new RenderingAttributes();
145 ra.setIgnoreVertexColors(false);
146 ap.setRenderingAttributes(ra);
147 } else if ("Lighting".equals(cmd)) {
148 ap.setMaterial(new Material());
149 RenderingAttributes ra = new RenderingAttributes();
150 ra.setIgnoreVertexColors(true);

[Page 203]
151 ap.setRenderingAttributes(ra);
152 }
153 }
154 }

The ColorTetrahedron class is similar to the class defined in Listing 6.1. It adds vertex colors to its definition
(lines 23–26). A ColorTetrahedron instance is used as the geometry for a Shape3D leaf in the TestAppearance
program. An Appearance object for the shape is created with several permission bits set:

ap.setCapability(Appearance.ALLOW_COLORING_ATTRIBUTES_WRITE);
ap.setCapability(Appearance.ALLOW_POINT_ATTRIBUTES_WRITE);
ap.setCapability(Appearance.ALLOW_LINE_ATTRIBUTES_WRITE);
ap.setCapability(Appearance.ALLOW_POLYGON_ATTRIBUTES_WRITE);
ap.setCapability(Appearance.ALLOW_RENDERING_ATTRIBUTES_WRITE);
ap.setCapability(Appearance.ALLOW_MATERIAL_WRITE);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

These settings will allow dynamic changes of coloring attributes, point attributes, line attributes, polygon
attributes, and material on the Appearance object. Note that the permission bits must be set through individual
method calls. You cannot make just one call by combining the bits.

The buttons control the appearance settings (line 106). There are seven buttons in two groups for polygon modes
and coloring attributes.

Point:

Only the vertices are rendered by setting the PolygonAttributes POLYGON_POINT. The PointAttributes of the
Appearance object is set to a size of 10.

Line:

The lines of the object are rendered by setting the PolygonAttributes POLYGON_LINE. The LineAttributes of
the Appearance object is set to a dash pattern with a width of 3.

Polygon:

The faces of the object are rendered by setting the PolygonAttributes POLYGON_FILL.

Single:

The object is rendered with a single gray color in a ColoringAttributes setting. The lighting is turned off by
setting the material of the Appearance object to null. The vertex colors are ignored by setting a
RenderingAttributes object.

Flat:

The object is rendered with flat colors defined in vertex data. The lighting is turned off by setting the material of
the Appearance object to null. The flat shading mode is selected in a ColoringAttributes object.

Gouraud:

The object is rendered with Gouraud shading using vertex colors. The lighting is turned off by setting the material
of the Appearance object to null. The Gouraud shading mode is selected in a ColoringAttributes object.

Lighting:

The object is illuminated by lights. The Material of the Appearance object is set to a new default instance. The
vertex colors are ignored by setting a RenderingAttributes object.

[Page 204]

The mode selection of point, line, or polygon is independent of the color selection of single, flat, Gouraud, or
lighting. Consequently, even the point rendering can be illuminated with lights.

If you place a Dodecahedron object in this program, you may find that in the wireframe mode (lines only) there
are extra lines rendered besides the pentagons. This is due to the automatic triangulation performed by the
GeometryInfo class. The pentagons are divided into triangles.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 204 (continued)]

Key Classes and Methods
javax.vecmath.Point* A family of classes encapsulating geometric points.

javax.vecmath.Vector* A family of classes encapsulating geometric vectors.

javax.vecmath.Color* A family of classes for color values.

javax.media.j3d.Shape3D A leaf-node class encapsulating a visual object.

javax.media.j3d.Geometry A node-component class defining a geometry for a Shape3D object.

javax.media.j3d.Appearance A node-component class defining an appearance for a Shape3D object.

javax.media.j3d.GeometryArray A family of classes for constructing geometries from vertex
specifications.

javax.media.j3d.GeometryStripArray A family of geometry array classes for constructing strip
geometries.

javax.media.j3d.IndexedGeometryArray A family of classes for constructing geometries from vertex and
index specifications.

javax.media.j3d.IndexedGeometryStripArray A family of classes for constructing strip geometries from
vertex and index specifications.

javax.media.j3d.GeometryInfo A class for constructing and manipulating geometries.

javax.media.j3d.Primitive A subclass of Group for geometric primitives.

javax.media.j3d.ColoringAttributes A node-component class for color and shading specifications.

javax.media.j3d.TransparencyAttributes A node-component class for transparency.

javax.media.j3d.PointAttributes A node-component class for point-rendering attributes including point
size and antialiasing option.

javax.media.j3d.LineAttributes A node-component class for line-rendering attributes such as line
width, line pattern, and antialiasing.

javax.media.j3d.PolygonAttributes A node-component class for polygon-rendering attributes such as
rasterization mode, back-face culling, and offset.

javax.media.j3d.Font3D A class encapsulating a 3D font.

javax.media.j3d.Text3D A geometry class representing a 3D text string.

javax.media.j3d.Text2D A subclass of Shape3D representing a 2D text string in the 3D space.

javax.media.j3d.FontExtrusion A class defining an extrusion path for constructing a Font3D object from
a Font object.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 204 (continued)]

Key Terms
point

A basic geometric element representing a position in a space.

vector

A geometric element for a directional quantity.

polygon mesh

A set of simple polygons such as triangles representing an approximation of a surface.

[Page 205]
Platonic solids

The five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

flat shading

A simple coloring method that fills a polygon patch with a single color.

Gouraud shading

A coloring method that assigns colors to a polygon by interpolating the colors on the vertices.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 205 (continued)]

Chapter Summary
In this chapter we discuss the fundamentals of constructing visual objects through their geometry and
appearance specifications. Geometry defines the object's shape and size, and appearance defines the
rendering properties such as color, material, and texture.

Java 3D includes a javax.vecmath package that defines a large number of classes for points, vectors, and
matrices. They are used in other parts of Java 3D for specifying geometric properties, transformations, and
other attributes.

The Shape3D class represents a visual object in a scene graph. Shape3D references Geometry and
Appearance objects to specify the geometry and appearance of the shape.

Java 3D provides a large number of facilities for defining Geometry. GeometryArray and its subclasses
define geometry by directly specifying the low-level points, lines, and simple polygons.

GeometryInfo class allows more general polygons. It also facilitates the automatic generation of normals
using NormalGenerator and automatic strip generation using Stripifier.

Primitives offer high-level prebuilt geometric objects. Java 3D utility packages provide implementations of
commonly used primitives including box, cone, cylinder, and sphere.

Text can also be used as special geometric objects. Text3D is a subclass of Geometry. It defines solid 3D
text objects in association with the Font3D, FontExtrusion, and Font classes. Text2D is a subclass of
Shape3D. It defines 2D text objects as texture mapped rectangles.

The appearance attributes of a shape are defined by various node components rooted at an Appearance
object. An Appearance node component holds references to other components of classes such as
ColoringAttributes, PointAttributes, LineAttributes, PolygonAttributes, TransparencyAttributes,
and Material.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 205 (continued)]

Review Questions

6.1 Construct Point3f objects to represent the following points:

(1, 2, 3), (0, 0, 0), (–1.2, 3.4, –5.6)

6.2 Write Java statements to calculate the three distances between the points defined in Question
6.1.

[Page 206]

6.3 Construct Vector3f objects to represent the following vectors:

(1, 2, 3), (1, 1, 1), (–1.2, 3.4, –5.6)

6.4 Write Java statements to calculate the three angles between the vectors defined in Question 6.3.

6.5 Construct a PointArray object for the vertices of a cube centered at the origin. Its edges have
length 1.0 and are parallel to the coordinate axes.

6.6 Construct a LineArray object for the edges of a tetrahedron.

6.7 Use a TriangleArray object to represent the geometry of a tetrahedron.

6.8 Use a QuadArray object to represent the geometry of a cube.

6.9 Construct a LineStripArray object for the edges of a tetrahedron.

6.10 Construct a TriangleStripArray object for the geometry of a tetrahedron.

6.11 Construct a TriangleFanArray object for the geometry of a tetrahedron.

6.12 Use an IndexedQuadArray object to represent the geometry of a cube.

6.13 Draw a figure corresponding to the geometry defined by the following TriangleStripArray
object:

int[] stripVertexCounts = {5, 3};
TriangleStripArray tsa = new TriangleStripArray
 (8, GeometryArray.COORDINATES, stripVertexCounts);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(0f, 1f, 0f);
coords[2] = new Point3f(0.5f, 0.866f, 0f);
coords[3] = new Point3f(1.5f, 0.866f, 0f);
coords[4] = new Point3f(1f, 1.73f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(1.5f, 0.866f, 0f);
coords[7] = new Point3f(2f, 0f, 0f);
tsa.setCoordinates(0, coords);

6.14 Draw a figure corresponding to the geometry defined by the following TriangleFanArray object:

int[] stripVertexCounts = {4, 4};
TriangleFanArray tfa = new TriangleFanArray
 (8, GeometryArray.COORDINATES, stripVertexCounts);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(0.866f, 0.5f, 0f);
coords[3] = new Point3f(0.5f, 0.866f, 0f);
coords[4] = new Point3f(0f, 0f, 0f);
coords[5] = new Point3f(-1f, 0f, 0f);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

coords[6] = new Point3f(-0.866f, -0.5f, 0f);
coords[7] = new Point3f(-0.5f, -0.866f, 0f);
tfa.setCoordinates(0, coords);

6.15 Draw a figure corresponding to the geometry defined by the following
IndexedTriangleStripArray object:

int[] stripIndexCounts = {5, 3};
IndexedTriangleStripArray itsa = new
 IndexedTriangleStripArray(6,
 GeometryArray.COORDINATES, 8, stripIndexCounts);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(0f, 1f, 0f);

[Page 207]
coords[2] = new Point3f(0.5f, 0.866f, 0f);
coords[3] = new Point3f(1.5f, 0.866f, 0f);
coords[4] = new Point3f(1f, 1.73f, 0f);
coords[5] = new Point3f(2f, 0f, 0f);
itsa.setCoordinates(0, coords);
int[] indices = {0, 1, 2, 3, 4, 1, 3, 5};
itsa.setCoordinateIndices(0, indices);

6.16 Use a GeometryInfo object to define a cube of length 1.

6.17 What are the differences between Box and ColorCube classes?

6.18 What are the differences between Text3D and Text2D besides their dimensionality?

6.19 If a geometry contains both vertex coordinate and vertex color definition, how can you use the
geometry with the vertex colors ignored?

6.20 Derive an equation for the surface normals of the Möbius strip with the parametric equation:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 207 (continued)]

Programming Exercises

6.1 The octahedron is one of the five Platonic solids. It has eight faces of triangles and six vertices:

(0, 0, 1)

(–1, 0, 0), (0, –1, 0), (1, 0, 0), (0, 1, 0)

(0, 0, –1)

Implement an Octahedron class as a descendant of Geometry.

6.2 Write a test program for Octahedron class to display an octahedron in wireframe form.

6.3 The icosahedron is another Platonic solid with the following vertices:

(0, ø, 1),

(1, 0, ø), (–1, 0, ø), (–ø, 1, 0), (0, ø, –1), (ø, 1, 0),

(0, –ø, 1), (–ø, –1, 0), (–1, 0, –ø), (1, 0, –ø), (ø, –1, 0),

(0, –ø, –1)

where Implement the Icosahedron class as a subclass of Shape3D using
the GeometryInfo class. Generate the normals for the geometry using NormalGenerator.

6.4 Write a test program to display the icosahedron defined in Exercise 6.3. Use lighting and rotate
the object.

[Page 208]

6.5 Create and display a 3D 4 x 4 x 4 grid using the LineArray class.

6.6 Use an IndexedQuadArray object to define a frustum with a top square of size 1 x 1, a bottom
square of size 2 x 2 and height 1. Rotate the frustum in the virtual space.

6.7 Create and display a pyramid using the GeometryInfo class.

6.8 Replace the tetrahedron in Listing 6.8 by a dodecahedron and observe the result of triangulation
from the GeometryInfo class in the wireframe mode.

6.9 Modify the program in Listing 5.1 to allow dynamic change of the 3D text. Implement a menu
item and a dialog box to input a string from the user and display the string as a 3D text.

6.10 Write a Java 3D program similar to that in Exercise 6.9, but display the string using a Text2D
object.

6.11 Extend the functions of the program in Listing 6.8 to include settings for different line patterns.

6.12 Implement a ColorOctahedron class that assigns different colors to its vertices. Write a test
program to display a ColorOctahedron object using Gouraud shading.

6.13 Use GeometryInfo to create a Möbius strip defined in Review Question 6.20. Generate normals
with the NormalGenerator class. Display the Möbius strip with lighting.

6.14 Create a Möbius strip using an IndexedQuadArray object. Set the normals based on the formula
derived in Review Question 6.20. Display the Möbius strip with lighting.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 209]

Chapter 7. Geometric Transformation
(This item omitted from WebBook edition)

Objectives
To describe transformations related to 3D graphics.

To construct 3D affine transforms including translation, rotation, scaling, shearing, and reflection.

To understand and apply transformation matrices.

To apply transforms in scene graphs.

To construct and apply composite transformations.

To apply transforms in constructing geometries.

[Page 210]

7.1. Introduction
Transformation plays a crucial role in computer graphics. Through proper geometric transforms, graphics objects
can be changed in shape, size, and location to achieve their specifications. Affine transforms are used frequently
in modeling the virtual world. The viewing process employs transformations in a critical way as well. A special type
of transformation, the perspective or orthogonal projection, is usually used in a view to construct a mapping from
a 3D space to a 2D image. Animation often involves applications of geometric transformation to achieve motions
in the scene.

Java 3D provides transformation support at several levels. The matrix classes such as Matrix4d offer the low-level
data representations of the transforms. The Transform3D class encapsulates the 3D transforms with facilities to
set and compose transforms and to apply transforms to points and vectors. The TransformGroup class represents
the high-level transform nodes in scene graphs.

Through the use of homogeneous coordinates, all 3D projective transformations (including affine transformations)
are completely determined by 4 x 4 transformation matrices. The transforms with direct geometrical
interpretations such as rotations and translations can be expressed in matrix forms. However, explicit matrix
construction of certain transforms such as general 3D rotations may be complicated. Other representations, such
as quaternion for 3D rotations, may provide more convenient intermediate forms for constructions and
manipulations.

Transformations can be combined to form new transformations. The composition of simple transforms is a
powerful way to construct and manage complex transforms. In Java 3D the composition can occur at the lower
level of matrix or Transform3D objects through multiplication of the transforms. It can also occur at the higher
level of a scene graph, where a chain of transform nodes creates the effect of a composite transform.

A main application of transformations is to change the geometric characteristics of objects. In a Java 3D scene
graph, TransformGroup nodes represent transforms. A TransformGroup node applies the transform defined in the
node to its children. The series of TransformGroup nodes from an object to the Locale will transform the object in
various ways. The general tree structure of a scene graph provides great flexibility in manipulating the visual
objects with transform nodes.

Another application of transformations is to aid the construction of geometries. The Transform3D class offers
convenient methods to apply the transform to points or vectors. To construct geometries that have certain
symmetric properties, we may take advantage of the transformation capabilities by generating many points of the
geometries through transformations on a set of base points.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 210 (continued)]

7.2. 3D Affine Transformations
A transformation is a mapping from a vector space to itself or to another vector space. Certain families of
transformations that preserve some geometric properties are of special significance in computer graphics. For
example, projective transforms are crucial in 3D viewing. Affine transforms, a subset of projective transforms, are
used extensively in modeling visual objects.

An affine transform maps lines to lines and preserves parallelism. For example, an affine transform may not map
a rectangle to a rectangle, but it will always map a rectangle to a parallelogram. As in the 2D case, basic 3D affine
transforms include translations, rotations, scalings, shears, and reflections. However, the 3D versions are often
more complex, especially for rotations.

The affine transforms that also preserve distances are called rigid motions, Euclidean motions, or isometries.
Translations, rotations, and reflections are examples of rigid motions.

[Page 211]

7.2.1. Transformation Matrix

Affine transforms can be represented in a matrix form. If a point in a 3D space is represented by three
coordinates,

then an affine transform can be written as a matrix equation:

Rotations, scalings, and shearings relative to the origin can be represented by the matrix multiplication alone. The
addition of the column vector b represents a translation. Because of the required special treatment of the
translation, the above transformation is not linear in the space However, using homogeneous coordinates to
represent 3D points, all affine transforms and projective transforms can be represented as matrix multiplications.
The homogeneous coordinate of a 3D point has four components: (x, y, z, w). When w is not 0, it corresponds to
a regular 3D coordinate (x/w, y/w, z/w). With homogeneous coordinates, the same affine transformation given
above may be represented equivalently as a linear transformation in the space R4

The 4 x 4 transformation matrix in the equation above completely determines an affine transform. Operations
involving the transforms can be represented as corresponding matrix operations. Combining several affine
transforms produces another affine transform. The matrix of the composite transform is the product of matrices
of corresponding transforms. The inverse matrix of a transform corresponds to the inverse transform. More
generally, a projective transformation may be represented with a similar matrix equation:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

An introduction to matrices and their operations can be found in Appendix A.

Java 3D offers several classes supporting transformations. Besides vector classes, javax.vecmath package also
contains matrix classes representing 3 x 3, 4 x 4, and general matrices: Matrix3f, Matrix3d, Matrix4f,
Matrix4d, GMatrix. The following code fragment constructs a Matrix4d object:

double[] array = {1.0, 2.0, 3.0, 1.0,
 0.0, 1.0, -1.0, 2.0,
 4.0, 0.0, 0.5, -1.0,
 0.0, 0.0, 0.0, 1.0};
Matrix4d matrix = new Matrix4d(array);

[Page 212]

GMatrix class can be used to represent a matrix of arbitrary sizes with element type double. For example the
following code creates a 3 x 4 matrix:

double[] array = {1.0, 2.0, 3.0, 1.0,
 0.0, 1.0, -1.0, 2.0,
 4.0, 0.0, 0.5, -1.0};
GMatrix matrix = new GMatrix(3, 4, array);

Basic matrix operations such as addition, multiplication, and inversion are supported. The following is a partial list
of the methods in the Matrix4d class for matrix operations. Other classes contain similar methods.

void add(Matrix4d m1)� Add matrix m1 to the current matrix.

void sub(Matrix4d m1)� Subtract matrix m1 from the current matrix.

void mul(Matrix4d m1)� Multiply matrix m1 on the current matrix.

void invert()� Invert the current matrix.

void add(Matrix4d m1, Matrix4d m2)� Set the current matrix to the sum of the matrices m1 and m2.

void sub(Matrix4d m1, Matrix4d m2)� Set the current matrix to the difference of the matrices m1 and
m2.

void mul(Matrix4d m1, Matrix4d m2)� Set the current matrix to the product of the matrices m1 and m2.

void invert(Matrix4d m1)� Set the current matrix to the inverse of the matrix m1.

void transpose()� Transpose the current matrix.

void mul(double scalar)� Multiply the current matrix by the number scalar.

double determinant()� Return the determinant of the current matrix.

Listing 7.1 gives a class for displaying a matrix. Listing 7.2 provides an interactive user interface to view a matrix
and perform certain operations on the matrix using the built-in methods of the Matrix4d class.

Listing 7.1. MatrixPanel.java
(This item is displayed on pages 212 - 213 in the print version)

 1 package chapter7;
 2
 3 import java.awt.*;
 4 import javax.vecmath.*;
 5
 6 public class MatrixPanel extends Panel {
 7 TextField[] fields = new TextField[16];
 8
 9 public MatrixPanel() {
10 setLayout(new GridLayout(4, 4));
11 for (int i = 0; i < 16; i++) {
12 fields[i] = new TextField(5);
13 if (i/4 == i%4)
14 fields[i].setText("1");
15 else
16 fields[i].setText("0");
17 add(fields[i]);
18 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

19 }
20

[Page 213]
21 public MatrixPanel(Matrix4d m) {
22 setLayout(new GridLayout(4, 4));
23 for (int i = 0; i < 16; i++) {
24 fields[i] = new TextField(5);
25 fields[i].setText("" + m.getElement(i/4, i%4));
26 add(fields[i]);
27 }
28 }
29
30 public void set(Matrix4d m) {
31 for (int i = 0; i < 16; i++) {
32 fields[i].setText("" + m.getElement(i/4, i%4));
33 }
34 }
35
36 public void get(Matrix4d m) {
37 for (int i = 0; i < 16; i++) {
38 m.setElement(i/4, i%4, Double.parseDouble
39 (fields[i].getText()));
40 }
41 }
42 }

Listing 7.2. TestMatrix.java
(This item is displayed on pages 213 - 214 in the print version)

 1 package chapter7;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.vecmath.*;
 6 import java.applet.*;
 7 import com.sun.j3d.utils.applet.MainFrame;
 8
 9 public class TestMatrix extends Applet implements ActionListener {
10 public static void main(String[] args) {
11 new MainFrame(new TestMatrix(), 600, 200);
12 }
13
14 MatrixPanel mp;
15 Matrix4d m = new Matrix4d();
16 TextField tf;
17
18 public void init() {
19 this.setLayout(new BorderLayout());
20
21 mp = new MatrixPanel();
22 add(mp, BorderLayout.CENTER);
23
24 Panel p = new Panel();
25 p.setLayout(new GridLayout(6,1));
26 Button button = new Button("Identity");
27 button.addActionListener(this);
28 p.add(button);
29 button = new Button("Zero");
30 button.addActionListener(this);
31 p.add(button);
32 button = new Button("Negate");
33 button.addActionListener(this);
34 p.add(button);
35 button = new Button("Transpose");

[Page 214]
36 button.addActionListener(this);
37 p.add(button);
38 button = new Button("Invert");
39 button.addActionListener(this);
40 p.add(button);
41 button = new Button("Determinant");
42 button.addActionListener(this);
43 p.add(button);
44 this.add(p, BorderLayout.EAST);
45
46 tf = new TextField();
47 add(tf, BorderLayout.SOUTH);
48 }
49

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

50 public void actionPerformed(ActionEvent e) {
51 String cmd = e.getActionCommand();
52 if ("Identity".equals(cmd)) {
53 mp.get(m);
54 m.setIdentity();
55 mp.set(m);
56 } else if ("Zero".equals(cmd)) {
57 mp.get(m);
58 m.setZero();
59 mp.set(m);
60 } else if ("Negate".equals(cmd)) {
61 mp.get(m);
62 m.negate();
63 mp.set(m);
64 } else if ("Transpose".equals(cmd)) {
65 mp.get(m);
66 m.transpose();
67 mp.set(m);
68 } else if ("Invert".equals(cmd)) {
69 mp.get(m);
70 m.invert();
71 mp.set(m);
72 } else if ("Determinant".equals(cmd)) {
73 mp.get(m);
74 tf.setText("" + m.determinant());
75 }
76 }
77 }

The MatrixPanel class is a visual component to display a 4 x 4 matrix. It contains 16 text fields for the 16
elements of the matrix (line 7). It has a constructor that takes a Matrix4d object to initialize the display (line
21). Its default constructor initializes the display to an identity matrix (line 9). The method set(Matrix4d m) sets
the display to the matrix given. The method get(Matrix4d m) retrieves the matrix from the display.

The TestMatrix class is the main test program. It creates a MatrixPanel object to represent a Matrix4d object
(line 21) (Figure 7.1). Six buttons are placed in the EAST region of the frame to perform the corresponding matrix
operations defined by methods of the Matrix4d class.

Identity � Set the matrix to the identity matrix using the identity() method.

Zero � Set the matrix to the zero matrix using the zero() method.

Negative � Set the matrix to its negative matrix using the negate() method.

Transpose � Set the matrix to its transpose using the transpose() method.

[Page 215]

Invert � Invert the matrix and display the inverse matrix using the invert() method.

Determinant � Calculate the determinant of the matrix and display the result in the bottom text field
using the determinant() method.

Figure 7.1. A test program for matrix operations. The transformation matrix is shown in a grid of text
fields. A user may edit the entries directly. Six operations on the matrix are provided. The result of

the determinant is displayed in the text field at the bottom.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

7.2.2. Transform3D
Java 3D includes the class Transform3D to represent a 3D affine or projective transform. In a scene graph, a
TransformGroup node uses a Transform3D object to define its transformation. Transform3D internally maintains a
4 x 4 double matrix for the transform. To create a Transform3D object you may use one of many available
constructors. The default constructor creates an identity matrix. You may supply a matrix object, an array, or
other forms for the transformation matrix. For example, the following three Transform3D objects represent
equivalent transforms:

double[] array = {1.0, 2.0, 3.0, 1.0,
 0.0, 1.0, -1.0, 2.0,
 4.0, 0.0, 0.5, -1.0,
 0.0, 0.0, 0.0, 1.0};
Matrix4d matrix = new Matrix4d(array);
GMatrix gmatrix = new GMatrix(4, 4, array);
Transform3D transform1 = new Transform3D(matrix);
Transform3D transform2 = new Transform3D(gmatrix);
Transform3D transform3 = new Transform3D(array);

Transform3D contains a large number of convenience methods to set and manipulate the transform. Some of the
methods that directly handle the transformation matrix are listed below.

void set(Matrix4d m1)� Set the transformation matrix to m1.

void set(Matrix4f m1)� Set the transformation matrix to m1.

void set(GMatrix m1)� Set the transformation matrix to m1.

void set(double[] array)� Set the transformation matrix to array.

void set(float[] array)� Set the transformation matrix to array.

void get(Matrix4d m1)� Get the transformation matrix to m1.

void get(Matrix4f m1)� Get the transformation matrix to m1.

void get(GMatrix m1)� Get the transformation matrix to m1.

[Page 216]

void get(double[] array)� Get the transformation matrix to array.

void get(float[] array)� Get the transformation matrix to array.

The transformation can also be defined in terms of geometric specifications such as translation, scaling, rotation,
and shearing.

A translation is represented by the transformation matrix

Under the translation, each point is moved by the constant amounts b1, b2, b3 in x-, y-, z-directions, respectively.
Clearly the shape and orientation of a geometric figure will not change under a translation. The inverse of a
translation by b1, b2, b3 is a translation by -b1, -b2, -b3.

Transform3D includes the following methods to set translations:

void set(Vector3d trans)
void set(Vector3f trans)
void setTranslation(Vector3d trans)
void setTranslation(Vector3f trans)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The set methods replace the entire transform with the specified translation. The setTranslation methods
modify only the translation components of the existing transform.

A scaling by the factors s1, s2, s3 in x-, y-, z-directions has the matrix representation:

If all the scaling factors are nonzero, the scaling transform is invertible. The inverse is also a scaling with factors
1/s1, 1/s2, 1/s3. A scaling is uniform if s1 = s2 = s3.

Transform3D includes the following methods to set scales:

void set(double scale)
void setScale(double scale)
void setScale(Vector3d scales)

The set method replaces the entire transform with a scaling. The setScale methods modify only the scaling
components of the existing transform.

A 3D reflection is performed about a plane. A simple reflection about the xy-plane, for example, is given by the
following matrix:

A reflection is always invertible, and the inverse of a reflection is itself. More generally, a reflection about a plane
through the origin with the normal vector u can be expressed as:

[Page 217]

A matrix representation may be derived from this equation. An alternative way to construct such a general
reflection will be considered later in this chapter.

A 3D shear shifts a point along a plane, and the amount of the shift depends on the distance of the point to the
plane. A simple shear that changes only the x-coordinates has the following matrix:

The y- and z-coordinates are not changed by this transform. The x-coordinates are shifted according to the
equation:

x' = x + shxz

A more general (x, y)-shear shifts both x- and y-coordinates:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Shearing is invertible. The inverse of the above shear is another shear of the same type with parameters -shx,
-shy.

7.2.3. Rotation

3D rotations are complex operations. A general 3D rotation has an axis of rotation that can be any line in the
space. Around the axis all points are rotated by a fixed angle. A rotation of angle θ about the z-axis can be
represented by the following matrix:

Even though any rotation can be represented as a transformation matrix, it is often difficult to obtain the
transformation matrix directly from a geometric specification of a general rotation. For example, it may be easy to
get matrices for rotations about the x-, y-, or z-axis, but what is the matrix for the rotation of angle p/3 about
the axis (1,1,1)? One representation of a general 3D rotation that offers a more direct connection to its geometric
properties involves the use of quaternion. The quaternion is a number system extending the field of complex
numbers. An introduction to quaternion can be found in Appendix A.

A point (x, y, z) in 3D space with a pure quaternion (a quaternion with real part 0):

p = xi + yi + zk

Let q be a fixed quaternion. A transformation in the 3D space may be defined by:

If q is a unit quaternion, then it can be shown that the transformation defined above is a rotation. In this case q
can be written as

[Page 218]

The unit vector u defines the direction of the axis of rotation, and the axis goes through the origin. The angle of
rotation is given by θ.

Java 3D includes the classes Quat4f and Quat4d to represent quaternions. Besides the operations inherent from
Tuple4* classes, standard operations of quaternions such as conjugate, multiply, inverse, and normalize are
supported in the quaternion classes. Because of the connection with rotations, the quaternion classes even
support convenient methods to directly set a rotation quaternion based on the specified axis and angle:

void set(AxisAngle4d r)

The Transform3D class provides constructors and methods to directly accept quaternion parameters as rotation
specifications:

Transform3D(Quat4d q, Vector3d translation, double scale)
Transform3D(Quat4f q, Vector3d translation, double scale)
Transform3D(Quat4f q, Vector3f translation, float scale)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

void set(Quat4d q)
void set(Quat4f q)

Another popular way to represent a 3D rotation is to use three rotations R3R2R1 of certain angles about the
coordinate axes. The axis for R2 is different from the axes of R1 and R3. The three angles are known as the Euler
angles. There are different choices for the axes and different terms to describe the angles�for example,
(elevation, azimuth, tilt), (roll, pitch, yaw), (precession, nutation, spin), and (heading, altitude, bank).
Transform3D class provides a method to set the rotation based on Euler angles:

void setEuler(Vector3d eulerAngles)

The Vector3d object specifies the Euler angles about the x-, y-, z-axes. The angles are also known as bank,
altitude, heading. However, there is no method in Transform3D to retrieve the Euler angles. You may use a get
method to retrieve a quaternion and then convert the quaternion to Euler angles. The code in Listing 7.3
performs the conversion from a quaternion to Euler angles.

Listing 7.3. quatToEuler

 1 public static Vector3d quatToEuler(Quat4d q1) {
 2 double sqw = q1.w*q1.w;
 3 double sqx = q1.x*q1.x;
 4 double sqy = q1.y*q1.y;
 5 double sqz = q1.z*q1.z;
 6 double heading = Math.atan2(2.0 * (q1.x*q1.y + q1.z*q1.w),
 7 (sqx - sqy - sqz + sqw));
 8 double bank = Math.atan2(2.0 * (q1.y*q1.z + q1.x*q1.w),
 9 (-sqx - sqy + sqz + sqw));
10 double attitude = Math.asin(-2.0 * (q1.x*q1.z - q1.y*q1.w));
11 return new Vector3d(bank, attitude, heading);
12 }

Transform3D contains methods for transformation matrix operations similar to those in the Matrix4d class. It
also allows direct application of the transform to points or vectors. This feature facilitates construction of
geometries through transformations and will be discussed later in this chapter.

Listing 7.4 demonstrates the features of the Transform3D class graphically. (See Figure 7.2.) Listing 7.5 gives a
class for displaying a set of coordinate axes. A transformation matrix corresponding to a Transform3D object is
displayed and can be edited by the user. The rotation, translation, and scale components of the transform are
extracted and displayed separately. The user can also specify these components and apply them to the transform.
The transformation may be applied to a visual object, a set of 3D coordinate axes, so its effect can be seen
immediately. The program provides a tool to explore the relationship between the transformation matrices and
the geometric interpretations of transforms. (See Figure 7.2.)

[Page 219]
Listing 7.4. TestTransform.java

(This item is displayed on pages 219 - 221 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class TestTransform extends Applet implements
 13 ActionListener {
 14 public static void main(String[] args) {
 15 new MainFrame(new TestTransform(), 640, 300);
 16 }
 17
 18 TransformGroup trGroup;
 19 Transform3D transform = new Transform3D();
 20 MatrixPanel mp = new MatrixPanel();
 21 TextField rx = new TextField();
 22 TextField ry = new TextField();
 23 TextField rz = new TextField();
 24 TextField ra = new TextField();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 25 TextField tx = new TextField();
 26 TextField ty = new TextField();
 27 TextField tz = new TextField();
 28 TextField sx = new TextField();
 29 TextField sy = new TextField();
 30 TextField sz = new TextField();
 31
 32 public void init() {
 33 setLayout(new BorderLayout());
 34
 35 Panel eastPanel = new Panel();
 36 eastPanel.setLayout(new BorderLayout());
 37 eastPanel.add(mp, BorderLayout.NORTH);
 38 add(eastPanel, BorderLayout.EAST);
 39
 40 Button button = new Button("Transform");
 41 button.addActionListener(this);
 42 Panel p = new Panel();
 43 p.add(button);
 44 eastPanel.add(p, BorderLayout.EAST);
 45
 46 p = new Panel();
 47 p.setLayout(new GridLayout(4,5));
 48 p.add(new Label("x"));
 49 p.add(new Label("y"));
 50 p.add(new Label("z"));
 51 p.add(new Label("angle"));
 52 p.add(new Label(""));
 53
 54 p.add(rx);

[Page 220]
 55 p.add(ry);
 56 p.add(rz);
 57 p.add(ra);
 58 button = new Button("Rotate");
 59 button.addActionListener(this);
 60 p.add(button);
 61
 62 p.add(tx);
 63 p.add(ty);
 64 p.add(tz);
 65 p.add(new Panel());
 66 button = new Button("Translate");
 67 button.addActionListener(this);
 68 p.add(button);
 69
 70 p.add(sx);
 71 p.add(sy);
 72 p.add(sz);
 73 p.add(new Panel());
 74 button = new Button("Scale");
 75 button.addActionListener(this);
 76 p.add(button);
 77
 78 eastPanel.add(p, BorderLayout.SOUTH);
 79
 80 GraphicsConfiguration gc =
 81 SimpleUniverse.getPreferredConfiguration();
 82 Canvas3D cv = new Canvas3D(gc);
 83 add(cv, BorderLayout.CENTER);
 84 BranchGroup bg = createSceneGraph();
 85 bg.compile();
 86 SimpleUniverse su = new SimpleUniverse(cv);
 87 su.getViewingPlatform().setNominalViewingTransform();
 88 su.addBranchGraph(bg);
 89 }
 90
 91 private BranchGroup createSceneGraph() {
 92 BranchGroup root = new BranchGroup();
 93 trGroup = new TransformGroup();
 94 trGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 95 root.addChild(trGroup);
 96
 97 // object
 98 Appearance ap = new Appearance();
 99 ap.setMaterial(new Material());
100 Group shape = new Axes();
101
102 Transform3D tr = new Transform3D();
103 tr.setScale(0.5);
104 TransformGroup tg = new TransformGroup(tr);
105 trGroup.addChild(tg);
106 tg.addChild(shape);
107
108 // background and light

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

109 BoundingSphere bounds = new BoundingSphere();
110 Background background = new Background(1.0f, 1.0f, 1.0f);
111 background.setApplicationBounds(bounds);
112 root.addChild(background);
113 AmbientLight light = new AmbientLight
114 (true, new Color3f(Color.red));

[Page 221]
115 light.setInfluencingBounds(bounds);
116 root.addChild(light);
117 PointLight ptlight = new PointLight(new Color3f(Color.green),
118 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
119 ptlight.setInfluencingBounds(bounds);
120 root.addChild(ptlight);
121 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
122 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
123 ptlight2.setInfluencingBounds(bounds);
124 root.addChild(ptlight2);
125 return root;
126 }
127
128 public void actionPerformed(ActionEvent e) {
129 Matrix4d m = new Matrix4d();
130 mp.get(m);
131 transform.set(m);
132 String cmd = e.getActionCommand();
133 if ("Transform".equals(cmd)) {
134 Quat4d quat = new Quat4d();
135 Vector3d translation = new Vector3d();
136 transform.get(quat, translation);
137 Vector3d scale = new Vector3d();
138 transform.getScale(scale);
139 AxisAngle4d rotation = new AxisAngle4d();
140 rotation.set(quat);
141 rx.setText("" + rotation.x);
142 ry.setText("" + rotation.y);
143 rz.setText("" + rotation.z);
144 ra.setText("" + rotation.angle);
145 tx.setText("" + translation.x);
146 ty.setText("" + translation.y);
147 tz.setText("" + translation.z);
148 sx.setText("" + scale.x);
149 sy.setText("" + scale.y);
150 sz.setText("" + scale.z);
151 trGroup.setTransform(transform);
152 } else {
153 if ("Rotate".equals(cmd)) {
154 double x = Double.parseDouble(rx.getText());
155 double y = Double.parseDouble(ry.getText());
156 double z = Double.parseDouble(rz.getText());
157 double a = Double.parseDouble(ra.getText());
158 transform.setRotation(new AxisAngle4d(x, y, z, a));
159 } else if ("Translate".equals(cmd)) {
160 double x = Double.parseDouble(tx.getText());
161 double y = Double.parseDouble(ty.getText());
162 double z = Double.parseDouble(tz.getText());
163 transform.setTranslation(new Vector3d(x, y, z));
164 } else if ("Scale".equals(cmd)) {
165 double x = Double.parseDouble(sx.getText());
166 double y = Double.parseDouble(sy.getText());
167 double z = Double.parseDouble(sz.getText());
168 transform.setScale(new Vector3d(x, y, z));
169 }
170 transform.get(m);
171 mp.set(m);
172 }
173 }
174 }

[Page 222]

Figure 7.2. Visualizing the actions of transforms.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 7.5. Axes.java
(This item is displayed on pages 222 - 223 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9
10 public class Axes extends Group {
11 public Axes() {
12 Appearance ap = new Appearance();
13 ap.setMaterial(new Material());
14 Font3D font = new Font3D(new Font("SanSerif", Font.PLAIN, 1),
15 new FontExtrusion());
16 Text3D x = new Text3D(font, "x");
17 Shape3D xShape = new Shape3D(x, ap);
18 Text3D y = new Text3D(font, "y");
19 Shape3D yShape = new Shape3D(y, ap);
20 Text3D z = new Text3D(font, "z");
21 Shape3D zShape = new Shape3D(z, ap);
22 // transform for texts
23 Transform3D tTr = new Transform3D();
24 tTr.setTranslation(new Vector3d(-0.12, 0.6, -0.04));
25 tTr.setScale(0.5);
26 // transform for arrows
27 Transform3D aTr = new Transform3D();
28 aTr.setTranslation(new Vector3d(0, 0.5, 0));
29 // x axis
30 Cylinder xAxis = new Cylinder(0.05f, 1f);
31 Transform3D xTr = new Transform3D();
32 xTr.setRotation(new AxisAngle4d(0, 0, 1, -Math.PI/2));
33 xTr.setTranslation(new Vector3d(0.5, 0, 0));
34 TransformGroup xTg = new TransformGroup(xTr);
35 xTg.addChild(xAxis);
36 this.addChild(xTg);
37 TransformGroup xTextTg = new TransformGroup(tTr);

[Page 223]
38 xTextTg.addChild(xShape);
39 xTg.addChild(xTextTg);
40 Cone xArrow = new Cone(0.1f, 0.2f);
41 TransformGroup xArrowTg = new TransformGroup(aTr);
42 xArrowTg.addChild(xArrow);
43 xTg.addChild(xArrowTg);
44 // y axis
45 Cylinder yAxis = new Cylinder(0.05f, 1f);
46 Transform3D yTr = new Transform3D();
47 yTr.setTranslation(new Vector3d(0, 0.5, 0));
48 TransformGroup yTg = new TransformGroup(yTr);
49 yTg.addChild(yAxis);
50 this.addChild(yTg);
51 TransformGroup yTextTg = new TransformGroup(tTr);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

52 yTextTg.addChild(yShape);
53 yTg.addChild(yTextTg);
54 Cone yArrow = new Cone(0.1f, 0.2f);
55 TransformGroup yArrowTg = new TransformGroup(aTr);
56 yArrowTg.addChild(yArrow);
57 yTg.addChild(yArrowTg);
58 // z axis
59 Cylinder zAxis = new Cylinder(0.05f, 1f);
60 Transform3D zTr = new Transform3D();
61 zTr.setRotation(new AxisAngle4d(1, 0, 0, Math.PI/2));
62 zTr.setTranslation(new Vector3d(0, 0, 0.5));
63 TransformGroup zTg = new TransformGroup(zTr);
64 zTg.addChild(zAxis);
65 this.addChild(zTg);
66 TransformGroup zTextTg = new TransformGroup(tTr);
67 zTextTg.addChild(zShape);
68 zTg.addChild(zTextTg);
69 Cone zArrow = new Cone(0.1f, 0.2f);
70 TransformGroup zArrowTg = new TransformGroup(aTr);
71 zArrowTg.addChild(zArrow);
72 zTg.addChild(zArrowTg);
73 }
74 }

[Page 224]

The program TestTransform constructs a window to allow the user to interactively modify the transform and
apply it to a scene. The Java 3D scene rendered in a Canvas3D is a set of 3D axes labeled with x, y, and z. The
visual object is defined by the class Axes, and the detailed discussion of the Axes class will be given in the next
section.

The Axes object goes through a fixed TransformGroup node to scale its size. The resulting branch is attached to
another TransformGroup node that allows dynamic change of its transformation. The Transform3D object controls
this node, and it can be set dynamically at runtime (Figure 7.3).

Figure 7.3. The scene graph for TestTransform.
(This item is displayed on page 223 in the print version)

Similar to Listing 7.2, a MatrixPanel object is created to represent the transformation matrix. Three different
aspects of the transformation�rotation, translation, and scale�are extracted and displayed in several TextField
objects. The x-, y-, z-components are displayed separately. The rotation also includes an angle specification.

When the button "Transform" is clicked (line 133), the matrix specified in the MatrixPanel object is retrieved.
The transform is set according to the matrix. The rotation, translation, and scale are recalculated from the
transform. The rotation expressed as a quaternion and the translation as a vector can be obtained with the
following method of Transform3D:

double get(Quat4d rotation, Vector3d translation)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The above method also returns a uniform scaling factor. To obtain nonuniform scaling factors in x-, y-, and z-
directions, the following method is used:

void getScale(Vector3d scale)

The Quat4d object obtained from the get method is converted to an AxisAngle4d object for easy access to the
axis and angle of the rotation. The rotation, translation, and scale information extracted is displayed in the text
fields. The transform is also performed on the 3D scene by setting the transform of the TransformGroup node
with the following method:

void setTransform(Transform3D transform)

The actions for the buttons labeled "Rotate," "Translate," and "Scale" are opposite of those for the "Transform."
When the button "Rotate" is clicked (line 153), the axis and the angle of the rotation are read from the text
fields. The values are used to set the rotation of the Transform3D object with the method

void setRotation(AxisAngle4d rotation)

Similarly, the buttons "Translate" and "Scale" apply the specified translation and scaling to the transform.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 224 (continued)]

7.3. Transformations in Scene Graphs
Transformations in a Java 3D scene graph are implemented by the class TransformGroup. A TransformGroup
object defines a scene-graph group node that represents a specific transformation. The exact form of the
transformation is specified by a Transform3D object referenced by the node. The transformation is usually affine,
but it can be any type of transforms that the TransformGroup object Transform3D class can represent. The
transformation defined by the TransformGroup node is applied to all of its child nodes.

The following code shows an example of setting up a transformation node using the Matrix4d, Transform3D, and
TransformGroup objects:

double[] array = {1.0, 2.0, 3.0, 1.0,
 0.0, 1.0, -1.0, 2.0,
 4.0, 0.0, 0.5, -1.0,
 0.0, 0.0, 0.0, 1.0};

[Page 225]
Matrix4d matrix = new Matrix4d(array);
Transform3D transform = new Transform3D(matrix);
TransformGroup node = new TransformGroup(transform);

TransformGroup nodes can be used to change the shapes, sizes, and locations of geometric objects in the 3D
world space. For example, the Tetrahedron class defined in the previous chapter is centered at the origin. To
place an instance of Shape3D leaf node with a Tetrahedron geometry centered at (0.5, 0, -1), you may create a
TransformGroup node with a translation of (0.5, 0, -1) and add the tetrahedron shape as its child:

Tetrahedron geom = new Tetrahedron();
Shape3D shape = new Shape3D();
shape.setGeometry(geom);
Transform3D tr = new Transform3D();
tr.setTranslation(new Vector3d(0.5,0,-1));
TransformGroup tg = new TransformGroup(tr);
tg.addChild(shape);

A TransformGroup node may be a child of another TransformGroup node. A hierarchy of TransformGroup and
other nodes can be constructed to represent a complex structure of geometric models. For example, a table may
be modeled as a table top with four legs. Each leg may be attached to a TransformGroup node that moves the leg
to an appropriate position relative the table top. If you want to move the entire table as one object, you may
then place another TransformGroup node on top of the table model.

In Listing 7.2, the Axes class constructs three perpendicular coordinate axes. Each axis consists of a cylinder for
the axis line, a cone for the arrow, and a 3D text for the label. The scene graph of Axes is shown in Figure 7.4.

Figure 7.4. The scene graph for Axes class.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 226]

The Cylinder and Cone classes allow the specifications of radius and height in their constructors. However, they
have fixed positions and orientations along the y-direction. Transformations are necessary to move them to the
desired positions. The y-axis needs to move up by 0.5 so it will start from the origin. The x-axis and z-axis need to
be rotated in addition to the translation. The arrows on the axes formed with Cone objects will go through similar
transforms as their associated axes, but an additional translation is required to move the arrow to the top of the
axis. This translation is represented as a separate TransformGroup node that is a child of the transform node for
the axis and the parent of the arrow. Consequently, the translation is applied only to the cone-shaped arrow, and
the axis transform is applied to both the axis and the translated arrow. In the similar fashion, the text label "x,"
"y," or "z" will first go through its own translation to appropriate positions relative to the axis. Then the same axis
transform will be applied to move the label together with the axis and arrow to the final position.

Listing 7.6 demonstrates the usage of TransformGroup nodes and the construction of general rotations about
arbitrary axes. The program illustrates the rotation of a cube around a general axis by displaying eight cubes at
different stages of the rotation (Figure 7.5). The different positioning of the eight cubes is achieved by the
TransformGroup nodes in the scene graph.

Listing 7.6. Rotation.java
(This item is displayed on pages 226 - 227 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Rotation extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new Rotation(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 Background background = new Background(1.0f, 1.0f, 1.0f);
34 BoundingSphere bounds = new BoundingSphere();
35 background.setApplicationBounds(bounds);
36 root.addChild(background);
37 Shape3D shape;
38 Appearance ap = new Appearance();

[Page 227]
39 PolygonAttributes pa = new PolygonAttributes();
40 ap.setPolygonAttributes(pa);
41 ColoringAttributes ca = new ColoringAttributes(0f, 0f, 0f,
42 ColoringAttributes.SHADE_FLAT);
43 ap.setColoringAttributes(ca);
44
45 LineArray axis = new LineArray(2, LineArray.COORDINATES);
46 axis.setCoordinate(0, new Point3d(-0.8, -0.8, -0.8));
47 axis.setCoordinate(1, new Point3d(0.5, 0.5, 0.5));
48
49 Shape3D axisG = new Shape3D(axis, ap);
50 root.addChild(axisG);
51
52 Transform3D tr = new Transform3D();
53 tr.setTranslation(new Vector3f(-0.5f, 0f, 0f));
54 tr.setScale(0.1);
55 TransformGroup tg;
56 TransformGroup rot;
57 for (int i = 0; i < 8; i++) {
58 shape = new ColorCube();
59 shape.setAppearance(ap);
60 tg = new TransformGroup(tr);
61 Transform3D trRot = new Transform3D();
62 trRot.set(new AxisAngle4d(0.5,0.5,0.5, Math.PI/4*i));
63 rot = new TransformGroup(trRot);
64 root.addChild(rot);
65 rot.addChild(tg);
66 tg.addChild(shape);
67 }
68 return root;
69 }
70 }

Figure 7.5. The rotated cubes about a general axis.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 228]

The scene graph of the program is shown in Figure 7.6. Eight ColorCube objects are created, and they first go
through an identical transformation of translation and scaling to resize and reposition. Then each transformed
cube is attached to another TransformGroup node. These transform-group nodes are set to rotations about the
same axis with different and evenly spread angles. This creates a scene with cubes at various stages of the
revolution around the axis.

Figure 7.6. A partial scene graph for Rotation class.

The axis of rotation is a line through the origin and the point (1, 1, 1). The axis is also displayed in the scene as a
LineArray geometry. The line is defined with two points (-0.8, -0.8, -0.8) and (0.5, 0.5, 0.5).

The rotations are created with AxisAngle4d objects (line 62). The eight different angles of rotations are given by

Note

For clarity of presentation, the rotation transform and the initial translation/scaling
are implemented as separate cascaded TransformGroup nodes. It would be more
efficient to combine them into one node. The optimization performed by Java 3D
when compiling the scene graph may in fact automatically combine transformation
nodes of this type.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 228 (continued)]

7.4. Composite Transforms
Two or more transformations can be combined to form a composite transformation. For example, if T1, T2 are two
transformations, then the composite transformation is defined as

[Page 229]

(T2T1)(p) = (T2(T1(p))

Note that the composition of two transforms is not commutative: T1T2 T2T1 in general. In our notation,
composite transforms are applied from right to left. For example, T2T1 denotes the composite transform that
applies T1 first, followed by T2.

In matrix form, the composition of transformations corresponds to matrix multiplication. If the transformation
matrices for T1, T2 are M1, M2, respectively, then the matrix for the composite transform T2T1 is the matrix M2M1.

The Transform3D class includes several methods for multiplying transformation matrices to form composite
transforms:

void mul(Transform3D t)— Multiply the transform t to the current transform on the right.

void mul(Transform3D t1, Transform3D t2)— Multiply the transforms t1 by t2.

void mulInverse(Transform3D t)— Multiply the inverse of the transform t to the current transform on
the right.

void mulInverse(Transform3D t1, Transform3D t2)— Multiply the transform t1 by the inverse of the
transform t2 on the right.

void mulTransposeBoth(Transform3D t1, Transform3D t2)— Multiply the transpose of the transform t1
by the transpose of the transform t2 on the right.

void mulTransposeLeft(Transform3D t1, Transform3D t2)— Multiply the transpose of the transform t1
by the transform t2 on the right.

void mulTransposeRight(Transform3D t1, Transform3D t2)— Multiply the transform t1 by the
transpose of the transform t2 on the right.

When setting up a complex transform, it is often easier to compose the transform from some simpler transforms
than to directly construct the matrix.

Suppose that we want to construct a p/3 rotation about the axis through (1, 1, 0) and (1, 2, 1). Because the axis
does not go through the origin, we cannot directly apply the quaternion approach. However, we can first perform
a translation to move the axis so that it goes through the origin, then perform the rotation about the new axis,
and finally apply an inverse translation to send the axis back to its original location. Let T be the translation by (-
1, -1, 0). Then T(1, 1, 0) = (0, 0, 0) and T(1, 2, 1) = (0, 1, 1). Let R be the rotation of p/3 about the axis
through the origin and (0, 1, 1). Then the original rotation can be decomposed into T-1RT.

This pattern of decomposition is very common. If a particular transformation is known in a standard position, a
similar transformation in a more general position can be obtained by first transforming to the standard position,
performing the given transformation in the standard form, then transforming back to the original position.

Consider another example on reflection. The reflection about the xy-plane is easy to construct, as shown earlier. A
general reflection matrix will be more difficult to find. However, we may try to reduce the general problem to the
simpler xy-plane reflection. Suppose that the reflection plane is a plane through the origin given by the equation:

ax + by + cz = 0

Instead of finding the transformation matrix directly, you may use a composite transform. First a rotation can be
constructed to map the reflection plane to the xy-plane. Then the easy reflection about the xy-plane is
performed. Finally the inverse rotation that maps the xy-plane back to the original reflection plane will complete
the composite transformation. The composite transform is equivalent to the original reflection.

[Page 230]

To obtain a rotation that maps the above reflection plane to the xy-plane, it is equivalent to map the normal
vector (a, b, c) to (0, 0, d), the normal vector for the xy-plane. The axis of rotation is (b, - a, 0). The quaternion
for the rotation has the form:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The appropriate rotation angle should satisfy the condition:

Denote this rotation by R, and the reflection about xy-plane by F. Then the reflection about the plane can be
written as:

R-1FR

Listing 7.7 illustrates the construction of reflections using this method. A plane in a general position is acting as a
"mirror" for a reflection. A 3D text "Java" is rotating in the scene. Its mirror image about the plane is also
displayed. The plane is shown in a semitransparent form to give an effect of mirror reflection for the transformed
object (Figure 7.7).

Listing 7.7. Mirror.java
(This item is displayed on pages 230 - 232 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class Mirror extends Applet {
 13 public static void main(String[] args) {
 14 new MainFrame(new Mirror(), 640, 480);
 15 }
 16
 17 public void init() {
 18 // create canvas
 19 GraphicsConfiguration gc =
 20 SimpleUniverse.getPreferredConfiguration();
 21 Canvas3D cv = new Canvas3D(gc);
 22 setLayout(new BorderLayout());
 23 add(cv, BorderLayout.CENTER);
 24 BranchGroup bg = createSceneGraph();
 25 bg.compile();
 26 SimpleUniverse su = new SimpleUniverse(cv);
 27 su.getViewingPlatform().setNominalViewingTransform();
 28 su.addBranchGraph(bg);
 29 }
 30
 31 private BranchGroup createSceneGraph() {
 32 // object
 33 Appearance ap = new Appearance();
 34 ap.setMaterial(new Material());
 35 Font3D font = new Font3D(new Font("Serif", Font.PLAIN, 1),
 36 new FontExtrusion());
 37 Shape3D shape = new Shape3D(new Text3D(font, "Java"), ap);

[Page 231]
 38 // translation
 39 Transform3D trans = new Transform3D();
 40 trans.setTranslation(new Vector3d(-0.5,0,0));
 41 TransformGroup transg = new TransformGroup(trans);
 42 transg.addChild(shape);
 43 // rotation
 44 TransformGroup spin = new TransformGroup();
 45 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 46 spin.addChild(transg);
 47 // scaling, translation
 48 Transform3D tr = new Transform3D();
 49 tr.setScale(0.25);
 50 tr.setTranslation(new Vector3d(0.5,0,0));
 51 TransformGroup tg = new TransformGroup(tr);
 52 tg.addChild(spin);
 53 // shared group
 54 SharedGroup share = new SharedGroup();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 55 share.addChild(tg);
 56 // link leaf nodes to shared group
 57 Link link1 = new Link(share);
 58 Link link2 = new Link(share);
 59 // reflection
 60 Transform3D reflection = getReflection(1,1,1);
 61 TransformGroup reflectionGroup = new TransformGroup(reflection);
 62 reflectionGroup.addChild(link2);
 63 // the mirror
 64 QuadArray qa = new QuadArray(4, QuadArray.COORDINATES);
 65 qa.setCoordinate(0, new Point3d(0,-0.5,0.5));
 66 qa.setCoordinate(1, new Point3d(1,-0.5,-0.5));
 67 qa.setCoordinate(2, new Point3d(0,0.5,-0.5));
 68 qa.setCoordinate(3, new Point3d(-1,0.5,0.5));
 69 ap = new Appearance();
 70 ap.setTransparencyAttributes(
 71 new TransparencyAttributes
 72 (TransparencyAttributes.BLENDED, 0.7f));
 73 Shape3D mirror = new Shape3D(qa, ap);
 74 // rotator
 75 Alpha alpha = new Alpha(-1, 4000);
 76 RotationInterpolator rotator = new RotationInterpolator
 77 (alpha, spin);
 78 BoundingSphere bounds = new BoundingSphere();
 79 rotator.setSchedulingBounds(bounds);
 80 // background and lights
 81 Background background = new Background(0.5f, 0.5f, 0.5f);
 82 background.setApplicationBounds(bounds);
 83 AmbientLight light = new AmbientLight
 84 (true, new Color3f(Color.red));
 85 light.setInfluencingBounds(bounds);
 86 PointLight ptlight = new PointLight(new Color3f(Color.green),
 87 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
 88 ptlight.setInfluencingBounds(bounds);
 89 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
 90 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
 91 ptlight2.setInfluencingBounds(bounds);
 92 // branch group
 93 BranchGroup root = new BranchGroup();
 94 root.addChild(link1);
 95 root.addChild(reflectionGroup);
 96 root.addChild(mirror);
 97 root.addChild(rotator);

[Page 232]
 98 root.addChild(background);
 99 root.addChild(light);
100 root.addChild(ptlight);
101 root.addChild(ptlight2);
102 return root;
103 }
104
105 static Transform3D getReflection(double a, double b, double c) {
106 Transform3D transform = new Transform3D();
107 double theta = Math.acos(c/Math.sqrt(a*a+b*b+c*c));
108 double r = Math.sqrt(a*a+b*b);
108 Transform3D rot = new Transform3D();
110 rot.set(new AxisAngle4d(b/r, -a/r, 0, theta));
111 Transform3D ref = new Transform3D();
112 ref.setScale(new Vector3d(1,1,-1));
113 transform.mulInverse(rot);
114 transform.mul(ref);
115 transform.mul(rot);
116 return transform;
117 }
118 }

Figure 7.7. The mirror image constructed with a reflection.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The program constructs a "mirror" and shows a rotating object and its mirror image. The scene graph is shown in
Figure 7.8.

Figure 7.8. The scene graph for the Mirror class.
(This item is displayed on page 233 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The mirror (reflection plane) is chosen to go through the origin and have the normal vector (1, 1, 1). The mirror
itself is rendered in the scene as a semitransparent rectangle using a QuadArray object (line 64).

The method getReflection (line 105) performs the calculations derived above for the reflection about the given
plane. The composite transform consists of a rotation to rotate the plane to the standard xy-plane, a simple
reflection about the xy-plane, and an inverse rotation: R-1FR. The inverse rotation is obtained by using the
mulInverse method. The reflection and the rotation are multiplied with the mul method. The resulting composite
transform is returned as a Transform3D object.

[Page 233]

The object used for the reflection is a rotating 3D text "Java." In order to show the reflection faithfully, the visual
object is placed in a SharedGroup branch. Both the original and the reflected object share the same branch
through two Link leaf nodes. The link for the mirrored object goes through the reflection transform node.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 233 (continued)]

7.5. Constructing Geometries with Transformations
Transformations are useful not only in transforming the completed objects, but also in constructing primitives.
Geometric primitives often exhibit certain degrees of symmetry. As a result, some vertices of a primitive may be
obtained by transforming other vertices. In this section, we will discuss several techniques of generating 3D
geometries with affine transforms and other operations.

The Transform3D class provides methods for applying the transform represented by the object to points or
vectors:

void transform(Point3d p)
void transform(Point3d p, Point3d pOut)
void transform(Point3f p)

[Page 234]
void transform(Point3f p, Point3f pOut)
void transform(Vector3d v)
void transform(Vector3d v, Vector3d vOut)
void transform(Vector3f v)
void transform(Vector3f v, Vector3f vOut)
void transform(Vector4d v)
void transform(Vector4d v, Vector4d vOut)
void transform(Vector4f v)
void transform(Vector4f v, Vector4f vOut)

The methods with one parameter transform the point or vector in place. The methods with two parameters
perform the transformation on the first parameter nondestructively and save the result in the second parameter.

7.5.1. Extrusion

A simple way to create a 3D surface is to extrude (or sweep) a 2D curve through space. A 3D text created with
Font3D is an example of extrusion.

Extrusion can be implemented with translations. Starting with the points on the curve, we apply a translation
along the direction of extrusion to generate other points. For example, the following method takes a 2D Shape
object and performs an extrusion along the z-axis.

Listing 7.8. extrudeShape Method
(This item is displayed on pages 234 - 235 in the print version)

 1 // Assumption: only one continuous curve in the Shape object
 2 Geometry extrudeShape(Shape curve, float depth) {
 3 PathIterator iter = curve.getPathIterator(new AffineTransform());
 4 Vector ptsList = new Vector();
 5 float[] seg = new float[6];
 6 float x = 0, y = 0;
 7 float x0 = 0, y0 = 0;
 8 while (!iter.isDone()) {
 9 int segType = iter.currentSegment(seg);
10 switch (segType) {
11 case PathIterator.SEG_MOVETO:
12 x = x0 = seg[0];
13 y = y0 = seg[1];
14 ptsList.add(new Point3f(x,y,0));
15 break;
16 case PathIterator.SEG_LINETO:
17 x = seg[0];
18 y = seg[1];
19 ptsList.add(new Point3f(x,y,0));
20 break;
21 case PathIterator.SEG_QUADTO:
22 for (int i = 1; i < 10; i++) {
23 float t = (float)i/10f;
24 float xi = (1-t)*(1-t)*x + 2*t*(1-t)*seg[0] + t*t*seg[2];
25 float yi = (1-t)*(1-t)*y + 2*t*(1-t)*seg[1] + t*t*seg[3];
26 ptsList.add(new Point3f(xi,yi,0));
27 }
28 x = seg[2];
29 y = seg[3];
30 ptsList.add(new Point3f(x,y,0));
31 break;
32 case PathIterator.SEG_CUBICTO:
33 for (int i = 1; i < 20; i++) {
34 float t = (float)i/20f;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

34 float t = (float)i/20f;
[Page 235]

35 float xi = (1-t)*(1-t)*(1-t)*x + 3*t*(1-t)*(1-t)*seg[0] +
36 3*t*t*(1-t)*seg[2] + t*t*t*seg[4];
37 float yi = (1-t)*(1-t)*(1-t)*y + 3*t*(1-t)*(1-t)*seg[1] +
38 3*t*t*(1-t)*seg[3] + t*t*t*seg[5];
39 ptsList.add(new Point3f(xi,yi,0));
40 }
41 x = seg[2];
42 y = seg[3];
43 ptsList.add(new Point3f(x,y,0));
44 break;
45 case PathIterator.SEG_CLOSE:
46 x = x0;
47 y = y0;
48 ptsList.add(new Point3f(x,y,0));
49 break;
50 }
51 iter.next();
52 }
53 int n = ptsList.size();
54 IndexedQuadArray qa = new IndexedQuadArray(2*n,
55 IndexedQuadArray.COORDINATES, 4*(n-1));
56 Transform3D trans = new Transform3D();
57 trans.setTranslation(new Vector3f(0,0,depth));
58 for (int i = 0; i < n; i++) {
59 Point3f pt = (Point3f)ptsList.get(i);
60 qa.setCoordinate(2*i, pt);
61 trans.transform(pt);
62 qa.setCoordinate(2*i+1, pt);
63 }
64 int quadIndex = 0;
65 for (int i = 0; i < n-1; i++) {
66 qa.setCoordinateIndex(quadIndex++, 2*i);
67 qa.setCoordinateIndex(quadIndex++, 2*i+1);
68 qa.setCoordinateIndex(quadIndex++, 2*(i+1)+1);
69 qa.setCoordinateIndex(quadIndex++, 2*(i+1));
70 }
71 GeometryInfo gi = new GeometryInfo(qa);
72 NormalGenerator ng = new NormalGenerator();
73 ng.generateNormals(gi);
74 return gi.getGeometryArray();
75 }

For simplicity, the method assumes that the Shape object only has one continuous curve definition. The general
case can be handled in a similar manner. The parameter depth defines the depth of the extrusion.

7.5.2. Rotation

Many surfaces can be obtained through rotations. For example, a cylinder may be obtained by rotating a line, and
a sphere is the result of rotating a semicircle. A torus can be constructed by rotating a circle about an axis outside
the circle. Furthermore, the circle itself can be obtained by rotating a point. Therefore, to obtain a polygon mesh
for the torus, we can start from a single point. Rotating the point repeatedly with different angles generates a set
of points for the circle. Rotating the circle points about a different axis generates the vertices for the torus. This
procedure is illustrated in Figure 7.9.

Figure 7.9. Construction of a torus by rotations.
(This item is displayed on page 236 in the print version)

Given a set of base points on the curve, to create a rotated surface with n strips, we may set up a rotation of the
angle 2p/n. By successively applying the rotation to the curve points, we will be able to generate the vertices for a

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

quadrangle array. Listing 7.9 shows the construction of a torus via two different rotations. Listing 7.10 gives a
program for displaying two tori. The vertices of the torus geometry are generated with applications of transforms.
In the test program, two linked tori are shown rotating in the space.

[Page 236]
Listing 7.9. Torus.java

(This item is displayed on pages 236 - 237 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9
10 public class Torus extends Shape3D {
11 public Torus(double r1, double r2) {
12 int m = 20;
13 int n = 40;
14 Point3d[] pts = new Point3d[m];
15 pts[0] = new Point3d(r1+r2, 0, 0);
16 double theta = 2.0 * Math.PI / m;
17 double c = Math.cos(theta);
18 double s = Math.sin(theta);
19 double[] mat = {c, -s, 0, r2*(1-c),
20 s, c, 0, -r2*s,
21 0, 0, 1, 0,
22 0, 0, 0, 1};
23 Transform3D rot1 = new Transform3D(mat);
24 for (int i = 1; i < m; i++) {
25 pts[i] = new Point3d();
26 rot1.transform(pts[i-1], pts[i]);
27 }
28
29 Transform3D rot2 = new Transform3D();
30 rot2.rotY(2.0*Math.PI/n);
31 IndexedQuadArray qa = new IndexedQuadArray(m*n,
32 IndexedQuadArray.COORDINATES, 4*m*n);
33 int quadIndex = 0;
34 for (int i = 0; i < n; i++) {
35 qa.setCoordinates(i*m, pts);
36 for (int j = 0; j < m; j++) {

[Page 237]
37 rot2.transform(pts[j]);
38 int[] quadCoords = {i*m+j, ((i+1)%n)*m+j,
39 ((i+1)%n)*m+((j+1)%m), i*m+((j+1)%m)};
40 qa.setCoordinateIndices(quadIndex, quadCoords);
41 quadIndex += 4;
42 }
43 }
44 GeometryInfo gi = new GeometryInfo(qa);
45 NormalGenerator ng = new NormalGenerator();
46 ng.generateNormals(gi);
47 this.setGeometry(gi.getGeometryArray());
48 }
49 }
50

Listing 7.10. TestTorus.java
(This item is displayed on pages 237 - 238 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestTorus extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new TestTorus(), 640, 480);
15 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 TransformGroup spin = new TransformGroup();
34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
35 root.addChild(spin);
36
37 Transform3D tr = new Transform3D();
38 tr.setScale(0.8);
39 tr.setRotation(new AxisAngle4d(1, 0, 0, Math.PI/6));
40 TransformGroup tg = new TransformGroup(tr);
41 spin.addChild(tg);
42

[Page 238]
43 // object
44 Shape3D torus1 = new Torus(0.2, 0.5);
45 Appearance ap = new Appearance();
46 ap.setMaterial(new Material());
47 torus1.setAppearance(ap);
48 tg.addChild(torus1);
49
50 Shape3D torus2 = new Torus(0.2, 0.5);
51 ap = new Appearance();
52 ap.setMaterial(new Material());
53 ap.setTransparencyAttributes(
54 new TransparencyAttributes
55 (TransparencyAttributes.BLENDED, 0.5f));
56 torus2.setAppearance(ap);
57 Transform3D tr2 = new Transform3D();
58 tr2.setRotation(new AxisAngle4d(1, 0, 0, Math.PI/2));
59 tr2.setTranslation(new Vector3d(0.5,0,0));
60 TransformGroup tg2 = new TransformGroup(tr2);
61 tg.addChild(tg2);
62 tg2.addChild(torus2);
63
64 Alpha alpha = new Alpha(-1, 8000);
65 RotationInterpolator rotator = new RotationInterpolator
66 (alpha, spin);
67 BoundingSphere bounds = new BoundingSphere();
68 rotator.setSchedulingBounds(bounds);
69 spin.addChild(rotator);
70
71 // background and lights
72 Background background = new Background(1.0f, 1.0f, 1.0f);
73 background.setApplicationBounds(bounds);
74 root.addChild(background);
75 AmbientLight light = new AmbientLight
76 (true, new Color3f(Color.blue));
77 light.setInfluencingBounds(bounds);
78 root.addChild(light);
79 PointLight ptlight = new PointLight(new Color3f(Color.white),
80 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
81 ptlight.setInfluencingBounds(bounds);
82 root.addChild(ptlight);
83 return root;
84 }
85 }

The Torus class extends Shape3D. The geometry is constructed with IndexedQuadArray. A rotation rot1 (line 23)
is set to generate the points of a circle from a single point. The generated points on the circle are stored in the
array pts. Another rotation rot2 (line 29) is set to generate the points on the torus from the circle points. The
grid of points on the torus are generated one column at a time and are entered into the IndexedQuadArray (line
35). Then the indices for the quadrilaterals are entered (line 40). To generate normals, the IndexedQuadArray
object is converted a GeometryInfo object, and NormalGenerator is used to automatically generate the surface

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

normals for the geometry.

The TestTorus class displays two instances of Torus in different positions (Figure 7.10). They are positioned in
such a way that one torus passes through the hole of the other. One of the tori is set to be semitransparent using
a TransparencyAttributes object. The entire figure is rotating to allow viewing from different angles.

[Page 239]

Figure 7.10. Two instances of Torus primitive whose vertices are generated by two sets of rotations.

7.5.3. Transformation and Shared Branch: An Example

The construction of complex visual contents often involves transformations at different levels. Listing 7.11 gives a
class for displaying an arrow geometry. Listing 7.12 illustrates the combination of shared branches and
transforms to reuse symmetric substructures. A 3D logo with 16 arrows and a ring around them is shown
rotating about a vertical axis (Figure 7.11).

Listing 7.11. Arrow.java
(This item is displayed on pages 239 - 240 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import javax.media.j3d.*;
 5
 6 public class Arrow extends IndexedTriangleArray {
 7 float w = 1f;
 8 float h = 0.15f;
 9 float d = 0.1f;
10
11 public Arrow() {
12 super(5, TriangleArray.COORDINATES | TriangleArray.NORMALS, 12);
13 Point3f[] pts = {new Point3f(0f,0f,d),
14 new Point3f(w,0f,0f),
15 new Point3f(h,h,0f),
16 new Point3f(h,-h,0f),
17 new Point3f(0f,0f,-d)};
18 setCoordinates(0, pts);
19 int[] coords = {0,1,2,0,3,1,4,1,3,4,2,1};
20 setCoordinateIndices(0, coords);
21 Vector3f v1 = new Vector3f();

[Page 240]
22 v1.sub(pts[1], pts[0]);
23 v1.normalize();
24 Vector3f v2 = new Vector3f();
25 v2.sub(pts[2], pts[0]);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

26 v2.normalize();
27 Vector3f v = new Vector3f();
28 v.cross(v1, v2);
29 setNormal(0, v);
30 v.y = -v.y;
31 setNormal(1, v);
32 v.z = -v.z;
33 setNormal(2, v);
34 v.y = -v.y;
35 setNormal(3, v);
36 int[] norms = {0,0,0,1,1,1,2,2,2,3,3,3};
37 setNormalIndices(0, norms);
38 }
39 }

Figure 7.11. A 3D logo.

Listing 7.12. Logo.java
(This item is displayed on pages 240 - 242 in the print version)

 1 package chapter7;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;

[Page 241]
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class Logo extends Applet {
 13 public static void main(String[] args) {
 14 new MainFrame(new Logo(), 640, 480);
 15 }
 16
 17 public void init() {
 18 // create canvas
 19 GraphicsConfiguration gc =
 20 SimpleUniverse.getPreferredConfiguration();
 21 Canvas3D cv = new Canvas3D(gc);
 22 setLayout(new BorderLayout());
 23 add(cv, BorderLayout.CENTER);
 24 BranchGroup bg = createSceneGraph();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 25 bg.compile();
 26 SimpleUniverse su = new SimpleUniverse(cv);
 27 su.getViewingPlatform().setNominalViewingTransform();
 28 su.addBranchGraph(bg);
 29 }
 30
 31 private BranchGroup createSceneGraph() {
 32 BranchGroup root = new BranchGroup();
 33 TransformGroup spin = new TransformGroup();
 34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 35 root.addChild(spin);
 36
 37 Transform3D tr = new Transform3D();
 38 tr.setScale(0.9);
 39 tr.setRotation(new AxisAngle4d(1, 0, 0, Math.PI/2));
 40 TransformGroup tg = new TransformGroup(tr);
 41 spin.addChild(tg);
 42 // torus
 43 Shape3D torus = new Torus(0.04, 0.6);
 44 Appearance ap = new Appearance();
 45 ap.setMaterial(new Material());
 46 torus.setAppearance(ap);
 47 tg.addChild(torus);
 48 // shared group of 4 arrows
 49 SharedGroup sg = new SharedGroup();
 50 Shape3D arrow;
 51 Transform3D tra;
 52 TransformGroup tga;
 53 for (int i = 0; i < 4; i++) {
 54 arrow = new Shape3D(new Arrow(), ap);
 55 tra = new Transform3D();
 56 tra.setRotation(new AxisAngle4d(0, 0, 1, i*Math.PI/2));
 57 tga = new TransformGroup(tra);
 58 sg.addChild(tga);
 59 tga.addChild(arrow);
 60 }
 61 // four links to shared group
 62 Link link = new Link();
 63 link.setSharedGroup(sg);
 64 tr = new Transform3D();
 65 tr.setScale(0.675);
 66 tg = new TransformGroup(tr);
 67 tg.addChild(link);
 68 spin.addChild(tg);
 69

[Page 242]
 70 link = new Link();
 71 link.setSharedGroup(sg);
 72 tr = new Transform3D();
 73 tr.setScale(0.55);
 74 tr.setRotation(new AxisAngle4d(0, 0, 1, Math.PI/4));
 75 tg = new TransformGroup(tr);
 76 tg.addChild(link);
 77 spin.addChild(tg);
 78
 79 link = new Link();
 80 link.setSharedGroup(sg);
 81 tr = new Transform3D();
 82 tr.setScale(0.4);
 83 tr.setRotation(new AxisAngle4d(0, 0, 1, Math.PI/8));
 84 tg = new TransformGroup(tr);
 85 tg.addChild(link);
 86 spin.addChild(tg);
 87
 88 link = new Link();
 89 link.setSharedGroup(sg);
 90 tr = new Transform3D();
 91 tr.setScale(0.4);
 92 tr.setRotation(new AxisAngle4d(0, 0, 1, 3*Math.PI/8));
 93 tg = new TransformGroup(tr);
 94 tg.addChild(link);
 95 spin.addChild(tg);
 96 // rotation
 97 Alpha alpha = new Alpha(-1, 8000);
 98 RotationInterpolator rotator =
 99 new RotationInterpolator(alpha, spin);
100 BoundingSphere bounds = new BoundingSphere();
101 rotator.setSchedulingBounds(bounds);
102 spin.addChild(rotator);
103 // background and lights
104 Background background = new Background(1.0f, 1.0f, 1.0f);
105 background.setApplicationBounds(bounds);
106 root.addChild(background);
107 AmbientLight light = new AmbientLight
108 (true, new Color3f(Color.red));

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

109 light.setInfluencingBounds(bounds);
110 root.addChild(light);
111 PointLight ptlight = new PointLight(new Color3f(Color.white),
112 new Point3f(2f,2f,2f), new Point3f(1f,0f,0f));
113 ptlight.setInfluencingBounds(bounds);
114 root.addChild(ptlight);
115 return root;
116 }
117 }

The ring is an instance of the Torus class defined in Listing 7.6. The sixteen arrows (spokes) possess a high
degree of symmetries and similarities. To take advantage of the symmetries and simplify the modeling procedure,
transforms and shared branches are applied.

The Arrow class defines the geometry for a single arrow primitive. It extends the class IndexedTriangleArray.
Five vertices and four faces are defined for the geometry. The surface normal of a face is calculated by a cross
product of the vectors of two sides. The normals of other faces are obtained from the first one by symmetries.

[Page 243]

Four Arrow objects are grouped together through transforms to form a shared branch (lines 48–60). The four
arrows are in the directions of 0, 90, 180, 270 degrees.

Four different Link objects to the SharedGroup node are created for the total of sixteen arrows (lines 61–95).
Each link goes through a transform for appropriate rotation and scaling.

The entire assembled logo is made to rotate in the scene using a RotationInterpolator object, as seen in many
other examples. The logo has an appearance bundle that includes a Material object. It is illuminated by two
lights. The background of the scene is again set to white.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 243 (continued)]

Key Classes and Methods
javax.vecmath.Matrix4d A class encapsulating a 4 x 4 double matrix.

javax.vecmath.Matrix4f A class encapsulating a 4 x 4 float matrix.

javax.media.j3d.Transform3D A class encapsulating a 3D transformation.

javax.media.j3d.Transform3D.set(...) Methods to set the transformation.

javax.media.j3d.Transform3D.setTranslation(...) Methods to set the translation component.

javax.media.j3d.Transform3D.setRotation(...) Methods to set the rotation component.

javax.media.j3d.Transform3D.setScale(...) Methods to set the scale component.

javax.media.j3d.Transform3D.mul(...) Methods to multiply another transform.

javax.media.j3d.Transform3D.mulInverse(...) Methods to multiply the inverse of another transform.

javax.media.j3d.Transform3D.transform(...) Methods to apply the transform to points and vectors.

javax.media.j3d.TransformGroup A group node class for transformation.

javax.vecmath.Quat4d A class encapsulating the quaternion with double components.

javax.vecmath.Quat4f A class encapsulating the quaternion with float components.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 243 (continued)]

Key Terms
affine transform

A geometric transform that preserves parallelism.

projective transform

A geometric transform that preserves points, lines, and their incidence relations.

Euler angles

A method to specify a 3D rotation with three rotations about main coordinate axes.

composite transformation

A transformation as a product of several transformations.

3D transformation matrix

A matrix representing a 3D projective transform.

quaternion representation

A method to represent a 3D rotation with a quaternion.

3D translation

A geometric transform that moves all points by a constant value.

3D rotation

A geometric transform that rotates a point around a fixed axis by a constant angle.

3D scaling

A geometric transform that scales the coordinates by constant factors. The scaling is uniform if the three
factors in x-, y-, z-components are the same.

3D shearing

A geometric transform that shifts the points parallel to a plane.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

3D reflection

A geometric transform that flips the points about a fixed plane.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 244]

Chapter Summary
In this chapter, we introduce the concepts and applications of 3D transformations, especially the family of
affine transforms.

A 3D transform is represented as a matrix. Matrix classes are provided in the package javax.vecmath. In
Java 3D, the Transform3D class encapsulates the transformation matrix and the various operations related
to the transform. The class includes a large number of methods for setting the transform, performing
matrix operations, composing with other transforms, and transforming points and vectors.

The TransformGroup nodes provide the presence of transforms in Java scene graphs. A TransformGroup
node references a Transform3D object to define its transformation and applies the transformation to its
child nodes.

3D rotations are complex transformations. Three different representations of rotations are introduced. The
matrix representation is consistent with other affine transforms, but its relation to geometric parameters is
often implicit. The quaternion representation for general 3D rotations is explicit and convenient because of
its direct connection with the rotation axis and angle. Euler angles offer another intuitive representation
for 3D rotations.

Composition of transforms is useful especially in construction of complex transforms. A complex transform
can often be decomposed into a composite transform of simpler transforms.

Another application of transforms is in the construction of geometries. The symmetries and regularities in a
geometric figure will often be associated with certain transformations. The points on such a geometry may
be generated conveniently through the transformations. An extruded surface is obtained by sweeping a
curve. Translations are related to extrusion. A rotated surface is generated by rotating a curve.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 244 (continued)]

Review Questions

7.1 Find the transformation matrix of the translation that maps the point (3, -1, 2) to (0, 5, -1).

7.2 Find the transformation matrix of the rotation about the y-axis by 30 degrees.

7.3 Find the transformation matrix of the reflection about the plane through the origin with the
normal vector (1, 1, 1).

7.4 Derive the transformation matrix of the reflection about the plane through the origin with the
normal vector u as defined below:

7.5 Calculate the quaternion product:

(1 + 3i - j + k)·(2i + j - 3k)

[Page 245]

7.6 Let u = (Xu, Yu, Zu) and v = (Xv, Yv, Zv) be two orthogonal unit vectors. Find a rotation that
maps u to the x-axis, v to the y-axis, and u x v to the z-axis.

7.7 An (x, y)-shear is defined by the matrix:

Given the orthogonal unit vectors u and v, derive a composite transform that performs a (u, v)-
shear by the factors (shu, shv).

7.8 Find the transformation matrix for the 3D rotation represented by the quaternion

q = w + xi + yi + zk

7.9 If Rx is a rotation about the x-axis of 30 degrees and Ry a rotation about the y-axis of 60
degrees, describe the composite rotation RyRx in terms of its axis and angle.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 245 (continued)]

Programming Exercises

7.1 Write a Java 3D program to display two tetrahedra with a common triangle face.

7.2 Display two cones with their vertices pointing to each other.

7.3 Display a cone with its vertex pointing in the direction (1, 1, 1).

7.4 Modify Listing 7.4 to include an (x, y)-shear operation. Allow the user to specify the factors (shx,
shy).

7.5 Modify Listing 7.4 to include rotation specification with Euler angles.

7.6 Modify Listing 7.7 to construct the reflection matrix directly from the following formula:

7.7 Create and display a simple table with a square top and four cylindrical legs. Use only predefined
primitives and transformations to create the visual object. Rotate the table continuously in the
scene.

7.8 Create a geometry that is formed by rotating the figure in Figure 7.12 about the y-axis. Write a
test program to display the object.

Figure 7.12. Rotating a square to generate a 3D object.

[Page 246]

7.9 Implement a Shape3D class RotatedShape that represents a surface obtained by rotating a 2D
Shape object about the y-axis. It should contain at least one constructor:

public RotatedShape(Shape curve)

You may assume that the 2D shape is a single continuous curve (with only one SEG_MOVETO).
Write a test program to display a rotated surface.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 247]

Chapter 8. Views
(This item omitted from WebBook edition)

Objectives
To present the concept of view in the 3D rendering process.

To identify the parallel and perspective projections.

To specify the viewing matrix.

To specify the projection matrix.

To apply the Java 3D standard view model.

To apply the Java 3D compatibility-mode view model.

To apply picking in a 3D scene.

To understand head tracking in view models.

To apply input devices, sensors, and head tracking in Java 3D.

To use the avatar in SimpleUniverse.

[Page 248]

8.1. Introduction
After a virtual world of graphics objects is constructed, it can be rendered to produce images of the world from
various perspectives through a viewing process. The rendering of a scene is characterized by numerous attributes
that affect different aspects of the viewing. In this chapter we focus on the geometric aspects of the rendering
process. The methods for achieving realistic appearance in rendering visual objects will be discussed in later
chapters.

The geometric configuration that defines the process of mapping a 3D virtual world scene to a 2D image is called
a view. A view is the digital analogy of a camera. It defines the way that the virtual world and the graphics model
are visualized. The views in a modern computer graphics system can be quite sophisticated and may have a large
number of parameters. The viewpoint of a view is typically located in the virtual world, and it "sees" the virtual
world from a specific viewing orientation and direction. A view has certain defining properties, such as the type of
3D-to-2D projections, the field of view, front and back clipping planes, view plate size, and so on. A view may
resemble a static camera, or it may act like an eye of a person that can change its position and properties
dynamically.

Most low-level graphics APIs support only a camera-based view model. It is typically specified with two sets of
parameters: the projection properties and the camera positioning. A limitation of the static view model is the
difficulty in programming the dynamic view changes. For example, the viewing device in a graphics system may
be a head-mounted camera with a head-tracking system. The head-tracking information is sent back to the
system, causing continuous changes in view properties. The dynamic view will be quite complex for the
application program to implement and will likely be platform dependent. Java 3D provides a versatile view system
that incorporates both traditional view settings and supports for dynamic view changes. The effects of physical
environment changes to the view can be automatically included through separate objects without explicitly
changing the basic viewing structure. Applications can use the same scene graph for a variety of display options.

Another topic related to viewing is picking. View projection maps a 3D volume to a 2D image. Picking is a process
of selecting world-space objects through the projected 2D image. It is therefore a partial inverse operation of
projection. Picking facilitates interactions with a 3D scene from the rendered image. Through picking operations,
for example, a user may select an object from the screen image and rotate or move the object with a mouse.
Java 3D provides extensive support for picking at different levels.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 248 (continued)]

8.2. Projections
The viewing of a 3D scene with a 2D image is achieved through a transformation called projection. There are two
main types: parallel projections and perspective projections. In each case, a plane known as the view plane is
placed in the virtual world. The projection maps the points in the virtual world to the plane. In order to make
implementations feasible, certain restrictions on the projections will be necessary. Only a finite window (usually
rectangular) on the view plane will actually be used for rendered images. This window is called a view plate. It is
analogous to a frame of film in an ordinary camera. Only the points in the 3D space that project to the view plate
need to be calculated. The points very close to or far away from the viewer are also excluded. This results in a
finite volume in the 3D space that will actually participate in the projection. This volume is known as the view
frustum.

A parallel projection projects 3D points to a view plane through parallel lines in a fixed direction. When the lines of
the projection are perpendicular to the view plane, the parallel projection is called orthographic. Three
orthographic projections along the three axes are known as the front-elevation, top-elevation, and side-elevation
projections. They are often used in engineering drawings. The view volume for a view with a parallel projection is
a parallelogram. (See Figure 8.1.)

[Page 249]

Figure 8.1. Parallel projection.

The formulas for parallel projections are relatively simple. Suppose that the view plane is the xy-plane and the
projection is in the direction of the z-axis. Then a point (x, y, z) in the 3D space is simply mapped to the point (x,
y) in the 2D view plane. The transformation is given by the matrix equation

In fact for purposes such as determining the hidden portions of objects, it is usually desirable to retain the
information of the z-coordinates while performing the projection. Therefore, this parallel projection is essentially
the identity transform:

In a perspective projection, all projection lines converge to the viewpoint (the viewer or eye position) (Figure 8.2).
Objects closer to the viewer will appear larger than the distant objects. This mode resembles the projection in
human eyes and regular cameras.

Figure 8.2. Perspective projection.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The mathematical formulas for perspective projection are more complex. Assume that the view plane is the xy-
plane and the eye is at (0, 0, d) looking down the z-axis, with the y-axis being the view up direction, as illustrated
in Figure 8.3.

[Page 250]

Figure 8.3. An example of perspective projection.

Considering the two similar triangles, we have

or

Similarly, in the x-direction

Therefore the transformation is not linear in the 3D space. However, it can be expressed in a linear form with
homogeneous coordinates, as shown in the following equation:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

If the z-coordinate is to be retained, then the transformation becomes

In fact, using homogeneous coordinates and the 4 x 4 transformation matrices, parallel projections and
perspective projections can be treated in a uniform way. Both types of projections are projective transformations
and can be represented with 4 x 4 matrices. Clearly if d approaches infinity,

The above matrix becomes the parallel projection matrix introduced earlier. A parallel projection can be regarded
as a special case of perspective projection with the viewpoint at infinity. The viewpoint for the perspective
projection has coordinates (0, 0, d), or homogeneous coordinates (0, 0, 1, 1/d). As d , the viewpoint
approaches (0, 0, 1, 0), a point at infinity in homogeneous coordinates.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 251]

8.3. Specification of a View
The complete specification of a view can be divided into two parts: the view-volume definition and the view
positioning. If a view is regarded as a camera, then the view volume corresponds to the characteristics of the
camera itself, such as the focal length and the film size, and the view positioning corresponds to the position and
aiming direction of the camera.

The definition of a view volume is often represented by a projection matrix. The view positioning is represented by
a viewing matrix.

The following parameters are related to the definition of a view volume or projection matrix:

Projection – parallel or perspective projection.

View plate – the window for the rendered image. It is usually a rectangular region. In a real camera the
view plate corresponds to the film frame.

Field of view (fov) – the horizontal angle between the left and right plane of the frustum. The vertical field
of view and the diagonal field of view can be defined similarly.

Focal length – the distance between the view plate and the view point.

Aspect ratio – the ratio of width over length of the view planes.

Front clip plane – the front or near plane of the frustum.

Back clip plane – the back or far plane of the frustum.

Not all the above parameters are independent. For example, the focal length, the horizontal field of view, and the
width of the view plate are related by the formula:

A 35 mm camera with a standard 50 mm lens has a film size 36 mm by 24 mm, a field of view of 40 degrees,
and an aspect ratio of 1.5. In a real camera, the film is placed behind the lens and the projected image is upside
down, as illustrated in Figure 8.4. In computer graphics, however, the film is exactly symmetrical to the image
plate. Rather than using the inverted images, it is more convenient to formulate the viewing system with the
view plate in front of the eye.

Figure 8.4. A real camera projection.

The projection matrix is defined in the eye coordinate system in which the eye is located at the origin looking at
the negative direction of the z-axis with the y-axis as the up direction. The projection matrix encapsulates the
view-volume settings by defining a projective transform that maps the given view volume (a frustum or box) to a
standard volume, typically the cube with vertices (±1, ±1, ±1). For example, consider a view frustum defined by
the front plane with vertices (±a, ±b, -c) and the back plane with vertices (±a', ±b', -d). In the x- and y-
directions, using the arguments in Section 8.2, the projection has the form

[Page 252]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

In the z-direction, the transform maps the interval [-d, -c] to [-1, 1] and has the form

Therefore, the projection can be expressed in the matrix form:

To completely define a camera or eye's positioning in the virtual space, it is necessary to specify the location of
the camera, the direction in which the camera is pointing, and the direction that the camera considers as the
"up" direction. The following parameters are usually associated with the definition of camera positioning or the
viewing matrix:

Viewpoint, view-reference point (vrp, eye) – the camera or eye position, the 3D point where the camera is
located.

View center (look) – the center of the view plate or the point that the eye is looking at.

View up direction (up) – the upward direction from a viewer's perspective.

View plane – the plane of the projected image.

View plane normal (vpn) – the normal vector of the view plane.

The viewpoint is easily specified with a 3D point. However, the viewpoint alone is not enough to completely define
the camera's positioning. Clearly, at a fixed point, the camera can still point in different directions. There are
several ways to define such an orientation of an object in a 3D space. For example, the pitch–roll–yaw
specification is often used to describe an aircraft position.

In computer graphics, a commonly used method for defining camera orientation is to specify the view reference
point, the view center, and the view up direction, as illustrated in Figure 8.5.

Figure 8.5. Viewing matrix definition with eye, look, and up.

A viewing matrix specifies the camera position by defining a transform that changes the camera from its standard
position. The standard camera position (when the viewing matrix is identity) is the one defined by the eye
coordinate system, typically with the eye at the origin looking down the z-axis and with the y-axis as the up
direction. If the viewpoint is moved to (a, b, c) without changing its orientation, the viewing matrix will be:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 253]

8.4. Java 3D View Model
Java3D provides a very versatile viewing system that supports dynamic adjustments based on environmental
changes as well as traditional static camera based viewing. The scene graph in Figure 8.6 illustrates a typical view
setting. Attached to a Locale object are a content branch that defines the virtual world graphics model, and a
view branch that defines a view to render the scene.

Figure 8.6. A typical Java 3D viewing system.

Java 3D classes that are directly related to viewing include: ViewPlatform, View, PhysicalBody,
PhysicalEnvironment, Canvas3D, Screen3D.

8.4.1. Configuring a Java 3D View

A ViewPlatform object is a leaf node of the scene graph. It defines the presence of the view in the virtual world.
Like other scene-graph nodes, the ViewPlatform object may go through a chain of transforms and other nodes,
and it will eventually be attached to a Locale object. The TransformGroup node connected to the ViewPlatform
defines the view-platform transformation that primarily determines the position and orientation of the view, or
the viewing matrix. The viewing matrix may be affected by other factors such as the head-tracking sensor input.
The Transform3D class has a method that helps in the construction of this transform:

void lookAt(Point3d eye, Point3d look, Vector3d up)

The transform is constructed to position the ViewPlatform so that the eye is located at the given point looking at
the specified center of the view plate with the given upward direction. The inverse of the transform defined by the
method can be placed in the TransformGroup above the ViewPlatform to realize the specified positioning of the
ViewPlatform.

[Page 254]

The View object is the heart of the view system. It defines the main configuration of the view with properties
such as the projection type and the view volume—that is, the projection matrix of the view. It can also
accommodate the dynamic changes in view parameters through its connections with the PhysicalBody and
PhysicalEnvironment objects. The methods of the View class for setting the view volume or projection matrix
include:

void setFieldOfView(double fov)
void setFrontClipDistance(double d)
void setBackClipDistance(double d)
void setProjectionPolicy(int projection)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The PhysicalBody and PhysicalEnvironment objects provide supports for automatic calibrations with dynamic
viewing systems such as head-mounted-camera and head-tracking sensors. The PhysicalBody describes the
physical characteristics of the user's body or head. The PhysicalEnvironment contains information about the
user's physical environment such as the tracking sensors.

The Canvas3D class is a subclass of AWT Canvas class and can be placed in an AWT container. A Canvas3D object
represents the rendering surface. The following constructor is typically used to construct a Canvas3D object:

public Canvas3D(GraphicsConfiguration gc)

A separate Screen3D class is defined to describe the display devices. It is referenced by a Canvas3D object. The
separation of the device description avoids duplication of the same information for multiple Canvas3D objects. The
Screen3D class has no public constructor, and its instance can be retrieved by the method getScreen3D of the
Canvas3D class.

8.4.2. The Compatibility Mode

Java 3D also offers a compatibility view mode that supports traditional camera-based model resembling OpenGL
view specification. To enable the compatibility mode, the following method of the View object can be used:

public void setCompatibilityModeEnable(boolean enabled)

The Transform3D class contains methods for constructing the viewing matrix and the projection matrix. The
viewing matrix can be constructed using the same eye-look-up approach

public void lookAt(Point3d eye, Point3d look, Vector3d up)

The projection matrix can be constructed with one of the three different methods:

public void perspective(double fov, double aspect, double near,
 double far)
public void frustum(double left, double right, double bottom,
 double top, double near, double far)
public void ortho(double left, double right, double bottom,
 double top, double near, double far)

[Page 255]

The coordinates in these methods are relative to the eye position or vrp. The perspective method defines a
perspective projection matrix by specifying the horizontal field of view, the aspect ratio, and the near and far clip
planes. Both the frustum method and the ortho method define the projection matrix by specifying the corner
coordinates of the view volume. (left, bottom, -near) and (left, bottom, -near) define the lower left
corner and the upper right corner of the near plane. The depth of the far plane is defined by -far. The frustum
method defines a perspective projection and the ortho method a parallel projection.

For example, the following two calls define the same perspective projection:

perspective(Math.PI/2, 2, 1, 2);
frustum(-1,1, -0.5, 0.5, 1, 2);

The view volume has a horizontal field of view p/2 and an aspect ratio of 2.0. The near-plane distance is 1 and
the far-plane distance 2. The near plane is 2 x 1 and the far plane 4 x 2. Assuming the near plane is the view
plate, the projection can be written as:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The projection matrix for the projection is given by:

The appropriately constructed projection matrix and viewing matrix can be set for the view using the following
methods of View:

public void setVpcToEc(Transform3D viewingMatrix)
public void setLeftProjection(Transform3D projectionMatrix)
public void setRightProjection(Transform3D projectionMatrix)

In the compatibility mode virtually all view parameters are set in the View object. On the other hand, in the
standard (noncompatibility) Java 3D view mode, the final view settings may also be influenced by other objects
such as PhysicalBody and PhysicalEnvironment. The above methods for directly setting the projection matrix
and the viewing matrix are not valid in the noncompatibility mode.

The compatibility mode is a restricted view mode that does not have all the Java 3D view features. It is intended
to be a simple mode compatible with OpenGL style calls.

Listing 8.1 displays a rotating tetrahedron using a manually constructed view in compatibility mode. It illustrates
a minimal Java 3D view setting. (See Figure 8.7.)

[Page 256]

Listing 8.1. CompatibilityMode.java
(This item is displayed on pages 256 - 257 in the print version)

 1 package chapter8;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import chapter6.*;
10 import java.applet.*;
11 import com.sun.j3d.utils.applet.MainFrame;
12
13 public class CompatibilityMode extends Applet {
14 public static void main(String[] args) {
15 new MainFrame(new CompatibilityMode(), 640, 650);
16 }
17
18 public void init() {
19 // create canvas
20 GraphicsConfiguration gc =

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

21 SimpleUniverse.getPreferredConfiguration();
22 Canvas3D cv = new Canvas3D(gc);
23 setLayout(new BorderLayout());
24 add(cv, BorderLayout.CENTER);
25 VirtualUniverse universe = new VirtualUniverse();
26 Locale locale = new Locale(universe);
27 BranchGroup bg = createView(cv);
28 locale.addBranchGraph(bg);
29 bg = createContent();
30 bg.compile();
31 locale.addBranchGraph(bg);
32 }
33
34 private BranchGroup createView(Canvas3D cv) {
35 BranchGroup bg = new BranchGroup();
36 ViewPlatform platform = new ViewPlatform();
37 bg.addChild(platform);
38 View view = new View();
39 view.addCanvas3D(cv);
40 view.setCompatibilityModeEnable(true);
41 view.attachViewPlatform(platform);
42 Transform3D projection = new Transform3D();
43 projection.frustum(-0.1, 0.1, -0.1, 0.1, 0.2, 10);
44 view.setLeftProjection(projection);
45 Transform3D viewing = new Transform3D();
46 Point3d eye = new Point3d(0,0,1);
47 Point3d look = new Point3d(0,0,-1);
48 Vector3d up = new Vector3d(0,1,0);
49 viewing.lookAt(eye, look, up);
50 view.setVpcToEc(viewing);
51 PhysicalBody body = new PhysicalBody();
52 view.setPhysicalBody(body);
53 PhysicalEnvironment env = new PhysicalEnvironment();
54 view.setPhysicalEnvironment(env);
55 return bg;
56 }
57

[Page 257]
58 private BranchGroup createContent() {
59 BranchGroup root = new BranchGroup();
60 TransformGroup spin = new TransformGroup();
61 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
62 root.addChild(spin);
63 // object
64 Appearance ap = new Appearance();
65 ap.setMaterial(new Material());
66 Shape3D shape = new Shape3D(new Tetrahedron(), ap);
67 // rotating object
68 Transform3D tr = new Transform3D();
69 tr.setScale(0.25);
70 TransformGroup tg = new TransformGroup(tr);
71 spin.addChild(tg);
72 tg.addChild(shape);
73 Alpha alpha = new Alpha(-1, 4000);
74 RotationInterpolator rotator =
75 new RotationInterpolator(alpha, spin);
76 BoundingSphere bounds = new BoundingSphere();
77 rotator.setSchedulingBounds(bounds);
78 spin.addChild(rotator);
79 // light and background
80 Background background = new Background(1.0f, 1.0f, 1.0f);
81 background.setApplicationBounds(bounds);
82 root.addChild(background);
83 AmbientLight light =
84 new AmbientLight(true, new Color3f(Color.red));
85 light.setInfluencingBounds(bounds);
86 root.addChild(light);
87 PointLight ptlight = new PointLight(new Color3f(Color.green),
88 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
89 ptlight.setInfluencingBounds(bounds);
90 root.addChild(ptlight);
91 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
92 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
93 ptlight2.setInfluencingBounds(bounds);
94 root.addChild(ptlight2);
95 return root;
96 }
97 }

Figure 8.7. A view using compatibility mode.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

(This item is displayed on page 258 in the print version)

[Page 257]

This program creates all the components of the scene graph directly without using the utility classes. The
Canvas3D, VirtualUniverse, and Locale objects are created in the constructor. The createView method (line 34)
creates the view branch of the scene and the createContent method creates the content branch.

The createView method constructs the objects in the view branch: a BranchGroup, a ViewPlatform, a View, a
PhysicalBody, and a PhysicalEnvironment. It enables the compatibility mode for the View object (line 40). The
projection matrix is set to a perspective projection by calling the method frustum (line 43). The near clip plane is
defined by the corners (-0.1, -0.1, -0.2) and (0.1, 0.1, -0.2). The far clip-plane distance is 10. The viewing matrix
is created with the method lookAt to place the eye at (0, 0, 1) looking at the point (0,0, -1) with (0, 1, 0) as the
up direction (line 49). Both the projection and viewing matrices are set in the View object directly with the
methods setLeftProjection and setVpcToEc. Even though head tracking is not available in compatibility mode,
it is still necessary to supply the PhysicalBody and PhysicalEnvironment objects to the View.

The createContent method constructs the content branch of the scene graph. It consists of a rotating
tetrahedron similar to the program in Listing 6.1.

[Page 258]

8.4.3. View Settings in SimpleUniverse
The SimpleUniverse utility class provides a default implementation for the viewing system illustrated in Figure
8.4. The SimpleUniverse further divides the view-related components objects into two classes: the Viewer class
and the ViewingPlatform class. The Viewer object consists of a View object, a ViewAvatar object, a
PhysicalBody object, a Physical Environment object, and a set of Canvas3D objects. The ViewingPlatform
object contains a ViewPlatform object and a MultiTransformGroup object that holds a series of TransformGroup
nodes linked together. The default ViewingPlatform has one Trans formGroup node in its MultiTransformGroup
object, but SimpleUniverse has constructors to specify multiple TransformGroup nodes:

SimpleUniverse(int numTrans)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

SimpleUniverse(Canvas3D canvas, int numTrans)

To retrieve the View from a SimpleUniverse object, you may use the following statement:

View view = su.getViewer().getView();

To obtain the TransformGroup node above the ViewPlatform, you may make the following method calls:

TransformGroup tg = su.getViewingPlatform().getViewPlatformTransform();

[Page 259]

To get a specific TransformGroup in the MultiTransformGroup object, use the following calls:

TransformGroup tg =
su.getViewingPlatform().getMultiTransformGroup().getTransformGroup(idx);

The default view settings in a SimpleUniverse object are given below:

Compatibility mode: false

Left projection: identity

Right projection: identity

vpc-to-ec transform: identity

Field of view: p/4

Front clip distance: 0.1

Back clip distance: 10

The following code fragment changes the default settings in a SimpleUniverse object. The ViewPlatform is
moved to (1,1,1) looking at the origin. The field of view is set to 0.4p:

SimpleUniverse su = new SimpleUniverse(cv);
TransformGroup tg =
 su.getViewingPlatform().getMultiTransformGroup().getTransformGroup(0);
Transform3D tx = new Transform3D();
tx.lookAt(new Point3d(1,1,1), new Point3d(0,0,0), new Vector3d(0,1,0));
tx.invert();
tg.setTransform(tx);
View view = su.getViewer().getView();
view.setFieldOfView(0.4*Math.PI);

Listing 8.2 illustrates the applications of SimpleUniverse and the effects of controlling standard Java 3D views.
This example displays a dodecahedron in a rotating view. The visual object in the content branch, a
dodecahedron, is in a fixed position. However, the view is set to rotate about the y-axis, allowing the user to see
the different sides of the dodecahedron (See Figure 8.8.)

Listing 8.2. RotateView.java
(This item is displayed on pages 259 - 260 in the print version)

 1 package chapter8;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import chapter6.*;
10 import java.applet.*;
11 import com.sun.j3d.utils.applet.MainFrame;
12
13 public class RotateView extends Applet {
14 public static void main(String[] args) {
15 new MainFrame(new RotateView(), 640, 480);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

16 }
17
18 public void init() {
19 // create canvas

[Page 260]
20 GraphicsConfiguration gc =
21 SimpleUniverse.getPreferredConfiguration();
22 Canvas3D cv = new Canvas3D(gc);
23 setLayout(new BorderLayout());
24 add(cv, BorderLayout.CENTER);
25 SimpleUniverse su = new SimpleUniverse(cv, 2);
26 su.getViewingPlatform().setNominalViewingTransform();
27 BranchGroup bg = createSceneGraph(su.getViewingPlatform().
28 getMultiTransformGroup().getTransformGroup(0));
29 bg.compile();
30 su.addBranchGraph(bg);
31 }
32
33 private BranchGroup createSceneGraph(TransformGroup vtg) {
34 BranchGroup root = new BranchGroup();
35 // object
36 Appearance ap = new Appearance();
37 ap.setMaterial(new Material());
38 Shape3D shape = new Dodecahedron();
39 shape.setAppearance(ap);
40 Transform3D tr = new Transform3D();
41 tr.setScale(0.25);
42 TransformGroup tg = new TransformGroup(tr);
43 root.addChild(tg);
44 tg.addChild(shape);
45 // view rotator
46 Alpha alpha = new Alpha(-1, 4000);
47 RotationInterpolator rotator =
48 new RotationInterpolator(alpha, vtg);
49 BoundingSphere bounds = new BoundingSphere();
50 rotator.setSchedulingBounds(bounds);
51 root.addChild(rotator);
52 // lights
53 Background background = new Background(1.0f, 1.0f, 1.0f);
54 background.setApplicationBounds(bounds);
55 root.addChild(background);
56 AmbientLight light = new AmbientLight
57 (true, new Color3f(Color.red));
58 light.setInfluencingBounds(bounds);
59 root.addChild(light);
60 PointLight ptlight = new PointLight(new Color3f(Color.green),
61 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
62 ptlight.setInfluencingBounds(bounds);
63 root.addChild(ptlight);
64 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
65 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
66 ptlight2.setInfluencingBounds(bounds);
67 root.addChild(ptlight2);
68 return root;
69 }
70 }

Figure 8.8. A rotating view lets you see the back sides of an object.
(This item is displayed on page 261 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 260]

The scene graph is shown in Figure 8.9. This program is similar to Listing 6.3. However, in this case the rotation
behavior is not applied to the visual object (a dodecahedron) but to the view (line 48). The object appears to be
rotating in the opposite direction. But because the lights do not move, the lighting of the faces does not change
as the view rotates. We can even see the unlit back faces.

Figure 8.9. The scene graph of the view-rotation example.
(This item is displayed on page 261 in the print version)

The SimpleUniverse is created with two TransformGroup nodes (line 25). One transform node is used by the
setNominalViewTransform method to move the view back. The other transform node is the target of the
rotation.

[Page 261]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

8.4.4. Creating Your Own View

Even though SimpleUniverse provides a convenient way to construct the view branch for many Java 3D
applications, it may not be adequate in some cases. You can always construct the view branch manually by
setting up the appropriate view-related objects such as View, ViewPlatform, PhysicalBody,
PhysicalEnvironment, and so on. The following code illustrates the procedure to manually create a view branch:

[Page 262]

View view = new View();
view.setProjectionPolicy(View.PARALLEL_PROJECTION);
ViewPlatform vp = new ViewPlatform();
view.addCanvas3D(cv);
view.attachViewPlatform(vp);
view.setPhysicalBody(new PhysicalBody());
view.setPhysicalEnvironment(new PhysicalEnvironment());
Transform3D trans = new Transform3D();
trans.lookAt(eye, center, vup);
trans.invert();
TransformGroup tg = new TransformGroup(trans);
tg.addChild(vp);
BranchGroup bgView = new BranchGroup();
bgView.addChild(tg);

A scene graph may contain more than one view. Multiple views on a single scene graph allow you to see the same
virtual world from different perspectives.

Listing 8.3 shows an application with multiple views. The same object, a rotating 3D text, is rendered with four
different views. One is a standard perspective view provided by the SimpleUniverse. The other three have parallel
projections in the x-, y-, and z-directions. (See Figure 8.10.)

Listing 8.3. MultipleViews.java
(This item is displayed on pages 262 - 264 in the print version)

 1 package chapter8;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class MultipleViews extends Applet {
 13 public static void main(String[] args) {
 14 new MainFrame(new MultipleViews(), 640, 480);
 15 }
 16
 17 public void init() {
 18 // create 4 Canvas3D objects
 19 this.setLayout(new GridLayout(2,2));
 20 GraphicsConfiguration gc =
 21 SimpleUniverse.getPreferredConfiguration();
 22 // first view: standard
 23 Canvas3D cv = new Canvas3D(gc);
 24 add(cv);
 25 SimpleUniverse su = new SimpleUniverse(cv);
 26 su.getViewingPlatform().setNominalViewingTransform();
 27 // second view: x direction
 28 cv = new Canvas3D(gc);
 29 add(cv);
 30 BranchGroup bgView = createView(cv, new Point3d(2.7,0,0),
 31 new Point3d(0,0,0), new Vector3d(0,1,0));
 32 su.addBranchGraph(bgView);
 33 // third view: z direction

[Page 263]
 34 cv = new Canvas3D(gc);
 35 add(cv);
 36 bgView = createView(cv, new Point3d(0, 0, 2.7),
 37 new Point3d(0,0,0), new Vector3d(0,1,0));
 38 su.addBranchGraph(bgView);
 39 // fourth view: y direction
 40 cv = new Canvas3D(gc);
 41 add(cv);
 42 bgView = createView(cv, new Point3d(0,2.7,0),

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 43 new Point3d(0,0,0), new Vector3d(0,0,1));
 44 su.addBranchGraph(bgView);
 45 // content branch
 46 BranchGroup bg = createSceneGraph();
 47 bg.compile();
 48 su.addBranchGraph(bg);
 49 }
 50
 51 private BranchGroup createView(Canvas3D cv, Point3d eye,
 52 Point3d center, Vector3d vup) {
 53 View view = new View();
 54 view.setProjectionPolicy(View.PARALLEL_PROJECTION);
 55 ViewPlatform vp = new ViewPlatform();
 56 view.addCanvas3D(cv);
 57 view.attachViewPlatform(vp);
 58 view.setPhysicalBody(new PhysicalBody());
 59 view.setPhysicalEnvironment(new PhysicalEnvironment());
 60 Transform3D trans = new Transform3D();
 61 trans.lookAt(eye, center, vup);
 62 trans.invert();
 63 TransformGroup tg = new TransformGroup(trans);
 64 tg.addChild(vp);
 65 BranchGroup bgView = new BranchGroup();
 66 bgView.addChild(tg);
 67 return bgView;
 68 }
 69
 70 private BranchGroup createSceneGraph() {
 71 BranchGroup root = new BranchGroup();
 72 TransformGroup spin = new TransformGroup();
 73 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 74 root.addChild(spin);
 75 // object
 76 Font3D font = new Font3D(new Font("Serif", Font.PLAIN, 1),
 77 new FontExtrusion());
 78 Text3D text = new Text3D(font, "Java");
 79 Appearance ap = new Appearance();
 80 ap.setMaterial(new Material());
 81 Shape3D shape = new Shape3D(text, ap);
 82 Transform3D tr = new Transform3D();
 83 tr.setTranslation(new Vector3f(-1f, -0.25f, 0f));
 84 TransformGroup tg = new TransformGroup(tr);
 85 spin.addChild(tg);
 86 tg.addChild(shape);
 87 // rotator
 88 Alpha alpha = new Alpha(-1, 24000);
 89 RotationInterpolator rotator = new RotationInterpolator
 90 (alpha, spin);
 91 BoundingSphere bounds = new BoundingSphere();
 92 rotator.setSchedulingBounds(bounds);
 93 spin.addChild(rotator);

[Page 264]
 94 // background and light
 95 Background background = new Background(1.0f, 1.0f, 1.0f);
 96 background.setApplicationBounds(bounds);
 97 root.addChild(background);
 98 AmbientLight light = new AmbientLight
 99 (true, new Color3f(Color.red));
100 light.setInfluencingBounds(bounds);
101 root.addChild(light);
102 PointLight ptlight = new PointLight(new Color3f(Color.green),
103 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
104 ptlight.setInfluencingBounds(bounds);
105 root.addChild(ptlight);
106 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
107 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
108 ptlight2.setInfluencingBounds(bounds);
109 root.addChild(ptlight2);
110 return root;
111 }
112 }

Figure 8.10. Four views of a scene.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

This program creates four different views in the same scene graph. One view is the standard view in a
SimpleUniverse with a perspective projection. The other three have parallel projections along the x-, y-, z-axes.
Consequently, they are the front-elevation, top-elevation, and side-elevation projections found in engineering
drawings.

The scene graph for the example is given in Figure 8.11. Four Canvas3D objects are placed in a grid. The
createView method (line 51) creates the necessary objects for a parallel view. Each view has separate instances
of BranchGroup, TransformGroup, ViewPlatform, View, PhysicalBody, PhysicalEnvironment. The type of
projection is set with a method in View

view.setProjectionPolicy(View.PARALLEL_PROJECTION);

[Page 265]

Figure 8.11. Scene graph of the multiple-view example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The viewing matrix is set through the TransformGroup. The inverse of the matrix defined by the lookAt method
is the appropriate matrix for the TransformGroup:

Transform3D trans = new Transform3D();
trans.lookAt(eye, center, vup);
trans.invert();
TransformGroup tg = new TransformGroup(trans);

Three calls to createView method are made to create three different views. Each view rooted at a BranchGroup is
attached to the Locale. The three views are linked to three Canvas3D objects to display the rendered images.

The method createSceneGraph sets up the content branch of the scene graph. The scene contains a rotating 3D
text "Java," a background, and lights.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 265 (continued)]

8.5. Picking
It is sometimes necessary to consider the inverse process of the viewing. Given a point in the rendered view
plate, one might want to determine the visual objects that project to the point. This is the process known as
picking. A typical use of picking is to allow a user to select objects from the rendered image using a mouse.

Clearly a point in the 2D view plate does not correspond to a single point in the 3D virtual world under the
projection. Instead, a ray of points will be projected to the point. If we treat the point more realistically as a disk
of a positive radius, to allow a certain tolerance instead of an ideal point, then the pre-images of the point will be
a cone (in perspective projections) or a cylinder (in parallel projections).

[Page 266]

Consider the simple projection given in Figure 8.3. If the coordinates (x', y') are in the view plate, the coordinates
(x, y, z) of the pick ray satisfy the equations

x = x'(1 - z/d)

y = y'(1 - z/d)

If one chooses the parameter t = 1 - z/d, then the line equation of the pick ray is

x = x't

y = y't

z = d(1 - t)

If the point is considered as a disk with radius r, then the pick cone has the equation

Java 3D offers several levels of support for picking operations. The core picking functionalities are supported by
the PickShape classes, the SceneGraphPath class, and the pick methods in BranchGroup and Locale classes. The
classes in the utility packages com.sun.j3d.utils.picking and com.sun.j3d.utils.picking.behavior provide
high-level supports for picking operations.

A basic picking operation is performed by creating a PickShape object and calling a pick method in a BranchGroup
or Locale. The results of the picking are returned as SceneGraphPath objects.

The PickShape family of classes defines various picking shapes. Figure 8.12. shows the hierarchy of pick shapes.

Figure 8.12. PickShape class hierarchy.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The BranchGroup and Locale classes contain the following methods to perform picking:

SceneGraphPath[] pickAll(PickShape pickShape)
SceneGraphPath[] pickAllSorted(PickShape pickShape)
SceneGraphPath pickAny(PickShape pickShape)
SceneGraphPath pickClosest(PickShape pickShape)

A SceneGraphPath object represents a path from the Locale object to a terminal node in a scene graph.
SceneGraphPath is useful for picking, because in the result of a picking operation it is often necessary to know the
entire path rather than just the picked node.

The following code fragment outlines the procedure to perform a picking on a BranchGroup:

[Page 267]
Point3d origin = new Point3d(0,0,0);
Vector3d direction = new Vector3d(0,1,-1);
PickShape pickShape = new PickRay(origin, direction);
SceneGraphPath[] paths = branchGroup.pickAll(pickShape);
for (int i = 0; i < paths.length; i++) {
 <operations on paths[i]...>
}

The most common application of picking is to allow users to select objects on a rendered image. To simplify this
process, the utility package com.sun.j3d.utils.picking contains four classes for performing general picking
operations on a branch of a scene graph (Figure 8.13).

Figure 8.13. Picking utility classes.

The PickTool class provides a convenient way to set up a pick shape and perform picking on a branch of scene
graph. It has the following pick methods:

PickResult[] pickAll()
PickResult[] pickAllSorted()
PickResult pickAny()
PickResult pickClosest()

The PickCanvas subclass simplifies the pick shape setup by an association with a canvas. A mouse event can be
used to automatically generate pick shape. The following constructor of PickCanvas establishes a connection with
a Canvas3D object and a BranchGroup object. The picking operation will be performed on the branch, and the
picking shape can be formed based on the mouse event on the canvas:

public PickCanvas(Canvas3D cv, BranchGroup bg)

A similar constructor exists for a Locale object:

public PickCanvas(Canvas3D cv, Locale lc)

The results of picking are returned in PickResult objects. PickResult contains information such as the picked
node object, the SceneGraphPath, and the intersection. The PickIntersection class contains more detailed
information about the intersection of the pick shape and the picked node.

Listing 8.4 illustrates a simple application of the picking utility classes. The scene in this example consists of six
primitives: a sphere, a box, a cylinder, a cone, a tetrahedron, and a dodecahedron. They are rotating about the y-
axis in a wireframe form. When the user clicks on one of the primitives, the object will take on an illuminated

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

colored appearance. (See Figure 8.14.)

Listing 8.4. Picking.java
(This item is displayed on pages 267 - 270 in the print version)

 1 package chapter8;
 2
 3 import javax.vecmath.*;

[Page 268]
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import com.sun.j3d.utils.picking.*;
 10 import chapter6.*;
 11 import java.applet.*;
 12 import com.sun.j3d.utils.applet.MainFrame;
 13
 14 public class Picking extends Applet implements MouseListener{
 15 public static void main(String[] args) {
 16 new MainFrame(new Picking(), 640, 480);
 17 }
 18
 19 PickCanvas pc;
 20 Appearance lit = new Appearance();
 21
 22 public void init() {
 23 // create canvas
 24 GraphicsConfiguration gc =
 25 SimpleUniverse.getPreferredConfiguration();
 26 Canvas3D cv = new Canvas3D(gc);
 27 setLayout(new BorderLayout());
 28 add(cv, BorderLayout.CENTER);
 29 cv.addMouseListener(this);
 30 BranchGroup bg = createSceneGraph();
 31 bg.compile();
 32 pc = new PickCanvas(cv, bg);
 33 pc.setMode(PickTool.GEOMETRY);
 34 SimpleUniverse su = new SimpleUniverse(cv);
 35 su.getViewingPlatform().setNominalViewingTransform();
 36 su.addBranchGraph(bg);
 37 }
 38
 39 private BranchGroup createSceneGraph() {
 40 BranchGroup root = new BranchGroup();
 41 TransformGroup spin = new TransformGroup();
 42 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 43 root.addChild(spin);
 44 // appearance
 45 Appearance wireframe = new Appearance();
 46 wireframe.setPolygonAttributes(new PolygonAttributes(
 47 PolygonAttributes.POLYGON_LINE,
 48 PolygonAttributes.CULL_BACK, 0f));
 49 wireframe.setColoringAttributes(new ColoringAttributes(
 50 0f, 0f, 0f, ColoringAttributes.SHADE_FLAT));
 51 lit.setMaterial(new Material());
 52 // objects
 53 Box box =
 54 new Box(1.2f, 0.3f, 0.8f, Primitive.ENABLE_GEOMETRY_PICKING |
 55 Primitive.ENABLE_APPEARANCE_MODIFY |
 56 Primitive.GENERATE_NORMALS, wireframe);
 57 Sphere sphere = new Sphere
 58 (1f, Primitive.ENABLE_GEOMETRY_PICKING |
 59 Primitive.ENABLE_APPEARANCE_MODIFY |
 60 Primitive.GENERATE_NORMALS, wireframe);
 61 Cylinder cylinder = new Cylinder(1.0f, 2.0f,
 62 Primitive.ENABLE_GEOMETRY_PICKING |
 63 Primitive.ENABLE_APPEARANCE_MODIFY |
 64 Primitive.GENERATE_NORMALS, wireframe);

[Page 269]
 65 Cone cone = new Cone
 66 (1.0f, 2.0f, Primitive.ENABLE_GEOMETRY_PICKING |
 67 Primitive.ENABLE_APPEARANCE_MODIFY |
 68 Primitive.GENERATE_NORMALS, wireframe);
 69 Transform3D tr = new Transform3D();
 70 tr.setScale(0.2);
 71 TransformGroup tg = new TransformGroup(tr);
 72 spin.addChild(tg);
 73 tg.addChild(box);
 74 tr.setIdentity();
 75 tr.setTranslation(new Vector3f(0f,1.5f,0f));
 76 TransformGroup tgSphere = new TransformGroup(tr);
 77 tg.addChild(tgSphere);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 78 tgSphere.addChild(sphere);
 79 tr.setTranslation(new Vector3f(-1f,-1.5f,0f));
 80 TransformGroup tgCylinder = new TransformGroup(tr);
 81 tg.addChild(tgCylinder);
 82 tgCylinder.addChild(cylinder);
 83 tr.setTranslation(new Vector3f(1f,-1.5f,0f));
 84 TransformGroup tgCone = new TransformGroup(tr);
 85 tg.addChild(tgCone);
 86 tgCone.addChild(cone);
 87 Shape3D tetra = new Shape3D(new Tetrahedron(), wireframe);
 88 PickTool.setCapabilities(tetra, PickTool.INTERSECT_TEST);
 89 tetra.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
 90 tr = new Transform3D();
 91 tr.setScale(0.12);
 92 tr.setTranslation(new Vector3f(0f, 0f, -0.4f));
 93 tg = new TransformGroup(tr);
 94 spin.addChild(tg);
 95 tg.addChild(tetra);
 96 Shape3D shape = new Dodecahedron();
 97 shape.setAppearance(wireframe);
 98 PickTool.setCapabilities(shape, PickTool.INTERSECT_TEST);
 99 shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
100 tr = new Transform3D();
101 tr.setScale(0.12);
102 tr.setTranslation(new Vector3f(0f, 0f, 0.4f));
103 tg = new TransformGroup(tr);
104 spin.addChild(tg);
105 tg.addChild(shape);
106 // rotation
107 Alpha alpha = new Alpha(-1, 4000);
108 RotationInterpolator rotator =
109 new RotationInterpolator(alpha, spin);
110 BoundingSphere bounds = new BoundingSphere();
111 rotator.setSchedulingBounds(bounds);
112 spin.addChild(rotator);
113 // background and light
114 Background background = new Background(1.0f, 1.0f, 1.0f);
115 background.setApplicationBounds(bounds);
116 root.addChild(background);
117 AmbientLight light =
118 new AmbientLight(true, new Color3f(Color.red));
119 light.setInfluencingBounds(bounds);
120 root.addChild(light);
121 PointLight ptlight = new PointLight(new Color3f(Color.green),
122 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
123 ptlight.setInfluencingBounds(bounds);
124 root.addChild(ptlight);
125 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),

[Page 270]
126 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
127 ptlight2.setInfluencingBounds(bounds);
128 root.addChild(ptlight2);
129 return root;
130 }
131
132 public void mouseClicked(java.awt.event.MouseEvent mouseEvent) {
133 pc.setShapeLocation(mouseEvent);
134 PickResult[] results = pc.pickAll();
135 for (int i = 0; (results != null) &&
136 (i < results.length); i++) {
137 Node node = results[i].getObject();
138 if (node instanceof Shape3D) {
139 ((Shape3D)node).setAppearance(lit);
140 System.out.println(node.toString());
141 }
142 }
143 }
144
145 public void mouseEntered(java.awt.event.MouseEvent mouseEvent) {
146 }
147
148 public void mouseExited(java.awt.event.MouseEvent mouseEvent) {
149 }
150
151 public void mousePressed(java.awt.event.MouseEvent mouseEvent) {
152 }
153
154 public void mouseReleased(java.awt.event.MouseEvent mouseEvent) {
155 }
156 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 8.14. Picking demo.

[Page 271]

Six visual objects—a sphere, a box, a cone, a cylinder, a tetrahedron, and a dodecahedron—are displayed in the
wireframe form initially. When an object is clicked on with the mouse, it will change its appearance. It will become
filled and illuminated by the lights.

The visual objects are created with a wireframe appearance. Permissions on each object are granted for picking
and for appearance change.

A PickCanvas object is created (line 32) to perform the pick operation when a mouse click event is received on
the Canvas3D object. The picked Shape3D object will change its appearance to enable lighting.

In the event handler mouseClicked, the picking shape is set according to the mouse location:

pc.setShapeLocation(mouseEvent);

The pickAll() method is called to retrieve all picked objects (line 134). For each of the picked Shape3D nodes, its
appearance is changed.

Note that a primitive object may contain several Shape3D nodes, and a pick operation may not necessarily pick all
the nodes associated with the primitive.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 271 (continued)]

8.6. Head Tracking
The settings of a view depend on the location and orientation of the eyes. If the viewer's head position changes,
the view needs to be adjusted accordingly. Dynamically recalculating the projection matrix and viewing matrix for
a view can be a very tedious task for application programmers. It is therefore desirable for an API to offer the
head-tracking feature.

Java 3D view model provides support for automatic head tracking through a set of classes including View, Sensor,
PhysicalBody, and PhysicalEnvironment.

The head tracking is based on the input from certain 6DOF (six-degrees-of-freedom) tracking devices. Java 3D
provides the InputDevice interface to define input devices. An implementation of InputDevice for a specific
device offers an array of Sensor. A Sensor object provides the input data from the device. The following methods
of InputDevice initialize the device and retrieve a Sensor object:

void initialize()
Sensor getSensor(int sensorIndex)

The PhysicalEnvironment object holds all registered input devices. To register an input device, you may use the
following method of PhysicalEnvironment:

void addInputDevice(InputDevice device)

The PhysicalEnvironment object also maintains a list of associations between the 6DOF entities and sensors. For
example, in a default PhysicalEnvironment object, the three predefined 6DOF entities—UserHead,
DominantHand, and NondominantHand—have indices 0, 1, and 2, respectively. To assign a sensor to the UserHead,
you may call the following method in PhysicalEnvironment:

setSensor(0, sensor);

The head tracking in a view is by default disabled. To enable head tracking, call the following method in View:

view.setTrackingEnable(true);

There are two different mounting options for a display in a head-tracked view: room mounted and head mounted.
To set this option, call the following method in View:

void setViewPolicy(int viewPolicy)

[Page 272]

The following flags can be used to set room-mounted or head-mounted view policies:

SCREEN_VIEW
HMD_VIEW

In the head-mounted mode, it is also necessary to change the monoscopic view policy in the Canvas3D object
from View.CYCLOPEAN_EYE_VIEW to View.LEFT_EYE_VIEW:

canvas.setMonoscopicViewPolicy(View.LEFT_EYE_VIEW);

The visual representation of the viewer itself in the scene is called the avatar. The Viewer object in a
SimpleUniverse object provides an option to include a viewer avatar:

ViewerAvatar avatar = new ViewerAvatar();
su.getViewer().setAvatar(avatar);

The ViewerAvatar is a subclass of BranchGroup, so the shapes for the avatar can be added to it as child nodes.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The location of the avatar defined here is associated with the view platform, and it may not be the actual head
position. Listing 8.5 demonstrates the head-tracking feature of the Java 3D view model using a "virtual input
device." The class in Listing 8.5 uses the LineAxes class in Listing 8.6. The scene contains a simple rotating color
cube on a background image. The virtual input device in a separate window provides a 6DOF input to control the
head position. An avatar consisting of three axis lines is also added to the scene. The avatar is visible when the
head is moved behind it.

Listing 8.5. HeadTracking.java
(This item is displayed on pages 272 - 273 in the print version)

 1 package chapter8;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import com.sun.j3d.utils.geometry.ColorCube;
 6 import com.sun.j3d.utils.universe.*;
 7 import javax.media.j3d.*;
 8 import javax.vecmath.*;
 9 import java.net.URL;
10 import java.awt.image.*;
11 import javax.imageio.*;
12 import java.applet.*;
13 import com.sun.j3d.utils.applet.MainFrame;
14
15 public class HeadTracking extends Applet {
16 public static void main(String[] args) {
17 new MainFrame(new HeadTracking(), 500, 500);
18 }
19
20 public void init() {
21 // create canvas
22 GraphicsConfiguration gc =
23 SimpleUniverse.getPreferredConfiguration();
24 Canvas3D cv = new Canvas3D(gc);
25 setLayout(new BorderLayout());
26 add(cv, BorderLayout.CENTER);
27 BranchGroup scene = createSceneGraph();
28 SimpleUniverse su = new SimpleUniverse(cv);
29 // add avatar
30 LineAxes axes = new LineAxes(0.2f);
31 Shape3D shape = new Shape3D(axes);
32 ViewerAvatar va = new ViewerAvatar();
33 va.addChild(shape);
34 su.getViewer().setAvatar(va);

[Page 273]
35 // install the VirtualInputDevice
36 String[] args = new String[0];
37 InputDevice device = new VirtualInputDevice(args);
38 device.initialize();
39 PhysicalEnvironment pe = su.getViewer().getPhysicalEnvironment();
40 pe.addInputDevice(device);
41 pe.setSensor(0, device.getSensor(0));
42 // set up head tracking
43 su.getViewingPlatform().setNominalViewingTransform();
44 pe.setCoexistenceCenterInPworldPolicy(View.NOMINAL_HEAD);
45 View view = su.getViewer().getView();
46 view.setUserHeadToVworldEnable(true);
47 view.setCoexistenceCenteringEnable(false);
48 Screen3D screen = cv.getScreen3D();
49 Transform3D tr = new Transform3D();
50 tr.setTranslation(new Vector3d(0.1, 0.1, 0.0));
51 screen.setTrackerBaseToImagePlate(tr);
52 view.setTrackingEnable(true);
53 su.addBranchGraph(scene);
54 }
55
56 public BranchGroup createSceneGraph() {
57 BranchGroup objRoot = new BranchGroup();
58 TransformGroup objTrans = new TransformGroup();
59 objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
60 objRoot.addChild(objTrans);
61 objTrans.addChild(new ColorCube(0.2));
62 Transform3D yAxis = new Transform3D();
63 Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE,
64 0, 0,
65 4000, 0, 0,
66 0, 0, 0);
67 RotationInterpolator rotator =
68 new RotationInterpolator(rotationAlpha, objTrans, yAxis,
69 0.0f, (float) Math.PI*2.0f);
70 BoundingSphere bounds =
71 new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);
72 rotator.setSchedulingBounds(bounds);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

73 objTrans.addChild(rotator);
74 // background
75 URL url = getClass().getClassLoader().getResource
76 ("images/bg.jpg");
77 BufferedImage bi = null;
78 try {
79 bi = ImageIO.read(url);
80 } catch (Exception ex) {
81 ex.printStackTrace();
82 }
83 ImageComponent2D image =
84 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
85 Background background = new Background(image);
86 background.setApplicationBounds(bounds);
87 objRoot.addChild(background);
88 return objRoot;
89 }
90 }

Listing 8.6. LineAxes.java
(This item is displayed on pages 273 - 274 in the print version)

 1 package chapter8;
 2

[Page 274]
 3 import javax.media.j3d.*;
 4 import javax.vecmath.*;
 5
 6 public class LineAxes extends LineArray{
 7 public LineAxes(float len) {
 8 super(6, LineArray.COORDINATES | LineArray.COLOR_3);
 9 setCoordinate(0, new Point3f(-len,0f,0f));
10 setCoordinate(1, new Point3f(len,0,0f));
11 setCoordinate(2, new Point3f(0f,-len,0f));
12 setCoordinate(3, new Point3f(0f,len,0f));
13 setCoordinate(4, new Point3f(0f,0f,-len));
14 setCoordinate(5, new Point3f(0f,0f,len));
15 Color3f c0 = new Color3f(0f, 0f, 0f);
16 Color3f c1 = new Color3f(1f, 0f, 0f);
17 Color3f c2 = new Color3f(0f, 1f, 0f);
18 Color3f c3 = new Color3f(0f, 0f, 1f);
19 setColor(0, c0);
20 setColor(1, c1);
21 setColor(2, c0);
22 setColor(3, c2);
23 setColor(4, c0);
24 setColor(5, c3);
25 }
26 }

To demonstrate the view with head tracking, it is necessary to have a head-tracking device. A
VirtualInputDevice class (which depends on three other classes: PositionControls, RotationControls, and
WheelControls) is included in the demo programs of the Java 3D package. It is an implementation of the
InputDevice interface that provides 6DOF input through a separate control window. The control window, as
shown in Figure 8.15, allows movements in three directions and rotations about three axes. The
VirtualInputDevice is used in this example to avoid dependency on special hardware devices (line 37).

Figure 8.15. A head-tracking example. A virtual input device provides the simulated tracking input to
the head-tracked view.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 275]

The scene graph is shown in Figure 8.16. The graphics content branch contains a rotating cube on an image-
based background. The view branch is constructed with SimpleUniverse. A ViewerAvatar is added to help
visualize the effects of head tracking (lines 29–34). The avatar is a set of coordinate axes defined by the
geometry class LineAxes. LineAxes is a subclass of LineArray and it defines three colored line segments.

Figure 8.16. The scene graph for the head-tracking example.

An instance of VirtualInputDevice is added to the PhysicalEnvironment (line 40). The first Sensor object from
the VirtualInputDevice is retrieved and assigned as the sensor for the UserHead entity in PhysicalEnvironment
(line 41). The head tracking is enabled by calling the setTrackingEnable method in View (line 52).

When head tracking is enabled, the origin of the default screen coordinate system is located at the lower left
corner of the physical display. This is usually inconvenient. To change the origin, a translation is performed by
calling the method setTrackerBaseToImagePlate (Transform3D) in Screen3D (line 51).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 275 (continued)]

Key Classes and Methods
javax.media.j3d.View A class encapsulating a 3D view.

javax.media.j3d.ViewPlatform A leaf-node class representing the presence of a view in the virtual world.

javax.media.j3d.Canvas3D An AWT component representing the drawing surface of Java 3D.

javax.media.j3d.Screen3D A class encapsulating the physical display screen.

javax.media.j3d.PhysicalBody A class encapsulating the body of the user.

[Page 276]

javax.media.j3d.PhysicalEnvironment A class encapsulating the physical environment, including the
sensor input devices.

javax.media.j3d.InputDevice An interface defining an input device for tracking.

javax.media.j3d.Sensor A class encapsulating tracking-device input values.

com.sun.j3d.util.universe.ViewerAvatar A BranchGroup class for avatar objects attached to a Viewer
in SimpleUniverse.

javax.media.j3d.PickShape The root class of a family of classes for the picking shapes.

javax.media.j3d.BranchGroup.pickAll(PickShape) A method to pick all child objects that intersect the
pick shape. It is also available in Locale.

javax.media.j3d.BranchGroup.pickAny(PickShape) A method to pick any child object that intersects the
pick shape. It is also available in Locale.

javax.media.j3d.BranchGroup.pickSorted(PickShape) A method to pick all child objects that intersect
the pick shape. It is also available in Locale.

javax.media.j3d.BranchGroup.pickClosest(PickShape) A method to pick the closest child object that
intersects the pick shape. It is also available in Locale.

com.sun.j3d.utils.picking.PickCanvas A utility class for performing picking based on canvas
coordinates.

javax.media.j3d.View.setTrackingEnable(boolean) A method to enable head tracking.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 276 (continued)]

Key Terms
view volume

The portion of the virtual space that is visible in a view.

projection matrix

A matrix defining the view volume.

viewing matrix

A matrix defining the location and orientation of a view in the virtual space.

perspective projection

A projection in which all projectors pass through a fixed point.

parallel projection

A projection in which all projectors are parallel.

vrp

View reference point, eye, or viewpoint. A point representing the eye position or center of projection.

view center

A center location defining the direction in which the eye is looking.

view up direction

A direction that is considered up from the viewer's perspective.

FOV

Field of view. An angle for the visible portion of a view.

front clip plane

The front plane of a view frustum.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

back clip plane

The back plane of a view frustum.

aspect ratio

The ratio of height and width for an image.

compatibility mode

A special Java 3D view mode that is highly compatible with traditional OpenGL view settings.

6DOF

Six degrees of freedom. A device that provides 3D location and orientation information.

avatar

A visual representation of the viewer itself in a 3D scene.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 276 (continued)]

Chapter Summary
In this chapter, you learn the concepts of 3D views. A view defines the geometric aspects of rendering a
virtual world scene to a 2D image. There are two sets of attributes for the definition of a view: those
related to view projection and volume, and those related to the view positioning.

[Page 277]

The projection matrix captures the projection and view-volume settings of a view. Two types of projections
are commonly used in computer graphics: perspective projection and parallel projection. Both of them can
be represented as matrices with homogenous coordinates and projective transformations. The projection
matrix defines a projective transform that maps the specified view volume to a canonical volume such as a
cube centered at the origin.

The viewing matrix represents the camera's position and orientation in the virtual world. It is typically
specified with a point for the camera's location, a point at which the camera is looking, and an up direction
for the camera. The viewing matrix defines a transform that maps the camera from the specified position
to a canonical position.

Java 3D provides two different view modes: the compatibility mode and the standard noncompatibility
mode. The compatibility mode offers a simple way to set up a static camera-based view similar to lower-
level APIs such as OpenGL. The standard mode provides more powerful features such as supports for head-
mount cameras and head tracking.

Picking is a partial inversion of the viewing process. Picking refers to the selection of virtual world objects
based on the specifications of certain pick shapes. A typical application of picking is to allow the user to
select objects in a rendered image.

Java 3D contains basic support for picking in scene graphs through the pick shape classes, pick methods in
Locale and BranchGroup, and the BranchGroupPath class for pick results. Java 3D utility classes provide
convenient classes to simplify common picking operations such as picking through mouse actions on a
canvas.

Head tracking is integrated in the Java 3D view model. When enabled, the head-tracking feature
automatically calculates the appropriate view matrices based on the head-position information from input
devices.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 277 (continued)]

Review Questions

8.1 If a view frustum has a field of view p/4, and the two points (-1, 0, 0) and (1, 0, 0) are on the
two horizontal boundaries of the frustum, find the viewpoint. (This is exactly the transform
performed by setNominalViewTransform()).

8.2 Derive a matrix for the parallel projection along the direction (1, 0, 1) to the xy-plane.

8.3 Derive a matrix for the perspective projection with vrp at the origin and the view plate
perpendicular to z-axis centered at (0, 0, 1).

8.4 Find the projection matrix for the view volume specified by the following method call:

frustum(-3,3,-2,2,1,10)

8.5 Find the projection matrix for the view volume specified by the following method call:

frustum(-2,2,-1,1,2,4)

8.6 Find the projection matrix for the view volume specified by the following method call:

perspective(Math.PI/3,1.5,1,10)

[Page 278]

8.7 Find the projection matrix for the view volume specified by the following method call:

ortho(-3,3,-2,2,1,10)

8.8 Find the projection matrix for the view volume specified by the following method call:

ortho(-2,2,-1,1,2,4)

8.9 Find the viewing matrix for changing the view up direction to (1, 1, 0).

8.10 Find the viewing matrix specified by the following method call:

Point3d eye = new Point3d(0,0,0);
Point3d look = new Point3d(0,0,1);
Vector3d up = new Vector3d(0,-1,0);
lookAt(eye, look, up);

8.11 Find the viewing matrix specified by the following method call:

Point3d eye = new Point3d(0,0,-1);
Point3d look = new Point3d(0,0,0);
Vector3d up = new Vector3d(1,0,0);
lookAt(eye, look, up);

8.12 Is it possible to set the front clip distance to 0?

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 278 (continued)]

Programming Exercises

8.1 Write a Java 3D program to display a rotating ColorCube using a SimpleUniverse object. Modify
the view platform transform to move the ViewPlatform to (0, 0, 3).

8.2 Modify the program in Listing 8.1 to use a parallel projection in the view.

8.3 Use a SimpleUniverse object to set up a view and to display a sphere. Move the sphere close to
the view until it is partially truncated by the front clipping plane.

8.4 Write a program to examine the matrix generated by the lookAt method of the Transform3D
class. Allow users to enter the parameters for the method and print the resulting matrix.

8.5 Write a program to examine the matrix generated by the perspective method of the
Transform3D class. Allow users to enter the parameters for the method and print the resulting
matrix.

8.6 Write a program to examine the matrix generated by the frustum method of the Transform3D
class. Allow users to enter the parameters for the method and print the resulting matrix.

8.7 Write a program to examine the matrix generated by the ortho method of the Transform3D
class. Allow users to enter the parameters for the method and print the resulting matrix.

8.8 Write a Java 3D program with a compatibility-mode view. Use a perspective projection with a field
of view p/3. Place the view at (0, 0, 1) looking down the z-axis. Display an Axes object defined in
Chapter 7.

8.9 Write a program with two different views. One view is positioned at (0, 0, 2) looking along the
negative z-axis with the y-axis as up direction. The other view is positioned at looking along the
z-axis with the negative y-axis as up direction. Place a rotating 3D text near the origin.

8.10 Write a program with four views with different fields of view. All views are positioned at (0, 0, 2)
looking along the negative z-axis with the y-axis as up direction. The fields of view are set to p/8,
p/4, p/2, and 3p/4. Place a 3D text and an Axes object (from Chapter 7) in the scene.

[Page 279]

8.11 Construct a scene with a sphere and a cone, each attached to a TransformGroup node.
Implement a picking operation with a PickCanvas. If an object is picked by a mouse click, it will
rotate by p/4.

8.12 Construct a scene with two spheres. Implement a picking operation with Pick Canvas. If a
sphere is picked by a mouse click, it changes to a cube. (Hint: You may use Switch nodes.)

8.13 Modify Listing 8.5 to create a head-mounted head-tracking view.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 281]

Chapter 9. Lighting and Texturing
(This item omitted from WebBook edition)

Objectives
To understand lighting models.

To identify point lights, directional lights, and spotlights.

To identify material properties.

To understand Java 3D coloring modes.

To create lit scenes with lights, surface normals, and materials.

To construct and apply fog nodes for atmospheric attenuation and depth cueing.

To apply 2D texture mapping and texture cube mapping.

To understand texture-coordinates generation.

[Page 282]

9.1. Introduction
Geometry defines the shapes and metrics of visual objects. Colors, textures, and other appearance details
constitute other important aspects of the rendering. Often the most computationally intensive tasks of graphics
rendering are related to achieving high-quality, photorealistic appearance of the visual objects.

Various methods of defining appearance exist, with different levels of rendering quality and computational
demand. Some of the simplest ways to render visual objects include:

Draw the vertices of the objects only.

Draw the outlines of the objects only (wireframe mode).

Use a single color for all surfaces of an object.

Use flat colors for faces of an object.

These simple coloring approaches are relatively easy to implement. However, they usually do not provide the
quality that can match the real images seen by human eyes or captured by photography.

In order to create photorealistic 3D graphics renderings, more sophisticated lighting and shading models are
needed. Illumination and texture models are computer graphics tools to enhance photorealism of the renderings.

A real image seen by an eye is formed by light energy emitted and reflected from the visual objects of a scene.
The transmission and interaction of lights in an environment can be very complex. Light sources have different
characteristics. Objects have different characteristics in reflection and refraction. Lights reflected off objects may
travel complex paths in the scene.

To model such a complex system exactly in computers is usually not feasible. Different approximation methods
are therefore necessary in order to implement a practical graphics system. A computer graphics system usually
applies simplified illumination models to achieve a reasonably realistic rendering of the scene. The Phong
illumination model is widely used. It incorporates light characteristics, geometry structures, and material
properties to obtain effective and efficient lighting calculations.

Commonly used techniques for enhancing rendering quality also include atmospheric attenuation and texture
mapping. An artificial fog is used to blend the distant objects in atmospheric attenuation and depth cueing. It
creates a foggy appearance. The texture-mapping technique maps images to surfaces of visual objects. It has the
advantage of creating a great deal of surface detail without complex modeling.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 282 (continued)]

9.2. Lights
Lights provide the sources for illuminating the graphics objects in a virtual world. Lights have color attributes,
positions, directions, and other characteristics depending on their specific types. There are typically four types of
lights in graphics systems: ambient lights, directional lights, point lights, and spotlights.

An ambient light is uniform in all directions and locations. It generally provides a simplified representation of the
numerous and weak interobject reflections existing in the real-world scene (Figure 9.1).

Figure 9.1. An ambient light represents weak random reflections.

[Page 283]

A directional light has a fixed direction. All light rays travel along this direction. A directional light does not have a
specific location, although it can be conveniently regarded as being located at infinity. It is a good model for a
distant light source such as the sun (Figure 9.2).

Figure 9.2. A directional light emits parallel light rays.

A point light has a location in the virtual world. It emits in all directions (Figure 9.3). A point light typically has an
attenuation that describes the decrease of the intensity as the distance from the light increases. The attenuation
is usually expressed as a coefficient (a function of distance) from 0.0 to 1.0 multiplied on the original intensity of
the light.

Figure 9.3. A point light has a specific location and emits light rays in all directions.

A spotlight is similar to a point light, but the directions of its emission are restricted. A spotlight radiates light rays
only in a focused, cone-shaped region (Figure 9.4). Besides the attenuation associated with the distance to the
light, as in a point light, a spotlight may also define an attenuation as a light ray moves away from the central
direction of the cone.

Figure 9.4. A spotlight emits light rays in a cone-shaped region.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 284]

Java 3D offers a family of Light classes for different types of lights described above. The Light class hierarchy is
shown in Figure 9.5.

Figure 9.5. The Light classes.

Some of the constructors for Light classes are listed below:

AmbientLight()
AmbientLight(boolean lightOn, Color3f color)
AmbientLight(Color3f color)
DirectionalLight()
DirectionalLight(boolean lightOn, Color3f color, Vector3f direction)
DirectionalLight(Color3f color, Vector3f direction)
PointLight()
PointLight(boolean lightOn, Color3f color,
Point3f position, Point3f attenuation)
PointLight(Color3f color, Point3f position, Point3f attenuation)
SpotLight()
SpotLight(boolean lightOn, Color3f color,
Point3f position, Point3f attenuation,
 Vector3f direction, float spreadAngle, float concentration)
SpotLight(Color3f color, Point3f position, Point3f attenuation,
 Vector3f direction, float spreadAngle, float concentration)

A light can be turned on or off. Besides the flag in the constructors, the on/off state can be set by calling the
following method:

void setEnable(boolean state)

The attenuation of PointLight and SpotLight due to the distance d to the light is defined with a quadratic
model.

A(d) = 1/(a0 + a1d + a2d2)

The attenuation can be defined with constructors or set with the method:

void setAttenuation(Point3f attenuation)

The Point3f parameter specifies the coefficients (a0, a1, a2) for the attenuation. For example, the coefficients (1,
0, 0) represent no attenuation for the light, A(d) = 1. The coefficients (1, 1, 0) represent the attenuation
function A(d) = 1/(1 + d), so at 1 meter away from the light the attenuation function has value 0.5 and at 4

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

meters away the attenuation is 0.2.

The attenuation due to the angle between a light ray and the central direction in a SpotLight is defined by an
exponential function of the cosine value of the angle

A(θ) = cosn θ

The function has the value 1 when the angle is 0, so there is no attenuation at the central direction. The
parameter n is the concentration exponent that takes a value from 0 to 128. It can be set by constructors or the
method

void setConcentration(float concentration)

[Page 285]

The value A(θ) decreases as the angle θ increases. If the concentration exponent is large, this decrease of A(θ)
will be faster, resulting in a more concentrated spotlight. If n = 0, there will be no attenuation as the angle
increases.

For the efficiency of rendering, a Light object has an associated influence bound. A visual object is affected by a
Light object only if it is located within the influence bound of the light. For each light created, it is necessary to
set an appropriate influence bound to avoid an unnecessarily lengthy rendering process. The following method
sets the influence bound:

void setInfluencingBounds(Bound bounds)

The influence bound can also be specified with a bounding leaf node

void setInfluencingBoundingLeaf(BoundingLeaf bounds)

Listing 9.1 illustrates the effects of different types of lights. The program displays a sphere illuminated with
different light sources (Figure 9.6). A list of checkboxes for the light types can be used to individually turn each
type of lights on or off.

Listing 9.1. TestLights.java
(This item is displayed on pages 285 - 287 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11
 12 public class TestLights extends Applet implements ItemListener {
 13 public static void main(String[] args) {
 14 new MainFrame(new TestLights(), 640, 480);
 15 }
 16
 17 AmbientLight aLight;
 18 DirectionalLight dLight;
 19 PointLight pLight;
 20 SpotLight sLight;
 21 SpotLight sLight2;
 22
 23 public void init() {
 24 // create canvas
 25 GraphicsConfiguration gc =
 26 SimpleUniverse.getPreferredConfiguration();
 27 Canvas3D cv = new Canvas3D(gc);
 28 setLayout(new BorderLayout());
 29 add(cv, BorderLayout.CENTER);
 30
 31 Panel menu = new Panel();
 32 menu.setLayout(new GridLayout(1,4));
 33 add(menu, BorderLayout.SOUTH);
 34 Checkbox mi = new Checkbox("Ambient", true);
 35 menu.add(mi);
 36 mi.addItemListener(this);
 37 mi = new Checkbox("Directional", true);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 38 menu.add(mi);
 39 mi.addItemListener(this);
 40 mi = new Checkbox("Point", true);

[Page 286]
 41 menu.add(mi);
 42 mi.addItemListener(this);
 43 mi = new Checkbox("Spot", true);
 44 menu.add(mi);
 45 mi.addItemListener(this);
 46
 47 SimpleUniverse su = new SimpleUniverse(cv, 2);
 48 su.getViewingPlatform().setNominalViewingTransform();
 49 BranchGroup bg = createSceneGraph(su.getViewingPlatform().
 50 getMultiTransformGroup().getTransformGroup(0));
 51 bg.compile();
 52 su.addBranchGraph(bg);
 53 }
 54
 55 Appearance ap;
 56 private BranchGroup createSceneGraph(TransformGroup vtg) {
 57 BranchGroup root = new BranchGroup();
 58 // object
 59 ap = new Appearance();
 60 ap.setMaterial(new Material());
 61 Sphere shape = new Sphere
 62 (0.5f, Sphere.GENERATE_NORMALS, 150, ap);
 63 root.addChild(shape);
 64 // view rotator
 65 Alpha alpha = new Alpha(-1, 4000);
 66 RotationInterpolator rotator = new RotationInterpolator
 67 (alpha, vtg);
 68 BoundingSphere bounds = new BoundingSphere();
 69 bounds.setRadius(2);
 70 rotator.setSchedulingBounds(bounds);
 71 root.addChild(rotator);
 72 // background and lights
 73 Background background = new Background(0.5f, 0.5f, 0.5f);
 74 background.setApplicationBounds(bounds);
 75 root.addChild(background);
 76 aLight = new AmbientLight(true, new Color3f(Color.red));
 77 aLight.setInfluencingBounds(bounds);
 78 aLight.setCapability(Light.ALLOW_STATE_WRITE);
 79 root.addChild(aLight);
 80 dLight = new DirectionalLight(
 81 new Color3f(Color.green), new Vector3f(0f,1f,0f));
 82 dLight.setCapability(Light.ALLOW_STATE_WRITE);
 83 dLight.setInfluencingBounds(bounds);
 84 root.addChild(dLight);
 85 pLight = new PointLight(
 86 new Color3f(Color.white), new Point3f(-0.7f,0.7f,0f),
 87 new Point3f(1f,0f,0f));
 88 pLight.setCapability(Light.ALLOW_STATE_WRITE);
 89 pLight.setInfluencingBounds(bounds);
 90 root.addChild(pLight);
 91 sLight = new SpotLight(
 92 new Color3f(Color.blue), new Point3f(0.7f,0.7f,0.7f),
 93 new Point3f(1f,0f,0f),
 94 new Vector3f(-0.7f,-0.7f,-0.7f), (float)(Math.PI/6.0), 0f);
 95 sLight.setCapability(Light.ALLOW_STATE_WRITE);
 96 sLight.setInfluencingBounds(bounds);
 97 root.addChild(sLight);
 98 sLight2 = new SpotLight(
 99 new Color3f(Color.orange), new Point3f(0.7f,0.7f,-0.7f),
100 new Point3f(1f,0f,0f),

[Page 287]
101 new Vector3f(-0.7f,-0.7f,0.7f), (float)(Math.PI/12.0), 128f);
102 sLight2.setCapability(Light.ALLOW_STATE_WRITE);
103 sLight2.setInfluencingBounds(bounds);
104 root.addChild(sLight2);
105 return root;
106 }
107
108 public void itemStateChanged(ItemEvent itemEvent) {
109 Checkbox cmi = (Checkbox)itemEvent.getSource();
110 String label = cmi.getLabel();
111 boolean state = cmi.getState();
112 if("Ambient".equals(label)) {
113 aLight.setEnable(state);
114 } else if ("Directional".equals(label)) {
115 dLight.setEnable(state);
116 } else if ("Point".equals(label)) {
117 pLight.setEnable(state);
118 } else if ("Spot".equals(label)) {
119 sLight.setEnable(state);
120 sLight2.setEnable(state);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

121 }
122 cmi.setState(state);
123 }
124 }

Figure 9.6. The effects of different types of lights. Left: a point light only. Right: all four types of
lights.

The scene graph of the program is shown in Figure 9.7. Four different types of lights (one AmbientLight, one
DirectionalLight, one PointLight, and two SpotLights) are created to illuminate the scene (lines 76�104).
The AmbientLight has a red color. The DirectionalLight is green and has the direction (0, 1, 0), so its light rays
are emitted upward. The PointLight is white and is located at (-0.7, 0.7, 0) with no attenuation. The first
SpotLight is blue and is located at (0.7, 0.7, 0.7) with no attenuation related to the distance. It points at the
direction (-0.7, -0.7, -0.7) with a spread angle p/6. The concentration exponent is set to 0, so there is no
attenuation related to the angle. The second SpotLight is orange and is located at (0.7, 0.7, -0.7) with no
attenuation related to the distance. It points at the direction (-0.7, -0.7, 0.7) with a spread angle p/12. The
concentration exponent is set to 128, so the light is highly concentrated along its main axis. All the lights use the
same Bounds object for their influencing bound. The bounding sphere has a radius of 2 to include all relevant
objects. A gray background object is added using the same bounding sphere.

[Page 288]

Figure 9.7. The scene graph for the example.

The visual object in the scene is a sphere of radius 0.5 (line 61). The number of divisions for the sphere is set to
150 to obtain a high-quality sphere. The sphere is centered at the origin. To support illumination the sphere has
surface normals generated and includes, in its Appearance, a Material object.

At the bottom of the window, a list of four checkboxes of the class Checkbox is created: Ambient, Directional,
Point, and Spot. The checkboxes turn the corresponding lights on or off. In order to switch the lights in the live
scene graph, all the lights have their capability bit ALLOW_STATE_WRITE set. The class TestLights implements the

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

ItemListener interface and listens to the item changes. When a menu item is selected, the state of the light is
toggled and the check mark on the menu item reflects the state of the light (lines 109�122).

The view is rotated by an interpolator to show the illumination of the sphere by the lights from different angles.
The directional light illuminates the bottom portion of the sphere. The point light and two spotlights cause three
different reflection spots on the upper portion of the sphere.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 288 (continued)]

9.3. Illumination Models
A truly accurate model of light reflection would be extremely complicated and impractical for computer graphics
implementations. A common practice in graphics is to select computationally efficient models that provide a good
approximation of visual realism. The classical Phong illumination model widely used in computer graphics is an
example of such attempts to balance computational efficiency and rendering quality.

The illumination of a point on a surface is illustrated in Figure 9.8. The surface normal N at the point is a line
perpendicular to the tangent plane at the point. L is the direction of the light source. The angle between L and N
is θ. The direction R mirrors L and the angle between R and N is also θ. V is the view direction. The angle between
V and R is denoted by a.

[Page 289]

Figure 9.8. Geometry of light reflection.

Typically three types of reflection are considered: ambient, diffuse, and specular.

The ambient reflection is the response to ambient light sources. It is uniform in all directions and is independent
of the surface normal.

The diffuse reflection represents the large number of small reflections on a surface that is not perfectly reflective.
Its intensity depends on the incidence angle θ, but does not depend on the angle to the viewer. The intensity is
the same when viewed from any direction. For most visual objects, the diffuse reflection is a major portion of all
reflections and is the one that defines our usual notion of the object color.

The specular reflection represents the concentrated reflection around the direction R on a shining surface. Its
intensity depends on the angle a as well as θ. The reflection is maximal at the direction R and decreases as the
angle a increases.

In the Phong model, the intensity of the point is given by the following illumination equation:

I = Iaka + Ipkd cos θ + Ipks cosn a

In the equation, Ia and Ip denote the light intensities from ambient light and a pointlike light source, respectively.
The attenuation of light is already considered in Ip. The reflection coefficients ka, kd, and ks correspond to the
ambient reflection, diffuse reflection, and specular reflection, respectively. The coefficients are determined by the
material properties of the surface. The quantity n is the specular reflection exponent that is also determined by
the material. Larger exponents result in a more focused highlight.

The illumination equation above can be applied to each color wavelength. Therefore, the coefficients ka, kd, ks
may vary depending on the color. Of course, calculating the illumination equation for a continuous spectrum of
colors is not practical. The common practice is to use a color model such as the RGB model. The illumination
equation is applied to each component of the model (red, green, blue in the RGB model).

In the case of multiple light sources, the contributions from every light are summed to obtain the total intensity.

The Phong illumination model is a local illumination model. It renders the visual objects individually without
considering the interactions among them. For example, reflections of other objects and shadows are not
generated. Advanced global models and techniques such as radiosity and ray tracing can provide solutions to
these questions, but these methods are also computationally much more expensive than the Phong model.

From the equation of the lighting model it is easy to see that the appearance of a visual object depends on its
material properties that define the reactions to lights as well as the geometry of the object and light sources.

The material properties are primarily defined by the reflection coefficients ka, kd, ks. These coefficients are

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

dependent upon the color wavelength. When using a color model, the coefficients are specified on each
component of the color model. For example, in an RGB model, kd may be specified by three numbers (0.9, 0.2,
0.0). This indicates that in the diffused reflection the material will reflect most of red, a little green, and no blue,
so the visual object will appear to be mostly red. The specular shininess exponent n is also a material property,
but it is typically specified as a fixed constant independent of the color.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 290]

9.4. Java 3D Lighting Models
Java 3D supports the Phong illumination model. A visual object is rendered according to this model when it is lit.
Java 3D uses an RGB color model for rendering. The illumination equation is applied to each of the three color
components.

The Material node-component class represents the material properties of the visual objects. The ambient,
diffuse, and specular coefficients are represented in the class using an RGB color model. The specular reflection
exponent n corresponds to the shininess in the Material class. The Material class also contains an emissive
coefficient that defines the light emitted by the object itself instead of external light sources. The following is a
partial list of methods for setting various parameters:

void setAmbientColor(Color3f color)
void setAmbientColor(float r, float g, float b)
void setDiffuseColor(Color3f color)
void setDiffuseColor(float r, float g, float b)
void setDiffuseColor(float r, float g, float b, float a)
void setSpecularColor(Color3f color)
void setSpecularColor(float r, float g, float b)
void setEmissiveColor(Color3f color)
void setEmissiveColor(float r, float g, float b)

There are three different coloring specifications for a visual object: the vertex color specification in its Geometry,
the ColoringAttributes in Appearance, and the lighting model. The selection of the coloring method for a
particular object is determined as follows:

1. If the vertex colors are specified in the geometry of the object, they are used to define the object coloring.

2. If a Material node component is defined for the object, the object is lit. The coloring of the object is
defined by the lighting model.

3. If the ColoringAttributes is defined for the appearance of the object, its color is used for the coloring of
the object.

4. Otherwise, the object is colored white.

The decision for the coloring mode is made individually for each object. It is allowed to have both lit and unlit
objects in the same scene. For example, the following code fragment creates four objects with different coloring
options:

// vertex color specified in geometry
TriangleArray geom = new TriangleArray(3,
 TriangleArray.COORDINATES|TriangleArray.COLOR_3);
Point3f[] coords = {new Point3f(1,0,0),
new Point3f(0,1,0), new Point3f(0,0,1)};
geom.setCoordinates(coords);
Color3f[] colors = {new Color3f(1,0,0),
new Color3f(0,1,0), new Color3f(0,0,1)};
geom.setColors(colors);
Shape3D shape1 = new Shape3D(geom);

// lit object
TriangleArray geom2 = new TriangleArray(3,
 TriangleArray.COORDINATES|TriangleArray.NORMAL);
geom2.setCoordinates(coords);
Appearance appear = new Appearance();
Material material = new Material();
appear.setMaterial(material);
Shape3D shape2 = new Shape3D(geom2, appear);

// coloring attributes in appearance
Appearance appear3 = new Appearance();

[Page 291]
ColoringAttributes coloring = new ColoringAttributes(
 new Color3f(1f,0,0), ColoringAttributes.SHADE_FLAT);
appear3.setColoringAttributes(coloring);
Shape3D shape3 = new Shape3D(geom2, appear3);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

// no coloring specification
Shape3D shape4 = new Shape3D(geom2);

The Shape3D object shape1 has a geometry that contains the vertex color definition. Therefore, the specified
vertex colors will be used for rendering. The object shape2 has no vertex color definition in its geometry. Instead,
normals are defined at the vertices. The appearance of shape2 contains a Material object. Consequently shape2
will be lit and its coloring will be derived from the lighting model. The object shape3 uses the same geometry as
shape2 with no vertex colors, but it is not lit. Its appearance contains a ColoringAttributes object specifying a
red color. Therefore, shape3 will be colored red. The object shape4 contains no vertex color definition, no Material
object, and no ColoringAttributes object. It will be colored white.

To enable lighting for visual objects in a Java 3D program, therefore, we need to perform the following basic steps:

Place lights in the scene graph.

Provide surface normals for the geometry and do not set vertex colors.

Set material for the appearance.

The following code segment illustrates these steps:

// add a light
Light light = new PointLight();
light.setInfluencingBounds(new BoundingSphere());
root.addChild(light);

// construct appearance with material
Appearance appearance = new Appearance();
Material material = new Material();
appearance.setMaterial(material);

// add a box with normals
Box box = new Box(1f, 1f, 1f, Box.GENERATE_NORMALS, appearance);
root.add(box);

Listing 9.2 shows the effects of different illumination parameter settings. It displays eight spheres with different
material properties illuminated by a point light.

Listing 9.2. Lighting.java
(This item is displayed on pages 291 - 292 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class Lighting extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new Lighting(), 640, 480);
15 }
16

[Page 292]
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 // object
34 Vector3f pos = new Vector3f(0.5f,0f,0f);
35 Transform3D rotation = new Transform3D();
36 rotation.rotZ(Math.PI/4);
37 for (int i = 0; i < 8; i++) {
38 Node shape = createShape
39 (pos, 0.2f, .5f, (float)Math.pow(1.7,i));
40 root.addChild(shape);
41 rotation.transform(pos);
42 }
43 // lights
44 BoundingSphere bounds = new BoundingSphere();
45 PointLight pLight = new PointLight(new Color3f(Color.white),
46 new Point3f(0f,0f,1f/(float)Math.tan(Math.PI/8)),
47 new Point3f(1f,0f,0f));
48 pLight.setInfluencingBounds(bounds);
49 root.addChild(pLight);
50 return root;
51 }
52
53 private Node createShape(Vector3f pos,
54 float size, float spec, float shine) {
55 Material mat = new Material();
56 mat.setDiffuseColor(0.5f,0.5f,1f);
57 mat.setSpecularColor(spec, spec, spec);
58 mat.setShininess(shine);
59 Appearance ap = new Appearance();
60 ap.setMaterial(mat);
61 Sphere shape = new Sphere(size, Sphere.GENERATE_NORMALS, 50, ap);
62 Transform3D tr = new Transform3D();
63 tr.setTranslation(pos);
64 TransformGroup tg = new TransformGroup(tr);
65 tg.addChild(shape);
66 return tg;
67 }
68 }

The rendered scene of the program is shown in Figure 9.9 and the scene graph for the program in Figure 9.10.
Eight spheres with different shininess exponents are placed circularly around the z-axis. The locations of the
spheres are calculated with a successive rotation of p/4 about the z-axis. The position of the first sphere is (0.5,
0, 0). A Transform3D object is used to perform the rotations on the position vector.

[Page 293]

Figure 9.9. Material properties.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 9.10. Scene graph.

[Page 294]

The method createShape (line 53) creates a branch of the scene graph consisting of a TransformGroup and a
sphere. The TransformGroup node moves the sphere to the specified location. The sphere appearance has a
Material object with the shininess set to a specified value. The diffused reflection is set to a fixed value.

To provide equal illumination and viewing to all spheres, a point light is placed on the z-axis at the eye position.
This also allows the focused specular reflection visible when the shininess exponent is large. The shininess values

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

of the eight spheres are set to 1.7i, i = 0, 1, ..., 7. The first sphere has the smallest value, 1, and the last sphere
has the largest value, 41.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 294 (continued)]

9.5. Atmospheric Attenuation and Depth Cueing
In real-life images, objects closer to the viewer appear to be sharper, clearer, and of higher intensity than objects
far away. This is particularly apparent on a foggy day. The phenomenon is the result of atmospheric attenuation.
This suggests a technique to improve realism. In computer graphics, the atmospheric attenuation effects can be
simulated with a relatively efficient method known as depth cueing. Depth cueing blends the objects with the
background color. The amount of background color used in the blending is an increasing function of the distance.
More generally the fog color—the color used to blend the objects—can be arbitrarily specified.

The final color of a rendered point is given by

C = f · Co + (1 - f)·Cf

where C0 is the original color of the object and Cf is the fog color. The fog factor f is a decreasing function of the
distance to the viewer. Consequently, as the object becomes more distant, more weight will be assigned to the fog
color and less to the object color. The object will appear to fade away into the fog. The function f is typically
chosen as a linear function, an exponential function, or a Gaussian function of the distance.

Java 3D provides Fog leaf nodes to support depth cueing. Two types of fogs with linear and exponential blending
functions are available in Java 3D. Figure 9.11 shows the fog classes.

Figure 9.11. The Fog class hierarchy.

The LinearFog class defines a fog with a linear f function.

where z is the distance to the view point, and front and back are constants defining the bounds for f to vary from
1.0 to 0.0. To construct a linear fog, the following constructors can be used:

public LinearFog()
public LinearFog(Color3f color)
public LinearFog(Color3f color, double front, double back)
public LinearFog(float r, float g, float b)
public LinearFog(float r, float g, float b, double front, double back)

The ExponentialFog class uses an exponential f function

f(Z) = e-density·z

[Page 295]

The density parameter controls the speed of decrease of the function f and consequently the density of the fog.
The following constructors are available for exponential fog:

public ExponentialFog()
public ExponentialFog(Color3f color)
public ExponentialFog(Color3f color, float density)
public ExponentialFog(float r, float g, float b)
public ExponentialFog(float r, float g, float b, float density)

Listing 9.3 illustrates the use of fog nodes. An array of dodecahedron objects is displayed in a gray background. A
LinearFog node is placed in the scene. The fog has the same gray color as the background, creating an effect of a

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

foggy environment with distant objects fading away to the background.

Listing 9.3. TestFog.java
(This item is displayed on pages 295 - 296 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import chapter6.Dodecahedron;
10 import java.applet.*;
11 import com.sun.j3d.utils.applet.MainFrame;
12
13 public class TestFog extends Applet {
14 public static void main(String[] args) {
15 new MainFrame(new TestFog(), 640, 480);
16 }
17
18 public void init() {
19 // create canvas
20 GraphicsConfiguration gc =
21 SimpleUniverse.getPreferredConfiguration();
22 Canvas3D cv = new Canvas3D(gc);
23 setLayout(new BorderLayout());
24 add(cv, BorderLayout.CENTER);
25 BranchGroup bg = createSceneGraph();
26 bg.compile();
27 SimpleUniverse su = new SimpleUniverse(cv);
28 su.getViewingPlatform().setNominalViewingTransform();
29 su.addBranchGraph(bg);
30 }
31
32 private BranchGroup createSceneGraph() {
33 BranchGroup root = new BranchGroup();
34 // object
35 for (int i = 0; i < 5; i++) {
36 for (int j = 0; j < 5; j++) {
37 Vector3f pos = new Vector3f
38 (-0.8f+0.4f*i,-0.2f+0.2f*j,-0.4f*j);
39 Node shape = createShape(pos);
40 root.addChild(shape);
41 }
42 }

[Page 296]
43 // lights
44 BoundingSphere bounds = new BoundingSphere
45 (new Point3d(), Double.MAX_VALUE);
46 Background background = new Background(.6f, .6f, .6f);
47 background.setApplicationBounds(bounds);
48 root.addChild(background);
49 DirectionalLight dLight = new DirectionalLight
50 (new Color3f(Color.white), new Vector3f(1f,0f,-1f));
51 dLight.setInfluencingBounds(bounds);
52 root.addChild(dLight);
53 // fog
54 LinearFog fog = new LinearFog(.6f, .6f, .6f, 2f, 4f);
55 fog.setInfluencingBounds(bounds);
56 root.addChild(fog);
57 return root;
58 }
59
60 private Node createShape(Vector3f pos) {
61 Material mat = new Material();
62 Appearance ap = new Appearance();
63 ap.setMaterial(mat);
64 Shape3D shape = new Dodecahedron();
65 shape.setAppearance(ap);
66 Transform3D tr = new Transform3D();
67 tr.setScale(0.1);
68 tr.setTranslation(pos);
69 TransformGroup tg = new TransformGroup(tr);
70 tg.addChild(shape);
71 return tg;
72 }
73 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The result of the program is shown in Figure 9.12 and the scene graph in Figure 9.13.

Figure 9.12. A foggy scene created with atmospheric attenuation.

[Page 297]

Figure 9.13. The scene graph for the fog example.

An array of twenty-five dodecahedra is placed in the scene graph in a 5 x 5 grid (lines 35–42). The method
createShape creates a branch of the scene graph with a TransformGroup group node, a Dodecahedron object,
and an Appearance object with Material. The transform node scales the dodecahedron and moves it to a
specified location.

The scene is illuminated by a white directional light in the direction (1, 0, -1). A gray background is used. A linear

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

fog node with the same color as the background is added to the scene graph (line 54). The front of the linear fog
is 2 and the back is 4. The distant objects show a clear fading into the background. A Bounds object is shared by
the light, the background, and the fog.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 297 (continued)]

9.6. Texture Mapping
Real-life objects often contain many small details. Modeling the entire set of details with the usual geometric
structures can quickly exhaust the computing resources. Digital images, on the other hand, are relatively
inexpensive in providing complex details. Texture mapping is a method that utilizes images in graphics rendering.
It can provide a great deal of model details with efficiency.

9.6.1. Creating 2D Texture Mapping

The 2D texture-mapping method maps a 2D image to the surface of a 3D object. In the context of texture
mapping a point in the texture image is called a texel and a point on the 3D surface a pixel. The texture image
has its own coordinate system. A texture mapping is usually specified by assigning to each vertex of the surface
the texture coordinate of the corresponding texel. Other pixels for the surface will be mapped to texture
coordinates through interpolation. Clearly the mapping between pixels and texels is not one-to-one in general. As
illustrated in Figure 9.14, a pixel may correspond to only a portion of a texel, or it may cover many texels. The
former is called the magnification and the latter the minification. In either case, we need to establish certain rules
to obtain the texture values. These rules are known as the magnification filters and minification filters. Commonly
used filters include the selection of the closest texel and the linear interpolation (or combination) of neighboring
texels.

[Page 298]

Figure 9.14. Magnification and minification. The grey square represents a pixel.

Java 3D supports texture mapping through the texture-coordinates settings in geometry objects and the texture
objects in the associated appearance objects. Creating a texture mapping on a shape involves two steps:

1. Assign texture coordinates to vertices of the geometry.

2. Create a Texture object in the appearance bundle.

The GeometryArray class and its subclasses facilitate the per-vertex specification of texture coordinates. The
texture coordinates define the positions of texels for the vertices. The Texture2D class defines the texture image
used for texture mapping. It is a node component and can be referenced by an Appearance object.

In defining a GeometryArray object, texture coordinates for vertices of the geometry can be specified like other
attributes, such as coordinates, colors, and normals. The constant flag for 2D texture coordinates is
TEXTURE_COORDINATE_2.

A texture usually gets its content from an image. The class Texture2D is a subclass of NodeComponent
representing the texture. The actual image for Texture2D is represented by the class ImageComponent2D. A
Texture2D object is set to reference the ImageComponent2D object. The following method of Texture2D sets an
image for the texture:

public void setImage(int index, ImageComponent2D)

An ImageComponent2D object may receive its image from a BufferedImage or more generally a RenderedImage
object:

public void set(BufferedImage bi)
public void set(RenderedImage ri)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A BufferedImage can be created or loaded from a file using the methods described in Chapter 4. For example, the
ImageIO class contains static methods for reading images. The following code fragment illustrates the procedure:

BufferedImage bi = ImageIO.read(file);
ImageComponent2D image =
new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);

[Page 299]
Texture2D texture = new Texture2D();
texture.setImage(0, image);

A utility class TextureLoader is also available to load a texture image from a file or a BufferedImage. The loaded
image can be retrieved as an ImageComponent2D object or directly as a Texture object. The following code
fragment shows the basic steps in loading a texture image with a TextureLoader object:

TextureLoader loader = new TextureLoader(filename, this);
// retrieve the texture
Texture texture = loader.getTexture();
// or retrieve the image first
ImageComponent2D image = loader.getImage();
Texture2D texture2D = new Texture2D();
Texture2D.setImage(0, image);

The created Texture2D object can be added to an Appearance object using the setTexture method

Appearance appear = new Appearance();
appear.setTexture(texture);

After the texture coordinates are set in the geometry and the texture image is placed in the appearance, the
texture mapping will be applied to the object.

Listing 9.4 illustrates 2D texture mapping. It shows a texture-mapped globe. The geometric object is a rotating
sphere. An image of the earth is used as the texture and it is mapped to the surface of the sphere. This approach
creates a realistic rendering of a 3D globe.

Listing 9.4. TextureMapping.java
(This item is displayed on pages 299 - 300 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.image.*;
11 import java.applet.*;
12 import com.sun.j3d.utils.applet.MainFrame;
13
14 public class TextureMapping extends Applet {
15 public static void main(String[] args) {
16 new MainFrame(new TextureMapping(), 640, 480);
17 }
18
19 public void init() {
20 // create canvas
21 GraphicsConfiguration gc =
22 SimpleUniverse.getPreferredConfiguration();
23 Canvas3D cv = new Canvas3D(gc);
24 setLayout(new BorderLayout());
25 add(cv, BorderLayout.CENTER);
26 BranchGroup bg = createSceneGraph();
27 bg.compile();
28 SimpleUniverse su = new SimpleUniverse(cv);
29 su.getViewingPlatform().setNominalViewingTransform();

[Page 300]
30 su.addBranchGraph(bg);
31 }
32
33 private BranchGroup createSceneGraph() {
34 BranchGroup root = new BranchGroup();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

35 TransformGroup spin = new TransformGroup();
36 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
37 root.addChild(spin);
38 // object
39 Appearance ap = createTextureAppearance();
40 Sphere shape =
41 new Sphere(0.7f, Primitive.GENERATE_TEXTURE_COORDS, 50, ap);
42 spin.addChild(shape);
43 // rotator
44 Alpha alpha = new Alpha(-1, 6000);
45 RotationInterpolator rotator =
46 new RotationInterpolator(alpha, spin);
47 BoundingSphere bounds = new BoundingSphere();
48 rotator.setSchedulingBounds(bounds);
49 spin.addChild(rotator);
50 // background
51 Background background = new Background(1.0f, 1.0f, 1.0f);
52 background.setApplicationBounds(bounds);
53 root.addChild(background);
54 return root;
55 }
56
57 Appearance createTextureAppearance(){
58 Appearance ap = new Appearance();
59 URL filename =
60 getClass().getClassLoader().getResource("images/earth.jpg");
61 TextureLoader loader = new TextureLoader(filename, this);
62 ImageComponent2D image = loader.getImage();
63 if(image == null) {
64 System.out.println("can't find texture file.");
65 }
66 Texture2D texture = new Texture2D
67 (Texture.BASE_LEVEL, Texture.RGBA,
68 image.getWidth(), image.getHeight());
69 texture.setImage(0, image);
70 texture.setEnable(true);
71 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
72 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
73 ap.setTexture(texture);
74 return ap;
75 }
76 }

The resulting screen capture of the program is shown in Figure 9.15. The scene graph of the program is given in
Figure 9.16.

Figure 9.15. A rotating texture-mapped globe.
(This item is displayed on page 301 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 9.16. Scene graph for the texture-mapping example.
(This item is displayed on page 301 in the print version)

A sphere is created with texture coordinates. The format flag Primitive. GENERATE_TEXTURE_COORDS in the
constructor of the sphere enables the generation of texture coordinates for the primitive (line 41). The sphere is
rotated with a RotationInterpolator object.

The texture appearance is created with the method createTextureAppearance (line 57). An image of the earth is
loaded from its disk file by the TextureLoader class. The loaded image is then assigned to an ImageComponent2D
object, which is used to created a Texture2D object. The texture is mapped to the sphere through the associated

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Appearance object. Both magnification filter and minification filter are set to linear interpolation.

[Page 302]

9.6.2. Texture Coordinates

Texture coordinates in a geometry control the mapping from the texture image to the surface. The methods for
setting texture coordinates in the GeometryArray class include:

void setTextureCoordinate(int texSet, int index, float[] texCoord)
void setTextureCoordinate(int texSet, int index, TexCoord2f texCoord)
void setTextureCoordinates(int texSet, int index, float[] texCoords)
void setTextureCoordinates(int texSet, int index, TexCoord2f[]
 texCoords)

In the IndexedGeometryArray class and its subclasses, indices for texture coordinates can be applied using the
methods:

void setTextureCoordinateIndex(int texSet, int index, int texCoordIdx)
void setTextureCoordinateIndices(int texSet, int index, int[]
 texCoordIdx)

The class TexCoord2f is defined in the package javax.vecmath to represent texture coordinates. Other similar
classes include TexCoord3f and TexCoord4f for 3D and 4D texture coordinates. A set of texture coordinates can
be defined for one object. A texture coordinate is a 2D vector (u, v) that specifies a location in a texture. Values
for u and v range from 0.0 to 1.0. The four corners of the image have the texture coordinates shown in Figure
9.17.

Figure 9.17. Texture coordinates define locations in an image.

Consider the problem of mapping the image shown in Figure 9.18 to a cube to create a die. The image can be
divided into 6 squares, and there are 12 distinct texture coordinates to be assigned. To achieve the desired
texture mapping, the vertices of a face of the cube should be assigned the texture coordinates of one square in
the image.

Figure 9.18. Mapping an image to the faces of a cube.

[Page 303]

The following code fragment defines the geometry of the cube with the appropriate texture coordinates:

IndexedQuadArray qa = new IndexedQuadArray(12,
QuadArray.COORDINATES|QuadArray.TEXTURE_COORDINATE_2,24);

Point3f[] coords = {new Point3f(0,0,0),new Point3f(1,0,0),
new Point3f(1,1,0),new Point3f(0,1,0),
new Point3f(0,0,1),new Point3f(1,0,1),
new Point3f(1,1,1),new Point3f(0,1,1)};
int[] coordIndices =

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

{0,1,2,3, 0,1,5,4, 1,2,6,5, 2,3,7,6, 3,0,4,7, 4,5,6,7};
qa.setCoordinates(0, coords);
qa.setCoordinateIndices(0, coordIndices);

TexCoord2f[] tex = {new TexCoord2f(0, 1),new TexCoord2f(1f/3, 1),
new TexCoord2f(2f/3, 1),new TexCoord2f(1, 1),
new TexCoord2f(0, 0.5f),new TexCoord2f(1f/3, 0.5f),
new TexCoord2f(2f/3, 0.5f),new TexCoord2f(1, 0.5f),
new TexCoord2f(0, 0),new TexCoord2f(1f/3, 0),
new TexCoord2f(2f/3, 0),new TexCoord2f(1, 0)};
int[] texIndices =
{0,1,5,4, 1,2,6,5, 2,3,7,6, 5,6,10,9, 6,7,11,10, 4,5,9,8};
qa.setTextureCoordinates(0,0,tex);
qa.setTextureCoordinateIndices(0,0,texIndices);

9.6.3. Combining Texture Mapping and Lighting

It is also possible to combine texture mapping with other coloring models such as lighting. Java 3D includes the
class TextureAttributes to control the options of texture mapping. For example, if we want to render an object
with both texture mapping and lighting, we may create the configurations for both options and use a
TextureAttributes object to combine the colors from the two sources. The geometry of the shape will have both
normals and texture coordinates set. Lights will be placed in the scene graph, and a Material component will be
used in the appearance bundle. We will also define a Texture component and select it in the appearance. The
TextureAttributes class defines a variety of ways to combine texture mapping with the coloring options. The
following code fragment shows a configuration to combine texture mapping with lighting:

TextureAttributes texatt = new TextureAttributes();
texatt.setTextureMode(TextureAttributes.COMBINE);
appearance.setTextureAttributes(texatt);

Listing 9.5 demonstrates the combination of texture mapping and lighting. It displays a texture-mapped cylinder
that is also lit (Figure 9.19). It illustrates the procedures of setting texture coordinates in a geometry, creating a
texture image in code, and combining texture mapping with lighting using the TextureAttributes class.

Listing 9.5. Cup.java
(This item is displayed on pages 303 - 306 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.geom.*;
 6 import java.awt.image.*;
 7 import java.net.URL;
 8 import java.util.*;

[Page 304]
 9 import java.awt.event.*;
 10 import javax.media.j3d.*;
 11 import com.sun.j3d.utils.universe.*;
 12 import com.sun.j3d.utils.geometry.*;
 13 import com.sun.j3d.utils.image.*;
 14 import java.applet.*;
 15 import com.sun.j3d.utils.applet.MainFrame;
 16 import com.sun.j3d.utils.behaviors.mouse.*;
 17
 18 public class Cup extends Applet {
 19 public static void main(String[] args) {
 20 new MainFrame(new Cup(), 640, 480);
 21 }
 22
 23 public void init() {
 24 // create canvas
 25 GraphicsConfiguration gc =
 26 SimpleUniverse.getPreferredConfiguration();
 27 Canvas3D cv = new Canvas3D(gc);
 28 setLayout(new BorderLayout());
 29 add(cv, BorderLayout.CENTER);
 30 BranchGroup bg = createSceneGraph();
 31 bg.compile();
 32 SimpleUniverse su = new SimpleUniverse(cv);
 33 su.getViewingPlatform().setNominalViewingTransform();
 34 su.addBranchGraph(bg);
 35 }
 36

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 37 private BranchGroup createSceneGraph() {
 38 BranchGroup root = new BranchGroup();
 39 TransformGroup spin = new TransformGroup();
 40 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 41 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 42 root.addChild(spin);
 43 // object transform
 44 Transform3D tr = new Transform3D();
 45 tr.setScale(0.3);
 46 tr.setRotation(new AxisAngle4d(0, 0, 1, Math.PI/12));
 47 TransformGroup tg = new TransformGroup(tr);
 48 spin.addChild(tg);
 49 // object
 50 Geometry geom = createGeometry();
 51 Appearance ap = createTextureAppearance();
 52 PolygonAttributes pa =
 53 new PolygonAttributes(PolygonAttributes.POLYGON_FILL,
 54 PolygonAttributes.CULL_NONE,0);
 55 ap.setPolygonAttributes(pa);
 56 Shape3D shape = new Shape3D(geom, ap);
 57 tg.addChild(shape);
 58 // rotation
 59 BoundingSphere bounds = new BoundingSphere();
 60 Alpha alpha = new Alpha(-1, 10000);
 61 RotationInterpolator rotator = new RotationInterpolator
 62 (alpha, spin);
 63 rotator.setSchedulingBounds(bounds);
 64 spin.addChild(rotator);
 65 // background and lights
 66 Background background = new Background(1.0f, 1.0f, 1.0f);
 67 background.setApplicationBounds(bounds);
 68 root.addChild(background);
 69 AmbientLight light = new AmbientLight(true,

[Page 305]
 70 new Color3f(Color.lightGray));
 71 light.setInfluencingBounds(bounds);
 72 root.addChild(light);
 73 PointLight ptlight = new PointLight(new Color3f(Color.white),
 74 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
 75 ptlight.setInfluencingBounds(bounds);
 76 root.addChild(ptlight);
 77 return root;
 78 }
 79
 80 Geometry createGeometry() {
 81 int m = 120;
 82 int n = 2;
 83 QuadArray qa = new QuadArray(4*m,
 84 QuadArray.COORDINATES|QuadArray.NORMALS|
 85 QuadArray.TEXTURE_COORDINATE_2);
 86 // generate the cylinder
 87 Transform3D trans = new Transform3D();
 88 trans.rotY(2*Math.PI/m);
 89 Point3f pt0 = new Point3f(1,1,0);
 90 Point3f pt1 = new Point3f(1,-1,0);
 91 Vector3f normal = new Vector3f(1,0,0);
 92 for (int j = 0; j < m; j++) {
 93 qa.setCoordinate(j*4, pt0);
 94 qa.setCoordinate(j*4+1, pt1);
 95 qa.setNormal(j*4, normal);
 96 qa.setNormal(j*4+1, normal);
 97 trans.transform(pt0);
 98 trans.transform(pt1);
 99 trans.transform(normal);
100 qa.setCoordinate(j*4+2, pt1);
101 qa.setCoordinate(j*4+3, pt0);
102 qa.setNormal(j*4+2, normal);
103 qa.setNormal(j*4+3, normal);
104 // set texture coordinates
105 TexCoord2f tex0 = new TexCoord2f(j*1f/m, 1f);
106 TexCoord2f tex1 = new TexCoord2f(j*1f/m, 0f);
107 qa.setTextureCoordinate(0,j*4,tex0);
108 qa.setTextureCoordinate(0,j*4+1,tex1);
109 tex0 = new TexCoord2f((j+1)*1f/m, 1f);
110 tex1 = new TexCoord2f((j+1)*1f/m, 0f);
111 qa.setTextureCoordinate(0,j*4+2,tex1);
112 qa.setTextureCoordinate(0,j*4+3,tex0);
113 }
114 return qa;
115 }
116
117 Appearance createTextureAppearance(){
118 Appearance ap = new Appearance();
119 BufferedImage bi = new BufferedImage(512,128,
120 BufferedImage.TYPE_INT_ARGB);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

121 Graphics2D g2 = (Graphics2D)bi.getGraphics();
122 g2.setColor(Color.white);
123 g2.fillRect(0, 0, 512,128);
124 g2.setFont(new Font("Serif", Font.BOLD, 48));
125 g2.setColor(new Color(200,0,0));
126 g2.drawString("Java 3D",0,100);
127 ImageComponent2D image =
128 new ImageComponent2D(ImageComponent2D.FORMAT_RGBA, bi);
129 Texture2D texture = new Texture2D
130 (Texture.BASE_LEVEL, Texture.RGBA,

[Page 306]
131 image.getWidth(), image.getHeight());
132 texture.setImage(0, image);
133 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
134 ap.setTexture(texture);
135 // combine texture and lighting
136 TextureAttributes texatt = new TextureAttributes();
137 texatt.setTextureMode(TextureAttributes.COMBINE);
138 ap.setTextureAttributes(texatt);
139 ap.setMaterial(new Material());
140 return ap;
141 }
140 }

Figure 9.19. A texture-mapped and lit cylinder.

The createGeometry method (line 80) constructs the cylinder with a QuadArray. Both normals and texture
coordinates are generated in the geometry.

The createTextureAppearance method constructs an appearance bundle that includes a Material component, a
Texture2D component, and a TextureAttributes object. The image for texture mapping is created directly as a
BufferedImage of size 512 by 128 (line 119). A Graphics2D object is retrieved to allow drawing on the image.
The image is first cleared with the white color, and then the string "Java 3D" is drawn in red (lines 121–126). The
BufferedImage is used to create a Texture2D object for the texture mapping.

The cylinder is lit with an ambient light and a point light. The TextureAttributes object in the appearance is set
to the COMBINE mode to combine the effects of texture mapping and lighting (line 137).

9.6.4. Texture-Coordinates Generation

Texture coordinates can be specified directly in a geometry. It is also possible to generate the texture coordinates

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

automatically using a model based on the object geometry and view configuration. The automatic generation of
texture coordinates is achieved through a special node component in the appearance. The options of manual
specification and automatic generation of texture coordinates are similar to the object coloring options: the colors
may be specified directly in the object geometry or they can be generated with a lighting model.

[Page 307]

In addition to the 2D texture coordinates, Java 3D also supports 3D and 4D texture coordinates. These texture
coordinates are denoted by (r,s),(r,s,t),(r,s,t,q), respectively. The constant flags for the three types of texture
coordinates are defined as:

TEXTURE_COORDINATE_2
TEXTURE_COORDINATE_3
TEXTURE_COORDINATE_4

All three types of texture coordinates can be generated automatically. The node component class
TexCoordGeneration facilitates texture-coordinates generation. Automatic texture-coordinates generation can be
enabled by adding a TexCoordGeneration object to an appearance bundle. The TexCoordGeneration class defines
five modes of texture-coordinates generation based on different criteria:

OBJECT_LINEAR
EYE_LINEAR
SPHERE_MAP
NORMAL_MAP
REFLECTION_MAP

The OBJECT_LINEAR and EYE_LINEAR modes compute the texture coordinates using the following matrix equation:

Therefore, the texture coordinates of an object are linearly dependent on the object's coordinates. In the
OBJECT_LINEAR mode, the point (x,y,z,w) is given by object coordinates, so the texture is attached to the object
and moves with the object. In EYE_LINEAR mode, the point is given by eye coordinates, so the texture is fixed
relative to the eye. As the object moves, the texture does not move with it. As a result, the texture may appear
to be a reflection on the object. The coefficients in the above matrix can be set with the following methods:

void setPlaneR(Vector4f coeff)
void setPlaneS(Vector4f coeff)
void setPlaneT(Vector4f coeff)
void setPlaneQ(Vector4f coeff)

Each of these methods sets one row of the matrix.

The SPHERE_MAP mode generates texture coordinates that can be used to simulate spherical reflections based on
eye coordinates. The last two modes are available only for the special texture cube mapping. The ordinary
Texture2D defines only a rectangular plane texture. The TextureCubeMap class defines a texture with six images
configured as the six faces of a cube. The texture mapping will map each image to a specific side of the object.
This type of texture mapping may be more convenient for certain 3D solids. In a TextureCubeMap object, the six
images can be identified with the constants:

NEGATIVE_X
NEGATIVE_Y
NEGATIVE_Z
POSITIVE_X
POSITIVE_Y
POSITIVE_Z

[Page 308]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 9.6 illustrates different modes of texture-coordinates generation using a Texture CubeMap. A rotating
dodecahedron is displayed with a texture defined by a TextureCubeMap object. Three images are used for the six
faces of the cube. Opposite faces receive the same image. (See Figure 9.20.) Texture coordinates for the
dodecahedron are generated with a TexCoordGeneration object. Five buttons labeled with the texture-
coordinates generation modes. When you click a button, the corresponding mode will be selected for the
TexCoordGeneration to render the dodecahedron.

Listing 9.6. CubeTexture.java
(This item is displayed on pages 308 - 310 in the print version)

 1 package chapter9;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
 10 import com.sun.j3d.utils.image.*;
 11 import chapter6.Dodecahedron;
 12 import java.applet.*;
 13 import com.sun.j3d.utils.applet.MainFrame;
 14
 15 public class CubeTexture extends Applet implements ActionListener{
 16 public static void main(String[] args) {
 17 new MainFrame(new CubeTexture(), 640, 480);
 18 }
 19
 20 private Appearance ap = null;
 21
 22 public void init() {
 23 setLayout(new BorderLayout());
 24 Panel panel = new Panel();
 25 panel.setLayout(new GridLayout(5,1));
 26 add(panel, BorderLayout.EAST);
 27 Button button = new Button("OBJECT_LINEAR");
 28 button.addActionListener(this);
 29 panel.add(button);
 30 button = new Button("EYE_LINEAR");
 31 button.addActionListener(this);
 32 panel.add(button);
 33 button = new Button("SPHERE_MAP");
 34 button.addActionListener(this);
 35 panel.add(button);
 36 button = new Button("NORMAL_MAP");
 37 button.addActionListener(this);
 38 panel.add(button);
 39 button = new Button("REFLECTION_MAP");
 40 button.addActionListener(this);
 41 panel.add(button);
 42
 43 GraphicsConfiguration gc =
 44 SimpleUniverse.getPreferredConfiguration();
 45 Canvas3D cv = new Canvas3D(gc);
 46 add(cv, BorderLayout.CENTER);
 47 BranchGroup bg = createSceneGraph();
 48 bg.compile();
 49 SimpleUniverse su = new SimpleUniverse(cv);
 50 su.getViewingPlatform().setNominalViewingTransform();

[Page 309]
 51 su.addBranchGraph(bg);
 52 }
 53
 54 private BranchGroup createSceneGraph() {
 55 BranchGroup root = new BranchGroup();
 56 TransformGroup spin = new TransformGroup();
 57 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 58 root.addChild(spin);
 59 // object
 60 ap = createTextureAppearance();
 61 Shape3D shape = new Dodecahedron();
 62 shape.setAppearance(ap);
 63 Transform3D tr = new Transform3D();
 64 tr.setScale(0.4);
 65 TransformGroup tg = new TransformGroup(tr);
 66 tg.addChild(shape);
 67 spin.addChild(tg);
 68 // rotator
 69 Alpha alpha = new Alpha(-1, 18000);
 70 RotationInterpolator rotator = new RotationInterpolator
 71 (alpha, spin);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 72 BoundingSphere bounds = new BoundingSphere();
 73 rotator.setSchedulingBounds(bounds);
 74 spin.addChild(rotator);
 75 // background
 76 Background background = new Background(1.0f, 1.0f, 1.0f);
 77 background.setApplicationBounds(bounds);
 78 root.addChild(background);
 79 return root;
 80 }
 81
 82 Appearance createTextureAppearance(){
 83 Appearance ap = new Appearance();
 84 URL filename =
 85 getClass().getClassLoader().getResource("images/earth.jpg");
 86 TextureLoader loader = new TextureLoader(filename, this);
 87 ImageComponent2D image1 = loader.getImage();
 88 filename = getClass().getClassLoader().getResource
 89 ("images/stone.jpg");
 90 loader = new TextureLoader(filename, this);
 91 ImageComponent2D image2 = loader.getImage();
 92 filename = getClass().getClassLoader().getResource
 93 ("images/sky.jpg");
 94 loader = new TextureLoader(filename, this);
 95 ImageComponent2D image3 = loader.getImage();
 96
 97 TextureCubeMap texture =
 98 new TextureCubeMap(Texture.BASE_LEVEL, Texture.RGBA,
 99 image1.getWidth());
100 texture.setImage(0, TextureCubeMap.NEGATIVE_X, image3);
101 texture.setImage(0, TextureCubeMap.NEGATIVE_Y, image1);
102 texture.setImage(0, TextureCubeMap.NEGATIVE_Z, image2);
103 texture.setImage(0, TextureCubeMap.POSITIVE_X, image3);
104 texture.setImage(0, TextureCubeMap.POSITIVE_Y, image1);
105 texture.setImage(0, TextureCubeMap.POSITIVE_Z, image2);
106
107 texture.setEnable(true);
108 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
109 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
110 ap.setTexture(texture);
111

[Page 310]
112 TexCoordGeneration tcg = new
113 TexCoordGeneration(TexCoordGeneration.OBJECT_LINEAR,
114 TexCoordGeneration.TEXTURE_COORDINATE_3);
115 tcg.setPlaneR(new Vector4f(2, 0, 0, 0));
116 tcg.setPlaneS(new Vector4f(0, 2, 0, 0));
117 tcg.setPlaneT(new Vector4f(0, 0, 2, 0));
118 ap.setTexCoordGeneration(tcg);
119 ap.setCapability(Appearance.ALLOW_TEXGEN_WRITE);
120 return ap;
121 }
122
123 public void actionPerformed(ActionEvent e) {
124 String cmd = e.getActionCommand();
125 TexCoordGeneration tcg = new TexCoordGeneration();
126 if ("OBJECT_LINEAR".equals(cmd)) {
127 tcg.setGenMode(TexCoordGeneration.OBJECT_LINEAR);
128 } else if ("EYE_LINEAR".equals(cmd)) {
129 tcg.setGenMode(TexCoordGeneration.EYE_LINEAR);
130 } else if ("SPHERE_MAP".equals(cmd)) {
131 tcg.setGenMode(TexCoordGeneration.SPHERE_MAP);
132 } else if ("NORMAL_MAP".equals(cmd)) {
133 tcg.setGenMode(TexCoordGeneration.NORMAL_MAP);
134 } else if ("REFLECTION_MAP".equals(cmd)) {
135 tcg.setGenMode(TexCoordGeneration.REFLECTION_MAP);
136 }
137 tcg.setFormat(TexCoordGeneration.TEXTURE_COORDINATE_3);
138 tcg.setPlaneR(new Vector4f(2, 0, 0, 0));
139 tcg.setPlaneS(new Vector4f(0, 2, 0, 0));
140 tcg.setPlaneT(new Vector4f(0, 0, 2, 0));
141 ap.setTexCoordGeneration(tcg);
142 }
143 }

Figure 9.20. Cube texture applied with different modes of texture-coordinates generation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 311]

The scene graph is shown in Figure 9.21. A dodecahedron is attached to a series of two TransformGroup nodes:
one for the rotation and the other to scale the size of the object down. The dodecahedron has an Appearance
object that references a TextureCubeMap and a TexCoordGeneration. The capability bit ALLOW_TEXGEN_WRITE of
the appearance is set to allow the change of the TexCoordGeneration in a live scene graph (line 119).

Figure 9.21. The scene graph for the example of texture-coordinates generation.

Three images of the same size are loaded from image files (lines 84–95). They are used for the six faces of the
TextureCubeMap object. The opposite faces get the same images.

The 3D texture coordinates needed by the TextureCubeMap are generated automatically with the
TexCoordGeneration object. Initially the generation mode is set to OBJECT_LINEAR.

The main program window uses a BorderLayout manager. The Canvas3D object is added to the "CENTER" region.
Five buttons are created to represent the five modes of texture-coordinates generation: OBJECT_LINEAR,

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

EYE_LINEAR, SPHERE_MAP, NORMAL_MAP, and REFLECTION_MAP. The buttons are added to a panel in the
"EAST" region of the applet. The buttons register the applet object as their ActionListener. In the action
handler actionPerformed (line 123), a new TexCoordGeneration object is created. The button label is retrieved,
and the corresponding texture-coordinates generation mode is set with the method setGenMode. The appearance
object's texture-coordinates generation is then changed to the new TexCoordGeneration object by calling the
method setTexCoordGeneration.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 311 (continued)]

Key Classes and Methods
javax.vecmath.TexCoord2f A class encapsulating a 2D texture coordinate.

javax.vecmath.TexCoord3f A class encapsulating a 3D texture coordinate.

javax.vecmath.TexCoord4f A class encapsulating a 4D texture coordinate.

javax.media.j3d.Light A class encapsulating a light source.

javax.media.j3d.AmbientLight A class encapsulating an ambient light.

javax.media.j3d.DirectionalLight A class encapsulating a directional light.

[Page 312]

javax.media.j3d.PointLight A class encapsulating a point light.

javax.media.j3d.SpotLight A class encapsulating a spotlight.

javax.media.j3d.Material A class defining the material properties for illumination.

javax.media.j3d.Fog A class encapsulating the blending effects.

javax.media.j3d.LinearFog A fog with a linear blending coefficient function.

javax.media.j3d.ExponentialFog A fog with an exponential blending coefficient function.

javax.media.j3d.Texture2D A class encapsulating a 2D texture.

javax.media.j3d.ImageComponent2D A class encapsulating an image.

javax.media.j3d.TextureLoader A class for loading an image.

javax.media.j3d.TextureAttributes An appearance component for controlling attributes of texture
mapping.

javax.media.j3d.TextureCubeMap A class defining a texture with six images on its cube faces.

javax.media.j3d.TexCoordGeneration A class encapsulating texture coordinate generation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 312 (continued)]

Key Terms
Phong model

An illumination model that takes into account the surface normals and directions of lights and the eye.

ambient light

A model for uniform omnidirectional background light.

directional light

A light that emits parallel light rays along a fixed direction.

point light

A light radiating from a fixed point.

spotlight

A point light with limited angle of radiation.

material

The reflection properties of an object that affect the color calculations.

ambient reflection

The reflection of ambient lights.

diffuse reflection

The reflection of directional and point lights that are uniformly distributed in all directions.

specular reflection

The reflection of directional and point lights that are concentrated on a fixed direction.

depth cueing

A visual effect of blurring distant objects into the background.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

texture mapping

A rendering technique that maps an image to the surface of a 3D geometric object.

texel

A basic element of a texture.

texture coordinate

A coordinate used in a geometry to specify the location of the texel to be mapped.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 312 (continued)]

Chapter Summary
In this chapter, you learn several methods to achieve realistic appearance in 3D rendering.

Lighting provides a model for calculating colors based on the physical characteristics of the objects and the
light sources. The Phong illumination model is a popular method for lighting. Java 3D supports the model
through the light objects, surface normal definition in geometry, and material specification in appearance.

There are usually four types of lights in computer graphics: ambient lights, directional lights, point lights,
and spotlights.

[Page 313]

The material properties are defined in terms of coefficients for ambient reflection, diffuse reflection, and
specular reflection. The coefficients are specified for each primary color. A shininess exponent independent
of color spectrum is also used to define the concentration of specular reflection.

The use of atmospheric attenuation and depth cueing is a method to enhance photorealism by blending
distant objects. Java 3D provides the Fog class and subclasses LinearFog and ExponentialFog to support
this effect.

Texture mapping is another effective method that can dramatically improve the quality of rendered objects.
Texture mapping uses images to provide details of rendered surfaces. To apply texture mapping in Java 3D,
you need to define texture coordinates in the geometry of a visual object and include a texture image in its
appearance. Texture coordinates may be specified directly in the geometry, or they can be generated
automatically using a TexCoordGeneration object in the appearance.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 313 (continued)]

Review Questions

9.1 A point light has attenuation coefficients (1, 2, 1). At what distance is the attenuation 0.04?

9.2 Discuss the differences between a point light and a directional light in terms of their effects on
the equation of the Phong illumination model.

9.3 How do you position the eye to maximize the specular reflection of a point light from a point on a
surface?

9.4 The point (1, 0, 0) on an object has a surface normal in the direction (0, 1, 0). A directional light
with intensity 1.0 is placed in the direction (1, -1, 0). The eye is located at (5, 3, 0). If the RGB
diffuse coefficients of the object are (0.3, 0.5, 0.2), find the RGB values of diffuse reflection at
the point.

9.5 In the scene given in Question 9.4, if the RGB specular coefficients of the material are (1, 1, 0.5)
and the shininess is 10, find the RGB values of specular reflection at the point.

9.6 The point (1, 0, 0) on an object has a surface normal in the direction (0, 1, 0). A point light with
intensity 1.0 is placed at (0, 1, 0). The eye is located at (5, 3, 0). If the RGB diffuse coefficients of
the object are (0.3, 0.5, 0.2), find the RGB values of diffuse reflection at the point.

9.7 In the scene given in Question 9.6, if the RGB specular coefficients of the material are (1, 1, 0.5)
and the shininess is 10, find the RGB values of specular reflection at the point.

9.8 In the linear fog equation, find the distance at which the blending coefficient f is 0.5.

9.9 In the exponential fog equation, find the distance at which the blending coefficient f is 0.5.

9.10 What is the texture coordinate for the center of a texture image?

9.11 In a TexCoordGeneration object, how do you set the coefficient matrix so that the mirror image
of the original texture image is mapped to an object?

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 313 (continued)]

Programming Exercises

9.1 Write a program to show the four coloring modes of Java 3D. Create and place four squares in
the scene. Each square uses one of the coloring options.

9.2 Modify the program in Listing 9.1 to display a 3D text string.

[Page 314]

9.3 Write a program similar to Listing 9.2, but varying the specular reflection coefficients.

9.4 Display a long rectangle in a scene with a linear fog object. Observe the fading on the far side of
the rectangle.

9.5 Modify Listing 9.3 to use an exponential fog. Add an option to allow the user to change the
density parameter of the fog at runtime.

9.6 Write a Java 3D program to display a texture-mapped tetrahedron. Map the same texture to all
four faces. Set the texture coordinates of the three vertices in a face to three corners of the
texture. Rotate the tetrahedron in the scene.

9.7 Rewrite the program in Exercise 9.6 to use texture-coordinates generation with OBJECT_LINEAR
mode.

9.8 Rewrite the program in Exercise 9.7 to use texture-coordinates generation with EYE_LINEAR
mode.

9.9 Rewrite Listing 9.4 to light the texture-mapped globe with a red spotlight.

9.10 Write a Java 3D program to display a rotating die. Use a TextureCubeMap object with a cube
geometry to construct the shape. Generate the six face images in the program by painting circles
on BufferedImage objects. Set texture coordinates automatically with a TexCoordGeneration
object in OBJECT_LINEAR mode.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 315]

Chapter 10. Behavior and Interaction
(This item omitted from WebBook edition)

Objectives
To understand dynamic behaviors in graphics.

To understand Java 3D Behavior and WakeupCondition classes.

To apply Behavior nodes in scene graphs.

To use mouse behaviors.

To use key navigator behaviors.

To use view platform behaviors.

To combine picking and behaviors.

[Page 316]

10.1. Introduction
Modern computer graphics systems are not limited to rendering static scenes. Incorporating dynamic changes in a
3D scene is an important part of many graphics applications. Two types of dynamic changes are common in
computer graphics: interaction and animation. Interaction changes the graphics scenes under the control of user
input. Animation generates sequences of graphics renderings that vary with time, producing an effect of motion.
Both mechanisms generate dynamic behaviors in graphics systems. The changes can occur in the virtual world of
graphics objects or in the view that "sees" the world. The changes may involve the geometry, appearance,
transformation, and other aspects of the visual system. In general the incorporation of dynamic behavior can be a
complex process. It is usually necessary to allow the inclusion of general programming code to handle the
dynamics. It is also desirable to include the dynamics logic as a part of the graphics programming paradigm in a
systematic way.

Java 3D uses the notion of behavior to facilitate animations, interactions, and other dynamics in a scene graph. A
Behavior object is a leaf node in a scene graph. It defines the actions to be performed when the behavior is
activated (waked up). Special objects called wakeup conditions are used to trigger a behavior. If a wakeup
condition is related to user actions such as moving a mouse, the behavior defines an interaction. If a behavior is
triggered by a wakeup condition tied to time, it defines an animation.

In this chapter we will introduce the general concept of behavior and one common type of behavior: interaction.
We will also discuss the application of picking in defining interaction. Animation, another important type of
behavior, will be discussed in Chapter 11.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 316 (continued)]

10.2. Behavior
Java 3D provides a general unified approach to implement both animation and interaction. It takes advantage of
Java's OOP features and uses the Behavior class hierarchy and other related classes to incorporate animation and
interaction logic into the scene graph. The class hierarchy of the Behavior classes is given in Figure 10.1.

Figure 10.1. Behavior classes.

Behavior is an abstract class that extends the Leaf class. It defines the basic framework of a general behavior.
The Behavior class has two abstract methods:

void initialize()
void processStimulus(Enumeration wakeupCriteria)

The initialize method is invoked once when a Behavior object becomes live. The processStimulus method is
invoked by Java 3D under certain wakeup conditions. Subclasses of Behavior override the two methods to fulfill
specific behavior tasks.

[Page 317]

A Behavior object works with WakeupCondition objects to complete its execution cycles. The Behavior class
contains the following method to set a WakeupCondition that will trigger the behavior:

void wakeupOn(WakeupCondition wakeup)

The typical execution cycles of a Behavior object is illustrated in Figure 10.2.

Figure 10.2. Interactions between Behavior and WakeupCondition objects.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

During the initialization of the Behavior object, it sets a WakeupCondition object. When the specified wakeup
condition occurs, the WakeupCondition object will awaken the Behavior object by calling its processStimulus
method. The parameter wakeupCriteria of the processStimulus method is a list of WakeupCriterion objects
that trigger the behavior. After executing the custom code in processStimulus, a wakeup condition can be set
again by calling the wakeupOn method. The process will then repeat indefinitely.

Wakeup conditions are crucial parts of the behavior dynamics. They serve as the signals to trigger different
behaviors under different circumstances. Java 3D provides a large collection of wakeup criteria for various stimuli
that can be used to trigger a behavior. It also provides the capability to combine the criteria in different ways
using logical operators. The class hierarchy of WakeupCondition is shown in Figure 10.3.

Figure 10.3. Wakeup condition class hierarchy.

[Page 318]

The subclasses of WakeupCriterion represent specific events and criteria that can trigger a Behavior object. For
example, WakeupOnElapsedTime defines the wakeup condition triggered by the passage of a certain amount of
time. WakeupOnAWTEvent allows the wakeup conditions related to the AWT events such as mouse movements and
clicks. Constructors for common wakeup criterion classes are listed below:

WakeupOnElapsedTime(long ms)

This constructor is to create a wakeup criterion to trigger a behavior after the specified time in milliseconds:

WakeupOnElapsedFrames(int frames)

This constructs a wakeup criterion to trigger a behavior after the specified number of frames:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

WakeupOnAWTEvent(int eventID)
WakeupOnAWTEvent(long eventMask)

This wakeup criterion triggers a behavior when the specified AWT events occur. An AWT event ID defines a single
AWT event. For example, the following statement creates a criterion for the mouse-down event:

new WakeupOnAWTEvent(Event.MOUSE_DOWN);

If several AWT events are needed, the second constructor with event masks can be used. AWT event masks may
be combined with logical OR operator. For example, the following wakeup criterion corresponds to mouse event
and mouse-motion event:

new WakeupOnAWTEvent(AWTEvent.MOUSE_EVENT_MASK |
 AWTEvent.MOUSE_MOTION_EVENT_MASK);

Note that the class Event has been superseded by the AWTEvent class:

WakeupOnTransformChange(TransformGroup node)

This constructor is for a wakeup criterion to awaken a behavior when the transformation inside the specified
TransformGroup node is changed:

WakeupOnCollisionEntry(Bounds bounds)
WakeupOnCollisionEntry(Node node)
WakeupOnCollisionEntry(Node node, int speedHint)
WakeupOnCollisionEntry(SceneGraphPath path)
WakeupOnCollisionEntry(SceneGraphPath path, int speedHint)

This wakeup criterion is to awaken a behavior when the specified object collides with any other object in the
scene graph:

WakeupOnCollisionMovement(Bounds bounds)
WakeupOnCollisionMovement(Node node)
WakeupOnCollisionMovement(Node node, int speedHint)
WakupOnCollisionMovement(SceneGraphPath path)
WakupOnCollisionMovement(SceneGraphPath path, int speedHint)

These constructors are for a wakeup criterion to awaken a behavior when the specified object moves while in
collision with any other object in the scene graph:

WakeupOnCollisionExit(Bounds bounds)
WakeupOnCollisionExit(Node node)
WakeupOnCollisionExit(Node node, int speedHint)
WakeupOnCollisionExit(SceneGraphPath path)
WakeupOnCollisionExit(SceneGraphPath path, int speedHint)

[Page 319]

This is a wakeup criterion to awaken a behavior when the specified object exits the collision with any other object
in the scene graph:

WakeupOnBehaviorPost(Behavior behavior, int postID)

This wakeup criterion activates when the specified behavior object posts the specified ID. A Behavior object can
post an event with a postID. This wakeup criterion monitors the postID posted by behavior. If the parameter
behavior is null, the post can come from any Behavior object. If the parameter postID is 0, any ID will satisfy
this wakeup criterion.

Multiple wakeup conditions may be logically combined to form a new wakeup condition. The class
WakeupCondition has four subclasses—WakeupAnd, WakeupOr, WakeupOrOfAnds, and WakeupAndOfOrs—that define
Boolean operators to combine wakeup criteria. Each class has a constructor that takes an array of appropriate

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

objects as the parameter:

WakeupAnd(WakeupCriterion[] criteria)
WakeupOr(WakeupCriterion[] criteria)
WakeupOrOfAnds(WakeupAnd[] criteriaAnds)
WakeupAndOfOrs(WakeupOr[] criteriaOrs)

For example, the following code fragment defines a wakeup condition that either 10 seconds have passed or 5
frames are rendered and a collision has occurred:

WakeupCriterion[] criteria1 = {new WakeupOnElapsedTime(10000)};
WakeupCriterion[] criteria2 = {new WakeupOnElapsedFrames(5),
 new WakeupOnCollisionEntry(node)};
WakeupAnd[] ands = {new WakeupAnd(criteria1),
 new WakeupAnd(criteria2)};
WakeupOrOfAnds condition = new WakeupOrOfAnds(ands);

A Behavior object has a scheduling bound. It is active only if its scheduling bound intersects the view platform.
You may use the following methods to set the scheduling bounds:

SetSchedulingBounds(Bounds bounds};
SetSchedulingBoundingLeaf(BoundingLeaf bounds};

The typical procedure for implementing a custom behavior is summarized below:

Define a subclass of Behavior class and override the initialize and processStimulus methods.

Set the appropriate wakeup condition in the initialize method. If necessary, set the wakeup condition again
in processStimulus.

Create an instance of the custom Behavior class and add it to the scene graph as a leaf.

Set the influence bound for the behavior object.

Listing 10.1 shows an application using a custom Behavior class. The program displays a running analog clock
showing the system time. The positions of the hands will constantly change. A custom behavior class (Listing
10.2) is implemented to update the clock based on the current time.

Listing 10.1. Clock.java
(This item is displayed on pages 319 - 321 in the print version)

 1 package chapter10;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;

[Page 320]
 9 import com.sun.j3d.utils.geometry.*;
 10 import java.applet.*;
 11 import com.sun.j3d.utils.applet.MainFrame;
 12
 13 public class Clock extends Applet {
 14 public static void main(String[] args) {
 15 new MainFrame(new Clock(), 640, 480);
 16 }
 17
 18 public void init() {
 19 // create canvas
 20 GraphicsConfiguration gc =
 21 SimpleUniverse.getPreferredConfiguration();
 22 Canvas3D cv = new Canvas3D(gc);
 23 setLayout(new BorderLayout());
 24 add(cv, BorderLayout.CENTER);
 25 BranchGroup bg = createSceneGraph();
 26 bg.compile();
 27 SimpleUniverse su = new SimpleUniverse(cv);
 28 su.getViewingPlatform().setNominalViewingTransform();
 29 su.addBranchGraph(bg);
 30 }
 31

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 32 private BranchGroup createSceneGraph() {
 33 BranchGroup root = new BranchGroup();
 34 // clock face
 35 Appearance apFace = new Appearance();
 36 Material matFace = new Material();
 37 matFace.setAmbientColor(new Color3f(0f,0f,0f));
 38 matFace.setDiffuseColor(new Color3f(0.15f,0.15f,0.25f));
 39 apFace.setMaterial(matFace);
 40 Cylinder face = new Cylinder(0.6f, 0.01f,
 41 Cylinder.GENERATE_NORMALS, 50, 2, apFace);
 42 Transform3D tr = new Transform3D();
 43 tr.rotX(Math.PI/2);
 44 tr.setTranslation(new Vector3d(0,0,-0.01));
 45 TransformGroup tg = new TransformGroup(tr);
 46 tg.addChild(face);
 47 root.addChild(tg);
 48 // hour
 49 Appearance ap = new Appearance();
 50 ap.setMaterial(new Material());
 51 Shape3D shapeHour =
 52 new Shape3D(createGeometry(0.4, 0.02, 0.02), ap);
 53 TransformGroup spinHour = new TransformGroup();
 54 spinHour.addChild(shapeHour);
 55 spinHour.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 56 root.addChild(spinHour);
 57 // minute
 58 Shape3D shapeMin =
 59 new Shape3D(createGeometry(0.5, 0.02, 0.02), ap);
 60 TransformGroup spinMin = new TransformGroup();
 61 spinMin.addChild(shapeMin);
 62 spinMin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 63 root.addChild(spinMin);
 64 // second
 65 Shape3D shapeSec =
 66 new Shape3D(createGeometry(0.5, 0.01, 0.01), ap);
 67 TransformGroup spinSec = new TransformGroup();
 68 spinSec.addChild(shapeSec);
 69 spinSec.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

[Page 321]
 70 root.addChild(spinSec);
 71 // Behavior node
 72 ClockBehavior rotator =
 73 new ClockBehavior(spinHour, spinMin, spinSec);
 74 BoundingSphere bounds = new BoundingSphere();
 75 rotator.setSchedulingBounds(bounds);
 76 root.addChild(rotator);
 77 // light
 78 AmbientLight light =
 79 new AmbientLight(true, new Color3f(Color.blue));
 80 light.setInfluencingBounds(bounds);
 81 root.addChild(light);
 82 PointLight ptlight = new PointLight(new Color3f(Color.white),
 83 new Point3f(0.7f,0.7f,2f), new Point3f(1f,0f,0f));
 84 ptlight.setInfluencingBounds(bounds);
 85 root.addChild(ptlight);
 86 // background
 87 Background background = new Background(0.7f, 0.7f, 0.7f);
 88 background.setApplicationBounds(bounds);
 89 root.addChild(background);
 90 return root;
 91 }
 92
 93 GeometryArray createGeometry(double l, double w, double h) {
 94 GeometryInfo gi =
 95 new GeometryInfo(GeometryInfo.TRIANGLE_ARRAY);
 96 Point3d[] pts = new Point3d[4];
 97 pts[0] = new Point3d(0, 0, h);
 98 pts[1] = new Point3d(-w, 0, 0);
 99 pts[2] = new Point3d(w, 0, 0);
100 pts[3] = new Point3d(0, l, 0);
101 gi.setCoordinates(pts);
102 int[] indices = {0,1,2,0,3,1,0,2,3,2,1,3};
103 gi.setCoordinateIndices(indices);
104 NormalGenerator ng = new NormalGenerator();
105 ng.generateNormals(gi);
106 return gi.getGeometryArray();
107 }
108 }

Listing 10.2. ClockBehavior.java

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

(This item is displayed on pages 321 - 322 in the print version)

 1 package chapter10;
 2
 3 import java.util.*;
 4 import javax.media.j3d.*;
 5
 6 public class ClockBehavior extends Behavior {
 7 TransformGroup tgH;
 8 TransformGroup tgM;
 9 TransformGroup tgS;
10
11 public ClockBehavior(TransformGroup transH,
12 TransformGroup transM, TransformGroup transS) {
13 tgH = transH;
14 tgM = transM;
15 tgS = transS;
16 }
17
18 public void initialize() {

[Page 322]
19 wakeupOn(new WakeupOnElapsedTime(500));
20 }
21
22 public void processStimulus(java.util.Enumeration enumeration) {
23 int hour = Calendar.getInstance().get(Calendar.HOUR);
24 int min = Calendar.getInstance().get(Calendar.MINUTE);
25 int sec = Calendar.getInstance().get(Calendar.SECOND);
26 Transform3D tr = new Transform3D();
27 tr.rotZ(-Math.PI * (hour+min/60.0)/6.0);
28 tgH.setTransform(tr);
29 tr.rotZ(-Math.PI * min /30.0);
30 tgM.setTransform(tr);
31 tr.rotZ(-Math.PI * sec /30.0);
32 tgS.setTransform(tr);
33 wakeupOn(new WakeupOnElapsedTime(500));
34 }
35 }

The program produces a 3D clock as shown in Figure 10.4. The visual content branch of the scene graph is shown
in Figure 10.5.

Figure 10.4. A clock driven by a Behavior object.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 10.5. The scene graph of the clock.
(This item is displayed on page 323 in the print version)

The program displays a real-time analog clock. The hour, minute, and second hands are created with the method
createGeometry (line 93). createGeometry uses GeometryInfo to create a geometry with four vertices and four
triangle faces. Surface normals are generated with a NormalGenerator object to facilitate lighting. A blue ambient
light and a white point light are placed in the scene. The background is set to gray.

Each of three clock-hand objects is attached to a TransformGroup node. The transformations control the
movements of the hands. In order to make the clock run, we need to update the transformations periodically. A
behavior may be applied to drive the update.

The ClockBehavior class is a subclass of Behavior that acts on the TransformGroup objects controlling the hands
of the clock. It is set to wake up after 0.5 second in the initialize method (line 19) and also in the
processStimulus method (line 33). The main task of the behavior is to update the clock-hands rotations based
on the system time. The current time is obtained from the Calendar class. The rotations of the hands are
calculated based on the time:

[Page 323]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 323 (continued)]

10.3. Interaction
Interaction deals with the dynamic behavior triggered by user input. The general mechanisms for interaction and
animation are similar under the behavior framework. The main difference is in the sources of wakeup conditions.
In interaction the stimuli are from user input devices such as the mouse, keyboard, and 3D input devices.

Java 3D provides families of behavior subclasses for interaction. It is certainly possible to construct custom
interaction behaviors using the basic Behavior class and wakeup conditions. However, the predefined utility
classes are convenient for some commonly used interaction behaviors. Behavior classes related to interaction are
shown in Figure 10.6.

Figure 10.6. Interaction-related classes.
(This item is displayed on page 324 in the print version)

10.3.1. Mouse Behaviors

The MouseBehavior classes define specific behaviors related to mouse motions. A behavior in this family operates
on an associated TransformGroup object. Users can modify the target TransformGroup object with mouse
movements. The types of mouse motions used in the behaviors are given below:

MouseRotate: drag the mouse with the left button down.

MouseTranslate: drag the mouse with the right button down.

MouseZoom: drag the mouse with the middle button down (or with left button down while holding the Alt
key).

[Page 324]

Usages of the three classes are similar. A TransformGroup object is selected as the target of the behavior object.
The mouse behaviors can be linked to mouse events in two ways:

1. Use the WakeupOnAWTEvent to trigger the behavior. The target is controlled by the mouse events on the
Canvas3D object.

2. Specify an AWT component to listen to the mouse events and use the WakeupOnBehaviorPost to trigger
the behavior. This mode is useful when you try to apply mouse controls from another AWT component.

Constructors of MouseBehavior classes include:

MouseRotate(TransformGroup tg)
MouseRotate(Component c)
MouseRotate(Component c, TransformGroup tg)
MouseTranslate(TransformGroup tg)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

MouseTranslate(Component c)
MouseTranslate(Component c, TransformGroup tg)
MouseZoom(TransformGroup tg)
MouseZoom(Component c)
MouseZoom(Component c, TransformGroup tg)

The constructors with a Component parameter operate in the second mode that accepts a separate component for
mouse actions.

Listing 10.3 shows an application of the various MouseBehavior classes. It displays a globe and a set of axes
(Figure 10.7). A user may rotate, translate, and zoom the globe with the mouse. However, the axes are not
affected by the mouse motions.

Listing 10.3. MoveGlobe.java
(This item is displayed on pages 324 - 326 in the print version)

 1 package chapter10;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.URL;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;

[Page 325]
 10 import com.sun.j3d.utils.image.*;
 11 import com.sun.j3d.utils.behaviors.mouse.*;
 12 import chapter7.Axes;
 13 import java.applet.*;
 14 import com.sun.j3d.utils.applet.MainFrame;
 15
 16 public class MoveGlobe extends Applet {
 17 public static void main(String[] args) {
 18 new MainFrame(new MoveGlobe(), 480, 480);
 19 }
 20
 21 public void init() {
 22 // create canvas
 23 GraphicsConfiguration gc =
 24 SimpleUniverse.getPreferredConfiguration();
 25 Canvas3D cv = new Canvas3D(gc);
 26 setLayout(new BorderLayout());
 27 add(cv, BorderLayout.CENTER);
 28 TextArea ta = new TextArea("",3,30,TextArea.SCROLLBARS_NONE);
 29 ta.setText("Rotation: Drag with left button\n");
 30 ta.append("Translation: Drag with right button\n");
 31 ta.append("Zoom: Hold Alt key and drag with left button");
 32 ta.setEditable(false);
 33 add(ta, BorderLayout.SOUTH);
 34 BranchGroup bg = createSceneGraph();
 35 bg.compile();
 36 SimpleUniverse su = new SimpleUniverse(cv);
 37 su.getViewingPlatform().setNominalViewingTransform();
 38 su.addBranchGraph(bg);
 39 }
 40
 41 private BranchGroup createSceneGraph() {
 42 BranchGroup root = new BranchGroup();
 43 // axes
 44 Transform3D tr = new Transform3D();
 45 tr.setScale(0.5);
 46 tr.setTranslation(new Vector3d(-0.8, -0.7, -0.5));
 47 TransformGroup tg = new TransformGroup(tr);
 48 root.addChild(tg);
 49 Axes axes = new Axes();
 50 tg.addChild(axes);
 51 // transform
 52 TransformGroup spin = new TransformGroup();
 53 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 54 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 55 root.addChild(spin);
 56 // texture mapped globe
 57 Appearance ap = createAppearance();
 58 spin.addChild(new Sphere(0.7f,
 59 Primitive.GENERATE_TEXTURE_COORDS, 50, ap));
 60 // rotation
 61 MouseRotate rotator = new MouseRotate(spin);
 62 BoundingSphere bounds = new BoundingSphere();
 63 rotator.setSchedulingBounds(bounds);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 64 spin.addChild(rotator);
 65 // translation
 66 MouseTranslate translator = new MouseTranslate(spin);
 67 translator.setSchedulingBounds(bounds);
 68 spin.addChild(translator);
 69 // zoom
 70 MouseZoom zoom = new MouseZoom(spin);

[Page 326]
 71 zoom.setSchedulingBounds(bounds);
 72 spin.addChild(zoom);
 73 // light
 74 AmbientLight light =
 75 new AmbientLight(true, new Color3f(Color.blue));
 76 light.setInfluencingBounds(bounds);
 77 root.addChild(light);
 78 PointLight ptlight = new PointLight(new Color3f(Color.white),
 79 new Point3f(0f,0f,2f), new Point3f(1f,0.3f,0f));
 80 ptlight.setInfluencingBounds(bounds);
 81 root.addChild(ptlight);
 82 // background
 83 Background background = new Background(1.0f, 1.0f, 1.0f);
 84 background.setApplicationBounds(bounds);
 85 root.addChild(background);
 86 return root;
 87 }
 88
 89 Appearance createAppearance(){
 90 Appearance appear = new Appearance();
 91 URL filename =
 92 getClass().getClassLoader().getResource("images/earth.jpg");
 93 TextureLoader loader = new TextureLoader(filename, this);
 94 ImageComponent2D image = loader.getImage();
 95 Texture2D texture = new Texture2D
 96 (Texture.BASE_LEVEL, Texture.RGBA,
 97 image.getWidth(), image.getHeight());
 98 texture.setImage(0, image);
 99 texture.setEnable(true);
100 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
101 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
102 appear.setTexture(texture);
103 return appear;
104 }
105 }

Figure 10.7. Moving the globe with a mouse.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 327]

A texture-mapped globe and a set of coordinate axes are displayed in the frame. The globe can be manipulated by
mouse actions. A TextArea object placed under the 3D canvas displays instructions for mouse operations. When a
user moves the mouse while holding down the left mouse button, the globe will rotate. Holding the right mouse
button and dragging the mouse performs a translation. Holding the Alt key and dragging with the left mouse
button down performs a scaling.

The scene graph of the program is shown in Figure 10.8. The Sphere object is attached to a TransformGroup
object. A MouseRotate object, a MouseTranslate object, and a MouseZoom object are placed in the scene graph.
They all operate on the same TransformGroup object above the sphere (lines 60–72). The three behaviors will
modify different components of the transform. The behavior objects share the same bounds object for their
scheduling bounds. A background node also references the bounds object.

Figure 10.8. Scene graph of mouse behavior demo.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The Axes object is on a separate branch of the scene graph with its own TransformGroup node. This transform is
not controlled by the mouse behaviors. Consequently, the mouse motions will not affect the coordinate axes.

10.3.2. Key Behaviors

Similar to the mouse behaviors, the KeyNavigatorBehavior class operates on a TransformGroup object, but this
behavior is controlled by key strokes. KeyNavigatorBehavior has the following constructors:

KeyNavigatorBehavior(TransformGroup tg)
KeyNavigatorBehavior(Component c, TransformGroup tg)

The built-in key controls of the KeyNavigatorBehavior class are defined as follows:

, : Rotate left/right

, : Translate forward/backward

[Page 328]

Alt- , Alt- : Translate left/right

PgUp, PgDn: Rotate up/down

Alt-PgUp, Alt-PgDn: Translate up/down

-: Reduce back clip distance

+: Reset back clip distance

=: Reset

Listing 10.4 shows an application of the KeyNavigatorBehavior class. It displays a texture-mapped globe and
allows users to rotate, translate, and reset the scene through the keyboard (Figure 10.9).

Listing 10.4. TestKeyBehavior.java
(This item is displayed on pages 328 - 329 in the print version)

 1 package chapter10;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.URL;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.image.*;
11 import com.sun.j3d.utils.behaviors.keyboard.*;
12 import java.applet.*;
13 import com.sun.j3d.utils.applet.MainFrame;
14
15 public class TestKeyBehavior extends Applet {
16 public static void main(String[] args) {
17 new MainFrame(new TestKeyBehavior(), 480, 480);
18 }
19
20 public void init() {
21 GraphicsConfiguration gc =
22 SimpleUniverse.getPreferredConfiguration();
23 Canvas3D cv = new Canvas3D(gc);
24 setLayout(new BorderLayout());
25 add(cv, BorderLayout.CENTER);
26 TextArea ta = new TextArea("",3,30,TextArea.SCROLLBARS_NONE);
27 ta.setText("Rotation: left, right, PgUp, PgDn\n");
28 ta.append("Translation: up, down,
29 Alt-left, Alt-right, Alt-PgUp, Alt-PgDn\n");
30 ta.append("Reset: =\n");
31 ta.setEditable(false);
32 add(ta, BorderLayout.SOUTH);
33 BranchGroup bg = createSceneGraph();
34 bg.compile();
35 SimpleUniverse su = new SimpleUniverse(cv);
36 su.getViewingPlatform().setNominalViewingTransform();
37 su.addBranchGraph(bg);
38 }
39
40 private BranchGroup createSceneGraph() {
41 BranchGroup root = new BranchGroup();
42 TransformGroup spin = new TransformGroup();
43 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

[Page 329]
44 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
45 root.addChild(spin);
46 // texture mapped globe
47 Appearance ap = createAppearance();
48 spin.addChild(new Sphere(0.7f,
49 Primitive.GENERATE_TEXTURE_COORDS, 50, ap));
50 // key behavior
51 KeyNavigatorBehavior behavior = new KeyNavigatorBehavior(spin);
52 BoundingSphere bounds = new BoundingSphere();
53 behavior.setSchedulingBounds(bounds);
54 spin.addChild(behavior);
55 // background
56 Background background = new Background(1.0f, 1.0f, 1.0f);
57 background.setApplicationBounds(bounds);
58 root.addChild(background);
59 return root;
60 }
61
62 Appearance createAppearance(){
63 Appearance appear = new Appearance();
64 URL filename =
65 getClass().getClassLoader().getResource("images/earth.jpg");
66 TextureLoader loader = new TextureLoader(filename, this);
67 ImageComponent2D image = loader.getImage();
68 Texture2D texture =
69 new Texture2D(Texture.BASE_LEVEL, Texture.RGBA,
70 image.getWidth(), image.getHeight());
71 texture.setImage(0, image);
72 texture.setEnable(true);
73 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
74 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
75 appear.setTexture(texture);
76 return appear;
77 }
78 }

Figure 10.9. Controlling transformation through the keyboard.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 330]

This program allows the user to manipulate the visual object, a texture-mapped globe, through the keyboard. A
text area at the bottom of the window displays the instructions to use the keyboard for navigating the scene.

The scene graph is shown in Figure 10.10. A texture-mapped sphere similar to the one in Listing 10.2 is created
and attached to a TransformGroup object. A KeyNavigatorBehavior object is created to operate on the
TransformGroup node (line 51). The behavior object will react to keyboard inputs by performing associated
transformations. The KeyNavigatorBehavior object uses a BoundingSphere as its scheduling bounds. The bounds
object is also referenced by a white background.

Figure 10.10. Scene graph of key behavior demo program.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

10.3.3. View Platform Behaviors

The ViewPlatformBehavior classes support interaction with the view platform. The class OrbitBehavior allows
changes in view platform through mouse-motion input. Unlike the MouseBehavior class that has three separate
subclasses for different transformations, this single class OrbitBehavior supports three operations: rotation,
translation, and zoom. The definitions for mouse operations are the same as the MouseBehavior classes. A
Canvas3D object is used by OrbitBehavior. To create an OrbitBehavior object the following constructors can be
used:

OrbitBehavior()
OrbitBehavior(Canvas3D cv)
OrbitBehavior(Canvas3D cv, int flags)

An OrbitBehavior object can be added to a scene graph by calling the method setViewPlatformBehavior in the
class ViewingPlatform that is a part of SimpleUniverse.

Listing 10.5 illustrates the use of OrbitBehavior to manipulate the view platform. It displays a globe and allows
users to rotate, translate, and zoom the entire view through mouse motions (See Figure 10.11.)

Listing 10.5. MoveView.java
(This item is displayed on pages 330 - 332 in the print version)

 1 package chapter10;
 2

[Page 331]
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.URL;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.image.*;
11 import com.sun.j3d.utils.behaviors.mouse.*;
12 import com.sun.j3d.utils.behaviors.vp.*;
13 import chapter7.Axes;
14 import java.applet.*;
15 import com.sun.j3d.utils.applet.MainFrame;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

16
17 public class MoveView extends Applet {
18 public static void main(String[] args) {
19 new MainFrame(new MoveView(), 480, 480);
20 }
21
22 public void init() {
23 GraphicsConfiguration gc =
24 SimpleUniverse.getPreferredConfiguration();
25 Canvas3D cv = new Canvas3D(gc);
26 setLayout(new BorderLayout());
27 add(cv, BorderLayout.CENTER);
28 TextArea ta = new TextArea("",3,30,TextArea.SCROLLBARS_NONE);
29 ta.setText("Rotation: Drag with left button\n");
30 ta.append("Translation: Drag with right button\n");
31 ta.append("Zoom: Hold Alt key and drag with left button");
32 ta.setEditable(false);
33 add(ta, BorderLayout.SOUTH);
34 BranchGroup root = new BranchGroup();
35 // axes
36 Transform3D tr = new Transform3D();
37 tr.setScale(0.5);
38 tr.setTranslation(new Vector3d(-0.8, -0.7, -0.5));
39 TransformGroup tg = new TransformGroup(tr);
40 root.addChild(tg);
41 Axes axes = new Axes();
42 tg.addChild(axes);
43 // texture mapped globe
44 Appearance ap = createAppearance();
45 root.addChild(new Sphere(0.7f,
46 Primitive.GENERATE_TEXTURE_COORDS, 50, ap));
47 BoundingSphere bounds = new BoundingSphere();
48 // light
49 AmbientLight light = new AmbientLight(true,
50 new Color3f(Color.blue));
51 light.setInfluencingBounds(bounds);
52 root.addChild(light);
53 PointLight ptlight = new PointLight(new Color3f(Color.white),
54 new Point3f(0f,0f,2f), new Point3f(1f,0.3f,0f));
55 ptlight.setInfluencingBounds(bounds);
56 root.addChild(ptlight);
57 // background
58 Background background = createBackground();
59 background.setApplicationBounds(bounds);
60 root.addChild(background);
61 root.compile();
62 SimpleUniverse su = new SimpleUniverse(cv);
63 su.getViewingPlatform().setNominalViewingTransform();
64 // viewplatform motion

[Page 332]
65 OrbitBehavior orbit = new OrbitBehavior(cv);
66 orbit.setSchedulingBounds(new BoundingSphere());
67 su.getViewingPlatform().setViewPlatformBehavior(orbit);
68
69 su.addBranchGraph(root);
70 }
71
72 Appearance createAppearance(){
73 Appearance appear = new Appearance();
74 URL filename =
75 getClass().getClassLoader().getResource("images/earth.jpg");
76 TextureLoader loader = new TextureLoader(filename, this);
77 Texture texture = loader.getTexture();
78 appear.setTexture(texture);
79 return appear;
80 }
81
82 Background createBackground(){
83 Background background = new Background();
84 BranchGroup bg = new BranchGroup();
85 Sphere sphere = new Sphere(1.0f, Sphere.GENERATE_NORMALS |
86 Sphere.GENERATE_NORMALS_INWARD |
87 Sphere.GENERATE_TEXTURE_COORDS, 60);
88 Appearance ap = sphere.getAppearance();
89 bg.addChild(sphere);
90 background.setGeometry(bg);
91
92 URL filename =
93 getClass().getClassLoader().getResource("images/stars.jpg");
94 TextureLoader loader = new TextureLoader(filename, this);
95 Texture texture = loader.getTexture();
96 ap.setTexture(texture);
97 return background;
98 }
99 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 10.11. Manipulating the view. The view changes with the mouse motions.

[Page 333]

This program appears to be similar to Listing 10.3. The user can rotate, translate, and zoom the scene with
mouse motions. However, there are some differences. Because the behavior movement is applied to the view
platform instead of to the objects, the directions of the motion will be the opposite of those in Listing 10.3.
Another difference is that in this example the entire view of the scene changes as the mouse moves. In Listing
10.3 the movement applies only to the globe, and the axes do not move.

The scene graph is shown in Figure 10.12. The OrbitBehavior operates on the transform associated with the
ViewPlatform. This configuration is established by the following statements (lines 65–67):

Figure 10.12. Scene graph of the View Behaviors example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

OrbitBehavior orbit = new OrbitBehavior(cv);
orbit.setSchedulingBounds(new BoundingSphere());
su.getViewingPlatform().setViewPlatformBehavior(orbit);

Because the behavior is in the view branch, the visual objects are not actually moved by the mouse motions. The
behavior changes the positioning of the view platform. Therefore, the entire scene, including the globe and the
axes, appears to move in the opposite directions of the mouse operations.

The method createBackground (line 82) creates a background using a texture-mapped sphere as its geometry.
The background provides a better perception of the view motion.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 333 (continued)]

10.4. Behavior and Picking
Picking is often applied in conjunction with behaviors to perform interactions associated with specific visual
objects. Picking provides a mechanism to dynamically select visual objects. The behavior structure offers a
systematic way to incorporate operations on the scene.

[Page 334]

10.4.1. Picking and Mouse Behaviors

The PickMouseBehavior classes, including PickRotateBehavior, PickTranslateBehavior, and
PickZoomBehavior, combine picking with mouse behaviors. The mouse-controlled rotation, translation, and zoom
operations are the same as those defined in MouseBehavior, but they are applied only to the picked objects.
Creating a PickMouseBehavior node involves the Canvas3D object, the root of a branch of scene graph for picking,
and the scheduling bounds. For example, the following code fragment sets up a PickRotateBehavior on the
root:

PickRotateBehavior rotator = new PickRotateBehavior(cv, root, bounds);
root.addChild(rotator);

It is necessary to place a TransformGroup node over the object to be picked so that the behaviors can find a
target to operate. It is also necessary to turn on the appropriate capability bits on the picked objects as well as
the transformation nodes.

Listing 10.6 illustrates the application of PickMouseBehavior classes. The program displays a group of seagulls
placed randomly in the scene (Figure 10.13). Users can individually rotate, translate, and zoom each of the
seagulls through mouse motions.

Listing 10.6. TestPickBehavior.java
(This item is displayed on pages 334 - 335 in the print version)

 1 package chapter10;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.URL;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.picking.PickTool;
11 import com.sun.j3d.utils.picking.behaviors.*;
12 import chapter7.Axes;
13 import java.applet.*;
14 import com.sun.j3d.utils.applet.MainFrame;
15
16 public class TestPickBehavior extends Applet {
17 public static void main(String[] args) {
18 new MainFrame(new TestPickBehavior(), 480, 480);
19 }
20
21 public void init() {
22 GraphicsConfiguration gc =
23 SimpleUniverse.getPreferredConfiguration();
24 Canvas3D cv = new Canvas3D(gc);
25 setLayout(new BorderLayout());
26 add(cv, BorderLayout.CENTER);
27 TextArea ta = new TextArea("",3,30,TextArea.SCROLLBARS_NONE);
28 ta.setText("Rotation: Drag with left button\n");
29 ta.append("Translation: Drag with right button\n");
30 ta.append("Zoom: Hold Alt key and drag with left button");
31 ta.setEditable(false);
32 add(ta, BorderLayout.SOUTH);
33 BranchGroup bg = createSceneGraph(cv);
34 bg.compile();
35 SimpleUniverse su = new SimpleUniverse(cv);
36 su.getViewingPlatform().setNominalViewingTransform();

[Page 335]
37 su.addBranchGraph(bg);
38 }
39
40 private BranchGroup createSceneGraph(Canvas3D cv) {
41 BranchGroup root = new BranchGroup();
42 // add 8 seagulls

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 for (int i = 0; i < 8; i++)
44 root.addChild(createObject());
45
46 BoundingSphere bounds = new BoundingSphere();
47 // rotation
48 PickRotateBehavior rotator =
49 new PickRotateBehavior(root, cv, bounds,
50 PickTool.GEOMETRY);
51 root.addChild(rotator);
52 // translation
53 PickTranslateBehavior translator =
54 new PickTranslateBehavior(root, cv,
55 bounds, PickTool.GEOMETRY);
56 root.addChild(translator);
57 // zoom
58 PickZoomBehavior zoom = new PickZoomBehavior(root, cv, bounds,
59 PickTool.GEOMETRY);
60 root.addChild(zoom);
61 // light
62 AmbientLight light = new AmbientLight(true,
63 new Color3f(Color.blue));
64 light.setInfluencingBounds(bounds);
65 root.addChild(light);
66 PointLight ptlight = new PointLight(new Color3f(Color.white),
67 new Point3f(0f,0f,2f), new Point3f(1f,0.3f,0f));
68 ptlight.setInfluencingBounds(bounds);
69 root.addChild(ptlight);
70 // background
71 Background background = new Background(1.0f, 1.0f, 1.0f);
72 background.setApplicationBounds(bounds);
73 root.addChild(background);
74 return root;
75 }
76
77 private Node createObject() {
78 // transform
79 Transform3D trans = new Transform3D();
80 trans.setTranslation(new Vector3d(Math.random()-0.5,
81 Math.random()-0.5, Math.random()-0.5));
82 trans.setScale(0.3);
83 TransformGroup spin = new TransformGroup(trans);
84 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
85 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
86 spin.setCapability(TransformGroup.ENABLE_PICK_REPORTING);
87 // visual objects
88 Appearance ap = new Appearance();
89 ap.setMaterial(new Material());
90 Shape3D shape = new Shape3D(new GullCG(), ap);
91 PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);
92 spin.addChild(shape);
93 return spin;
94 }
95 }

[Page 336]

Figure 10.13. PickMouseBehavior classes allow manipulations of individual objects.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The scene contains eight gulls located randomly. Each gull can be picked and manipulated with the mouse.
Dragging with the left mouse button rotates the gull. Dragging with the right mouse button translates the gull.
Dragging with the middle mouse button (or the left mouse button while holding the Alt key) zooms the gull.

The scene graph is shown in Figure 10.14. Three PickMouseBehavior objects: PickRotateBehavior,
PickTranslateBehavior, and PickZoomBehavior, are created to act on the root BranchGroup node (lines 47–60).
Eight gulls are created with identical structures. The createObject method builds a branch of the scene graph
consisting of a TransformGroup object and a Shape3D object. The GullCG class defines the geometry for the
Shape3D. An Appearance with a Material component is used for the shape. The dedicated TransformGroup node
for each shape is necessary for the pick-mouse behaviors to operate individually on each gull. On the
TransformGroup nodes the following capability bits are turned on (lines 85–87):

Figure 10.14. The scene graph.
(This item is displayed on page 337 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

TransformGroup.ALLOW_TRANSFORM_WRITE
TransformGroup.ALLOW_TRANSFORM_READ
TransformGroup.ENABLE_PICK_REPORTING

On the shapes, the following method is called to turn on all related capability bits (line 92):

PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);

Two lights are added to illuminate the gulls with material appearance. A white background is added. All the
behavior nodes, the lights, and the background node share the same bounds object.

10.4.2. Data Visualization

The combination of picking and behaviors provides a powerful tool for interaction with a 3D scene. Picking allows
for selections of specific scene-graph objects, and behaviors offer a way to change the scene. In a data
visualization application, for example, it will be a useful feature for the user to rotate, translate, and zoom a 3D
plot with the mouse. The motions will significantly improve the perception of the 3D structure. It will also be
useful to select specific data points with the mouse.

[Page 337]

Listing 10.7 shows one approach to implementing such functions with picking and behaviors. The program
displays a 3D scatter plot (Figure 10.15). 3D data points are plotted as colored dots. Users will be able to rotate,
translate, and zoom the plot to view the data from different perspectives. The motions will help the user gain a
better understanding of the 3D structure of the data from the 2D screen. Individual data points can also be
selected on the plot with mouse clicking. A text field at the bottom of the window displays the index and
coordinates of the selected point.

Listing 10.7. DataViewer.java
(This item is displayed on pages 337 - 340 in the print version)

 1 package chapter10;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import com.sun.j3d.utils.picking.*;
 10 import com.sun.j3d.utils.behaviors.mouse.*;
 11 import chapter7.Axes;
 12 import java.applet.*;
 13 import com.sun.j3d.utils.applet.MainFrame;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 14
 15 public class DataViewer3D extends Applet {
 16 public static void main(String[] args) {

[Page 338]
 17 new MainFrame(new DataViewer3D(), 640, 480);
 18 }
 19
 20 PointArray geom;
 21 PickCanvas pc;
 22 TextField text;
 23
 24 public void init() {
 25 setLayout(new BorderLayout());
 26 GraphicsConfiguration gc =
 27 SimpleUniverse.getPreferredConfiguration();
 28 Canvas3D cv = new Canvas3D(gc);
 29 add(cv, BorderLayout.CENTER);
 30 cv.addMouseListener(new MouseAdapter() {
 31 public void mouseClicked
 32 (java.awt.event.MouseEvent mouseEvent) {
 33 pick(mouseEvent);
 34 }
 35 });
 36 text = new TextField();
 37 add(text, BorderLayout.SOUTH);
 38 BranchGroup bg = createSceneGraph(cv);
 39 bg.compile();
 40 SimpleUniverse su = new SimpleUniverse(cv);
 41 su.getViewingPlatform().setNominalViewingTransform();
 42 su.addBranchGraph(bg);
 43 }
 44
 45 private BranchGroup createSceneGraph(Canvas3D cv) {
 46 BranchGroup root = new BranchGroup();
 47 TransformGroup spin = new TransformGroup();
 48 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 49 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 50 root.addChild(spin);
 51 // axes
 52 Transform3D tr = new Transform3D();
 53 tr.setScale(0.3);
 54 TransformGroup tg = new TransformGroup(tr);
 55 spin.addChild(tg);
 56 Axes axes = new Axes();
 57 tg.addChild(axes);
 58 // appearance
 59 Appearance ap = new Appearance();
 60 ap.setPointAttributes(new PointAttributes(10f, true));
 61 // objects
 62 int n = 20;
 63 geom = new PointArray(n,
 64 PointArray.COORDINATES | PointArray.COLOR_4);
 65 geom.setCapability(PointArray.ALLOW_COORDINATE_READ);
 66 geom.setCapability(PointArray.ALLOW_FORMAT_READ);
 67 geom.setCapability(PointArray.ALLOW_COLOR_READ);
 68 geom.setCapability(PointArray.ALLOW_COLOR_WRITE);
 69 geom.setCapability(PointArray.ALLOW_COUNT_READ);
 70 Point3f[] coords = new Point3f[n];
 71 Color4f[] colors = new Color4f[n];
 72 for (int i = 0; i < n; i++) {

[Page 339]
 73 coords[i] = new Point3f((float)(Math.random()-0.5),
 74 (float)(Math.random()-0.5),(float)(Math.random()-0.5));
 75 colors[i] = new Color4f((float)(Math.random()),
 76 (float)(Math.random()),(float)(Math.random()),1f);
 77 }
 78 geom.setCoordinates(0, coords);
 79 geom.setColors(0, colors);
 80 BranchGroup bg = new BranchGroup();
 81 spin.addChild(bg);
 82 pc = new PickCanvas(cv, bg);
 83 pc.setTolerance(5);
 84 pc.setMode(PickTool.GEOMETRY_INTERSECT_INFO);
 85 Shape3D shape = new Shape3D(geom, ap);
 86 bg.addChild(shape);
 87 PickTool.setCapabilities(shape, PickTool.INTERSECT_TEST);
 88 shape.setCapability(Shape3D.ALLOW_GEOMETRY_READ);
 89 // rotation
 90 MouseRotate rotator = new MouseRotate(spin);
 91 BoundingSphere bounds = new BoundingSphere();
 92 rotator.setSchedulingBounds(bounds);
 93 spin.addChild(rotator);
 94 // translation
 95 MouseTranslate translator = new MouseTranslate(spin);
 96 translator.setSchedulingBounds(bounds);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 97 spin.addChild(translator);
 98 // zoom
 99 MouseZoom zoom = new MouseZoom(spin);
100 zoom.setSchedulingBounds(bounds);
101 spin.addChild(zoom);
102 // background and light
103 Background background = new Background(1.0f, 1.0f, 1.0f);
104 background.setApplicationBounds(bounds);
105 root.addChild(background);
106 AmbientLight light =
107 new AmbientLight(true, new Color3f(Color.red));
108 light.setInfluencingBounds(bounds);
109 root.addChild(light);
110 PointLight ptlight = new PointLight(new Color3f(Color.green),
111 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
112 ptlight.setInfluencingBounds(bounds);
113 root.addChild(ptlight);
114 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
115 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
116 ptlight2.setInfluencingBounds(bounds);
117 root.addChild(ptlight2);
118 return root;
119 }
120
121 private void pick(MouseEvent mouseEvent) {
122 Color4f color = new Color4f();
123 pc.setShapeLocation(mouseEvent);
124 PickResult[] results = pc.pickAll();
125 for (int i = 0; (results != null) &&
126 (i < results.length); i++) {
127 PickIntersection inter = results[i].getIntersection(0);
128 Point3d pt = inter.getClosestVertexCoordinates();

[Page 340]
129 int[] ind = inter.getPrimitiveCoordinateIndices();
130 text.setText("vertex " + ind[0] + ": (" + pt.x + ", "
131 + pt.y + ", " + pt.z + ")");
132 geom.getColor(ind[0], color);
133 color.x = 1f - color.x;
134 color.y = 1f - color.y;
135 color.z = 1f - color.z;
136 if (color.w > 0.8) color.w = 0.5f;
137 else color.w = 1f;
138 geom.setColor(ind[0], color);
139 }
140 }
141 }

Figure 10.15. A 3D scatter plot featuring data-point selection and transformations under user
control.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The scene graph of the program is shown in Figure 10.16. Three MouseBehavior objects: MouseRotate,
MouseTranslate, and MouseZoom are set to operate on a TransformGroup node. The behaviors provide the
capabilities to rotate, translate, and zoom the plot.

Figure 10.16. Scene graph.
(This item is displayed on page 341 in the print version)

The data points to be plotted are generated randomly and represented with a PointArray geometry (lines 61–
79). The colors of the points are randomly assigned with Color4f objects. An Axes object is used to provide a
visual reference of the coordinate system. An extra BranchGroup node is placed on top of the data object. It is

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

used for picking operation. Picking is not applied to the root BranchGroup node because the Axes object should be
excluded from picking.

A mouse listener is placed on the Canvas3D object. It listens to mouse-click events and performs a picking on the
branch for data points by calling the pick method (line 121). A PickCanvas object is used to perform picking
based on the mouse location. Because all data points belong to one object as vertices, it is necessary to obtain the
intersections of the picking to determine the specific point (lines 127–128):

[Page 341]

PickIntersection inter = results[i].getIntersection(0);
Point3d pt = inter.getClosestVertexCoordinates();

The index of the vertex in the geometry can also be obtained (line 129):

int[] ind = inter.getPrimitiveCoordinateIndices();

When the vertex in the intersection is retrieved, its index and coordinates are displayed in the text field at the
bottom of the frame. The selected point will be shown in a different color. The new color is the complement of the
original color, so if you select a point twice, it will return to its original color.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 341 (continued)]

Key Classes and Methods
javax.media.j3d.Behavior A class encapsulating a dynamic behavior.

javax.media.j3d.WakeupCondition A base class for wakeup conditions.

javax.media.j3d.WakeupCriterion A base class encapsulating various specific wakeup conditions.

javax.media.j3d.WakeupOnElapsedTime A wakeup criterion based on elapsed time.

javax.media.j3d.WakeupOnAWTEvent A wakeup criterion based on AWT events.

[Page 342]

javax.media.j3d.WakeupAnd A class for combining wakeup criteria with logical AND.

javax.media.j3d.WakeupOr A class for combining wakeup criteria with logical OR.

javax.media.j3d.WakeupAndOfOrs A class for combining WakeupOr conditions with logical AND.

javax.media.j3d.WakeupOrOfAnds A class for combining WakeupAnd conditions with logical OR.

com.sun.j3d.utils.behaviors.mouse.MouseBehavior A base class for mouse-driven behaviors.

com.sun.j3d.utils.behaviors.mouse.MouseRotate A mouse-controlled rotation behavior.

com.sun.j3d.utils.behaviors.mouse.MouseTranslate A mouse-controlled translation behavior.

com.sun.j3d.utils.behaviors.mouse.MouseZoom A mouse-controlled zoom behavior.

com.sun.j3d.utils.behaviors.keyboard.KeyNavigatorBehavior A keyboard-based transformation
behavior.

com.sun.j3d.utils.behaviors.vp.OrbitBehavior A mouse-driven viewplatform transformation behavior.

com.sun.j3d.utils.picking.behaviors.PickMouseBehavior A base class for mouse-driven picking and
transformation behaviors.

com.sun.j3d.utils.picking.behaviors.PickRotateBehavior A mousecontrolled picking and rotation
behavior.

com.sun.j3d.utils.picking.behaviors.PickTranslateBehavior A mousecontrolled picking and
translation behavior.

com.sun.j3d.utils.picking.behaviors.PickZoomBehavior A mousecontrolled picking and zoom
behavior.

javax.media.j3d.MouseBehavior.initialize() An initialization method called once by the scheduler.

javax.media.j3d.MouseBehavior.processStimulus(Enumeration) A method called when a wakeup
condition occurs.

javax.media.j3d.MouseBehavior.wakeupOn(WakeupCondition) A method to set a wakeup condition.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 342 (continued)]

Key Terms
behavior

A model for dynamics in a 3D scene.

interaction

A dynamic behavior related to user input.

wakeup condition

A condition to trigger a behavior.

picking behavior

An interaction based on picking.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 342 (continued)]

Chapter Summary
This chapter introduces the concept of behavior that represents dynamics of a 3D scene in a systematical
way. Commonly used dynamic changes such as interactions and animations can be modeled as behaviors.
The general behavior mechanism and the interaction behaviors are discussed in this chapter. Animation is
covered in the next chapter.

[Page 343]

Java 3D provides the classes in Behavior and WakeupCondition families to facilitate various behavior
operations. A Behavior object establishes wakeup conditions and responds to stimuli from the wakeup
conditions to fulfill their tasks. A large collection of specific wakeup conditions are supplied by Java 3D
under the class hierarchy WakeupCriterion. The criteria can also be combined using certain logical
operations to form composite wakeup conditions.

Interaction is typically accomplished through behaviors with wakeup conditions related to user input
events such as mouse and keyboard actions. Java 3D contains several utility packages to support
interaction.

The MouseBehavior family of classes provides behaviors for controlling TransformGroup nodes with mouse
actions. The KeyNavigatorBehavior class uses the keyboard to control the transform. The
ViewPlatformBehavior classes operate on view platforms.

Picking is often combined with behaviors to construct interactions. The utility classes in the
PickMouseBehavior family provide convenient constructions of behaviors that link picking to affine
transforms.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 343 (continued)]

Review Questions

10.1 Discuss the advantages of defining a behavior as a scene-graph node.

10.2 Describe the differences between interaction and animation.

10.3 Which WakeupCriterion classes are usually associated with interaction?

10.4 Describe the differences between MouseBehavior and ViewPlatformAWTBehavior classes.

10.5 In Listing 10.6, what happens if all gulls are attached to the same TransformGroup node instead
of their own transforms?

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 343 (continued)]

Programming Exercises

10.1 Write a Java 3D program to display a real-time digital clock using 3D text.

10.2 Add a MouseRotate behavior to the program in Problem 10.1 to allow rotation of the clock by
mouse dragging.

10.3 Add a MouseTranslate behavior to the program in Problem 10.2 to allow translation of the clock
by mouse motion.

10.4 Add a MouseZoom behavior to the program in Problem 10.3 to allow zooming of the clock by
mouse dragging.

10.5 Add a KeyNavigationBehavior to the program in Problem 10.4 to allow keyboard manipulation of
the clock.

[Page 344]

10.6 Modify the code in Listing 10.6 so that only one instance of the GullCG geometry is used.

10.7 Rewrite Listing 10.7 to use an OrbitBehavior for controlling the view with mouse actions.

10.8 Rewrite Listing 10.7 so it uses a Behavior instead of a mouse listener to handle the picking.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 345]

Chapter 11. Animation
(This item omitted from WebBook edition)

Objectives
To understand the concept and methods of animation.

To understand and create Alpha objects.

To apply various interpolators to creating animations.

To create morphing with Morph nodes and behaviors.

To use LOD behaviors.

To use billboard behaviors.

[Page 346]

11.1. Introduction
Animation generates sequences of graphics renderings that vary with time, producing an effect of live motions.
Both interaction and animation generate dynamic behaviors in graphics systems, but animation is usually time
related, and producing the frames, the intermediate results of the changing process, is often the main objective
of an animation.

Animation is a common dynamic effect in computer graphics. To produce the animated graphics effects, the
rendered scene must change dynamically with time. The changes may involve different attributes of the scene
such as geometry, transformation, position, color, and transparency.

Java 3D provides extensive support for incorporation of animation into a scene graph through the Behavior class.
A family of behavior classes known as the interpolators encapsulates the common animation actions. The Alpha
class that represents a function of time serves as the driving force for the interpolators. It is easy to create an
animation with an interpolator. You need only create an appropriate interpolator object with an alpha, and link the
interpolator to its target object.

Other animation-related techniques include morphing, level of detail (LOD), and billboard behaviors. Morphing
defines a smooth change of geometries. LOD provides a method to offer different levels of rendering details
depending on the distance of the object from the eye. Billboard behavior provides a convenient method to
automatically adjust the orientation of an object so that it will always face the viewer.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 346 (continued)]

11.2. Alpha Objects
Animations tie the dynamic changes of a scene to time. An alpha object defines a (usually periodic) function of
time that produces values between 0.0 and 1.0. It is usually more convenient to drive an animation with an
alpha than with a real-time clock. Java 3D Alpha class is a subclass of NodeComponent. The Alpha objects provide
inputs to the animation tool known as the Interpolator. The functional shape of an Alpha object is defined by
several parameters. An example waveform of an Alpha object is shown in Figure 11.1.

Figure 11.1. The waveform of an Alpha object.

A Java 3D Alpha object includes the following parameters:

LoopCount: The number of pulses or periods. The value -1 indicates an unlimited number of loops.

startTime: The absolute time for the initial reference point.

triggerTime: The time in milliseconds from the startTime for activating the Alpha object.

phaseDelayDuration: The time in milliseconds for the initial delay from the triggerTime.

alphaAtZeroDuration: The time in milliseconds for the alpha value to stay at 0.0.

alphaAtOneDuration: The time in milliseconds for the alpha value to stay at 1.0.

increasingAlphaDuration: The time in milliseconds for the alpha value to increase from 0.0 to 1.0.

[Page 347]

decreasingAlphaDuration: The time in milliseconds for the alpha value to decrease from 1.0 to 0.0.

increasingAlphaRampDuration: The time in milliseconds for the alpha value to accelerate during the
increasing phase.

decreasingAlphaRampDuration: The time in milliseconds for the alpha value to accelerate during the
decreasing phase.

The parameters increasingAlphaRampDuration and decreasingAlphaRampDuration define certain smoothing
effects on the waveform. The value of increasingAlphaRampDuration specifies an interval of acceleration at the
beginning of the increasing phase and an interval of deceleration at the end of the increasing phase. Similarly the
value of decreasingAlphaRampDuration specifies an interval of deceleration and acceleration for the decreasing
phase.

The following constructors are available for Alpha objects:

public Alpha()
public Alpha(int loopCount, long increasingAlphaDuration)
public Alpha(int loopCount, long triggerTime,
 long phaseDelayDuration, long
 increasingAlphaDuration, long increasingAlphaRampDuration,
 long alphaAtOneDuration)
public Alpha(int loopCount, int mode, long triggerTime,
 long phaseDelayDuration, long
 increasingAlphaDuration, long increasingAlphaRampDuration,
 long alphaAtOneDuration, long
 decreaingAlphaDuration, long dereasingAlphaRampDuration,
 long alphaAtZeroDuration)

The alpha values of an Alpha object can be retrieved with the value methods:

public float value()

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

public float value(long atTime)

The first method gets the alpha value for the current time. The second method gets the value for the specified
time.

Listing 11.1 plots the waveform of an alpha object (Figure 11.2). Parameters of the alpha can be changed at
runtime to show the their effects on the waveform.

Listing 11.1. TestAlpha.java
(This item is displayed on pages 347 - 349 in the print version)

 1 package chapter11;
 2
 3 import java.awt.*;
 4 import java.awt.event.*;
 5 import javax.swing.*;
 6 import javax.media.j3d.*;
 7
 8 public class TestAlpha extends JApplet {
 9 public static void main(String s[]) {
 10 JFrame frame = new JFrame();
 11 frame.setTitle("Alpha");
 12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 13 JApplet applet = new TestAlpha();
 14 applet.init();
 15 frame.getContentPane().add(applet);
 16 frame.pack();
 17 frame.setVisible(true);
 18 }
 19

[Page 348]
 20 Alpha alpha = new Alpha();
 21 Plot plot;
 22 JTextField tfLoopCount;
 23 JTextField tfTriggerTime;
 24 JTextField tfAlphaAtZeroDuration;
 25 JTextField tfAlphaAtOneDuration;
 26 JTextField tfIncreasingAlphaDuration;
 27 JTextField tfDecreasingAlphaDuration;
 28 JTextField tfIncreasingAlphaRampDuration;
 29 JTextField tfDecreasingAlphaRampDuration;
 30
 31 public void init() {
 32 Container cp = this.getContentPane();
 33 cp.setLayout(new BorderLayout());
 34 plot = new Plot();
 35 cp.add(plot, BorderLayout.CENTER);
 36 JPanel p = new JPanel();
 37 p.setBorder(BorderFactory.createTitledBorder(
 38 "Alpha parameters"));
 39 cp.add(p, BorderLayout.SOUTH);
 40 p.setLayout(new GridLayout(5, 4, 10, 5));
 41 p.add(new JLabel("loopCount"));
 42 tfLoopCount = new JTextField("-1");
 43 p.add(tfLoopCount);
 44 p.add(new JLabel("triggerTime"));
 45 tfTriggerTime = new JTextField("0");
 46 p.add(tfTriggerTime);
 47 p.add(new JLabel("alphaAtZeroDuration"));
 48 tfAlphaAtZeroDuration = new JTextField("0");
 49 p.add(tfAlphaAtZeroDuration);
 50 p.add(new JLabel("alphaAtOneDuration"));
 51 tfAlphaAtOneDuration = new JTextField("0");
 52 p.add(tfAlphaAtOneDuration);
 53 p.add(new JLabel("increasingAlphaDuration"));
 54 tfIncreasingAlphaDuration = new JTextField("1000");
 55 p.add(tfIncreasingAlphaDuration);
 56 p.add(new JLabel("decreasingAlphaDuration"));
 57 tfDecreasingAlphaDuration = new JTextField("0");
 58 p.add(tfDecreasingAlphaDuration);
 59 p.add(new JLabel("increasingAlphaRampDuration"));
 60 tfIncreasingAlphaRampDuration = new JTextField("0");
 61 p.add(tfIncreasingAlphaRampDuration);
 62 p.add(new JLabel("decreasingAlphaRampDuration"));
 63 tfDecreasingAlphaRampDuration = new JTextField("0");
 64 p.add(tfDecreasingAlphaRampDuration);
 65 p.add(new JPanel());
 66 JButton button = new JButton("Plot");
 67 p.add(button);
 68 button.addActionListener(new ActionListener() {
 69 public void actionPerformed(ActionEvent ev) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 70 setAlpha();
 71 repaint();
 72 }
 73 });
 74 p.add(new JPanel());
 75 button = new JButton("Reset");
 76 p.add(button);
 77 button.addActionListener(new ActionListener() {
 78 public void actionPerformed(ActionEvent ev) {

[Page 349]
 79 tfLoopCount.setText("-1");
 80 tfTriggerTime.setText("0");
 81 tfAlphaAtZeroDuration.setText("0");
 82 tfAlphaAtOneDuration.setText("0");
 83 tfIncreasingAlphaDuration.setText("1000");
 84 tfDecreasingAlphaDuration.setText("0");
 85 tfIncreasingAlphaRampDuration.setText("0");
 86 tfDecreasingAlphaRampDuration.setText("0");
 87 setAlpha();
 88 repaint();
 89 }
 90 });
 91 }
 92
 93 void setAlpha() {
 94 alpha.setMode
 95 (Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE);
 96 int n = Integer.parseInt(tfLoopCount.getText());
 97 alpha.setLoopCount(n);
 98 n = Integer.parseInt(tfTriggerTime.getText());
 99 alpha.setTriggerTime(n);
100 n = Integer.parseInt(tfAlphaAtZeroDuration.getText());
101 alpha.setAlphaAtZeroDuration(n);
102 n = Integer.parseInt(tfAlphaAtOneDuration.getText());
103 alpha.setAlphaAtOneDuration(n);
104 n = Integer.parseInt(tfIncreasingAlphaDuration.getText());
105 alpha.setIncreasingAlphaDuration(n);
106 n = Integer.parseInt(tfDecreasingAlphaDuration.getText());
107 alpha.setDecreasingAlphaDuration(n);
108 n = Integer.parseInt(tfIncreasingAlphaRampDuration.getText());
109 alpha.setIncreasingAlphaRampDuration(n);
110 n = Integer.parseInt(tfDecreasingAlphaRampDuration.getText());
111 alpha.setDecreasingAlphaRampDuration(n);
112 }
113
114 class Plot extends JPanel {
115 public Plot() {
116 this.setBackground(Color.white);
117 this.setBorder(BorderFactory.createLoweredBevelBorder());
118 this.setPreferredSize(new Dimension(800,200));
119 }
120
121 public void paintComponent(Graphics g) {
122 super.paintComponent(g);
123 long start = alpha.getStartTime();
124 int x1 = 0;
125 int y1 = 150;
126 int x2 = 0;
127 int y2 = 0;
128 for (int i = 1; i < 1000; i++) {
129 x2 = i;
130 y2 = 150-(int)(100*alpha.value(start+i*10));
131 g.drawLine(x1, y1,x2, y2);
132 x1 = x2;
133 y1 = y2;
134 }
135 }
136 }
137 }

[Page 350]

Figure 11.2. Plotting the waveform of an Alpha object.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The values of an Alpha object are plotted in a panel. Eight parameters for the alpha object can be set through the
JTextField objects in the lower panel of the frame. Initially the default parameters are set for the Alpha. The
Plot button will redraw the curve using the given parameters. The Reset button resets all parameters to the
default.

The inner class Plot (line 114) extends JPanel and draws the waveform in its paint Component method (line
121). The points are plotted in 10-ms intervals. The method value(long atTime) of the Alpha object is used to
obtain the alpha values (line 130).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 350 (continued)]

11.3. Interpolators
The Behavior class includes a family of Interpolator subclasses that are predefined behaviors for animation. The
Interpolator classes provide convenient ways to produce animation by setting two or more attribute points and
interpolating the values between them. The concept of an interpolator is illustrated in Figure 11.3. Two endpoints
of certain attribute are explicitly given. The interpolator will fill in the intermediate values to produce an
animation. The targets of the interpolators may be colors, transformations, switches, and other attributes.

Figure 11.3. An interpolator interpolates the intermediate values.

An interpolator, like other animation tools, is driven by the time. To normalize the time input to an animation
object, an Alpha object can be used. The Alpha objects provide a consistent interface for generating stimuli from
time values. A Java 3D Interpolator is driven by an Alpha object. To create an animation using an interpolator,
you may instantiate an appropriate Interpolator class, set its control points, and provide it with an Alpha object.
Figure 11.4 shows the Interpolator class hierarchy in Java 3D.

[Page 351]

Figure 11.4. The interpolators.

The ColorInterpolator class interpolates between two color values for a Material object. The following code
animates a color change from red to green:

Alpha alpha = new Alpha();
Material material = new Material();
Color3f red = new Color3f(1f, 0f, 0f);
Color3f green = new Color3f(1f, 0f, 0f);
ColorInterpolator ci = new ColorInterpolator
 (alpha, material, red, green);
ci.setSchedulingBounds(new BoundingSphere());

The TransparencyInterpolator class interpolates between two transparency values for a target
TransparencyAttributes object. It has the following constructors:

TransparencyInterpolator(Alpha a, TransparencyAttributes target);
TransparencyInterpolator(Alpha a, TransparencyAttributes target,
 float t1, float t2);

The SwitchValueInterpolator class has a Switch node as its target. It interpolates the indices of the Switch
object's children.

The TransformInterpolator class operates on a target TransformGroup object. It also maintains a Transform3D

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The TransformInterpolator class operates on a target TransformGroup object. It also maintains a Transform3D
object to represent the axis of the operation. RotationInterpolator interpolates between two angles. The
default angles are from 0 to 2p. It has already been used in many previous example programs to rotate objects.
The PositionInterpolator interpolates the translation component of the target along the axis. The
ScaleInterpolator performs an interpolation on the scaling of the target.

Sometimes just interpolating two endpoints may be inadequate for complex animations. The PathInterpolator
class and its subclasses are special TransformInterpolator classes that allow a sequence of control points or key
frames to be specified. The interpolator will linearly interpolate the intermediate values between each pair of
adjacent points. The timing of the interpolation related to the alpha values is controlled by a sequence of numbers
called knots. For example, the following statements set up a PositionPathInterpolator that interpolates three
positions:

Point3f[] positions = {new Point3f(0,0,0), new Point3f(1,1,0),
 new Point3f(2,0,0)};
float[] knots = {0f, 0.3f, 1f};
Alpha alpha = new Alpha();
TransformGroup target = new TransformGroup();
Transform3D axis = new Transform3D();
PositionPathInterpolator interpolator =
 new PositionPathInterpolator(alpha, target, axis, knots, positions);

[Page 352]

The interpolated path is shown in Figure 11.5. When the alpha values are between 0 and 0.3, the interpolator
generates the path from (0, 0, 0) to (1, 1, 0). When the alpha values are above 0.3, it generates the path from
(1, 1, 0) to (2, 0, 0).

Figure 11.5. A PositionPathInterpolator.

The RotationPathInterpolator interpolates a sequence of rotations. The RotPosPathInterpolator interpolates
a sequence of rotations and translations. The RotPosScalePathInterpolator interpolates a sequence of
transforms with specified rotations, translations, and scales.

The PathInterpolator classes generate piecewise linear segments, and therefore the paths may not be smooth
at the knots where different segments are joined. To produce smooth interpolations or to exercise more
sophisticated controls over the interpolating curves, we may use the classes KBSplinePathInterpolator or
TCBSplinePathInterpolator. They both have a concrete subclass that interpolates rotations, translations, and
scales.

Interpolators are behaviors and, consequently, they need to have appropriate scheduling bounds set.

Listing 11.2 shows an application of interpolators. Different types of interpolators are used in this example. The
visual object is either a gull or a dodecahedron depending on a Switch value. Eight buttons labeled with the
interpolator names are placed at the right side of the window. Clicking a button activates the corresponding
interpolator. "Color" interpolates the colors of the object. "Transparency" changes the transparency.
"SwitchValue" changes the shape from the gull to the dodecahedron. "Rotation," "Position," and "Scale" perform
the transformations on the object. "RotPosPath" moves and rotates the object along a path.
"RotPosScaleTCBSplinePath" interpolates smoothly along a path. (See Figure 11.6.)

Listing 11.2. TestInterpolator.java
(This item is displayed on pages 352 - 356 in the print version)

 1 package chapter11;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
 10 import com.sun.j3d.utils.image.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 11 import com.sun.j3d.utils.behaviors.interpolators.*;
 12 import chapter6.Dodecahedron;
 13 import chapter10.GullCG;
 14 import java.applet.*;
 15 import com.sun.j3d.utils.applet.MainFrame;
 16
 17 public class TestInterpolators extends Applet
 18 implements ActionListener {
 19 public static void main(String[] args) {
 20 new MainFrame(new TestInterpolators(), 800, 600);
 21 }
 22

[Page 353]
 23 private ColorInterpolator color = null;
 24 private TransparencyInterpolator transparency = null;
 25 private SwitchValueInterpolator sw = null;
 26 private RotationInterpolator rotator = null;
 27 private PositionInterpolator translator = null;
 28 private ScaleInterpolator zoom = null;
 29 private RotPosPathInterpolator path = null;
 30 private TCBSplinePathInterpolator spline = null;
 31 private Interpolator current = null;
 32
 33 public void init() {
 34 setLayout(new BorderLayout());
 35 Panel panel = new Panel();
 36 panel.setLayout(new GridLayout(8,1));
 37 add(panel, BorderLayout.EAST);
 38 Button button;
 39 button = new Button("Color");
 40 button.addActionListener(this);
 41 panel.add(button);
 42 button = new Button("Transparency");
 43 button.addActionListener(this);
 44 panel.add(button);
 45 button = new Button("SwitchValue");
 46 button.addActionListener(this);
 47 panel.add(button);
 48 button = new Button("Rotation");
 49 button.addActionListener(this);
 50 panel.add(button);
 51 button = new Button("Position");
 52 button.addActionListener(this);
 53 panel.add(button);
 54 button = new Button("Scale");
 55 button.addActionListener(this);
 56 panel.add(button);
 57 button = new Button("RotPosPath");
 58 button.addActionListener(this);
 59 panel.add(button);
 60 button = new Button("RotPosScaleTCBSplinePath");
 61 button.addActionListener(this);
 62 panel.add(button);
 63
 64 GraphicsConfiguration gc =
 65 SimpleUniverse.getPreferredConfiguration();
 66 Canvas3D cv = new Canvas3D(gc);
 67 add(cv, BorderLayout.CENTER);
 68 BranchGroup bg = createSceneGraph();
 69 bg.compile();
 70 SimpleUniverse su = new SimpleUniverse(cv);
 71 su.getViewingPlatform().setNominalViewingTransform();
 72 su.addBranchGraph(bg);
 73 }
 74
 75 private BranchGroup createSceneGraph() {
 76 BranchGroup root = new BranchGroup();
 77 TransformGroup tg = new TransformGroup();
 78 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 79 tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 80 root.addChild(tg);
 81 // switch node
 82 Switch swNode = new Switch();

[Page 354]
 83 swNode.setCapability(Switch.ALLOW_SWITCH_WRITE);
 84 tg.addChild(swNode);
 85 // appearance
 86 Appearance ap = new Appearance();
 87 Material material = new Material();
 88 material.setCapability(Material.ALLOW_COMPONENT_WRITE);
 89 material.setColorTarget(Material.AMBIENT);
 90 ap.setMaterial(material);
 91 TransparencyAttributes transAttr = new TransparencyAttributes(
 92 TransparencyAttributes.BLENDED,0.5f);
 93 transAttr.setCapability

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 94 (TransparencyAttributes.ALLOW_VALUE_WRITE);
 95 ap.setTransparencyAttributes(transAttr);
 96 // gull
 97 Shape3D shape = new Shape3D(new GullCG(), ap);
 98 Transform3D trans = new Transform3D();
 99 trans.setScale(0.5);
100 TransformGroup tgScale = new TransformGroup(trans);
101 swNode.addChild(tgScale);
102 tgScale.addChild(shape);
103 // dodecahedron
104 Dodecahedron dodec = new Dodecahedron();
105 dodec.setAppearance(ap);
106 trans.setScale(0.1);
107 tgScale = new TransformGroup(trans);
108 swNode.addChild(tgScale);
109 tgScale.addChild(dodec);
110 // interpolators
111 BoundingSphere bounds =
112 new BoundingSphere(new Point3d(0,0,0),100);
113 Alpha alpha = new Alpha(-1, 6000);
114 alpha.setMode
115 (Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE);
116 alpha.setDecreasingAlphaDuration(6000);
117 // color
118 color = new ColorInterpolator
119 (alpha, material, new Color3f(1,0,0), new Color3f(0,0,1));
120 color.setSchedulingBounds(bounds);
121 color.setEnable(true);
122 root.addChild(color);
123 // transparency
124 transparency = new TransparencyInterpolator(alpha, transAttr);
125 transparency.setSchedulingBounds(bounds);
126 transparency.setEnable(false);
127 root.addChild(transparency);
128 // switch
129 sw = new SwitchValueInterpolator(alpha, swNode);
130 sw.setSchedulingBounds(bounds);
131 transparency.setEnable(false);
132 root.addChild(sw);
133 // rotation
134 rotator = new RotationInterpolator(alpha, tg);
135 rotator.setSchedulingBounds(bounds);
136 rotator.setEnable(false);
137 root.addChild(rotator);
138 // translation
139 translator = new PositionInterpolator(alpha, tg);
140 translator.setSchedulingBounds(bounds);
141 translator.setEnable(false);

[Page 355]
142 root.addChild(translator);
143 // zoom
144 zoom = new ScaleInterpolator(alpha, tg);
145 zoom.setSchedulingBounds(bounds);
146 zoom.setEnable(false);
147 root.addChild(zoom);
148 // path
149 Transform3D axis = new Transform3D();
150 float[] knots = {0,0.25f,0.5f,0.75f,1};
151 Quat4f[] rots = new Quat4f[5];
152 Point3f[] ps = new Point3f[5];
153 for (int i = 0; i < 5; i++) {
154 rots[i] = new Quat4f((float)Math.cos(0.5*Math.PI*i),0,0,
155 (float)Math.sin(0.5*Math.PI*i));
156 ps[i] = new Point3f(0.25f*(i-2),
157 (float)Math.sin(0.5*Math.PI*i), 0);
158 }
159 path = new RotPosPathInterpolator
160 (alpha, tg, axis, knots, rots, ps);
161 path.setSchedulingBounds(bounds);
162 path.setEnable(false);
163 root.addChild(path);
164 // spline
165 TCBKeyFrame[] frames = new TCBKeyFrame[5];
166 for (int i = 0; i < 5; i++) {
167 frames[i] = new TCBKeyFrame(0.25f*i, 0,
168 new Point3f(0.25f*(i-2),(float)Math.sin(0.5*Math.PI*i), 0),
169 new Quat4f((float)Math.cos(0.5*Math.PI*i),0,0,
170 (float)Math.sin(0.5*Math.PI*i)),
171 new Point3f(1,1,1),0,0,0);
172 }
173 spline = new RotPosScaleTCBSplinePathInterpolator
174 (alpha, tg, axis, frames);
175 spline.setSchedulingBounds(bounds);
176 spline.setEnable(true);
177 root.addChild(spline);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

178 current = spline;
179 // light
180 AmbientLight light =
181 new AmbientLight(true, new Color3f(Color.blue));
182 light.setInfluencingBounds(bounds);
183 root.addChild(light);
184 PointLight ptlight = new PointLight(new Color3f(Color.white),
185 new Point3f(0f,0f,2f), new Point3f(1f,0.3f,0f));
186 ptlight.setInfluencingBounds(bounds);
187 root.addChild(ptlight);
188 // background
189 Background background = new Background(1.0f, 1.0f, 1.0f);
190 background.setApplicationBounds(bounds);
191 root.addChild(background);
192 return root;
193 }
194
195 public void actionPerformed(ActionEvent e) {
196 String cmd = e.getActionCommand();
197 if ("Rotation".equals(cmd)) {
198 current.setEnable(false);
199 current = rotator;
200 current.setEnable(true);

[Page 356]
201 } else if ("Position".equals(cmd)) {
202 current.setEnable(false);
203 current = translator;
204 current.setEnable(true);
205 } else if ("Scale".equals(cmd)) {
206 current.setEnable(false);
207 current = zoom;
208 current.setEnable(true);
209 } else if ("RotPosPath".equals(cmd)) {
210 current.setEnable(false);
211 current = path;
212 current.setEnable(true);
213 } else if ("RotPosScaleTCBSplinePath".equals(cmd)) {
214 current.setEnable(false);
215 current = spline;
216 current.setEnable(true);
217 } else if ("Color".equals(cmd)) {
218 color.setEnable(!color.getEnable());
219 } else if ("Transparency".equals(cmd)) {
220 transparency.setEnable(!transparency.getEnable());
221 } else if ("SwitchValue".equals(cmd)) {
222 sw.setEnable(!sw.getEnable());
223 }
224 }
225 }

Figure 11.6. An interpolator showcase.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 357]

The scene graph is shown in Figure 11.7. Two lights, a white background, and a BoundingSphere object are not
shown. A gull shape using a GullCG geometry and a Dodecahedron object are attached to a Switch node through
some scaling. The appearance of the objects contains a Material object and a TransparencyAttributes object.
There is a TransformGroup node on top of the Switch. The capability bits of the TransformGroup, Switch,
Material, and TransparencyAttributes objects are set to allow writing.

Figure 11.7. The partial scene graph with eight interpolators. For clarity, certain objects such as
Alpha, Bounds, Light, Background, and view branch are not shown.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

An Alpha object is constructed with both increase and decrease parameters enabled. It is applied to all the
interpolators. Eight different interpolators are created: ColorInterpolator, TransparencyInterpolator,
SwitchValueInterpolator, RotationInterpolator, PositionInterpolator, ScaleInterpolator,
RotPosPathInterpolator, and RotPosScaleTCBSplinePathInterpolator. The ColorInterpolator operates on
the Material object. The TransparencyInterpolator operates on the TransparencyAttributes. The
SwitchValueInterpolator operates on the Switch. The other five transform interpolators all operate on the
TransformGroup object.

Eight buttons corresponding to the eight interpolators are placed on the "EAST" side of the frame. The frame is
the action listener for all the buttons. The first three buttons operate independently to enable or disable their
associated interpolators. The other five interpolators act exclusively because they operate on the same target.
The field current holds the currently enabled interpolator. Clicking one of the five buttons will first disable the
current interpolator and then enable the interpolator corresponding to the button.

Listing 11.3 shows another application of the interpolators. It adds a swinging pendulum to the analog clock
defined in the previous chapter by using a RotationInterpolator (Figure 11.8). An interpolator driven by an
alpha object is used to swing the pendulum. The scene graph is shown in Figure 11.9.

[Page 358]

Listing 11.3. Pendulum.java
(This item is displayed on pages 358 - 360 in the print version)

 1 package chapter11;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
 10 import chapter10.ClockBehavior;
 11 import java.applet.*;
 12 import com.sun.j3d.utils.applet.MainFrame;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 12 import com.sun.j3d.utils.applet.MainFrame;
 13
 14 public class Pendulum extends Applet {
 15 public static void main(String[] args) {
 16 new MainFrame(new Pendulum(), 480, 640);
 17 }
 18
 19 public void init() {
 20 // create canvas
 21 GraphicsConfiguration gc =
 22 SimpleUniverse.getPreferredConfiguration();
 23 Canvas3D cv = new Canvas3D(gc);
 24 setLayout(new BorderLayout());
 25 add(cv, BorderLayout.CENTER);
 26 BranchGroup bg = createSceneGraph();
 27 bg.compile();
 28 SimpleUniverse su = new SimpleUniverse(cv);
 29 su.getViewingPlatform().setNominalViewingTransform();
 30 su.addBranchGraph(bg);
 31 }
 32
 33 private BranchGroup createSceneGraph() {
 34 BranchGroup root = new BranchGroup();
 35 // clock face
 36 Appearance apFace = new Appearance();
 37 Material matFace = new Material();
 38 matFace.setAmbientColor(new Color3f(0f,0f,0f));
 39 matFace.setDiffuseColor(new Color3f(0.15f,0.15f,0.25f));
 40 apFace.setMaterial(matFace);
 41 Cylinder face = new Cylinder(0.6f, 0.01f,
 42 Cylinder.GENERATE_NORMALS, 50, 2, apFace);
 43 Transform3D tr = new Transform3D();
 44 tr.rotX(Math.PI/2);
 45 tr.setTranslation(new Vector3d(0,0,-0.01));
 46 TransformGroup tg = new TransformGroup(tr);
 47 tg.addChild(face);
 48 root.addChild(tg);
 49 // hour
 50 Appearance ap = new Appearance();
 51 ap.setMaterial(new Material());
 52 Shape3D shapeHour =
 53 new Shape3D(createGeometry(0.4, 0.02, 0.02), ap);
 54 TransformGroup spinHour = new TransformGroup();
 55 spinHour.addChild(shapeHour);
 56 spinHour.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 57 root.addChild(spinHour);

[Page 359]
 58 // minute
 59 Shape3D shapeMin =
 60 new Shape3D(createGeometry(0.5, 0.02, 0.02), ap);
 61 TransformGroup spinMin = new TransformGroup();
 62 spinMin.addChild(shapeMin);
 63 spinMin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 64 root.addChild(spinMin);
 65 // second
 66 Shape3D shapeSec =
 67 new Shape3D(createGeometry(0.5, 0.01, 0.01), ap);
 68 TransformGroup spinSec = new TransformGroup();
 69 spinSec.addChild(shapeSec);
 70 spinSec.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 71 root.addChild(spinSec);
 72 // Behavior node
 73 ClockBehavior rotator =
 74 new ClockBehavior(spinHour, spinMin, spinSec);
 75 BoundingSphere bounds = new BoundingSphere();
 76 rotator.setSchedulingBounds(bounds);
 77 root.addChild(rotator);
 78 // pendulum
 79 Cylinder rod =
 80 new Cylinder(0.01f, 1f, Cylinder.GENERATE_NORMALS, apFace);
 81 Transform3D trPend = new Transform3D();
 82 trPend.setTranslation(new Vector3d(0,-0.5,-0.01));
 83 TransformGroup tgPend = new TransformGroup(trPend);
 84 Sphere mass = new Sphere(0.2f, Sphere.GENERATE_NORMALS, 30);
 85 Transform3D trMass = new Transform3D();
 86 trMass.setScale(new Vector3d(1,1,0.2));
 87 trMass.setTranslation(new Vector3d(0,-0.5,0));
 88 TransformGroup tgMass = new TransformGroup(trMass);
 89 tgMass.addChild(mass);
 90 tgPend.addChild(tgMass);
 91 TransformGroup tgSwing = new TransformGroup();
 92 tgSwing.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 93 tgPend.addChild(rod);
 94 tgSwing.addChild(tgPend);
 95 root.addChild(tgSwing);
 96 Alpha alpha =

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 97 new Alpha(-1, Alpha.INCREASING_ENABLE|Alpha.DECREASING_ENABLE,
 98 0,0, 500,0,0,500,0,0);
 99 Transform3D trAxis = new Transform3D();
100 trAxis.rotX(Math.PI/2);
101 RotationInterpolator swing =
102 new RotationInterpolator(alpha, tgSwing, trAxis,
103 (float)(-Math.PI/6), (float)(Math.PI/6));
104 tgPend.addChild(swing);
105 swing.setSchedulingBounds(bounds);
106 // light
107 AmbientLight light =
108 new AmbientLight(true, new Color3f(Color.blue));
109 light.setInfluencingBounds(bounds);
110 root.addChild(light);
111 PointLight ptlight = new PointLight(new Color3f(Color.white),
112 new Point3f(0.7f,0.7f,2f), new Point3f(1f,0f,0f));
113 ptlight.setInfluencingBounds(bounds);
114 root.addChild(ptlight);
115 // background
116 Background background = new Background(0.7f, 0.7f, 0.7f);

[Page 360]
117 background.setApplicationBounds(bounds);
118 root.addChild(background);
119 return root;
120 }
121
122 GeometryArray createGeometry(double l, double w, double h) {
123 GeometryInfo gi = new GeometryInfo(GeometryInfo.TRIANGLE_ARRAY);
124 Point3d[] pts = new Point3d[4];
125 pts[0] = new Point3d(0, 0, h);
126 pts[1] = new Point3d(-w, 0, 0);
127 pts[2] = new Point3d(w, 0, 0);
128 pts[3] = new Point3d(0, l, 0);
129 gi.setCoordinates(pts);
130 int[] indices = {0,1,2,0,3,1,0,2,3,2,1,3};
131 gi.setCoordinateIndices(indices);
132 NormalGenerator ng = new NormalGenerator();
133 ng.generateNormals(gi);
134 return gi.getGeometryArray();
135 }
136 }

Figure 11.8. A swinging pendulum.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 361]

Figure 11.9. The scene graph shows additional structure for the pendulum and its driving
interpolator.

This program adds a swinging pendulum to the analog clock example defined in Chapter 10. The pendulum

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

consists of a rod and a mass. The rod is modeled with a cylinder and the mass with a sphere compressed in the z-
direction.

A RotationInterpolator is used to swing the pendulum (line 102). The axis of rotation for the interpolator is the
y-axis by default, since the pendulum is swinging about the z-axis. It is necessary to change the axis by supplying
a Transform3D object. The Transform3D object defines a rotation of p/2 about the x-axis which maps the y-axis
to the z-axis. The swing angle is limited to the range [-p/3, p/3] by setting the two extreme values of the
RotationInterpolator.

The Alpha object has both increasing and decreasing durations enabled. Both increasingAlphaDuration and
decreasingAlphaDuration are set to 500 ms, and therefore the period of the alpha waveform is 1 second (line
97).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 361 (continued)]

11.4. Morphing
Morphing is an animation technique that creates a visual effect of smoothly changing one object to another.
Morphing is typically applied to a series of geometries. In terms of manipulating shapes, it is more flexible than
interpolators on transformations, because the changes in morphing are not limited to affine transforms.

Java 3D provides a Morph leaf node class that, together with behavior objects, supports morphing. Morph contains
one appearance bundle but it has an array of geometries. An associated array of weights is also defined for the
object. The geometry of the Morph object at any given moment is defined by the weighted sum of the geometries
in the array. Typically the weights are modified by a Behavior object to achieve the animation. To construct a
Morph object, you may use the following constructors:

public Morph(GeometryArray[] geometryArrays)
public Morph(GeometryArray[] geometryArrays, Appearance appearance)

All GeometryArray objects in a Morph must have the same size and format. To set weights that combine the
geometries you may call the method:

public void setWeights(double[] weights)

[Page 362]

The weight array has the same size as the array of geometries. All weights should sum to 1.0. In order to set the
weights, the appropriate capability bit of the Morph object needs to be set:

setCapability(Morph.ALLOW_WEIGHTS_WRITE);

Listing 11.4 shows a simple morphing animation. The class for describing the behavior of morphing is given in
Listing 11.5. The example displays an object that changes its shape. Starting as a short cylinder, it smoothly
increases its height. Then it will turn to left, forming a section of a torus. The torus section will extend to three-
quarters of a full torus (Figure 11.10). This process will then reverse and repeat indefinitely. The scene graph is
shown in Figure 11.11.

Listing 11.4. Morphing.java
(This item is displayed on pages 362 - 364 in the print version)

 1 package chapter11;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.util.*;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
 10 import java.applet.*;
 11 import com.sun.j3d.utils.applet.MainFrame;
 12
 13 public class Morphing extends Applet {
 14 public static void main(String[] args) {
 15 new MainFrame(new Morphing(), 480, 480);
 16 }
 17
 18 public void init() {
 19 // create canvas
 20 GraphicsConfiguration gc =
 21 SimpleUniverse.getPreferredConfiguration();
 22 Canvas3D cv = new Canvas3D(gc);
 23 setLayout(new BorderLayout());
 24 add(cv, BorderLayout.CENTER);
 25 BranchGroup bg = createSceneGraph();
 26 bg.compile();
 27 SimpleUniverse su = new SimpleUniverse(cv);
 28 su.getViewingPlatform().setNominalViewingTransform();
 29 su.addBranchGraph(bg);
 30 }
 31
 32 private BranchGroup createSceneGraph() {
 33 BranchGroup root = new BranchGroup();
 34 // geometry

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 35 GeometryArray[] geoms = new GeometryArray[4];
 36 geoms[0] = createGeometry1(0.1);
 37 geoms[1] = createGeometry1(0.7);
 38 geoms[2] = createGeometry2(0.5);
 39 geoms[3] = createGeometry2(0.8);
 40 Appearance appear = new Appearance();
 41 appear.setMaterial(new Material());
 42 Morph morph = new Morph(geoms, appear);
 43 morph.setCapability(Morph.ALLOW_WEIGHTS_READ);
 44 morph.setCapability(Morph.ALLOW_WEIGHTS_WRITE);
 45 Transform3D tr = new Transform3D();
 46 tr.rotX(Math.PI/2);

[Page 363]
 47 TransformGroup tg = new TransformGroup(tr);
 48 tg.addChild(morph);
 49 root.addChild(tg);
 50 // Behavior node
 51 Alpha alpha = new Alpha(-1,
 52 Alpha.INCREASING_ENABLE|Alpha.DECREASING_ENABLE,
 53 0,0, 8000,0,0,8000,0,0);
 54 MorphingBehavior mb = new MorphingBehavior(morph, alpha);
 55 BoundingSphere bounds = new BoundingSphere();
 56 mb.setSchedulingBounds(bounds);
 57 root.addChild(mb);
 58 // light
 59 AmbientLight light =
 60 new AmbientLight(true, new Color3f(Color.blue));
 61 light.setInfluencingBounds(bounds);
 62 root.addChild(light);
 63 PointLight ptlight = new PointLight(new Color3f(Color.white),
 64 new Point3f(0.7f,0.7f,2f), new Point3f(1f,0f,0f));
 65 ptlight.setInfluencingBounds(bounds);
 66 root.addChild(ptlight);
 67 // background
 68 Background background = new Background(0.7f, 0.7f, 0.7f);
 69 background.setApplicationBounds(bounds);
 70 root.addChild(background);
 71 return root;
 72 }
 73
 74 GeometryArray createGeometry1(double h) {
 75 double r1 = 0.1;
 76 double r2 = 0.5;
 77 int m = 20;
 78 int n = 40;
 79 Point3d[] pts = new Point3d[m];
 80 pts[0] = new Point3d(r1+r2, 0, 0);
 81 double theta = 2.0 * Math.PI / m;
 82 double c = Math.cos(theta);
 83 double s = Math.sin(theta);
 84 double[] mat = {c, -s, 0, r2*(1-c),
 85 s, c, 0, -r2*s,
 86 0, 0, 1, 0,
 87 0, 0, 0, 1};
 88 Transform3D rot1 = new Transform3D(mat);
 89 for (int i = 1; i < m; i++) {
 90 pts[i] = new Point3d();
 91 rot1.transform(pts[i-1], pts[i]);
 92 }
 93
 94 Transform3D rot2 = new Transform3D();
 95 rot2.set(new Vector3d(0,0,-h/n));
 96 IndexedQuadArray qa =
 97 new IndexedQuadArray(m*n, IndexedQuadArray.COORDINATES,
 98 4*m*(n-1));
 99 int quadIndex = 0;
100 for (int i = 0; i < n; i++) {
101 qa.setCoordinates(i*m, pts);
102 for (int j = 0; j < m; j++) {
103 rot2.transform(pts[j]);
104 int[] quadCoords = {i*m+j, ((i+1)%n)*m+j,
105 ((i+1)%n)*m+((j+1)%m), i*m+((j+1)%m)};
106 if (i < n-1)

[Page 364]
107 qa.setCoordinateIndices(quadIndex, quadCoords);
108 quadIndex += 4;
109 }
110 }
111 GeometryInfo gi = new GeometryInfo(qa);
112 NormalGenerator ng = new NormalGenerator();
113 ng.generateNormals(gi);
114 return gi.getGeometryArray();
115 }
116
117 GeometryArray createGeometry2(double h) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

118 double r1 = 0.1;
119 double r2 = 0.5;
120 int m = 20;
121 int n = 40;
122 Point3d[] pts = new Point3d[m];
123 pts[0] = new Point3d(r1+r2, 0, 0);
124 double theta = 2.0 * Math.PI / m;
125 double c = Math.cos(theta);
126 double s = Math.sin(theta);
127 double[] mat = {c, -s, 0, r2*(1-c),
128 s, c, 0, -r2*s,
129 0, 0, 1, 0,
130 0, 0, 0, 1};
131 Transform3D rot1 = new Transform3D(mat);
132 for (int i = 1; i < m; i++) {
133 pts[i] = new Point3d();
134 rot1.transform(pts[i-1], pts[i]);
135 }
136
137 Transform3D rot2 = new Transform3D();
138 rot2.rotY(h*2*Math.PI/n);
139 IndexedQuadArray qa =
140 new IndexedQuadArray(m*n, IndexedQuadArray.COORDINATES,
141 4*m*(n-1));
142 int quadIndex = 0;
143 for (int i = 0; i < n; i++) {
144 qa.setCoordinates(i*m, pts);
145 for (int j = 0; j < m; j++) {
146 rot2.transform(pts[j]);
147 int[] quadCoords = {i*m+j, ((i+1)%n)*m+j,
148 ((i+1)%n)*m+((j+1)%m),
149 i*m+((j+1)%m)};
150 if (i < n-1)
151 qa.setCoordinateIndices(quadIndex, quadCoords);
152 quadIndex += 4;
153 }
154 }
155 GeometryInfo gi = new GeometryInfo(qa);
156 NormalGenerator ng = new NormalGenerator();
157 ng.generateNormals(gi);
158 return gi.getGeometryArray();
159 }
160 }

Listing 11.5. MorphingBehavior.java
(This item is displayed on pages 364 - 365 in the print version)

 1 package chapter11;
 2

[Page 365]
 3 import javax.media.j3d.*;
 4
 5 public class MorphingBehavior extends Behavior {
 6 Morph morph;
 7 Alpha alpha;
 8
 9 public MorphingBehavior(Morph m, Alpha a) {
10 morph = m;
11 alpha = a;
12 }
13
14 public void initialize() {
15 wakeupOn(new WakeupOnElapsedFrames(10));
16 }
17
18 public void processStimulus(java.util.Enumeration enumeration) {
19 double[] w = new double[4];
20 double a = alpha.value();
21 w[0] = 0;
22 w[1] = 0;
23 w[2] = 0;
24 w[3] = 0;
25 int index = (int)(a*3);
26 if (index > 2) index = 2;
27 w[index+1] = (a-index/3.0)*3;
28 w[index] = 1.0-w[index+1];
29 morph.setWeights(w);
30 wakeupOn(new WakeupOnElapsedFrames(10));
31 }
32 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 11.10. Morphing example.

[Page 366]

Figure 11.11. Scene graph for the morphing example.

Four GeometryArray objects are constructed to serve as the key frames in a Morph object. They are created by
the methods createGeometry1 and createGeometry2. createGeometry1 (line 74) creates a vertical tube of a
certain height. createGeometry2 (line 117) creates a portion of a torus. The first and second geometries in the
Morph object are tubes of different heights. The third and fourth geometries are torus sections of different
lengths.

A custom MorphingBehavior class is defined to modify the weights in the Morph node. The weights are set based
on Alpha values, similar to an interpolator (lines 21–29). The constructor takes a Morph object and an Alpha
object as parameters. The wakeup condition is set to the elapse of 10 frames in the initialize and
processStimulus methods. The alpha values are divided into three subintervals: [0, 1/3], [1/3, 2/3], [2/3, 1].
Over each subinterval, the weights are set to interpolate a pair of adjacent geometries. For example, if alpha is
0.6, it falls into the second subinterval. The second and the third geometries are interpolated through the weight
setting: w[0] = 0, w[1] = 0.2, w[2] = 0.8, w[3] = 0.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 366 (continued)]

11.5. LOD
The level of detail (LOD) is a technique useful for reducing the computational cost of rendering complex shapes. It
takes advantage of the fact that in a perspective view, a visual object closer to the viewer will be larger and show
more details than the same object viewed from a distance. Consequently, it may be possible to render a distant
object with less resolution and detail without significantly affecting the quality.

Java 3D provides the abstract LOD class as a subclass of Behavior to support LOD. LOD has a concrete subclass
DistanceLOD. An LOD object acts on a list of Switch nodes to select a child of a Switch as a particular level of
detail. The DistanceLOD controls the selection based on the distances to the viewer. The DistanceLOD class has
the following constructors:

public DistanceLOD()
public DistanceLOD(float[] distances)
public DistanceLOD(float[] distances, Point3f position)

The distances array defines the critical distances to switch to the next level. The default position to measure the
distances to the viewer is the origin of the DistanceLOD object. The third constructor allows you to specify a
different position.

[Page 367]

The program in Listing 11.6 displays a texture mapped globe. A user can rotate and zoom the view with mouse
actions. A DistanceLOD object is applied to a Switch node to select a sphere with a certain level of detail based on
the distance to the viewer (Figure 11.12).

Listing 11.6. TestLOD.java
(This item is displayed on pages 367 - 369 in the print version)

 1 package chapter11;
 2
 3 import java.awt.*;
 4 import java.awt.geom.*;
 5 import java.awt.event.*;
 6 import java.awt.image.*;
 7 import javax.imageio.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import com.sun.j3d.utils.behaviors.vp.*;
 10 import com.sun.j3d.utils.universe.*;
 11 import javax.media.j3d.*;
 12 import javax.vecmath.*;
 13 import java.io.*;
 14 import java.net.*;
 15 import com.sun.j3d.utils.image.*;
 16 import java.applet.*;
 17 import com.sun.j3d.utils.applet.MainFrame;
 18
 19 public class TestLOD extends Applet {
 20 public static void main(String[] args) {
 21 new MainFrame(new TestLOD(), 480, 480);
 22 }
 23
 24 BufferedImage[] images = new BufferedImage[3];
 25 public void init() {
 26 // create canvas
 27 GraphicsConfiguration gc =
 28 SimpleUniverse.getPreferredConfiguration();
 29 Canvas3D cv = new Canvas3D(gc);
 30 setLayout(new BorderLayout());
 31 add(cv, BorderLayout.CENTER);
 32 BranchGroup bg = createSceneGraph();
 33 bg.compile();
 34 SimpleUniverse su = new SimpleUniverse(cv);
 35 ViewingPlatform viewingPlatform = su.getViewingPlatform();
 36 viewingPlatform.setNominalViewingTransform();
 37 // orbit behavior to zoom and rotate the view
 38 OrbitBehavior orbit = new OrbitBehavior(cv,
 39 OrbitBehavior.REVERSE_ZOOM |
 40 OrbitBehavior.REVERSE_ROTATE |
 41 OrbitBehavior.DISABLE_TRANSLATE);
 42 BoundingSphere bounds =
 43 new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);
 44 orbit.setSchedulingBounds(bounds);
 45 viewingPlatform.setViewPlatformBehavior(orbit);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 46 su.addBranchGraph(bg);
 47 }
 48
 49 public BranchGroup createSceneGraph() {
 50 BranchGroup objRoot = new BranchGroup();
 51 TransformGroup objTrans = new TransformGroup();
 52 objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 53 objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 54 objRoot.addChild(objTrans);

[Page 368]
 55 // a switch to hold the different levels
 56 Switch sw = new Switch(0);
 57 sw.setCapability(javax.media.j3d.Switch.ALLOW_SWITCH_READ);
 58 sw.setCapability(javax.media.j3d.Switch.ALLOW_SWITCH_WRITE);
 59 objTrans.addChild(sw);
 60 // 4 levels of globes
 61 loadImages();
 62 Appearance ap = createAppearance(0);
 63 sw.addChild(new Sphere(0.4f,
 64 Primitive.GENERATE_TEXTURE_COORDS, 40, ap));
 65 ap = createAppearance(1);
 66 sw.addChild(new Sphere(0.4f,
 67 Primitive.GENERATE_TEXTURE_COORDS, 20, ap));
 68 ap = createAppearance(2);
 69 sw.addChild(new Sphere(0.4f,
 70 Primitive.GENERATE_TEXTURE_COORDS, 10, ap));
 71 ap = new Appearance();
 72 ap.setColoringAttributes(new ColoringAttributes
 73 (0f,0f,0.5f,ColoringAttributes.FASTEST));
 74 sw.addChild(new Sphere(0.4f, Sphere.GENERATE_NORMALS, 5, ap));
 75 // the DistanceLOD behavior
 76 float[] distances = new float[3];
 77 distances[0] = 5.0f;
 78 distances[1] = 10.0f;
 79 distances[2] = 25.0f;
 80 DistanceLOD lod = new DistanceLOD(distances);
 81 lod.addSwitch(sw);
 82 BoundingSphere bounds =
 83 new BoundingSphere(new Point3d(0.0,0.0,0.0), 10.0);
 84 lod.setSchedulingBounds(bounds);
 85 objTrans.addChild(lod);
 86 // background
 87 Background background = new Background(1.0f, 1.0f, 1.0f);
 88 background.setApplicationBounds(bounds);
 89 objRoot.addChild(background);
 90 return objRoot;
 91 }
 92
 93 void loadImages() {
 94 URL filename =
 95 getClass().getClassLoader().getResource("images/earth.jpg");
 96 try {
 97 images[0] = ImageIO.read(filename);
 98 AffineTransform xform =
 99 AffineTransform.getScaleInstance(0.5, 0.5);
100 AffineTransformOp scaleOp = new AffineTransformOp (xform, null);
101 for (int i = 1; i < 3; i++) {
102 images[i] = scaleOp.filter(images[i-1], null);
103 }
104 } catch (IOException ex) {
105 ex.printStackTrace();
106 }
107 }
108
109 Appearance createAppearance(int i){
110 Appearance appear = new Appearance();
111 ImageComponent2D image =
112 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, images[i]);

[Page 369]
113 Texture2D texture =
114 new Texture2D(Texture.BASE_LEVEL, Texture.RGBA,
115 image.getWidth(), image.getHeight());
116 texture.setImage(0, image);
117 texture.setEnable(true);
118 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
119 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
120 appear.setTexture(texture);
121 return appear;
122 }
123 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 11.12. LOD example.

As shown in the scene graph (Figure 11.13), a Switch node with four children is created to be the target of the
DistanceLOD behavior (lines 55–81). All four children are spheres, but their appearances and quality are different.
The first three use texture mapping with different image resolutions. The last sphere uses a flat color for its
appearance.

Figure 11.13. Scene graph of the LOD example.
(This item is displayed on page 370 in the print version)

The loadImages method (line 93) prepares three BufferedImage objects for the texture mapping. The first image
is loaded from the file "earth.jpg." It has the size 512 x 512. The second image is obtained by scaling the first
image down to 256 x 256 with an AffineTransformOp object. The third image is obtained similarly by scaling
down further to 128 x 128.

The numbers of divisions of the spheres are also different. The first sphere has 40 divisions, resulting in a high-
quality sphere. The other spheres have 20, 10, and 5, respectively.

When the sphere is close to the viewer, a high-quality version is used. As it moves away, other versions of the
sphere with less quality will be selected by the LOD behavior.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 370]

11.6. Billboard
A Billboard behavior operates on a target TransformGroup object so that the children of the target will always
be aligned to face the viewer. The behavior sets an appropriate rotation on the target transform to achieve this
alignment task, regardless of any other transforms on top of the target.

A billboard is useful for certain visual objects such as text labels. Another common application is to simulate a
complex 3D scene with a 2D object, such as an image. A billboard behavior may help hide the 2D nature of the
image if the user can never see the "depth" of the image. For example, to model a tree with 3D geometry will be
expensive. It will be quite efficient to use a 2D image of the tree. Therefore, using an image with a billboard
behavior may provide a good approximation. Of course, this method offers only a crude and "fake" model for the
tree. The results may be satisfactory if the tree is roughly symmetric and is not close to the viewer.

A Billboard object operates in one of two available modes:

ROTATE_ABOUT_POINT
ROTATE_ABOUT_AXIS

The first mode allows an arbitrary rotation to make a full alignment. The second mode allows only a rotation
about an axis. The Billboard class has the following constructors:

public Billboard()
public Billboard(TransformGroup target)

[Page 371]
public Billboard(TransformGroup target, int mode, Point3f point)
public Billboard(TransformGroup target, int mode, Vector3f axis)

Listing 11.7 is an example that displays a set of coordinate axes with x, y, z labels. Listing 11.8 gives a class that
describes the axes with billboard behavior. The user may rotate, translate, and zoom the view with mouse
operations. The 3D text labels attached to the axes will always face the viewer, regardless of the transformations.
(See Figure 11.14.)

Listing 11.7. TestBillboard.java
(This item is displayed on pages 371 - 372 in the print version)

 1 package chapter11;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.net.URL;
 7 import javax.media.j3d.*;
 8 import com.sun.j3d.utils.universe.*;
 9 import com.sun.j3d.utils.geometry.*;
10 import com.sun.j3d.utils.image.*;
11 import com.sun.j3d.utils.behaviors.mouse.*;
12 import com.sun.j3d.utils.behaviors.vp.*;
13 import java.applet.*;
14 import com.sun.j3d.utils.applet.MainFrame;
15
16 public class TestBillboard extends Applet {
17 public static void main(String[] args) {
18 new MainFrame(new TestBillboard(), 480, 480);
19 }
20
21 public void init() {
22 // create canvas
23 GraphicsConfiguration gc =
24 SimpleUniverse.getPreferredConfiguration();
25 Canvas3D cv = new Canvas3D(gc);
26 setLayout(new BorderLayout());
27 add(cv, BorderLayout.CENTER);
28 TextArea ta = new TextArea("",3,30,TextArea.SCROLLBARS_NONE);
29 ta.setText("Rotation: Drag with left button\n");
30 ta.append("Translation: Drag with right button\n");
31 ta.append("Zoom: Hold Alt key and drag with left button");
32 ta.setEditable(false);
33 add(ta, BorderLayout.SOUTH);
34 BranchGroup root = new BranchGroup();
35 // axes
36 Transform3D tr = new Transform3D();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

37 tr.setScale(0.5);
38 // tr.setTranslation(new Vector3d(-0.8, -0.7, -0.5));
39 TransformGroup tg = new TransformGroup(tr);
40 root.addChild(tg);
41 AxesBillboard axes = new AxesBillboard();
42 tg.addChild(axes);
43 BoundingSphere bounds = new BoundingSphere();
44 // light
45 AmbientLight light =
46 new AmbientLight(true, new Color3f(Color.blue));
47 light.setInfluencingBounds(bounds);
48 root.addChild(light);
49 PointLight ptlight = new PointLight(new Color3f(Color.white),

[Page 372]
50 new Point3f(0f,0f,2f), new Point3f(1f,0f,0f));
51 ptlight.setInfluencingBounds(bounds);
52 root.addChild(ptlight);
53 // background
54 Background background = new Background(1.0f, 1.0f, 1.0f);
55 background.setApplicationBounds(bounds);
56 root.addChild(background);
57 root.compile();
58 SimpleUniverse su = new SimpleUniverse(cv);
59 su.getViewingPlatform().setNominalViewingTransform();
60 // viewplatform motion
61 OrbitBehavior orbit = new OrbitBehavior(cv);
62 orbit.setSchedulingBounds(new BoundingSphere());
63 su.getViewingPlatform().setViewPlatformBehavior(orbit);
64 su.addBranchGraph(root);
65 }
66 }

Listing 11.8. AxesBillboard.java
(This item is displayed on pages 372 - 373 in the print version)

 1 package chapter11;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9
10 public class AxesBillboard extends Group {
11 public AxesBillboard() {
12 Appearance ap = new Appearance();
13 ap.setMaterial(new Material());
14 Font3D font = new Font3D(new Font("SanSerif", Font.PLAIN, 1),
15 new FontExtrusion());
16 Text3D x = new Text3D(font, "x");
17 Shape3D xShape = new Shape3D(x, ap);
18 Text3D y = new Text3D(font, "y");
19 Shape3D yShape = new Shape3D(y, ap);
20 Text3D z = new Text3D(font, "z");
21 Shape3D zShape = new Shape3D(z, ap);
22 // transform for texts
23 Transform3D tTr = new Transform3D();
24 tTr.setTranslation(new Vector3d(-0.12, 0.6, -0.04));
25 tTr.setScale(0.5);
26 // transform for arrows
27 Transform3D aTr = new Transform3D();
28 aTr.setTranslation(new Vector3d(0, 0.5, 0));
29 // bounds
30 Bounds bounds = new BoundingSphere(new Point3d(0,0,0), 100);
31 // x axis
32 Cylinder xAxis = new Cylinder(0.05f, 1f);
33 Transform3D xTr = new Transform3D();
34 xTr.setRotation(new AxisAngle4d(0, 0, 1, -Math.PI/2));
35 xTr.setTranslation(new Vector3d(0.5, 0, 0));
36 TransformGroup xTg = new TransformGroup(xTr);
37 xTg.addChild(xAxis);
38 this.addChild(xTg);

[Page 373]
39 TransformGroup xTextTg = new TransformGroup(tTr);
40 TransformGroup bbTg = new TransformGroup();
41 bbTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
42 xTextTg.addChild(bbTg);
43 bbTg.addChild(xShape);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

44 Billboard bb = new Billboard(bbTg,
45 Billboard.ROTATE_ABOUT_POINT, new Point3f(0,0,0));
46 bb.setSchedulingBounds(bounds);
47 xTextTg.addChild(bb);
48 xTg.addChild(xTextTg);
49 Cone xArrow = new Cone(0.1f, 0.2f);
50 TransformGroup xArrowTg = new TransformGroup(aTr);
51 xArrowTg.addChild(xArrow);
52 xTg.addChild(xArrowTg);
53 // y axis
54 Cylinder yAxis = new Cylinder(0.05f, 1f);
55 Transform3D yTr = new Transform3D();
56 yTr.setTranslation(new Vector3d(0, 0.5, 0));
57 TransformGroup yTg = new TransformGroup(yTr);
58 yTg.addChild(yAxis);
59 this.addChild(yTg);
60 TransformGroup yTextTg = new TransformGroup(tTr);
61 bbTg = new TransformGroup();
62 bbTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
63 yTextTg.addChild(bbTg);
64 bbTg.addChild(yShape);
65 bb = new Billboard(bbTg,
66 Billboard.ROTATE_ABOUT_POINT, new Point3f(0,0,0));
67 bb.setSchedulingBounds(bounds);
68 yTextTg.addChild(bb);
69 yTg.addChild(yTextTg);
70 Cone yArrow = new Cone(0.1f, 0.2f);
71 TransformGroup yArrowTg = new TransformGroup(aTr);
72 yArrowTg.addChild(yArrow);
73 yTg.addChild(yArrowTg);
74 // z axis
75 Cylinder zAxis = new Cylinder(0.05f, 1f);
76 Transform3D zTr = new Transform3D();
77 zTr.setRotation(new AxisAngle4d(1, 0, 0, Math.PI/2));
78 zTr.setTranslation(new Vector3d(0, 0, 0.5));
79 TransformGroup zTg = new TransformGroup(zTr);
80 zTg.addChild(zAxis);
81 this.addChild(zTg);
82 TransformGroup zTextTg = new TransformGroup(tTr);
83 bbTg = new TransformGroup();
84 bbTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
85 zTextTg.addChild(bbTg);
86 bbTg.addChild(zShape);
87 bb = new Billboard(bbTg,
88 Billboard.ROTATE_ABOUT_POINT, new Point3f(0,0,0));
89 bb.setSchedulingBounds(bounds);
90 zTextTg.addChild(bb);
91 zTg.addChild(zTextTg);
92 Cone zArrow = new Cone(0.1f, 0.2f);
93 TransformGroup zArrowTg = new TransformGroup(aTr);
94 zArrowTg.addChild(zArrow);
95 zTg.addChild(zArrowTg);
96 }
97 }

[Page 374]

Figure 11.14. A Billboard behavior example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The object displayed is a set of coordinate axes similar to the Axes class defined in Chapter 7. The difference is the
addition of Billboard behavior nodes (lines 44, 65, 87) and extra TransformGroup nodes to the scene graph, as
shown in Figure 11.15. The Billboard objects are created with the mode ROTATE_ABOUT_POINT.

Figure 11.15. Scene graph of AxesBillboard.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 375]

The program displays an instance of the AxesBillboard with lighting. The view has an OrbitBehavior object
attached to allow rotation, translation, and zooming with mouse operations. The "x," "y," and "z" labels will move
with the axes under the transformations. However, because of the Billboard behaviors, the text labels will
always be oriented to face the viewer.

Note that even though the Billboard object needs to change only the rotational component of the transform, it
does clear the translation and scaling components. Therefore it is necessary to create an additional
TransformGroup node for the Billboard.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 375 (continued)]

Key Classes and Methods
javax.media.j3d.Alpha A class encapsulating an alpha function.

javax.media.j3d.Interpolator A base class for the interpolator behaviors.

javax.media.j3d.ColorInterpolator An interpolator operating on the colors in a Material object.

javax.media.j3d.TransparencyInterpolator An interpolator operating on a TransparencyAttributes
object.

javax.media.j3d.SwitchValueInterpolator An interpolator operating on a Switch object.

javax.media.j3d.TransformInterpolator A base class for transformation interpolators.

javax.media.j3d.RotationInterpolator An interpolator for rotation.

javax.media.j3d.PositionInterpolator An interpolator for translation.

javax.media.j3d.ScaleInterpolator An interpolator for scale.

javax.media.j3d.PathInterpolator A base class for transformation interpolators defined by a sequence
of frames.

javax.media.j3d.RotationPathInterpolator A path interpolator for rotation.

javax.media.j3d.PositionPathInterpolator A path interpolator for translation.

javax.media.j3d.RotPosPathInterpolator A path interpolator for rotation and translation.

javax.media.j3d.RotPosScalePathInterpolator A path interpolator for rotation, translation, and scaling.

com.sun.j3d.utils.behaviors.interpolators.RotPosScaleTCBSplinePathInterpolator A spline path
interpolator for rotation, translation, and scaling.

com.sun.j3d.utils.behaviors.interpolators.KBRotPosScaleSplinePathInterpolator A spline path
interpolator for rotation, translation, and scaling.

javax.media.j3d.Morph A leaf-node class for blending an array of geometries.

javax.media.j3d.LOD A behavior class for LOD.

javax.media.j3d.DistanceLOD An LOC class operating on a Switch node based on distances.

javax.media.j3d.Billboard A behavior class to orient an object to face the viewer.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 375 (continued)]

Key Terms
animation

A process of rendering a sequence of frames of a dynamic scene.

alpha

A function of time valued between 0 and 1. It is used to drive an interpolator.

interpolator

A behavior driven by an alpha to produce animation.

path interpolator

A transformation interpolator defined by a sequence of key frames.

spline path interpolator

A transformation interpolator along a smooth path defined by a sequence of key frames.

morphing

A dynamic change of an object's shape.

[Page 376]
LOD (level of detail)

A technique to change the level of detail rendered based on the circumstances of the view.

billboard behavior

A behavior that automatically orients an object toward the viewer.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 376 (continued)]

Chapter Summary
This chapter introduces commonly used animation techniques and the Java 3D animation support with
behaviors.

The interpolators are easy-to-use animation tools. They are driven by alpha objects and they interpolate
the intermediate values from the specified control points or key frames. Java 3D includes a large collection
of interpolators that interpolate a variety of attributes from colors to spline curve paths.

A Morph node references a list of geometries and produces one object by combining the geometries with a
list of weights. Typically the weights can be changed by a behavior object to produce a special animation of
morphing from one object to another.

The LOD behaviors control Switch nodes to select a version of an object a with certain detail level. LOD
provides a tool for automatically reducing the amount of detail rendered when the details are not essential.
It is a useful method to improve the efficiency of rendering without significant loss in quality.

A Billboard behavior automatically rotates the target to maintain a direction facing the viewer. It is useful
in setting text labels and in simulating 3D objects using 2D images.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 376 (continued)]

Review Questions

11.1 Draw the waveform of an Alpha with the following parameters:

LoopCount = 5
TriggerTime = 0
PhaseDelayDuration = 100
AlphaAtZeroDuration = 0
AlphaAtOneDuration = 200
IncreasingAlphaDuration = 0
DecreasingAlphaDuration = 200
IncreasingAlphaRampDuration = 0
DecreasingAlphaRampDuration = 0

11.2 Draw the waveform of an Alpha with the following parameters:

LoopCount = -1
TriggerTime = 0
PhaseDelayDuration = 0
AlphaAtZeroDuration = 200
AlphaAtOneDuration = 200
IncreasingAlphaDuration = 400
DecreasingAlphaDuration = 200
IncreasingAlphaRampDuration = 100
DecreasingAlphaRampDuration = 0

11.3 Find the parameters for the Alpha with the waveform shown in Figure 11.16.

Figure 11.16. Alpha waveform.
(This item is displayed on page 377 in the print version)

11.4 Listing 11.3 uses a RotationInterpolator to swing the pendulum. What other interpolators can
be used for this task?

[Page 377]

11.5 Besides the distance-based LOD, can you think of other cases where the LOD technique might be
appropriate?

11.6 Discuss the limitations of the ROTATE_ABOUT_AXIS mode in a Billboard object and the situations
where this mode is adequate.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 377 (continued)]

Programming Exercises

11.1 In Listing 11.1, add two other parameters of the Alpha class—mode and phaseDelayDuration—to
the panel of parameters.

11.2 Write a Java 3D program to display a tetrahedron that continuously moves left and right.

11.3 Write a Java 3D program to display a tetrahedron that continuously moves along a triangle path
with vertices (-0.5, 0, 0), (0.5, -0.5, 0), and (0, 0, 0.5).

11.4 Add the following transform interpolators to Listing 11.2:

RotationPathInterpolator
PositionPathInterpolator
RotPosScalePathInterpolator
KBRotPosScaleSplinePathInterpolator

11.5 Write a program that uses a Morph object and a Behavior object to display an object morphing
between a cone and a cylinder.

11.6 Write a program that uses a DistanceLOD object to set up three levels of detail for displaying a
3D text object of the string "Java." The first level uses a Material object in the appearance to
enable lighting. The second level uses a flat color. The third level uses only a filled rectangle to
represent the text.

11.7 Write a Java 3D program that shows a texture-mapped rectangle with a Billboard behavior. Use
an OrbitBehavior object to allow view manipulations through mouse operations.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 379]

Chapter 12. Additional 3D Topics
(This item omitted from WebBook edition)

Objectives
To define and implement 3D curves.

To define and implement 3D surfaces.

To use sound in Java 3D scene graphs.

To create simple shadows.

To understand dynamic geometry change.

To use off-screen rendering for capturing rendered images.

To apply 3D texture mapping.

To understand and implement synthetic textures.

[Page 380]

12.1. Introduction
This chapter introduces several advanced techniques related to 3D graphics.

3D curves and surfaces are important building blocks of 3D geometries. Current versions of Java 3D do not have
direct support for curves and surfaces. In this chapter, examples of constructing curves and curved surfaces are
given. The deCasteljau algorithm for evaluations and subdivisions of Bézier curves is presented.

Sounds are used in conjunction with graphics in many applications. Java 3D offers support for direct incorporation
of sounds into scene graphs. This approach allows easy association between graphics objects and sounds.

Shadows are complex objects to create in computer graphics. The local illumination models employed in Java 3D
will not automatically generate shadows. A simplistic method for generating artificial shadows with polygon
objects is introduced in this chapter.

In the animation and interaction examples introduced previously, geometry objects are usually not modified
dynamically. It is possible to change geometry data in a live scene graph, but a special procedure is required. The
GeometryArray object must be created in the BY_REFERENCE mode, and the change should be made only through
a class implementing the GeometryUpdater interface. A dynamic shadow example is used to illustrate the
procedure.

Capturing a rendered image from the Canvas3D object in a Java 3D scene is useful in some applications. The off-
screen rendering capability of the Canvas3D class is introduced. It can be used to capture a frame to a
BufferedImage object.

3D texture mapping applies a solid 3D image to an object. It creates a visual realism that is difficult to achieve in
2D texture mapping. Java 3D provides basic support for 3D texturing. One related topic is the generation of
synthetic textures. The Perlin's noise is a random function that exhibits a certain smoothness. It may be used to
generate textures that remarkably resemble natural textures such as marble, wood, and metal.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 380 (continued)]

12.2. 3D Curves
Definitions of Bézier and B-spline curves in 3D spaces are the same as for their 2D counterparts. The parametric
equation of a general Bézier curve of degree n with control points p0, p0,..., pn is given by

where Bn,i(t) is known as the Bernstein polynomial or Bernstein basis

In particular, a cubic Bézier curve has degree n = 3 and is defined by four control points

s(t) = (1 - t)3p0 + 3t(1 - t)2p1 + 3t2(1 - t)p2 + t3p3

The deCasteljau algorithm provides a method to calculate a point on the curve from the control points using
linear interpolations. The algorithm proceeds by constructing a triangular scheme of the points similar to a
Pascal's triangle. For the cubic Bézier curve, the following triangular scheme is used:

The first row contains the original control points of the Bézier curve. The subsequent rows are calculated by the
formula:

[Page 381]

The last entry gives the value of the point on the Bézier curve at t

The process is illustrated in Figure 12.1. All the calculations are simple linear interpolations.

Figure 12.1. deCasteljau algorithm.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A Bézier curve can be subdivided into two Bézier curves. The deCasteljau algorithm also offers a method for the
subdivision. In the cubic curve shown in Figure 12.1, the two subdivided Bézier curves have the control points

 , , , and , , respectively.

Current Java 3D API (version 1.3) does not include direct support for curves and curved surfaces. We will
implement our own versions of Bézier curves and surfaces using the line and polygon arrays provided by Java 3D.
Other spline curves and surfaces can be implemented as a series of Bézier curves or surfaces.

Listing 12.1 illustrates the rendering of cubic Bézier curves with recursive subdivisions. A test program that
displays a Bézier curve is given in Listing 12.2. A BezierCurve class is implemented as a subclass of
LineStripArray. A test program displays an instance of the curve class (See Figure 12.2.)

Listing 12.1. BezierCurve.java
(This item is displayed on pages 381 - 382 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9
10 public class BezierCurve extends LineStripArray {
11 static int level = 4;
12 static int[] vCnts = {(1<<level)+1};
13 int index = 0;
14
15 public BezierCurve(Point3d p0,Point3d p1,Point3d p2,Point3d p3) {
16 super(vCnts[0], GeometryArray.COORDINATES, vCnts);
17 setCoordinate(index, p0);
18 index++;
19 subdivide(0,p0,p1,p2,p3);
20 }
21
22 void subdivide(int lev, Point3d p0, Point3d p1,
23 Point3d p2, Point3d p3) {
24 if (lev >= level){
25 setCoordinate(index, p3);

[Page 382]
26 index++;
27 }
28 else {
29 Point3d p10 = new Point3d();
30 p10.add(p0,p1);
31 p10.scale(0.5);
32 Point3d p11 = new Point3d();
33 p11.add(p1,p2);
34 p11.scale(0.5);
35 Point3d p12 = new Point3d();
36 p12.add(p2,p3);
37 p12.scale(0.5);
38 Point3d p20 = new Point3d();
39 p20.add(p10,p11);
40 p20.scale(0.5);
41 Point3d p21 = new Point3d();
42 p21.add(p11,p12);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

43 p21.scale(0.5);
44 Point3d p30 = new Point3d();
45 p30.add(p20,p21);
46 p30.scale(0.5);
47 subdivide(lev+1,p0,p10,p20,p30);
48 subdivide(lev+1,p30,p21,p12,p3);
49 }
50 }
51 }

Listing 12.2. TestBezierCurve.java
(This item is displayed on pages 382 - 383 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestBezierCurve extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new TestBezierCurve(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();

[Page 383]
33 TransformGroup spin = new TransformGroup();
34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
35 root.addChild(spin);
36 // object
37 Point3d p0 = new Point3d(-1,0,0.5);
38 Point3d p1 = new Point3d(-0.2,0.6,-0.2);
39 Point3d p2 = new Point3d(0.3,-0.8,0.3);
40 Point3d p3 = new Point3d(0.9,0.1,0.6);
41 Appearance ap = new Appearance();
42 ap.setColoringAttributes(new ColoringAttributes(0f, 0f, 0f,
43 ColoringAttributes.FASTEST));
44 Shape3D shape = new Shape3D(new
45 BezierCurve(p0,p1,p2,p3), ap);
46 spin.addChild(shape);
47 // rotation interpolator
48 Alpha alpha = new Alpha(-1, 10000);
49 RotationInterpolator rotator =
50 new RotationInterpolator(alpha, spin);
51 BoundingSphere bounds = new BoundingSphere();
52 rotator.setSchedulingBounds(bounds);
53 spin.addChild(rotator);
54 // background
55 Background background = new Background(1f, 1f, 1f);
56 background.setApplicationBounds(bounds);
57 root.addChild(background);
58 return root;
59 }
60 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure 12.2. A cubic Bézier curve.

A Bézier curve is implemented in the class BezierCurve as a LineStripArray. The deCasteljau algorithm-based
subdivision technique is applied recursively to break the curve into small segments. The final small Bézier curves
are approximated by straight line segments. For simplicity a fixed level of recursion is used and no flatness test is
applied to the segments.

[Page 384]

If the depth of recursion is level, the number of line segments is 2level and the number of vertices in the
LineStripArray is 2level + 1. The constructor of BezierCurve adds the first point to the array and calls the
method subdivide (line 22) to start the subdivision.

The method subdivide is recursive. It divides a Bézier curve into two at t = 0.5 and calls itself for the two
subdivided curves. When the recursion level reaches the specified value (4 in this example), the subdivision stops
and the second endpoint is added to the array.

The test program TestBezierCurve displays an instance of the Bézier curve and rotates it with a rotation
interpolator.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 384 (continued)]

12.3. Surfaces
12.3.1. Bézier Surface

A Bézier surface is formed by extending a Bézier curve to a surface along another Bézier curve using a method
called tensor product. The parametric equation of a general Bézier surface is given by

The most commonly used type of Bézier surface is the bicubic surface with m = n = 3, which is defined by 16
control points.

The evaluation of a point S(u, v) on a Bézier surface can also be obtained from the deCasteljau algorithm. A
Bézier surface may be viewed as a family of Bézier curves. For a fixed u, the curve s(v) = S(u, v) is a Bézier curve
with control points:

The four control points are themselves points on another Bézier curve. Consequently, these points can be
calculated through four applications of the deCasteljau algorithm with t = u. After obtaining the four control
points for the Bézier curve, we can calculate the point s(v) = S(u, v) from another application of deCasteljau
algorithm with t = v on the curve.

A bicubic Bézier surface is implemented in Listing 12.3. A test program (Listing 12.4) displays a randomly
generated Bézier surface. (See Figure 12.3.)

Listing 12.3. BezierSurface.java
(This item is displayed on pages 384 - 385 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.geometry.*;
 8
 9 public class BezierSurface extends Shape3D{
10 public BezierSurface(Point3d[][] ctrlPts) {
11 int m = 17;
12 int n = 17;
13 Point3d[] pts = new Point3d[m*n];
14 int idx = 0;
15 Point3d[] p = new Point3d[4];
16 double du = 1.0/(m-1);

[Page 385]
17 double dv = 1.0/(n-1);
18 double u = 0;
19 double v = 0;
20 for (int i = 0; i < m; i++) {
21 for (int k = 0; k < 4; k++) {
22 p[k] = deCasteljau(u, ctrlPts[k]);
23 }
24 v = 0;
25 for (int j = 0; j < n; j++) {
26 pts[idx++] = deCasteljau(v, p);
27 v += dv;
28 }
29 u += du;
30 }
31
32 int[] coords = new int[2*n*(m-1)];
33 idx = 0;
34 for (int i = 1; i < m; i++) {
35 for (int j = 0; j < n; j++) {
36 coords[idx++] = i*n + j;
37 coords[idx++] = (i-1)*n + j;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

38 }
39 }
40
41 int[] stripCounts = new int[m-1];
42 for (int i = 0; i < m-1; i++) stripCounts[i] = 2*n;
43
44 GeometryInfo gi =
45 new GeometryInfo(GeometryInfo.TRIANGLE_STRIP_ARRAY);
46 gi.setCoordinates(pts);
47 gi.setCoordinateIndices(coords);
48 gi.setStripCounts(stripCounts);
49
50 NormalGenerator ng = new NormalGenerator();
51 ng.generateNormals(gi);
52 this.setGeometry(gi.getGeometryArray());
53 }
54
55 Point3d deCasteljau(double t, Point3d[] p) {
56 Point3d[] pt = {new Point3d(p[0]),
57 new Point3d(p[1]),new Point3d(p[2]), new Point3d(p[3])};
58 for (int i = 0; i < 3; i++) {
59 for (int j = 0; j < 3-i; j++) {
60 pt[j].interpolate(pt[j+1], t);
61 }
62 }
63 return pt[0];
64 }
65 }

Listing 12.4. TestBezierSurface.java
(This item is displayed on pages 385 - 387 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;

[Page 386]
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
10 import com.sun.j3d.utils.applet.MainFrame;
11
12 public class TestBezierSurface extends Applet {
13 public static void main(String[] args) {
14 new MainFrame(new TestBezierSurface(), 640, 480);
15 }
16
17 public void init() {
18 // create canvas
19 GraphicsConfiguration gc =
20 SimpleUniverse.getPreferredConfiguration();
21 Canvas3D cv = new Canvas3D(gc);
22 setLayout(new BorderLayout());
23 add(cv, BorderLayout.CENTER);
24 BranchGroup bg = createSceneGraph();
25 bg.compile();
26 SimpleUniverse su = new SimpleUniverse(cv);
27 su.getViewingPlatform().setNominalViewingTransform();
28 su.addBranchGraph(bg);
29 }
30
31 private BranchGroup createSceneGraph() {
32 BranchGroup root = new BranchGroup();
33 TransformGroup spin = new TransformGroup();
34 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
35 root.addChild(spin);
36 // surface
37 Point3d[][] ctrlPts = new Point3d[4][4];
38 for (int i = 0; i < 4; i++) {
39 for (int j = 0; j < 4; j++) {
40 ctrlPts[i][j] = new Point3d(2-i, 3*(Math.random()-0.5), j-2);
41 }
42 }
43 Shape3D shape = new BezierSurface(ctrlPts);
44 Appearance ap = new Appearance();
45 ap.setMaterial(new Material());
46 shape.setAppearance(ap);
47 Transform3D tr = new Transform3D();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

47 Transform3D tr = new Transform3D();
48 tr.setScale(0.25);
49 TransformGroup tg = new TransformGroup(tr);
50 spin.addChild(tg);
51 tg.addChild(shape);
52 // rotation interpolator
53 Alpha alpha = new Alpha(-1, 10000);
54 RotationInterpolator rotator =
55 new RotationInterpolator(alpha, spin);
56 BoundingSphere bounds = new BoundingSphere();
57 rotator.setSchedulingBounds(bounds);
58 spin.addChild(rotator);
59 // background and lights
60 Background background = new Background(1f, 1f, 1f);
61 background.setApplicationBounds(bounds);
62 root.addChild(background);
63 AmbientLight light = new AmbientLight(true,
64 new Color3f(Color.red));
65 light.setInfluencingBounds(bounds);
66 root.addChild(light);
67 PointLight ptlight = new PointLight

[Page 387]
68 (new Color3f(Color.lightGray),
69 new Point3f(1f,1f,1f), new Point3f(1f,0f,0f));
70 ptlight.setInfluencingBounds(bounds);
71 root.addChild(ptlight);
72 return root;
73 }
74 }

Figure 12.3. A bicubic Bézier surface.

The BezierSurface class encapsulates a bicubic Bézier surface. It is implemented by calculating m x n points on
the surface and forming a polygon mesh. The calculations of the points on the surface are based on the
deCasteljau approach. The 16 control points of the Bézier surface are given in the 2D array parameter ctrlPts.
To calculate the point with parameter value (u, v), four Bézier curves defined by the four sets of control points
ctrlPts[k], k = 0,1,2,3, are evaluated at u. The resulting four points are stored in the array p. Then the four
points are used as the control points to define a new Bézier curve which is evaluated at v. The resulting point of
this evaluation is the point on the Bézier surface at (u, v).

The deCasteljau method (line 55) evaluates a point on a Bézier curve from the given parameter value and four
control points. The linear interpolations required by the deCasteljau algorithm are carried out by simply calling the
existing method interpolate in Point3d (line 60).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The calculated points on the surface are placed in a GeometryInfo object as vertices. The GeometryInfo object is
created in the TRIANGLE_STRIP_ARRAY mode. The surface normals are generated automatically using a
NormalGenerator object.

The test program in the class TestBezierSurface creates 16 control points based on randomly generated
numbers. The BezierSurface class is used to generate the shape of the visual object. Lighting is enabled. Two
lights are placed in the scene. A rotation interpolator is used to rotate the surface.

[Page 388]

12.3.2. The Utah Teapot

One of the most famous objects in computer graphics is the "Utah teapot." It is defined by a set of Bézier surface
patches. We may use the Bézier surface class to display the teapot, as illustrated in Listing 12.5. (See Figure
12.4.)

Listing 12.5. Teapot.java
(This item is displayed on pages 388 - 390 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import java.applet.*;
 10 import com.sun.j3d.utils.applet.MainFrame;
 11 import java.net.URL;
 12 import java.io.*;
 13 import java.util.StringTokenizer;
 14
 15 public class Teapot extends Applet {
 16 public static void main(String[] args) {
 17 new MainFrame(new Teapot(), 640, 480);
 18 }
 19
 20 public void init() {
 21 // create canvas
 22 GraphicsConfiguration gc =
 23 SimpleUniverse.getPreferredConfiguration();
 24 Canvas3D cv = new Canvas3D(gc);
 25 setLayout(new BorderLayout());
 26 add(cv, BorderLayout.CENTER);
 27 BranchGroup bg = createSceneGraph();
 28 bg.compile();
 29 SimpleUniverse su = new SimpleUniverse(cv);
 30 su.getViewingPlatform().setNominalViewingTransform();
 31 su.addBranchGraph(bg);
 32 }
 33
 34 private BranchGroup createSceneGraph() {
 35 BranchGroup root = new BranchGroup();
 36 TransformGroup spin = new TransformGroup();
 37 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 38 root.addChild(spin);
 39 // teapot data
 40 int n = 0;
 41 int[][] idx = null;
 42 int np = 0;
 43 Point3d[] pts = null;
 44 URL url =
 45 getClass().getClassLoader().getResource("images/teapot");
 46 try {
 47 BufferedReader br = new BufferedReader
 48 (new InputStreamReader(url.openStream()));
 49 String line = br.readLine();
 50 n = Integer.parseInt(line);
 51 idx = new int[n][16];
 52 for (int i = 0; i < n; i++) {

[Page 389]
 53 line = br.readLine();
 54 StringTokenizer st = new StringTokenizer(line, ", \n");
 55 for (int j = 0; j < 16; j++) {
 56 idx[i][j] = Integer.parseInt(st.nextToken());
 57 }
 58 }
 59 line = br.readLine();
 60 np = Integer.parseInt(line);
 61 pts = new Point3d[np];
 62 for (int i = 0; i < np; i++) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 63 line = br.readLine();
 64 StringTokenizer st = new StringTokenizer(line, ", \n");
 65 double x = Double.parseDouble(st.nextToken());
 66 double y = Double.parseDouble(st.nextToken());
 67 double z = Double.parseDouble(st.nextToken());
 68 pts[i] = new Point3d(x, y, z);
 69 }
 70 br.close();
 71 } catch (IOException ex) {
 72 ex.printStackTrace();
 73 }
 74
 75 // surface
 76 Appearance ap = new Appearance();
 77 ap.setMaterial(new Material());
 78 Transform3D tr = new Transform3D();
 79 tr.rotX(-Math.PI*0.5);
 80 tr.setScale(0.25);
 81 tr.setTranslation(new Vector3d(0,-0.5,0));
 82 TransformGroup tg = new TransformGroup(tr);
 83 spin.addChild(tg);
 84 Point3d[][] ctrlPts = new Point3d[4][4];
 85 for (int k = 0; k < n; k++) {
 86 for (int i = 0; i < 4; i++) {
 87 for (int j = 0; j < 4; j++) {
 88 ctrlPts[i][j] = pts[idx[k][i+4*j]-1];
 89 }
 90 }
 91 Shape3D shape = new BezierSurface(ctrlPts);
 92 shape.setAppearance(ap);
 93 tg.addChild(shape);
 94 }
 95 // rotation interpolator
 96 Alpha alpha = new Alpha(-1, 10000);
 97 RotationInterpolator rotator =
 98 new RotationInterpolator(alpha, spin);
 99 BoundingSphere bounds = new BoundingSphere();
100 bounds.setRadius(10);
101 rotator.setSchedulingBounds(bounds);
102 spin.addChild(rotator);
103 // background and lights
104 Background background = new Background(1f, 1f, 1f);
105 background.setApplicationBounds(bounds);
106 root.addChild(background);
107 AmbientLight light = new AmbientLight(true,
108 new Color3f(Color.white));
109 light.setInfluencingBounds(bounds);
110 root.addChild(light);
111 PointLight ptlight = new PointLight(new Color3f(Color.white),
112 new Point3f(0.7f,1.8f,1.8f), new Point3f(1f,0.2f,0f));

[Page 390]
113 ptlight.setInfluencingBounds(bounds);
114 root.addChild(ptlight);
115 return root;
116 }
117 }

Figure 12.4. The Utah Teapot.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The teapot data, consisting of the coordinates and indices of the control points, is stored in a text file "teapot."
The program reads the data and constructs the patches using the BezierSurface class.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 390 (continued)]

12.4. Sound
Sound has become an important component of modern multimedia applications. Even though it is not graphical
in nature, sound is often associated with graphics in applications such as games. Java 3D provides support for
incorporating sound in scene graphs with the Sound class and its subclasses. The Sound classes are Leaf nodes.
The class hierarchy of Sound is given in Figure 12.5.

Figure 12.5. Sound classes.

[Page 391]

The Sound classes are similar to Light classes. The BackgroundSound, like AmbientLight, is distributed uniformly
in the space. The PointSound has a specific location and may have attenuation, similar to the PointLight class.
The ConeSound restricts the effects of the sound to a cone-shaped region, similar to a SpotLight.

To add sound to a Java 3D program, the following steps are usually required:

Create an AudioDevice. If a SimpleUniverse object is used for the scene graph, a convenient way to do
this is to simply call the method createAudioDevice() in the Viewer:

su.getViewer().createAudioDevice();

Create a MediaContainer object to hold sound data. For example,

MediaContainer mc = new MediaContainer(url);

Create a Sound object with the sound data and add it to the scene graph. For example,

BackgroundSound sound = new BackgroundSound();
sound.setSoundData(mc);
sound.setSchedulingBounds(bounds);
root.addChild(sound);

A scheduling bound is required for a sound node, similar to other environmental nodes.

Listing 12.6 illustrates the application of sounds in Java 3D. This example shows a gull on a sky background
(Figure 12.6). The gull can be rotated, translated, and zoomed by mouse operations. A sound of a bird originated
from the location of the gull plays continuously. If the bird is moved to the left side, the sound also comes from
the left. If the bird is moved farther away, the volume of the sound decreases.

Listing 12.6. Sound3D.java
(This item is displayed on pages 391 - 393 in the print version)

 1 package chapter12;
 2
 3 import java.net.URL;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.awt.image.*;
 7 import com.sun.j3d.utils.universe.*;
 8 import javax.media.j3d.*;
 9 import javax.vecmath.*;
 10 import java.io.*;
 11 import javax.imageio.*;
 12 import com.sun.j3d.utils.behaviors.mouse.*;
 13 import chapter10.GullCG;
 14 import java.applet.*;
 15 import com.sun.j3d.utils.applet.MainFrame;
 16
 17 public class Sound3D extends Applet {
 18 public static void main(String[] args) {
 19 new MainFrame(new Sound3D(), 640, 480);
 20 }
 21
 22 public void init() {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 23 // create canvas
 24 GraphicsConfiguration gc =
 25 SimpleUniverse.getPreferredConfiguration();
 26 Canvas3D cv = new Canvas3D(gc);

[Page 392]
 27 setLayout(new BorderLayout());
 28 add(cv, BorderLayout.CENTER);
 29 SimpleUniverse su = new SimpleUniverse(cv);
 30 AudioDevice audioDev = su.getViewer().createAudioDevice();
 31 BranchGroup bg = createSceneGraph();
 32 bg.compile();
 33 su.getViewingPlatform().setNominalViewingTransform();
 34 su.addBranchGraph(bg);
 35 }
 36
 37 public BranchGroup createSceneGraph() {
 38 // root
 39 BranchGroup objRoot = new BranchGroup();
 40 Transform3D trans = new Transform3D();
 41 trans.setTranslation(new Vector3d(Math.random()-0.5,
 42 Math.random()-0.5, Math.random()-0.5));
 43 trans.setScale(0.3);
 44 TransformGroup objTrans = new TransformGroup(trans);
 45 objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 46 objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 47 objRoot.addChild(objTrans);
 48 // visual object
 49 Appearance ap = new Appearance();
 50 ap.setMaterial(new Material());
 51 Shape3D shape = new Shape3D(new GullCG(), ap);
 52 objTrans.addChild(shape);
 53 // behaviors
 54 BoundingSphere bounds =
 55 new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);
 56 // rotation
 57 MouseRotate rotator = new MouseRotate(objTrans);
 58 rotator.setSchedulingBounds(bounds);
 59 objRoot.addChild(rotator);
 60 // translation
 61 MouseTranslate translator = new MouseTranslate(objTrans);
 62 translator.setSchedulingBounds(bounds);
 63 objTrans.addChild(translator);
 64 // zoom
 65 MouseZoom zoom = new MouseZoom(objTrans);
 66 zoom.setSchedulingBounds(bounds);
 67 objTrans.addChild(zoom);
 68 // sound
 69 PointSound sound = new PointSound();
 70 URL url =
 71 this.getClass().getClassLoader().getResource("images/bird.au");
 72 MediaContainer mc = new MediaContainer(url);
 73 sound.setSoundData(mc);
 74 sound.setLoop(Sound.INFINITE_LOOPS);
 75 sound.setInitialGain(1f);
 76 sound.setEnable(true);
 77 float[] distances = {1f, 20f};
 78 float[] gains = {1f, 0.001f};
 79 sound.setDistanceGain(distances, gains);
 80 BoundingSphere soundBounds =
 81 new BoundingSphere(new Point3d(0.0,0.0,0.0), 100.0);
 82 sound.setSchedulingBounds(soundBounds);
 83 objTrans.addChild(sound);
 84 // light
 85 AmbientLight light =

[Page 393]
 86 new AmbientLight(true, new Color3f(Color.blue));
 87 light.setInfluencingBounds(bounds);
 88 objRoot.addChild(light);
 89 PointLight ptlight = new PointLight(new Color3f(Color.white),
 90 new Point3f(0f,0f,2f), new Point3f(1f,0.3f,0f));
 91 ptlight.setInfluencingBounds(bounds);
 92 objRoot.addChild(ptlight);
 93 // background
 94 url = getClass().getClassLoader().getResource("images/bg.jpg");
 95 BufferedImage bi = null;
 96 try {
 97 bi = ImageIO.read(url);
 98 } catch (IOException ex) {
 99 ex.printStackTrace();
100 }
101 ImageComponent2D image =
102 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
103 Background background = new Background(image);
104 background.setApplicationBounds(bounds);
105 objRoot.addChild(background);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

106 return objRoot;
107 }
108 }

Figure 12.6. A point sound associated with the bird.

The scene graph in Figure 12.7 shows the incorporation of a sound node. The sound node is under the same
transform as the gull shape node. Three mouse behaviors operate on the transform. When the user moves the
visual object through mouse operations, the sound node is also moved accordingly.

[Page 394]

Figure 12.7. Scene graph for the sound example.

The sound node is an instance of PointSound with a distance attenuation (line 69). Two distance values with the
corresponding gain values are specified. The gains will decrease from 1 to 0.001 as the distances increase from 1
to 20.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 394 (continued)]

12.5. Shadows
As a real-time graphics API, Java 3D provides only local illumination options. Objects are rendered individually
without considering the influences and interactions between them. For example, the light reflected off an object
will not influence other objects. If one object is located between a light and another object, partially blocking the
light, the effects will not be shown in the rendering. Consequently, shadows are not automatically generated with
local illumination models.

Generating realistic shadows in a scene can be a very complex task. Multiple light sources, relations among
different visual objects, and characteristics of lights and objects are all factors in this problem. A global
illumination model may be applied to obtain good shadow effects, but the global techniques are computationally
intensive and usually impractical for real-time rendering. In this section a method to create simple artificial
shadows is introduced. It uses a polygon to approximate a shadow. The approach is quite efficient, but it has
many limitations.

The shadow is assumed to be cast on a plane. Only a single point light is considered. The vertices of the polygon
are calculated by projecting the vertices of the object to the plane from the position of the point light. Figure 12.8
illustrates the construction of the shadow polygon.

Figure 12.8. Generating a shadow by projection.
(This item is displayed on page 395 in the print version)

The transformation is a projection similar to the one in a view. The light position corresponds to the viewer. The
only difference is that this projection indeed maps all points to the plane, and the depth information is not
retained. When the projection is in a standard form that the light is located at the origin and the plane is x = -d,
the transformation matrix for the projection is:

[Page 395]

For a general configuration of the light position and the shadow plane, an affine transform U may be constructed
to map the configuration to a standard form. The method lookAt in the class Transform3D generates such a
transform. The final projection can be expressed as:

U-1 PU

Using the projection, the vertices of a geometric object are mapped to the projection plane and form the vertices
of the shadow polygon.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Listing 12.7 implements the shadow generation. The scene contains a stone wall and a dodecahedron. A point
light illuminates the dodecahedron casting a shadow on the wall. (Figure 12.9)

Listing 12.7. Shadow.java
(This item is displayed on pages 395 - 398 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.awt.image.*;
 7 import java.net.URL;
 8 import java.io.*;
 9 import javax.imageio.*;
 10 import javax.swing.*;
 11 import javax.media.j3d.*;
 12 import com.sun.j3d.utils.universe.*;
 13 import com.sun.j3d.utils.geometry.*;
 14 import chapter6.Dodecahedron;
 15 import java.applet.*;
 16 import com.sun.j3d.utils.applet.MainFrame;
 17
 18 public class Shadow extends Applet {
 19 public static void main(String[] args) {
 20 new MainFrame(new Shadow(), 640, 480);
 21 }
 22
 23 public void init() {
 24 // create canvas
 25 GraphicsConfiguration gc =

[Page 396]
 26 SimpleUniverse.getPreferredConfiguration();
 27 Canvas3D cv = new Canvas3D(gc);
 28 setLayout(new BorderLayout());
 29 add(cv, BorderLayout.CENTER);
 30 BranchGroup bg = createSceneGraph();
 31 bg.compile();
 32 SimpleUniverse su = new SimpleUniverse(cv);
 33 su.getViewingPlatform().setNominalViewingTransform();
 34 su.addBranchGraph(bg);
 35 }
 36
 37 private BranchGroup createSceneGraph() {
 38 BranchGroup root = new BranchGroup();
 39 // object
 40 Appearance ap = new Appearance();
 41 ap.setMaterial(new Material());
 42 Shape3D shape = new Dodecahedron();
 43 shape.setAppearance(ap);
 44 GeometryArray geom = (GeometryArray)shape.getGeometry();
 45 // transform
 46 Transform3D tr = new Transform3D();
 47 tr.rotY(-0.2);
 48 tr.setScale(0.2);
 49 TransformGroup tg = new TransformGroup(tr);
 50 root.addChild(tg);
 51 tg.addChild(shape);
 52 BoundingSphere bounds =
 53 new BoundingSphere(new Point3d(0,0,0),100);
 54 // light and background
 55 Background background = new Background(1.0f, 1.0f, 1.0f);
 56 background.setApplicationBounds(bounds);
 57 root.addChild(background);
 58 AmbientLight light =
 59 new AmbientLight(true, new Color3f(Color.red));
 60 light.setInfluencingBounds(bounds);
 61 root.addChild(light);
 62 Point3f lightPos = new Point3f(10f,3f,1f);
 63 PointLight ptlight = new PointLight(new Color3f(Color.green),
 64 lightPos, new Point3f(1f,0f,0f));
 65 ptlight.setInfluencingBounds(bounds);
 66 tg.addChild(ptlight);
 67 // wall
 68 Shape3D wall = createWall();
 69 tg.addChild(wall);
 70 // shadow
 71 GeometryArray shadow = createShadow(geom,
 72 lightPos, new Point3f(-2f, 3f, 1f));
 73 ap = new Appearance();
 74 ColoringAttributes colorAttr =
 75 new ColoringAttributes(0.1f, 0.1f, 0.1f,
 76 ColoringAttributes.FASTEST);
 77 ap.setColoringAttributes(colorAttr);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 78 TransparencyAttributes transAttr = new TransparencyAttributes(
 79 TransparencyAttributes.BLENDED,0.35f);
 80 ap.setTransparencyAttributes(transAttr);
 81 PolygonAttributes polyAttr = new PolygonAttributes();
 82 polyAttr.setCullFace(PolygonAttributes.CULL_NONE);
 83 ap.setPolygonAttributes(polyAttr);
 84 shape = new Shape3D(shadow, ap);
 85 tg.addChild(shape);

[Page 397]
 86 return root;
 87 }
 88
 89 private Shape3D createWall() {
 90 URL url =
 91 getClass().getClassLoader().getResource("images/stone.jpg");
 92 BufferedImage bi = null;
 93 try {
 94 bi = ImageIO.read(url);
 95 } catch (IOException ex) {
 96 ex.printStackTrace();
 97 }
 98 ImageComponent2D image =
 99 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
100 Texture2D texture =
101 new Texture2D(Texture.BASE_LEVEL, Texture.RGBA,
102 image.getWidth(), image.getHeight());
103 texture.setImage(0, image);
104 texture.setEnable(true);
105 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
106 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
107 Appearance appear = new Appearance();
108 appear.setTexture(texture);
109 QuadArray rect = new QuadArray(4, QuadArray.COORDINATES |
110 QuadArray.TEXTURE_COORDINATE_2);
111 rect.setCoordinate(0, new Point3d(-2,3,2));
112 rect.setCoordinate(1, new Point3d(-2,-3,2));
113 rect.setCoordinate(2, new Point3d(-2,-3,-3));
114 rect.setCoordinate(3, new Point3d(-2,3,-3));
115 rect.setTextureCoordinate(0,0, new TexCoord2f(0f, 0f));
116 rect.setTextureCoordinate(0,1, new TexCoord2f(0f, 1f));
117 rect.setTextureCoordinate(0,2, new TexCoord2f(1f, 1f));
118 rect.setTextureCoordinate(0,3, new TexCoord2f(1f, 0f));
119 return new Shape3D(rect, appear);
120 }
121
122 private GeometryArray createShadow(GeometryArray ga, Point3f light,
123 Point3f plane) {
124 GeometryInfo gi = new GeometryInfo(ga);
125 gi.convertToIndexedTriangles();
126 IndexedTriangleArray ita =
127 (IndexedTriangleArray)gi.getIndexedGeometryArray();
128 Vector3f v = new Vector3f();
129 v.sub(plane, light);
130 double[] mat = new double[16];
131 for (int i = 0; i < 16; i++) {
132 mat[i] = 0;
133 }
134 mat[0] = 1;
135 mat[5] = 1;
136 mat[10] = 1-0.001;
137 mat[14] = -1/v.length();
138 Transform3D proj = new Transform3D();
139 proj.set(mat);
140 Transform3D u = new Transform3D();
141 u.lookAt(new Point3d(light),
142 new Point3d(plane), new Vector3d(0,1,0));
143 proj.mul(u);
144 Transform3D tr = new Transform3D();
145 u.invert();

[Page 398]
146 tr.mul(u, proj);
147 int n = ita.getVertexCount();
148 int count = ita.getIndexCount();
149 IndexedTriangleArray shadow = new IndexedTriangleArray(n,
150 GeometryArray.COORDINATES, count);
151 for (int i = 0; i < n; i++) {
152 Point3d p = new Point3d();
153 ga.getCoordinate(i, p);
154 Vector4d v4 = new Vector4d(p);
155 v4.w = 1;
156 tr.transform(v4);
157 Point4d p4 = new Point4d(v4);
158 p.project(p4);
159 shadow.setCoordinate(i, p);
160 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

161 int[] indices = new int[count];
162 ita.getCoordinateIndices(0, indices);
163 shadow.setCoordinateIndices(0, indices);
164 return shadow;
165 }
166 }

Figure 12.9. A shadow on the wall created with a polygon from the projection of the object.

The scene graph is shown in Figure 12.10. It contains a texture-mapped rectangle as the wall, a dodecahedron,
and the shadow of the dodecahedron cast on the wall. An ambient light and a point light are used. The shadow
calculation is related to the position of the point light.

Figure 12.10. Scene graph for the shadow example.
(This item is displayed on page 399 in the print version)

The method createShadow (line 123) performs the necessary computations to create a shadow polygon from the
projections of the vertices of the original object. The projection matrix is constructed by the matrix for the

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

projections of the vertices of the original object. The projection matrix is constructed by the matrix for the
standard projection and the transform to the standard position. The transform to the standard position is formed
using the method lookAt. The projection is actually done slightly above the plane in order to avoid interference
between the shadow and the wall object.

[Page 399]

The shadow polygon has a gray color. It is set by a ColoringAttributes object. The polygon is also
semitransparent to show some wall details under the shadow. The TransparencyAttributes object sets the
transparency of the shadow polygon (lines 73–83).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 399 (continued)]

12.6. Geometry Change
The animation and behavior objects introduced in Chapter 10 and Chapter 11 do not modify the geometry data in
a live scene graph. The Morph object combines several geometry objects, but it modifies only the weights of the
combination. In some circumstances, it is useful to able to modify the actual geometry data in a live scene graph.
For example, the artificial shadow example introduced in the preceding section works only for static objects. If the
dodecahedron moves relative to the wall or the light, the correct shadow polygon should change accordingly. This
requires vertices of the polygon be recalculated. Simply placing the shadow polygon under the same transform
group as the dodecahedron will not produce the correct result, because the polygon is formed through a
projection.

Java 3D provides a mechanism for modifying a live geometry through the GeometryUpdater interface and the
BY_REFERENCE mode of GeometryArray. A GeometryArray by default maintains a copy of the data, such as vertex
coordinates. If a GeometryArray is created with the BY_REFERENCE flag set in the constructor, it will hold only the
references to user-provided data. For example, the following code fragment creates a by-reference geometry for a
triangle:

GeometryArray geom = new TriangleArray(3, GeometryArray.BY_REFERENCE
 | GeometryArray.COORDINATES);
float[] coords = {1,0,0,0,1,0,0,0,1};
geom.setCoordRefFloat(coords);

The array coords contains the vertex coordinates for the geometry and is referenced by the TriangleArray
object. Even though you supply the data buffer for the by-reference geometry, you still should not directly modify
the contents in a live scene graph. The proper way to make a change is to implement the GeometryUpdater
interface. The interface defines one method you need to implement to update the geometry:

[Page 400]

public void updateData(Geometry geometry)

The parameter geometry provides a reference to the geometry that you may modify. This method is called by the
system. You may call the method in the GeometryArray with the same name to invoke the update:

public void updateData(GeometryUpdater updater)

You need to pass an instance of your custom GeometryUpdater class as the parameter.

In summary, to modify a geometry from a behavior, you may use the following procedure:

Create the geometry with BY_REFERENCE.

Write a class implementing the GeometryUpdater interface. Implement the method
updateData(Geometry) in GeometryUpdater to perform the modifications on the geometry.

Implement a Behavior class. At appropriate moments, call the method updateData(GeometryUpdater) in
GeometryArray to trigger the update.

Listing 12.8 shows an application of live geometry change. The program creates a scene similar to Listing 12.7.
However, the dodecahedron is now rotating, and its shadow changes dynamically in accordance with the position
of the dodecahedron.

Listing 12.8. MovingShadow.java
(This item is displayed on pages 400 - 404 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.awt.image.*;
 7 import java.net.URL;
 8 import java.io.*;
 9 import javax.imageio.*;
 10 import javax.swing.*;
 11 import javax.media.j3d.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 12 import com.sun.j3d.utils.universe.*;
 13 import com.sun.j3d.utils.geometry.*;
 14 import chapter6.Dodecahedron;
 15 import java.applet.*;
 16 import com.sun.j3d.utils.applet.MainFrame;
 17
 18 public class MovingShadow extends Applet {
 19 public static void main(String[] args) {
 20 new MainFrame(new MovingShadow(), 640, 480);
 21 }
 22
 23 private TransformGroup spin = null;
 24 private Transform3D shadowProj = null;
 25 private GeometryArray geom = null;
 26 private GeometryArray shadowGeom = null;
 27 private ShadowUpdater updater = null;
 28
 29 public void init() {
 30 // create canvas

[Page 401]
 31 GraphicsConfiguration gc =
 32 SimpleUniverse.getPreferredConfiguration();
 33 Canvas3D cv = new Canvas3D(gc);
 34 setLayout(new BorderLayout());
 35 add(cv, BorderLayout.CENTER);
 36 updater = new MovingShadow.ShadowUpdater();
 37 BranchGroup bg = createSceneGraph();
 38 bg.compile();
 39 SimpleUniverse su = new SimpleUniverse(cv);
 40 su.getViewingPlatform().setNominalViewingTransform();
 41 su.addBranchGraph(bg);
 42 }
 43
 44 private BranchGroup createSceneGraph() {
 45 BranchGroup root = new BranchGroup();
 46 // object
 47 Appearance ap = new Appearance();
 48 ap.setMaterial(new Material());
 49 Shape3D shape = new Dodecahedron();
 50 shape.setAppearance(ap);
 51 geom = (GeometryArray)shape.getGeometry();
 52 geom.setCapability(GeometryArray.ALLOW_COORDINATE_READ);
 53 // transform
 54 Transform3D tr = new Transform3D();
 55 tr.rotY(-0.2);
 56 tr.setScale(0.2);
 57 TransformGroup tg = new TransformGroup(tr);
 58 root.addChild(tg);
 59 spin = new TransformGroup();
 60 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 61 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 62 tg.addChild(spin);
 63 spin.addChild(shape);
 64 // rotator
 65 Alpha alpha = new Alpha(-1, 8000);
 66 RotationInterpolator rotator =
 67 new RotationInterpolator(alpha, spin);
 68 BoundingSphere bounds = new BoundingSphere();
 69 rotator.setSchedulingBounds(bounds);
 70 spin.addChild(rotator);
 71 // light and background
 72 Background background = new Background(1.0f, 1.0f, 1.0f);
 73 background.setApplicationBounds(bounds);
 74 root.addChild(background);
 75 AmbientLight light =
 76 new AmbientLight(true, new Color3f(Color.red));
 77 light.setInfluencingBounds(bounds);
 78 root.addChild(light);
 79 Point3f lightPos = new Point3f(10f,3f,1f);
 80 PointLight ptlight = new PointLight(new Color3f(Color.green),
 81 lightPos, new Point3f(1f,0f,0f));
 82 ptlight.setInfluencingBounds(bounds);
 83 tg.addChild(ptlight);
 84 // wall
 85 Shape3D wall = createWall();
 86 tg.addChild(wall);
 87 // shadow
 88 shadowGeom =
 89 createShadow(geom, lightPos, new Point3f(-2f, 3f, 1f));
 90 ap = new Appearance();

[Page 402]
 91 ColoringAttributes colorAttr =
 92 new ColoringAttributes(0.1f, 0.1f, 0.1f,
 93 ColoringAttributes.FASTEST);
 94 ap.setColoringAttributes(colorAttr);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 95 TransparencyAttributes transAttr = new TransparencyAttributes(
 96 TransparencyAttributes.BLENDED,0.35f);
 97 ap.setTransparencyAttributes(transAttr);
 98 PolygonAttributes polyAttr = new PolygonAttributes();
 99 polyAttr.setCullFace(PolygonAttributes.CULL_NONE);
100 ap.setPolygonAttributes(polyAttr);
101 shape = new Shape3D(shadowGeom, ap);
102 tg.addChild(shape);
103 // shadow update
104 ShadowBehavior sb = new MovingShadow.ShadowBehavior();
105 sb.setSchedulingBounds(bounds);
106 tg.addChild(sb);
107 return root;
108 }
109
110 private Shape3D createWall() {
111 URL url =
112 getClass().getClassLoader().getResource("images/stone.jpg");
113 BufferedImage bi = null;
114 try {
115 bi = ImageIO.read(url);
116 } catch (IOException ex) {
117 ex.printStackTrace();
118 }
119 ImageComponent2D image =
120 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
121 Texture2D texture =
122 new Texture2D(Texture.BASE_LEVEL, Texture.RGBA,
123 image.getWidth(), image.getHeight());
124 texture.setImage(0, image);
125 texture.setEnable(true);
126 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
127 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
128 Appearance appear = new Appearance();
129 appear.setTexture(texture);
130 QuadArray rect = new QuadArray
131 (4, QuadArray.COORDINATES|QuadArray.TEXTURE_COORDINATE_2);
132 rect.setCoordinate(0, new Point3d(-2,3,2));
133 rect.setCoordinate(1, new Point3d(-2,-3,2));
134 rect.setCoordinate(2, new Point3d(-2,-3,-3));
135 rect.setCoordinate(3, new Point3d(-2,3,-3));
136 rect.setTextureCoordinate(0,0, new TexCoord2f(0f, 0f));
137 rect.setTextureCoordinate(0,1, new TexCoord2f(0f, 1f));
138 rect.setTextureCoordinate(0,2, new TexCoord2f(1f, 1f));
139 rect.setTextureCoordinate(0,3, new TexCoord2f(1f, 0f));
140 return new Shape3D(rect, appear);
141 }
142
143 private GeometryArray createShadow
144 (GeometryArray ga, Point3f light, Point3f plane) {
145 GeometryInfo gi = new GeometryInfo(ga);
146 gi.convertToIndexedTriangles();
147 IndexedTriangleArray ita =
148 (IndexedTriangleArray)gi.getIndexedGeometryArray();
149 Vector3f v = new Vector3f();
150 v.sub(plane, light);

[Page 403]
151 double[] mat = new double[16];
152 for (int i = 0; i < 16; i++) {
153 mat[i] = 0;
154 }
155 mat[0] = 1;
156 mat[5] = 1;
157 mat[10] = 1-0.001;
158 mat[14] = -1/v.length();
159 Transform3D proj = new Transform3D();
160 proj.set(mat);
161 Transform3D u = new Transform3D();
162 u.lookAt(new Point3d(light),
163 new Point3d(plane), new Vector3d(0,1,0));
164 proj.mul(u);
165 shadowProj = new Transform3D();
166 u.invert();
167 shadowProj.mul(u, proj);
168 int n = ita.getVertexCount();
169 int count = ita.getIndexCount();
170 IndexedTriangleArray shadow = new IndexedTriangleArray(n,
171 GeometryArray.COORDINATES | GeometryArray.BY_REFERENCE, count);
172 shadow.setCapability(GeometryArray.ALLOW_REF_DATA_READ);
173 shadow.setCapability(GeometryArray.ALLOW_REF_DATA_WRITE);
174 double[] vert = new double[3*n];
175 Point3d p = new Point3d();
176 for (int i = 0; i < n; i++) {
177 ga.getCoordinate(i, p);
178 Vector4d v4 = new Vector4d(p);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

179 v4.w = 1;
180 shadowProj.transform(v4);
181 Point4d p4 = new Point4d(v4);
182 p.project(p4);
183 vert[3*i] = p.x;
184 vert[3*i+1] = p.y;
185 vert[3*i+2] = p.z;
186 }
187 shadow.setCoordRefDouble(vert);
188 int[] indices = new int[count];
189 ita.getCoordinateIndices(0, indices);
190 shadow.setCoordinateIndices(0, indices);
191 return shadow;
192 }
193
194 class ShadowUpdater implements GeometryUpdater {
195 public void updateData(Geometry geometry) {
196 double[] vert =
197 ((GeometryArray)geometry).getCoordRefDouble();
198 int n = vert.length/3;
199 Transform3D rot = new Transform3D();
200 spin.getTransform(rot);
201 Transform3D tr = new Transform3D(shadowProj);
202 tr.mul(rot);
203 Point3d p = new Point3d();
204 for (int i = 0; i < n; i++) {
205 geom.getCoordinate(i, p);
206 Vector4d v4 = new Vector4d(p);
207 v4.w = 1;
208 tr.transform(v4);
209 Point4d p4 = new Point4d(v4);
210 p.project(p4);

[Page 404]
211 vert[3*i] = p.x;
212 vert[3*i+1] = p.y;
213 vert[3*i+2] = p.z;
214 }
215 }
216 }
217
218 class ShadowBehavior extends Behavior {
219 WakeupOnElapsedFrames wakeup = null;
220
221 public ShadowBehavior() {
222 wakeup = new WakeupOnElapsedFrames(0);
223 }
224
225 public void initialize() {
226 wakeupOn(wakeup);
227 }
228
229 public void processStimulus(java.util.Enumeration enumeration) {
230 shadowGeom.updateData(updater);
231 wakeupOn(wakeup);
232 }
233 }
234 }

The scene graph for the program is shown in Figure 12.11. Compared to Figure 12.10, the scene graph for Listing
12.4, several nodes are added. A TransformGroup and a RotationInterpolator are added on top of the
dodecahedron to rotate it in the scene. A behavior node is added to modify the geometry of the shadow.

Figure 12.11. Scene graph for the moving shadow example.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 405]

The shadow polygon is created in the method createShadow (line 143) using the same projection as in Listing
12.4, but the IndexedTriangleArray is now created in the BY_REFERENCE mode (lines 170–171). The projection
is saved in a field shadowProj. A float array vert is created to store the vertex coordinates of the polygon. The
geometry of the shadow is saved in the variable shadowGeom, which is defined as a private field of the class.

An inner class ShadowUpdater (line 194) is defined to update the shadow polygon. It implements the
GeometryUpdater interface. In the updateData method, the rotation from the transform on top of the
dodecahedron is read and combined with shadowProj to form a new projection. This projection is applied to the
vertices of the dodecahedron geometry to obtain the vertices of the shadow polygon. An instance of
ShadowUpdater is created in the constructor and referenced as the field updater.

A custom Behavior class ShadowBehavior (line 218) is also defined as an inner class. It is set to wakeup at the
end of the current frame. The processStimulus method invokes the geometry update by calling the method
updateData in shadowGeom with the updater. An instance of ShadowBehavior class is added to the scene graph.

The behavior-driven geometry update makes the dynamic shadow possible. The display of the scene shows a
rotating dodecahedron and its shadow on the wall. The shadow changes according to the dodecahedron positions.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 405 (continued)]

12.7. Off-Screen Rendering
In Java 3D the outcome of rendering is sent to Canvas3D objects. Typically a Canvas3D object, as an AWT
component, is displayed on a screen. In some cases, however, it may be desirable to perform off-screen rendering.
For example, in order to save or print the image of a rendered scene, it will be convenient to render the scene to
a memory-based image rather than the screen.

The Canvas3D class supports an off-screen rendering mode. To create an off-screen Canvas3D object, the following
constructor may be used with the offScreen parameter set to true:

public Canvas3D(GraphicsConfiguration gc, boolean offScreen)

To render the scene to the off-screen canvas, you need to attach the canvas to the View object:

view.addCanvas3D(canvas)

The following series of method calls of Canvas3D captures an image of the rendered scene:

ImageComponent2D buffer =
 new ImageComponent2D(ImageComponent.FORMAT_RGB, bImage);
canvas.setOffScreenBuffer(buffer);
canvas.renderOffScreenBuffer();
canvas.waitForOffScreenRendering();
bImage = offScreenCanvas.getOffScreenBuffer().getImage();

Listing 12.9 illustrates off-screen rendering. A rotating dodecahedron is displayed on screen (Figure 12.12). A
button labeled "save image" is placed at the bottom of the frame. Clicking the button captures one image and
allows the user to save the image to a JPEG file.

[Page 406]

Listing 12.9. OffScreen.java
(This item is displayed on pages 406 - 408 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import java.awt.image.*;
 7 import java.net.URL;
 8 import java.io.*;
 9 import javax.imageio.*;
 10 import javax.swing.*;
 11 import javax.media.j3d.*;
 12 import com.sun.j3d.utils.universe.*;
 13 import com.sun.j3d.utils.geometry.*;
 14 import chapter6.Dodecahedron;
 15
 16 public class OffScreen extends Frame{
 17 public static void main(String[] args) {
 18 Frame frame = new OffScreen();
 19 frame.setTitle("Off Screen Rendering");
 20 frame.setSize(640, 480);
 21 frame.setVisible(true);
 22 }
 23
 24 private Canvas3D cv;
 25 private Canvas3D offScreenCanvas;
 26 private View view;
 27
 28 public OffScreen() {
 29 WindowListener l = new WindowAdapter() {
 30 public void windowClosing(WindowEvent ev) {
 31 System.exit(0);
 32 }
 33 };
 34 this.addWindowListener(l);
 35 GraphicsConfiguration gc =
 36 SimpleUniverse.getPreferredConfiguration();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 37 cv = new Canvas3D(gc);
 38 setLayout(new BorderLayout());
 39 add(cv, BorderLayout.CENTER);
 40 BranchGroup bg = createSceneGraph();
 41 bg.compile();
 42 SimpleUniverse su = new SimpleUniverse(cv);
 43 su.getViewingPlatform().setNominalViewingTransform();
 44 su.addBranchGraph(bg);
 45 // create off-screen canvas
 46 view = su.getViewer().getView();
 47 offScreenCanvas = new Canvas3D(gc, true);
 48 Screen3D sOn = cv.getScreen3D();
 49 Screen3D sOff = offScreenCanvas.getScreen3D();
 50 Dimension dim = sOn.getSize();
 51 sOff.setSize(dim);
 52 sOff.setPhysicalScreenWidth(sOn.getPhysicalScreenWidth());
 53 sOff.setPhysicalScreenHeight(sOn.getPhysicalScreenHeight());
 54 Point loc = cv.getLocationOnScreen();
 55 offScreenCanvas.setOffScreenLocation(loc);
 56 // button
 57 Button button = new Button("Save image");
 58 add(button, BorderLayout.SOUTH);

[Page 407]
 59 button.addActionListener(new ActionListener() {
 60 public void actionPerformed(ActionEvent ev) {
 61 BufferedImage bi = capture();
 62 save(bi);
 63 }
 64 });
 65 }
 66
 67 private BranchGroup createSceneGraph() {
 68 BranchGroup root = new BranchGroup();
 69 TransformGroup spin = new TransformGroup();
 70 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 71 root.addChild(spin);
 72 // object
 73 Appearance ap = new Appearance();
 74 ap.setMaterial(new Material());
 75 Shape3D shape = new Dodecahedron();
 76 shape.setAppearance(ap);
 77 Transform3D tr = new Transform3D();
 78 tr.setScale(0.25);
 79 TransformGroup tg = new TransformGroup(tr);
 80 spin.addChild(tg);
 81 tg.addChild(shape);
 82 Alpha alpha = new Alpha(-1, 10000);
 83 RotationInterpolator rotator =
 84 new RotationInterpolator(alpha, spin);
 85 BoundingSphere bounds = new BoundingSphere();
 86 rotator.setSchedulingBounds(bounds);
 87 spin.addChild(rotator);
 88 // background and light
 89 URL url =
 90 getClass().getClassLoader().getResource("images/bg.jpg");
 91 BufferedImage bi = null;
 92 try {
 93 bi = ImageIO.read(url);
 94 } catch (IOException ex) {
 95 ex.printStackTrace();
 96 }
 97 ImageComponent2D image =
 98 new ImageComponent2D(ImageComponent2D.FORMAT_RGB, bi);
 99 Background background = new Background(image);
100 background.setApplicationBounds(bounds);
101 root.addChild(background);
102 AmbientLight light = new AmbientLight(true,
103 new Color3f(Color.red));
104 light.setInfluencingBounds(bounds);
105 root.addChild(light);
106 PointLight ptlight = new PointLight(new Color3f(Color.green),
107 new Point3f(3f,3f,3f), new Point3f(1f,0f,0f));
108 ptlight.setInfluencingBounds(bounds);
109 root.addChild(ptlight);
110 PointLight ptlight2 = new PointLight(new Color3f(Color.orange),
111 new Point3f(-2f,2f,2f), new Point3f(1f,0f,0f));
112 ptlight2.setInfluencingBounds(bounds);
113 root.addChild(ptlight2);
114 return root;
115 }
116
117 public BufferedImage capture() {
118 // render off-screen image

[Page 408]
119 Dimension dim = cv.getSize();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

120 view.stopView();
121 view.addCanvas3D(offScreenCanvas);
122 BufferedImage bImage =
123 new BufferedImage(dim.width, dim.height,
124 BufferedImage.TYPE_INT_RGB);
125 ImageComponent2D buffer =
126 new ImageComponent2D(ImageComponent.FORMAT_RGB, bImage);
127 offScreenCanvas.setOffScreenBuffer(buffer);
128 view.startView();
129 offScreenCanvas.renderOffScreenBuffer();
130 offScreenCanvas.waitForOffScreenRendering();
131 bImage = offScreenCanvas.getOffScreenBuffer().getImage();
132 view.removeCanvas3D(offScreenCanvas);
133 return bImage;
134 }
135
136 public void save(BufferedImage bImage) {
137 // save image to file
138 JFileChooser chooser = new JFileChooser();
139 chooser.setCurrentDirectory(new File("."));
140 if (chooser.showSaveDialog(null) ==
141 JFileChooser.APPROVE_OPTION) {
142 File oFile = chooser.getSelectedFile();
143 try {
144 ImageIO.write(bImage, "jpeg", oFile);
145 } catch (IOException ex) {
146 ex.printStackTrace();
147 }
148 }
149 }
150 }

Figure 12.12. Creating an image through off-screen rendering.

[Page 409]

To capture an image from the rendered scene, an off-screen Canvas3D object is created. The off-screen canvas is
not attached to the view until the capturing is performed.

The scene contains a dodecahedron illuminated with three lights. A sky image is used as the background. A
rotation interpolator rotates the dodecahedron continuously.

The method capture (line 117) performs the actual capture of the image. First, the view is stopped by calling the
method stopView. The off-screen canvas is attached to the view, and an ImageComponent2D object is set as the
off-screen buffer for the canvas. Then the view is resumed by calling the method startView. The call to
renderOffScreenBuffer method starts the off-screen rendering. The waitForOffScreenRendering method waits

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

for the completion of the rendering. Finally the image is retrieved from the canvas and the off-screen canvas is
detached from the view.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 409 (continued)]

12.8. 3D Textures
The technique of 2D texturing maps a 2D image to a surface of a 3D object. 3D texture mapping (or solid texture
mapping) uses a 3D volumetric texture source. Certainly 3D texturing consumes more computing resources in
terms of generation and storage of 3D texture data. However, it has the advantage that realistic texture features
of true 3D characteristics can be rendered with relatively simple mapping functions.

Typically the solid textures used in 3D texturing are computer-generated synthetic textures. They are usually
used to simulate the natural textures of materials such as marble and wood. This approach is also known as
procedural texturing.

In order to produce textures that resemble those in natural materials, certain randomness or noise in the pattern
is necessary. On the other hand, totally random points will not produce useful textures. A certain amount of
smoothness and coherence is also required.

Perlin's coherent noise function is a popular choice that produces amazing visual effects. The function noise(x) is
a smooth and yet random function. At each grid point (a point with all integer coordinates) a random unit vector
called the gradient is created. For an arbitrary point x, the grid points surrounding x will influence the noise(x)
value. The contribution from such a grid point g is the dot product of the vector from x-g and the random unit
vector at g. The final value of noise(x) is an interpolation of these contributions.

Based on the noise function, a fractal sum can be defined:

Another interesting function built from the noise function is the so-called turbulence function:

Remarkably realistic textures can be generated with the help of these noise functions. For example, the following
color function produces a nice marble texture:

sin(x + turbulence(p))

Java 3D offers 3D texture-mapping support using an approach similar to 2D texture mapping. GeometryArray
objects can include the TEXTURE_COORDINATE_3 flag to allow the specification of 3D texture coordinates. An array
of BufferedImage objects for the 3D texture image is used to create an ImageComponent3D object. The
ImageComponent3D is referenced by a Texture3D object, and the Texture3D is a node component referenced by
an Appearance object.

Listing 12.10 shows an application of the 3D texture mapping and Perlin's noise. It displays a tetrahedron with a
3D marble texture (Figure 12.13). This example displays a marble tetrahedron. The texture is 3D, and viewed
from different sides of the tetrahedron the texture shows continuity in space. The 3D texture is synthesized from
Perlin's noise function. Listing 12.11 gives the class for solid texture mapping.

[Page 410]
Listing 12.10. PerlinNoise.java

(This item is displayed on pages 410 - 412 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4
 5 public class PerlinNoise {
 6 final static int B = 0x100;
 7 int[] p = new int[2*B+2];
 8 Vector3d[] g3 = new Vector3d[2*B+2];
 9
 10 public PerlinNoise() {
 11 for (int i = 0; i < B; i++) {
 12 p[i] = i;
 13 double x = 2.0*Math.random() - 1.0;
 14 double y = 2.0*Math.random() - 1.0;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 15 double z = 2.0*Math.random() - 1.0;
 16 g3[i] = new Vector3d(x, y, z);
 17 g3[i].normalize();
 18 }
 19 for (int i = 0; i < B; i++) {
 20 int k = p[i];
 21 int j = (int)(Math.random()*B);
 22 if (j >= B) j = B-1;
 23 p[i] = p[j];
 24 p[j] = k;
 25 }
 26 for (int i = 0; i < B+2; i++) {
 27 p[B+i] = p[i];
 28 g3[B+i] = g3[i];
 29 }
 30 }
 31
 32 public double noise(Point3d point) {
 33 int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
 34 double rx0, rx1, ry0, ry1, rz0, rz1, sy, sz, a, b, c, d, t, u, v;
 35 Vector3d q = null;
 36 int i, j;
 37
 38 t = point.x + 0x1000;
 39 bx0 = ((int)t) & 0xff;
 40 bx1 = (bx0+1) & 0xff;
 41 rx0 = t-(int)t;
 42 rx1 = rx0-1;
 43
 44 t = point.y + 0x1000;
 45 by0 = ((int)t) & 0xff;
 46 by1 = (by0+1) & 0xff;
 47 ry0 = t-(int)t;
 48 ry1 = ry0-1;
 49
 50 t = point.z + 0x1000;
 51 bz0 = ((int)t) & 0xff;
 52 bz1 = (bz0+1) & 0xff;
 53 rz0 = t-(int)t;
 54 rz1 = rz0-1;
 55

[Page 411]
 56 i = p[bx0];
 57 j = p[bx1];
 58
 59 b00 = p[i+by0];
 60 b10 = p[j+by0];
 61 b01 = p[i+by1];
 62 b11 = p[j+by1];
 63
 64 t = rx0*rx0*(3-2*rx0);
 65 sy = ry0*ry0*(3-2*ry0);
 66 sz = rz0*rz0*(3-2*rz0);
 67
 68 q = g3[b00+bz0]; u = rx0*q.x + ry0*q.y + rz0*q.z;
 69 q = g3[b10+bz0]; v = rx1*q.x + ry0*q.y + rz0*q.z;
 70 a = u + t*(v-u);
 71
 72 q = g3[b01+bz0]; u = rx0*q.x + ry1*q.y + rz0*q.z;
 73 q = g3[b11+bz0]; v = rx1*q.x + ry1*q.y + rz0*q.z;
 74 b = u + t*(v-u);
 75
 76 c = a + sy*(b-a);
 77
 78 q = g3[b00+bz1]; u = rx0*q.x + ry0*q.y + rz1*q.z;
 79 q = g3[b10+bz1]; v = rx1*q.x + ry0*q.y + rz1*q.z;
 80 a = u + t*(v-u);
 81
 82 q = g3[b01+bz1]; u = rx0*q.x + ry1*q.y + rz1*q.z;
 83 q = g3[b11+bz1]; v = rx1*q.x + ry1*q.y + rz1*q.z;
 84 b = u + t*(v-u);
 85
 86 d = a + sy*(b-a);
 87
 88 return c+sz*(d-c);
 89 }
 90
 91 public double perlinNoise(Point3d pt,
 92 double alpha, double beta, int n) {
 93 double val;
 94 double sum = 0;
 95 double scale = 1;
 96
 97 for (int i = 0; i < n; i++) {
 98 val = noise(pt);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 99 sum += val / scale;
100 scale *= alpha;
101 pt.scale(beta);
102 }
103 return sum;
104 }
105
106 public double turbulence(Point3d pt, double alpha,
107 double beta, int n) {
108 double val;
109 double sum = 0;
110 double scale = 1;
111
112 for (int i = 0; i < n; i++) {
113 val = noise(pt);
114 sum += Math.abs(val) / scale;
115 scale *= alpha;
116 pt.scale(beta);

[Page 412]
117 }
118 return sum;
119 }
120 }

Figure 12.13. Computer-generated 3D marble texture.

Listing 12.11. Marble.java
(This item is displayed on pages 412 - 414 in the print version)

 1 package chapter12;
 2
 3 import javax.vecmath.*;
 4 import java.awt.*;
 5 import java.awt.event.*;
 6 import javax.media.j3d.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 7 import com.sun.j3d.utils.universe.*;
 8 import com.sun.j3d.utils.geometry.*;
 9 import com.sun.j3d.utils.image.*;
 10 import javax.imageio.*;
 11 import java.awt.image.*;
 12 import java.io.*;
 13 import java.applet.*;
 14 import com.sun.j3d.utils.applet.MainFrame;
 15
 16 public class Marble extends Applet {
 17 public static void main(String[] args) {
 18 new MainFrame(new Marble(), 480, 480);
 19 }
 20
 21 PerlinNoise pnoise = new PerlinNoise();
 22
 23 public void init() {
 24 // create canvas

[Page 413]
 25 GraphicsConfiguration gc =
 26 SimpleUniverse.getPreferredConfiguration();
 27 Canvas3D cv = new Canvas3D(gc);
 28 setLayout(new BorderLayout());
 29 add(cv, BorderLayout.CENTER);
 30 BranchGroup bg = createSceneGraph();
 31 bg.compile();
 32 SimpleUniverse su = new SimpleUniverse(cv);
 33 su.getViewingPlatform().setNominalViewingTransform();
 34 su.addBranchGraph(bg);
 35 }
 36
 37 private BranchGroup createSceneGraph() {
 38 BranchGroup root = new BranchGroup();
 39 TransformGroup spin = new TransformGroup();
 40 spin.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 41 root.addChild(spin);
 42 //object
 43 Appearance ap = createTextureAppearance();
 44 Shape3D shape = new Shape3D(createGeometry(), ap);
 45 spin.addChild(shape);
 46 //rotator
 47 Alpha alpha = new Alpha(-1, 8000);
 48 RotationInterpolator rotator =
 49 new RotationInterpolator(alpha, spin);
 50 BoundingSphere bounds = new BoundingSphere();
 51 rotator.setSchedulingBounds(bounds);
 52 spin.addChild(rotator);
 53 Background background = new Background(1.0f, 1.0f, 1.0f);
 54 background.setApplicationBounds(bounds);
 55 root.addChild(background);
 56 return root;
 57 }
 58
 59 GeometryArray createGeometry() {
 60 IndexedTriangleArray ga = new IndexedTriangleArray(4,
 61 TriangleArray.COORDINATES | TriangleArray.NORMALS |
 62 TriangleArray.TEXTURE_COORDINATE_3, 12);
 63 ga.setCoordinate(0, new Point3f(0.5f,0.5f,0.5f));
 64 ga.setCoordinate(1, new Point3f(0.5f,-0.5f,-0.5f));
 65 ga.setCoordinate(2, new Point3f(-0.5f,0.5f,-0.5f));
 66 ga.setCoordinate(3, new Point3f(-0.5f,-0.5f,0.5f));
 67 int[] coords = {0,1,2,0,3,1,1,3,2,2,3,0};
 68 ga.setNormal(0, new Vector3f(1f,1f,-1f));
 69 ga.setNormal(1, new Vector3f(1f,-1f,1f));
 70 ga.setNormal(2, new Vector3f(-1f,-1f,-1f));
 71 ga.setNormal(3, new Vector3f(-1f,1f,1f));
 72 int[] norms = {0,0,0,1,1,1,2,2,2,3,3,3};
 73 ga.setCoordinateIndices(0, coords);
 74 ga.setNormalIndices(0, norms);
 75 ga.setTextureCoordinate(0, 0, new TexCoord3f(1f,1f,1f));
 76 ga.setTextureCoordinate(0, 1, new TexCoord3f(1f,0f,0f));
 77 ga.setTextureCoordinate(0, 2, new TexCoord3f(0f,1f,0f));
 78 ga.setTextureCoordinate(0, 3, new TexCoord3f(0f,0f,1f));
 79 ga.setTextureCoordinateIndices(0,0,coords);
 80 return ga;
 81 }
 82
 83 Appearance createTextureAppearance() {
 84 Appearance ap = new Appearance();
 85 BufferedImage[] img = new BufferedImage[128];

[Page 414]
 86 for (int i = 0; i < 128; i++) {
 87 img[i] = new BufferedImage(128,128,
 88 BufferedImage.TYPE_INT_ARGB);
 89 for (int r = 0; r < 128; r++) {

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 90 for (int c = 0; c < 128; c++) {
 91 double v = pnoise.turbulence
 92 (new Point3d(c/32.0, r/32.0, i/32.0),2,2,8);
 93 int rgb = (int)((0.55+0.35*Math.sin(3*(c/32.0+v)))*256);
 94 rgb = ((rgb << 16) | (rgb << 8) | rgb);
 95 img[i].setRGB(c, r, rgb);
 96 }
 97 }
 98 }
 99 ImageComponent3D image =
100 new ImageComponent3D(ImageComponent3D.FORMAT_RGB, img);
101 Texture3D texture =
102 new Texture3D(Texture.BASE_LEVEL, Texture.RGBA,
103 image.getWidth(), image.getHeight(), image.getDepth());
104 texture.setImage(0, image);
105 texture.setEnable(true);
106 texture.setMagFilter(Texture.BASE_LEVEL_LINEAR);
107 texture.setMinFilter(Texture.BASE_LEVEL_LINEAR);
108 ap.setTexture(texture);
108 return ap;
110 }
111 }

The PerlinNoise class implements the noise and turbulence functions based on Perlin's original methods. A grid
of 256 x 256 x 256 points is used for the initial random vectors. To reduce storage, only a 1D array of the
random gradients g3 and a permutation p is created (lines 7–8). The gradient at a grid point (i, j, k) is obtained by
g(i, j, k) = g3 (k + p(j + p(i))).

[Page 415]

The value of the noise function (line 32) is interpolated from the contributions of the gradients.

The perlinNoise method (line 91) provides the fractal sum of the noise function. The turbulence method (line
106) calculates the turbulence function.

The Marble class displays a rotating tetrahedron with a solid marble texture. Its scene graph is shown in Figure
12.14.

Figure 12.14. Scene-graph branch for the marble tetrahedron.
(This item is displayed on page 414 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The method createGeometry creates a tetrahedron with the TEXTURE_COORDINATE_3 flag to specify the 3D
texture coordinates. The texture coordinates of the vertices are assigned based on their special coordinates with a
translation to normalize the values to the range [0,1].

The method createTextureAppearance (line 83) creates an appearance for the tetrahedron. The Appearance is
set to reference a Texture3D object. An array of 128 BufferedImage objects of size 128 x 128 is created and
filled with the generated marble patterns based on the turbulence function (lines 85–96). This BufferedImage
array forms a "texture cube" and is used to create an ImageComponent3D object. The ImageComponent3D object is
passed to the Texture3D to serve as the source of the texture mapping.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 415 (continued)]

Key Classes and Methods
javax.media.j3d.Point3d.interpolate(...) A method to perform a linear interpolation.

javax.media.j3d.GeometryUpdater An interface for updating geometry data in a live scene.

javax.media.j3d.GeometryArray.updateData(GeometryUpdater) A method to update the geometry data
through the GeometryUpdater.

javax.media.j3d.Sound A base class for sounds.

javax.media.j3d.BackgroundSound A class encapsulating a background sound.

javax.media.j3d.PointSound A class encapsulating a 3D point sound.

javax.media.j3d.ConeSound A class encapsulating a 3D point sound with a limited angle.

javax.media.j3d.MediaContainer A node-component class used as a container for sound data.

com.sun.j3d.utils.universe.Viewer.createAudioDevice(...) A method to initialize the default audio
device.

javax.media.j3d.Canvas3D.setOffScreenBuffer(...) A method to set the off-screen rendering buffer.

javax.media.j3d.Canvas3D.renderOffScreenBuffer(...) A method to start rendering an off-screen
buffer.

javax.media.j3d.Canvas3D.waitForOffScreenRendering(...) A method to wait for the completion of an
off-screen rendering.

javax.media.j3d.Canvas3D.getOffScreenBuffer(...) A method to retrieve an off-screen buffer.

javax.media.j3d.Texture3D A node-component class for 3D textures.

javax.vecmath.TexCoord3f A class for 3D texture coordinates.

javax.media.j3d.ImageComponent3D A node-component class to define a 3D image component.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 415 (continued)]

Key Terms
3D Bézier curve

A polynomial parametric curve defined by a set of control points.

Bernstein polynomial

(Bernstein basis) A special polynomial often used in approximation.

Bézier surface

A polynomial parametric surface defined by a grid of control points.

deCasteljau algorithm

A method to calculate a point on a Bézier curve through a series of linear interpolations.

[Page 416]
off screen rendering

A process to render a scene on a buffer other than the screen.

3D texture

(solid texture) A texture defined as a 3D volume.

procedural texturing

A method to create synthetic texture computationally.

Perlin's noise

A coherent random function used to generate synthetic textures.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 416 (continued)]

Chapter Summary
In this chapter several miscellaneous topics related to 3D graphics are discussed.

Curves and surfaces are important modeling tools for geometries of visual objects. Implementations of
Bézier curves and surfaces are discussed in this chapter. The fundamental tool is the deCasteljau algorithm
that evaluates a point on the curve and subdivides a curve by linear interpolations.

Sound is supported in Java 3D through the Sound leaf node class and its subclasses. Adding sounds to a
scene graph is similar to adding other nodes. An advantage of including sounds in the scene graph is to
support a natural connection between audio and visual objects.

A method for generating simple shadows is discussed. A shadow is modeled as a plane polygon from the
projections of the original object.

Dynamic data change for a geometry is possible through the BY_REFERENCE mode and the
GeometryUpdater interface.

The Canvas3D class supports an off-screen rendering mode. It may be used to capture and save the
rendered images.

3D texture mapping maps a 3D volumetric image to a visual object. Java 3D provides support for 3D
texturing mapping using the same framework as for 2D texture mapping. The 3D texture data are often
synthesized with certain controlled randomness. Perlin's noise and turbulence functions can be used to
generate patterns resembling marble, wood, and other natural textures.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 416 (continued)]

Review Questions

12.1 A cubic Bézier curve is defined by the following control points:

p0 = (0, 0, 0), p1 = (1, 0, 0), p2 = (1, 1, 0), p3 = (1, 1, 1)

Use the deCasteljau algorithm to evaluate the points on the curve at

a. t = 1/2

b. t = 1/3

c. t = 2/3

12.2 Subdivide the Bézier curve defined in Question 12.1 into two, using the deCasteljau algorithm at
the points

a. t = 1/2

b. t = 1/3

c. t = 2/3

[Page 417]

12.3 Derive a formula for the surface normal of a bicubic Bézier surface at a given point.

12.4 A point light is located at (0, 0, 1) and casts a shadow on the xy-plane. Derive a transformation
matrix for projecting a vertex to its shadow on the plane.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 417 (continued)]

Programming Exercises

12.1 Implement a 3D B-spline curve by converting it to a series of Bézier curves, similar to the 2D
curves defined in Chapter 4.

12.2 Write a 3D Bézier surface editor. Display the control points of the surface as square dots. Allow
the user to select and move a control point with mouse operations and update the surface
accordingly.

12.3 Write a Java 3D program to display a Bézier curve with its shadow on a plane.

12.4 Write a Java 3D program to display a sphere and its shadow on a wall, similar to Listing 12.7. Add
an OrbitBehavior object to control view-platform changes with mouse actions.

12.5 Write a Java 3D program to display a PointArray object with 100 points. Use a behavior to move
the points in the geometry randomly and independently.

12.6 Write a Java 3D program displaying a rotating cone. Create a ConeSound object associated with
the cone so that the direction of the ConeSound coincides with the visual cone.

12.7 Write a Java 3D program showing two panels and a button. The first panel displays a scene of a
rotating 3D text string. When the button is clicked, the image of the 3D scene is captured and
the still image is displayed in the second panel.

12.8 Write a program to plot the x-components of a Perlin's noise.

12.9 A wood grain texture may be defined as

g(p) = turbulence(p) * 20

grain(p) = g(p) - g(p)

Write a Java 3D program to display a rotating cube mapped with a solid wood texture.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 419]

Appendix A. Mathematical Background for Computer Graphics
Section A.1. Introduction

Section A.2. Analytic Geometry

Section A.3. Complex Numbers and Quaternions

Section A.4. Linear Algebra

Section A.5. Geometric Transformations

Section A.6. Calculus

Section A.7. Graph Theory

Key Terms

Review Problems

A.1. Introduction
This appendix provides a brief review of several mathematical topics that are closely related to computer
graphics. Computer graphics depends heavily upon mathematical tools to accurately model, transform, and
process graphics objects and systems.

Geometry, especially analytic geometry, offers an effective tool to model graphics objects. The coordinate
systems in analytic geometry facilitate numerical representations of geometric models. This modeling scheme
is fundamental in a computer graphics system, because geometric entities, properties, and transformations
are directly related to the central problems in computer graphics.

Complex numbers and quaternions are highly structured algebraic systems. They have direct geometric
interpretations, which make them valuable tools for solving certain problems in geometry and graphics.

Linear algebra is an algebraic subject that further extends the systems of real numbers, complex numbers,
and quaternions to arbitrary dimensional vector spaces and systematically studies the properties and
relationships on vectors. Matrices provide concrete representations for linear transformations and vectors.
They can be directly implemented in computers to represent geometric transforms relevant to computer
graphics.

Calculus may be applied to solve problems such as tangent lines and surface normals. These topics are related
to certain modeling and rendering problems in graphics.

Graph theory studies a discrete structure called a graph that has a wide range of applications in computer
science and graphics.

A comprehensive coverage of these mathematical topics cannot possibly fit into a single chapter or appendix.
We introduce here the most fundamental concepts and results related to computer graphics. This material
may serve as a quick reference for relevant mathematical problems throughout the book.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 419 (continued)]

A.2. Analytic Geometry
A.2.1. Coordinate Systems

A geometric object is represented algebraically in a coordinate system. A point in a plane is represented by the x-
coordinate and the y-coordinate in a 2D Cartesian coordinate system, as shown in Figure A.1.

Figure A.1. The 2D coordinate system has the x-axis and y-axis.
(This item is displayed on page 420 in the print version)

Similarly, a point in a 3D space can be represented by a tuple of three real numbers (x, y, z) using a 3D Cartesian
coordinate system, as shown in Figure A.2.

[Page 420]

Figure A.2. The 3D coordinate system has the x-axis, y-axis, and z-axis.

With the established one-to-one correspondence between the points and their coordinates, geometric properties
can be translated into algebraic quantities. For example, the distance between two points (x1, y1) and (x2, y2) in a
plain is given by the distance formula:

The distance between (x1, y1, z1) and (x2, y2, z2) in a 3D space is given by the distance formula:

A.2.2. 2D Equations

Geometric objects can often be represented by algebraic equations. The points on a geometric object are
characterized by the fact that their coordinates satisfy the corresponding equation. In a 2D space, an equation
F(x, y) = 0 or an explicit function y = f(x) defines a curve.

A line is characterized by the general linear equation:

Ax + By + C = 0

A more convenient form of linear equation is the point-slope form, as illustrated in Figure A.3. Given two points
(x0, y0), (x1, y1) on the line, the differences in the x- and y-directions are defined as Δx = x1 - x0, Δy = y1 - y0.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The slope of a line is the ratio k = Δy/Δx, which is a constant for any given line. Given a point (x0, y0) on the line
and the slope k, the equation of the line can be written in the following point-slope form:

y - y0 = k(x - x0)

[Page 421]

Figure A.3. A line can be represented by a linear equation.

A circle centered at (x0, y0) with radius R is represented by the equation:

(x - x0)2 + (y - y0)2 = R2

A general quadratic equation represents a family of curves known as conic sections.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Conic sections can be classified into three main categories: ellipses, parabolas, and hyperbolas. Their standard
equations are given below. (See Figures A.4, A.5, A.6.)

Figure A.4. An ellipse can be represented by a quadratic equation.

(x - x0)2 = 4p(y - y0) (parabolas)

Figure A.5. A parabola can be represented by a quadratic equation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 422]

Figure A.6. A hyperbola can be represented by a quadratic equation.

A.2.3. Parametric Equations

A parametric equation of a curve uses a third variable t as the independent variable and defines x- and y-
coordinates as functions of t. For example, a line through the point (x0, y0) with the direction (a, b), as shown in
Figure A.7, has a parametric equation:

x = x0 + at

y = y0 + bt

Figure A.7. A line can be represented by a parametric equation.

An ellipse can be expressed as a parametric equation, as shown in Figure A.8:

x = x0 + a cos t

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

y = y0 + b sin t

Figure A.8. An ellipse can be represented by a parametric equation.

[Page 423]

A.2.4. 3D Equations

In a 3D space, an equation F(x, y, z) = 0 or an explicit function z = f(x, y) represents a surface in the space.

A general linear equation represents a plane

Ax + By + Cz + D = 0

The normal of a plane is a direction perpendicular to the plane. If the normal of a plane is given by (a, b, c) and a
fixed point on the plane is (x0, y0, z0) then an equation of the plane can be written as

a(x - x0) + b(y - y0) + c(z - z0) = 0

A sphere centered at (x0, y0, z0) of radius R has the following standard equation:

(x - x0)2 + (y - y0)2 + (z - z0)2 = R2

A line in a 3D space can be expressed as the intersection of two planes, or as a parametric equation.

x = x0 + at

y = y0 + bt

z = z0 + ct

A parametric equation for a surface involves two variables.

x = f(u, v)

y = g(u, v)

z = h(u, v)

For example, a plane through three points (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2) has a parametric equation:

x = x0 + (x1 - x0)u + (x2 - x0)v

y = y0 + (y1 - y0)u + (y2 - y0)v

z = z0 + (z1 - z0)u + (z2 - z0)v

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 423 (continued)]

A.3. Complex Numbers and Quaternions
A.3.1. Complex Numbers

Complex numbers can be used to represent 2D geometric objects and transforms. The set of complex numbers is
an extension of the real number system. A complex number can be written as

a + bi

where a, b are real numbers and i2 = -1. Addition and multiplication can be defined on the complex numbers. Let
z = a + bi and w = c + di be two complex numbers. Then the operations are defined as

z + w = (a + c) + (b + d)i

z�w = (ac - bd) + (ad + bc)i

[Page 424]

The multiplication can be obtained symbolically by the distributive law and the fact that i2 = -1. For example,

(2 - i) + (3 + 4i) = 5 + 3i

(2 - i) � (3 + 4i) = 6 + 8i - 3i - 4i2 = 10 + 5i

The set of complex numbers with the two operations has properties similar to those of real numbers. Both
operations are associative and commutative. The multiplication is distributive over the addition. They have
identity elements (0 and 1) and inverses. The inverse operation of addition is subtraction and the inverse of
multiplication is division. Consequently, the set of complex numbers with the two operations forms an algebraic
structure called a field, as in the real number system. Like addition, the subtraction of two complex numbers is
performed on real and imaginary parts separately. For example,

(2 - i) - (3 + 4i) = -1 -5i

The division operation is more complicated, and several new terms are needed to introduce it. The complex
conjugate and the absolute value of z = a + bi are defined as

The absolute value of a complex number is a nonnegative real number. It is easy to verify that . The
division of two complex numbers w and z can be calculated by multiplying the conjugate of the denominator on
both the denominator and the numerator by�that is,

For example,

The standard rectangular form of complex numbers introduced above may not be the most convenient
representation in some cases. A complex number can be written in the polar form

z = r(cos θ + i sin θ) = reiθ

where r = |z| and θ is a real number known as the argument. The equation eiθ = cos θ + i sin θ is the famous
Euler's identity that establishes a relationship between trigonometric functions and exponential functions. It is
much easier to calculate the multiplication, division, power, and roots of complex numbers in polar form.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Complex numbers have a geometric interpretation as points on a plane. A complex number z = a + bi is
associated with the 2D point (a, b) or the vector from the origin to the point (see Figure A.9). The absolute value
r corresponds to the distance of the point to the origin or the length of the vector. The angle θ corresponds to the
angle between the vector and the x-axis. The addition of two complex numbers corresponds to the addition of
vectors. The geometric interpretation of multiplication of two complex numbers can be seen from its polar form:

[Page 425]

z1z2 = r1eiθ1r2eiθ2 = (r1r2)ei(θ1+θ2)

Figure A.9. Complex numbers can be used to represent geometric objects.
(This item is displayed on page 424 in the print version)

Therefore, the length of the resultant vector is the product of the lengths of the two vectors, and the angle of the
resultant vector is the sum of the angles of the two vectors.

A Java class implementing the complex numbers is shown in Listing A.1.

Listing A.1. Complex.java
(This item is displayed on pages 425 - 426 in the print version)

 1 public class Complex {
 2 public static void main(String[] args) {
 3 Complex z = new Complex(1, -2);
 4 Complex w = new Complex(3, 4);
 5 System.out.println("z = " + z);
 6 System.out.println("w = " + w);
 7 System.out.println("|z| = " + z.abs());
 8 System.out.println("|w| = " + w.abs());
 9 System.out.println("arg z = " + z.arg());
10 System.out.println("arg w = " + w.arg());
11 System.out.println("conj z = " + z.conj());
12 System.out.println("conj w = " + w.conj());
13 System.out.println("z + w = " + z.add(w));
14 System.out.println("z - w = " + z.sub(w));
15 System.out.println("z * w = " + z.mul(w));
16 System.out.println("z / w = " + z.div(w));
17 }
18
19 private double x = 0.0;
20 private double y = 0.0;
21
22 public Complex() {
23 }
24
25 public Complex(double x, double y) {
26 this.x = x;
27 this.y = y;
28 }
29
30 public double getX() {
31 return x;
32 }
33
34 public double getY() {
35 return y;
36 }
37
38 public void setX(double x) {
39 this.x = x;
40 }
41
42 public void setY(double y) {
43 this.y = y;
44 }
45

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

46 public double abs() {
47 return Math.sqrt(x*x + y*y);
48 }
49

[Page 426]
50 public double arg() {
51 return Math.atan2(y, x);
52 }
53
54 public Complex conj() {
55 return new Complex(x, -y);
56 }
57
58 public Complex add(Complex other) {
59 double a = x + other.getX();
60 double b = y + other.getY();
61 return new Complex(a, b);
62 }
63
64 public Complex sub(Complex other) {
65 double a = x - other.getX();
66 double b = y - other.getY();
67 return new Complex(a, b);
68 }
69
70 public Complex mul(Complex other) {
71 double a = x * other.getX() - y * other.getY();
72 double b = x * other.getY() + y * other.getX();
73 return new Complex(a, b);
74 }
75
76 public Complex div(Complex other) {
77 double a = x * other.getX() + y * other.getY();
78 double b = -x * other.getY() + y * other.getX();
79 double d = other.abs();
80 d = d * d;
81 return new Complex(a/d, b/d);
82 }
83
84 public String toString() {
85 if (y >= 0)
86 return "" + x + "+" + y + "i";
87 else
88 return "" + x + "" + y + "i";
89 }
90 }

The class Complex encapsulates the concept of complex numbers. It contains two fields x and y to represent the
real and imaginary parts of a complex number (lines 19�20). The fields can be accessed individually with the
getters and setters.

The default constructor creates the complex number 0. The other constructor creates a complex number with the
specified real and imaginary parts (lines 25�28).

The absolute value and the argument of the complex number can be obtained with the methods abs and arg.
The conj method returns a new Complex object that is the complex conjugate of the current object. The complex
operations of addition, subtraction, multiplication, and division are performed by the methods add, sub, mul, and
div. Each method takes a Complex parameter as the second operand and returns a new Complex object as the
result of the operation.

The method toString (line 84) is overridden to provide a conventional string representation of the complex
number in the form such as "3 - 4i."

A main method is implemented to test the Complex class. Two complex numbers are created. They are printed
using the toString method implicitly. The results of all operations performed on the two numbers are also
printed. The output of the program is shown below.

[Page 427]

z = 1.0-2.0i
w = 3.0+4.0i
|z| = 2.23606797749979
|w| = 5.0
arg z = -1.1071487177940904
arg w = 0.9272952180016122

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

conj z = 1.0+2.0i
conj w = 3.0-4.0i
z + w = 4.0+2.0i
z - w = -2.0-6.0i
z * w = 11.0-2.0i
z / w = -0.2-0.4i

A.3.2. Quaternions

The quaternion system is an extension of the complex number system. A quaternion is expressed as:

q = a + bi + cj + dk

where a, b, c, d are real numbers. The i, j, k are elements satisfying the rules:

i2 = j2 = k2 = ijk = -1

With the assumption of associativity in multiplication, it can also be shown that

ij = k = -ji, jk = i = -kj, ki = j = -ik

The addition and subtraction of quaternions are defined as componentwise operations similar to those of complex
numbers. The multiplication of quaternions is also similar to that of complex numbers defined with the
distributive law over addition and with the relationships among i, j, k given above.

The addition of two quaternions q = a + bi + cj + dk and p = e + fi + gj + hk is defined by:

q + p = (a + e) + (b + f)i + (c + g)j + (d + h)k

The multiplication of the quaternions is defined with distributive law and the properties on i, j, k:

q � p = (ae - bf - cg - dh) + (af + be + ch - dg)i + (ag - bh + ce + df)j + (ah + bg - cf + de)k

For example,

(1 - i + j - 2k) � (2 + i - k)

= 1 � 2 + 1 � i - 1 � k - 2 � i - i � i + i � k + 2 � j + j � i - j � k - 4 � k - 2k � i + 2k � k

= 2 + i - k - 2i + 1 - j + 2j -k + i - 4k -2j -2

=1 - j - 6k

Quaternion multiplication is not commutative, so in general p � q is not the same as q � p. However, all other
algebraic properties such as the associative laws, the distributive laws, and the existence of identity and inverse
elements are valid, similar to real and complex number systems. The quaternion system is known as a skew field,
or a noncommutative field. A skew field has all the properties of a field except that the multiplication is not
necessarily commutative.

[Page 428]

The conjugate and absolute value of a quaternion q = a + bi + cj + dk are defined as

It can be shown that and . The last identity can be used to perform
quaternion divisions in the same way as complex number divisions. For example,

One way to provide a geometric interpretation to quaternions is to associate a point (x, y, z) in 3D space with a
pure quaternion�a quaternion with real part 0 (for example, xi + yj + zk).

Quaternions are especially useful in representing 3D rotations. The details will be introduced in Section A.5,

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

"Geometric Transformations."

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 428 (continued)]

A.4. Linear Algebra
A.4.1. Vector Spaces

A general vector space over a field F (such as the field of real numbers or the field of complex numbers) is a set V
with an addition, +: V x V V, and a scalar multiplication, ·: F x V V satisfying the following conditions.

For all u, v, w � V and k, l � F,

u + v = v + u

(u + v) + w = u + (v + w)

there exists a vector 0 such that u + 0 = u.

For every vector u there exists an inverse -u such that u + (-u) = 0:

k(u + v) = ku + kv

(k + l)u = ku + lu

(kl)u = k(lu)

lu = u

As a concrete example, a typical n-dimensional vector is simply an ordered tuple of n real numbers. For example,
(3, 4), (1, 0, -2), (4, 5, -3, 1) are vectors of dimensions 2, 3, and 4, respectively.

The collection of all such vectors of dimension n forms a vector space of dimension n over the field of real
numbers with two operations defined as componentwise operations. The addition of two vectors is defined as

(a1, a2,..., an) + (b1, b2,..., bn) = (a1 + b1, a2 + b2,..., an + bn)

The scalar multiplication is defined as

k(a1, a2,..., an) = (ka1, ka2,..., kan)

This particular real vector space of dimension n is denoted by Rn.

The set of complex numbers can be regarded as a two-dimensional vector space over the real numbers. The
quaternions form a four-dimensional vector space over the real numbers, or a two-dimensional space over the
complex numbers.

[Page 429]

The inner product (also known as the dot product or scalar product) is defined on Rn as

(a1, a2,..., an) (b1, b2,..., bn) = a1b1 + a2b2 + + anbn

The norm of a vector v is defined as .

A point in a 2D geometric plane can be associated with a vector of dimension 2 using a rectangular coordinate
system. This association establishes a one-to-one correspondence between the geometric plane and the algebraic
vector space. Similarly a one-to-one correspondence can be established between a 3D geometric space and a
vector space of dimension 3. This association is the exactly the same as the concept applied in the analytic
geometry.

Geometrically, the norm of a vector is the length of the vector. The inner product of two vectors can be expressed
as

where θ is the angle between the two vectors. Figure A.10 illustrates the inner product. If u is a unit vector,

 , then the inner product can be interpreted as the projection of along the direction u.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Figure A.10. Geometric interpretation of inner product.

If the angle between two vectors is 90 degrees or p/2 radians, the two vectors are said to be orthogonal or
perpendicular. From the properties of the inner product, it is clear that two vectors v and u are orthogonal when v
u = 0.

A.4.2. Linear Transformations and Matrices

Mathematically, a transformation (or a transform) T from a space V to a space W is a mapping (a function) from V
to W:

T: V W

For each point in V, there is a corresponding point T(v) in W. If the mapping T is one-to-one and onto, then it has
an inverse:

T-1: W V

In computer graphics, the spaces V and W are usually the two-dimensional vector space R2 or the three-
dimensional vector space R3. The general family of transformations is huge and complex. In graphics usually only
certain special families of transformations are considered.

A transformation T is linear if, for any vectors u, v and scalars a, b,

T(au + bv) = aT(u) + bT(v)

Linear transformations are convenient for algebraic manipulation and computer representation and processing. A
general linear transformation from an n-dimensional vector space Rn to an m-dimensional vector space Rm can be
represented by an m x n matrix. A matrix is a rectangular array of numbers. An m x n matrix has the following
form:

[Page 430]

For example, the following is a 2 x 3 matrix:

Matrix addition is defined on two matrices with identical sizes by entrywise addition. For example,

Matrix multiplication AB is defined only if the number of columns of A is the same as the number of rows of B. An

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

entry in the product AB is obtained from a row of A and column of B by multiplying corresponding entries and
taking the sum. For example,

Matrices may also represent vectors. A vector of dimension m can be represented as an m x 1 column matrix. For
example, the following matrix represents a three-dimensional vector:

A linear transformation may be constructed using a matrix. Let A be an m x n matrix and v an n x 1 column
matrix representing a vector. A linear transformation from Rn to Rm is defined by the matrix multiplication:

u = Av

For example, the following matrix equation defines a linear transformation from R3 to R2:

[Page 431]

Conversely, any linear transformation from Rn to Rm admits a matrix representation with an appropriate m x n
matrix.

Given an m x n matrix A, the transpose AT is defined as the n x m matrix

For example,

An n x n matrix is called a square matrix. A square matrix represents a linear transformation from a vector space
Rn to Rn. An identity matrix I is a square matrix of the form:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The inverse matrix A-1 of a square matrix A satisfies the condition:

A-1A = AA-1 = 1

The inverse matrix A-1 represents the inverse of the linear transformation represented by the matrix A.

The determinant is a scalar-valued function on square matrices. The determinant of matrix A is denoted by det(A)
or |A|. The formula for computing the determinant can be defined recursively as follows:

For example,

The expansion method used in the 3 x 3 matrix can be extended to define the determinant of a general matrix
recursively.

It can be proven that det(AT) = det(A) and det(AB) = det(A) det(B) if A and B are square matrices.

[Page 432]

The cross product v x u (also known as the outer product or vector product) of two vectors v = (x1, y1, z1), u =
(x2, y2, z2) is an operation defined on R3. Using determinants, the cross product can be defined symbolically as

Geometrically, v x u is a vector perpendicular to both v and u with the length

This length is equal to the area of the parallelogram spanned by the vectors v and u. Figure A.11 shows the
geometry of the cross product.

Figure A.11. Geometric interpretation of cross product.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The cross product is a useful tool to construct a vector perpendicular to some other vectors. For example, the
cross product of the two vectors (0, 1, 2) and (3, 4, 5) is

It is easy to verify by inner products that (-3, 6, -3) is orthogonal to (0, 1, 2) and (3, 4, 5):

(-3, 6, -3) (0, 1, 2) = 0 + 6 -6 = 0

(-3, 6, -3) (3, 4, 5) = -9 + 24 -15 = 0

Let A be a square matrix. If v is a nonzero vector and for some scalar λ,

Av = λv

then v is said to be an eigenvector of A, and λ an eigenvalue of A.

A real matrix A is symmetric if AT = A. A real matrix U is said to be orthogonal if

UTU = UUT = I

The spectral theorem states that a symmetric matrix A can be decomposed into a matrix product:

A = UΛUT

where U is an orthogonal matrix and Λ is a diagonal matrix of eigenvalues of A.

More generally, any real matrix A can be decomposed into

A = UΛVT

where U and V are orthogonal matrices and Λ is a diagonal matrix. This decomposition is known as the singular
value decomposition (SVD).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 433]

A.5. Geometric Transformations
A.5.1. Homogeneous Coordinates

Transformations on R2 and R3 are directly related to 2D and 3D graphics. A linear transformation on R3 can be
represented by a 3 x 3 matrix:

Families of transformations that are of special interest to computer graphics are often defined in terms of their
properties in preserving certain geometric relationships. A projective transformation preserves lines�that is, it
maps a line to a line. An affine transformation preserves lines and parallelism�that is, it is a projective
transformation that maps parallel lines to parallel lines. All linear transformations defined above are affine, but not
all affine transformations are linear. All affine transformations are projective, but not all projective transformations
are affine.

Because affine transformations and projective transformations are in general not linear, they do not necessarily
have the matrix representation shown above. However, if the coordinate system representing the points is
modified by increasing its dimension, it will be possible to obtain a linear representation for any projective
transformation. This coordinate system is known as the homogeneous coordinates.

The homogeneous coordinates add one dimension to the standard coordinates. For example, a 2D point is
represented by homogeneous coordinates with three components (x, y, w) and a 3D point is represented by
homogeneous coordinates with four components (x, y, z, w). Furthermore, homogeneous coordinates that differ
by a nonzero factor represent the same point. Therefore, the relationship between the points in the space and
the homogeneous coordinates is not one-to-one.

In a 2D space, instead of using two coordinates to represent a point, the homogeneous coordinate system uses
three coordinates to represent a point: (x, y, w).

When w is not 0, the regular 2D coordinates (X, Y) of the same point are given by

X = x/w

Y = y/w

Similarly in a 3D space, instead of using three coordinates to represent a point, the homogeneous coordinate
system uses four coordinates to represent a point: (x, y, z, w), or in the column form:

When w is not 0, the regular 3D coordinates (X, Y, Z) of the point are given by

X = x/w

Y = y/w

Z = z/w

In the homogeneous coordinate system, 4D vectors are used to represent 3D points. It follows from the definition
that the homogeneous coordinates for a point are not unique. Any nonzero multiple of a 4D homogeneous vector
will still represent the same 3D point.

[Page 434]

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

For example, the homogeneous coordinates (1, -2, 4, 1), (2, -4, 8, 2), and (-3, 6, -12, -3), all represent the same
point (1, -2, 4) in a 3D space.

When w is 0, there is no regular 3D point associated with the homogeneous coordinates. In this case, the
homogeneous coordinates may be regarded as a representation of points at "infinity." They may be viewed as
directions. For example, (1, 1, 0) in a 2D space represents a point at infinity along the 45-degree direction.

One advantage of a homogeneous coordinate system is that it will make all affine transformations and projective
transformations linear and provide a uniform matrix representation. In a 3D space, the transformation can be
expressed as a matrix equation:

A.5.2. Classification of Transformations

Transformations that preserve certain geometric properties have special significance in geometry and graphics.

A projective transformation preserves collinearity�that is, it maps a line to a line. A projective transformation is
not necessarily linear. For example, a linear transformation always maps the vector 0 to 0. This is not true for
projective transformations. However, as shown in the previous section, by using homogeneous coordinates you
can obtain a linear representation for a projective transformation.

With the homogeneous coordinate system, a projective transformation can be represented as a linear
transformation:

Affine transformations are projective transformations that preserve parallelism. For example, an affine
transformation maps a parallelogram to a parallelogram. Affine transformations are the most common
transformations employed in graphics applications. The transformation matrix has the following form:

Examples of affine transformations include rotations, translations, scaling, reflections, and shearing.

A subset of affine transformations that also preserve distances is known as rigid motions, Euclidean motions, or
isometries. Translations, rotations, and reflections are examples of rigid motions. The determinant of a rigid
motion is either 1 or -1. The reflections have determinant -1.

A classification of common geometric transformations is illustrated in Figure A.12.

[Page 435]

Figure A.12. Geometric transformations can be classified into translation, rotation, reflection, scaling,
shearing, and so on.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A translation moves all points of a space by a fixed amount. It does not change the size and direction of any
object. Figure A.13 shows an example of a 2D translation by an amount of (2, -1) in the x- and y-directions.

Figure A.13. A translation moves the shape.

A rotation rotates the object. A 2D rotation is around a point and a 3D rotation is around a line. A rotation does
not change the size, but it changes the direction of the shape. Figure A.14 shows a 2D rotation about the origin.

Figure A.14. A rotation rotates the shape.

A reflection maps the object to its mirror image. A 2D reflection is about a line and a 3D reflection is about a
plane. A reflection preserves distance, but it changes the orientation of an angle. Figure A.15 shows a 2D
reflection.

[Page 436]

Figure A.15. A reflection mirrors the shape.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A scaling resizes the object by multiplying certain fixed factors in different directions. Figure A.16 shows a 2D
scaling.

Figure A.16. A scaling resizes the shape.

A shearing shifts an object in certain directions. A 2D shear is along a line and a 3D shear shifts along a plane.
The amount of shift is proportional to the signed distance to the fixed line or plane. Figure A.17 shows a 2D shear.

Figure A.17. A shearing shifts the shape.

Complex numbers and quaternions offer convenient analytic forms of transformations, especially for rotations. In
a 2D space, a point may be associated with a complex number. A 2D rotation about the origin can be conveniently
represented by the multiplication of a complex number eiθ.

In a 3D space, a point may be identified with a pure quaternion, p = xi + yj + zk. A 3D rotation about the origin
can be expressed in the form

where q is a unit quaternion and can be written as

[Page 437]

The pure unit quaternion u defines the axis of rotation, and θ is the angle of rotation.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

For example, if you need to define a rotation of p/3 about the axis through the origin and (1, 1, 1), you can use
the following quaternion representation:

Clearly the quaternion representation offers a convenient way to specify a 3D rotation with explicit axis and angle.
Consider another example. The set of 3D rotations is closed under the transformation composition—that is, the
result of combining two rotations is still a rotation. However, the axis and angle of the composite rotation are not
easily seen. If we have a rotation of p/2 about the y-axis followed by a rotation of p/2 about the x-axis, what are
the axis and angle of the resulting rotation? The quaternion representation provides an easy solution. The
composite transform of two rotations Tq1 and Tq2 is given by

Therefore, the product of two quaternions represents the composite transform of the two rotations. The
quaternions for the rotation of p/2 about x-axis and the rotation of p/2 about y-axis are

The composite rotation will have the quaternion

Therefore the resulting transform is a rotation of 2p/3 about the axis through (0, 0, 0) and (1, 1, 1).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 437 (continued)]

A.6. Calculus
Given a curve represented by the function y = f(x) the slope of the tangent line to the curve at a point is the
derivative of the function dy/dx = f'(x). To find the equation of the tangent line at (x0, y0), we can use the point-
slope form,

y - f(x0) = f'(x0)(x - x0)

In a 3D space, a curve may be represented as a parametric equation:

x = f(t)

y = g(t)

z = h(t)

[Page 438]

At the point (x0, y0, z0) defined by t = t0, the direction of the tangent line is given by the vector:

(f'(t0), g'(t0), h'(t0))

The equation of the tangent line is:

x = x0 + f'(t0)(t - t0)

y = y0 + g'(t0)(t - t0)

z = z0 + h'(t0)(t - t0)

A smooth surface has a tangent plane at a given point. The normal of the tangent plane is called the surface
normal at the given point of the surface. Given the parametric equation of a surface,

x = f(u, v)

y = g(u, v)

z = h(u, v)

we can find the surface normals by the partial derivatives. Consider the two vectors formed by the derivatives:

Du = (x/ u, y/ u, z/ u) = (fu, gu, hu)

Dv = (x/ v, y/ v, z/ v) = (fv, gv, hv)

The surface normal can be found by taking a cross product:

n = Du x Dv

For example, a surface is defined by the following parametric equation:

x = 2uv - 1

y = v2

z = u2 - v3

The partial derivatives are

Du = (2v, 0, 2u)

Dv = (2u, 2v, -3v2)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

The surface normals are defined by

(2v, 0, 2u) x (2u, 2v, -3v2) = (-4uv, 4u2 + 6v3, 4v2)

At the point (1, 1, 0) defined by the parameter values u = 1, v = 1, the surface normal is (-4, 10, 4).

For a surface given by an implicit equation F(x, y, z) = 0, its surface normal may be found by the gradient:

F(x, y, z) = (F/ x, F/ y, F/ z)

For instance, a hyperbolic paraboloid has the equation z = xy or xy - z = 0. The gradient is

F(x, y, z) = (F/ x, F/ y, F/ z) = (y, x, -1)

Therefore, the surface normal at the point (-1, 2, -2) is in the direction (2, -1, -1).

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 439]

A.7. Graph Theory
A graph is a mathematical structure that describes a relationship on a set of objects called vertices (also known as
nodes or points). Edges (also known as arcs or lines) are used to define the relationship. An edge links two
vertices and it may be either undirected or directed. A graph with directed edges is called a directed graph, or a
digraph. Figure A.18 shows a digraph and an undirected graph.

Figure A.18. A digraph (left) and an undirected graph (right).

Formally, an undirected graph is defined as G = (V, E), where V is the set of vertices and E the set of edges. An
edge uv that joins the vertices u and v is said to be incident with the vertices u and v. Two vertices are said to be
adjacent if they are incident with the same edge. A path is an alternating sequence of distinct vertices and edges:
v0e1v1e2v2 ··· emvm, where ei is incident with vi-1 and vi. We can usually omit the edge specification in the
sequence and simply define a path as v0v1v2 ··· vm. A cycle is similar to a path except that the initial and final
vertices coincide: v0 = vm. For example, in the undirected graph shown in Figure A.18, cdfe is a path and cdfc is
cycle.

A graph is connected if any two vertices in the graph can be linked with a path. A graph is called acyclic if it
contains no cycle. A graph is called a tree if it is both connected and acyclic. A tree is a minimally connected graph
with many special properties. For example, the number of edges and the number of vertices of a tree are related
by |E| = |V| - 1.

The terms related to digraphs can be defined similarly. For example, in the digraph shown in Figure A.18, dcfe is a
directed path and cfdc is a directed cycle.

A DAG (directed acyclic graph) is a digraph without any directed cycles. However, if the directions on the edges of
a DAG are ignored, the resulting undirected graph may contain undirected cycles. Figure A.19 shows an example.

Figure A.19. A DAG (left) and a rooted tree (right).

A rooted tree is a tree with directed edges oriented away from a root, as shown in Figure A.19. A rooted tree is a
DAG, but a DAG is not necessarily a rooted tree. From the root of the tree to any vertex, there exists a unique
path. If uv is a directed edge from u to v, we call v a child of u and u the parent of v. A vertex without children is
called a leaf.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 440]

Key Terms
coordinate system

A method to associate geometric points with algebraic quantities of ordered tuples of numbers.

parametric equation

A set of equations that express coordinate variables as functions of parameters.

conic section

A family of curves including ellipses, parabolas, and hyperbolas.

complex numbers

A number system that is an extension of the real number field.

quaternion

A number system that is an extension of the complex number field.

vector space

An algebraic system with two operations: addition and scalar multiplication.

inner product

A scalar function of two vectors.

linear transformation

A mapping of vector spaces that preserves linear combinations.

matrix

A rectangular array of numbers, often used to represent a linear transformation.

determinant

A scalar function of a square matrix.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

cross product

A vector-valued function of two vectors defined in an 3D space.

eigenvalue, eigenvector

A special value λ and vector v that satisfy Av = λv for a square matrix.

spectral theorem

A symmetric matrix can be decomposed as A = UΛUT.

SVD

(singular value decomposition). A matrix can be decomposed as A = UΛVT.

homogeneous coordinates

A system to represent a point with an extra dimension so that all projective transformations can be
represented linearly.

projective transformation

A geometric transformation that preserves collinearity.

affine transformation

A geometric transformation that preserves parallelism.

rigid motion

A geometric transformation that preserves distances.

tangent line

A line through a point on a curve. The slope of the line is the same as the rate of change of the curve
at the point.

surface normal

A vector perpendicular to the tangent plane of a surface at a point.

graph

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A mathematical structure consisting of a set of vertices and a set of edges.

digraph

A graph with directed edges.

DAG

Directed acyclic graph.

tree

A connected acyclic graph.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 440 (continued)]

Review Problems

A.1 Plot the following points in a 2D coordinate system:

(1,3), (-2, 1, 5), (0, -2), (0, 0)

A.2 Find the coordinates of the vertices of the triangle in Figure A.20.

Figure A.20. A triangle for Problem A.2.

A.3 Find the distance between the two 3D points (2, 1, 3) and (0, -2, 5).

A.4 Find the inner product of the two 3D vectors (2, 1, 3) and (0, -2, 5).

A.5 Find the angle between the two 3D vectors (2, 1, 3) and (0, -2, 5).

[Page 441]

A.6 Find the cross product of the two 3D vectors (2, 1, 3) and (0, -2, 5).

A.7 Find an equation of the line through the point (0, 2) with slope -2.

A.8 Find the slope of the line -2x + 3y = 4.

A.9 Find an equation of the circle centered at the origin with radius 5.

A.10 Find the equation of the ellipse centered at (-1, 3) and through the points (1, 3) and (-1, 4).

A.11 Find a parametric equation of the line through the points (1, 3) and (-1, 4).

A.12 Calculate the sum, difference, product, and quotient of the two complex numbers -2 - 5i, 1 -
3i.

A.13 Find the complex conjugate and the absolute value of the complex number -2 - 5i.

A.14 Find the product of two quaternions -1 - 5i + k, 1 - 3i - j + 2k.

A.15 Describe the rotation defined by the quaternion 1/2 - 1/2i + 1/2j + 1/2k.

A.16 Construct a quaternion representing the 3D rotation of 2p/3 about the axis (1, -2, 2).

A.17 Find the sum and product of the following matrices:

A.18 Find the determinant of the following matrix:

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

A.19 Find the determinant of the following matrix:

A.20 Find det(I).

A.21 Prove that det(A-1) = 1/det(A).

A.22 Show that the following matrix is orthogonal:

A.23 If A is orthogonal, show that det(A) = ±1.

A.24 Using homogeneous coordinates in a 2D space, a line can be represented by an equation:

ax + by + cw = 0

If two lines are parallel, derive a relationship on their coefficients in the above equation.

A.25 Consider the line equations for homogeneous coordinates in Problem A.24. If two lines are
parallel, can you find a point of intersection by solving a simultaneous equation?

A.26 Find an equation of the tangent line of the curve y = x3 + x -1 at the point (1, 1).

[Page 442]

A.27 Find an equation of the tangent line of the following 3D curve at the point (1, -1, 0):

x = t + 1

y = t2 - 1

z = t3

A.28 Find the surface normals for the following surface:

x = 2 cos u cos v

y = 3 sin u cos v

z = 4 sin v

A.29 A tree has 1000 vertices. How many edges does it have?

A.30 If a rooted tree has 1000 leaves and each nonleaf node has exactly two children, how many
edges does it have?

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 443]

Appendix B. GUI Programming with AWT and Swing
Section B.1. Introduction

Section B.2. AWT Components

Section B.3. AWT Programming

Section B.4. Mixing AWT and Swing Components

B.1. Introduction
There exist two sets of GUI programming interfaces for the Java platform: AWT and Swing. Swing is the newer
and currently recommended system. However, because Java 3D depends on an AWT component Canvas3D for
its rendering, a Java 3D program must include at least some elements of AWT. The readers are assumed to
already have knowledge of Swing programming. This appendix will give a brief introduction to the AWT
framework and its relationship to Swing.

A graphical user interface (GUI) is an indispensable part of modern computer systems. Virtually all operating
systems provide some form of GUI support. However, the different GUI systems are usually not compatible
with each other. Even though the basic elements of GUI programming, such as window systems and event-
driven programming, are very similar in all platforms, GUI programming is usually platform dependent because
of its heavy reliance on the specific facilities provided by the native system.

Java, on the other hand, provides a platform-independent GUI programming environment. From the very
beginning of Java, GUI programming has been an integral part of standard Java APIs. Like other components
of Java, Java's GUI support is fully object oriented and platform independent.

In the early Java versions, the GUI functions are achieved through an API package known as the Abstract
Window Toolkit (AWT). AWT defines the basic mechanism of event-driven programming and a set of visual
components. The AWT components are relatively simple, having features common to most GUI systems. They
are implemented through direct mappings to similar components in a native system.

Swing is a new set of APIs for GUI programming. It differs from AWT mainly in a set of newly defined
components. Most Swing components are not repackaged host-system components. They are built from the
ground up within Java as "lightweight" components, independent of any native GUI system. As a result, Swing
components are rich in features, and their appearance is independent of the host platform. Of course, Swing is
not a complete replacement for AWT. It replaces only the AWT components. Swing programs still use other
functions of AWT, such as layout managers and event handling.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 443 (continued)]

B.2. AWT Components
AWT components are "heavyweight." They are always opaque and do not allow events such as mouse clicks to
pass through. They are implemented using the components of the host platform. Consequently, only a limited set
of features, common to all platforms, is available in AWT components. The class hierarchy of the major AWT
components is shown in Figure B.1.

[Page 444]

Figure B.1. Major AWT components.

Because AWT components are heavyweight, an AWT program will appear different when run under different
platforms. Figure B.2 shows some screen shots of an AWT program under different operating systems. Of course,
despite the differences, it is remarkable that the same GUI program can be executed in different systems without
any change.

Figure B.2. AWT components appear different in different platforms. Top: Windows 2000. Bottom:
Linux.

(This item is displayed on page 445 in the print version)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Many AWT components have approximate equivalents in Swing. Figure B.3 lists possible Swing replacements for
AWT components. The Swing version usually has a name with the "J" prefix. For example, Swing components
JTextField, JFrame, and JPanel correspond to the AWT components TextField, Frame, and Panel.

Figure B.3. AWT components and their Swing equivalents.
(This item is displayed on page 445 in the print version)

AWT Component Swing Component

Frame JFrame

Applet JApplet

Button JButton

Label JLabel

TextField JTextField

TextArea JTextArea

Panel JPanel

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

List JList

Checkbox JCheckBox, JRadioButton

Choice JComboBox

Canvas JPanel, JLabel

MenuBar JMenuBar

Menu JMenu

MenuItem JMenuItem

CheckboxMenuItem JCheckBoxMenuItem

Scrollbar JSlider, JProgressBar

ScrollPane JScrollPane

Dialog JDialog, JOptionPane

FileDialog JFileChooser

Of course, this is not an exact one-to-one correspondence. The Swing collection is more extensive than the set of
AWT components, and sometimes there are also differences in their designs.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 444 (continued)]

B.3. AWT Programming
A GUI program with all AWT components has the same basic structure as a Swing program. Constructing UI,
event handling, and painting in AWT are almost identical to the procedures used in Swing. Because Swing
provides more extensive functionality than AWT, using a pure AWT program to duplicate exactly the features of a
Swing program can be difficult. Nevertheless, it is usually possible to convert a Swing program to a similar AWT
version. The following guidelines may be useful if you need to perform such a conversion, or if you want to write
an AWT program based on your knowledge of Swing:

1. Replace each Swing component by its closest AWT version. You may use Figure B.3 to find a matching
component.

2. Unlike JFrame and JApplet, the top-level AWT containers, Frame and Applet, do not have content panes.
The content is added directly to a Frame or Applet object.

[Page 446]

3. The Frame class does not have the setDefaultCloseOperation method. You need to add a window event
listener to get the effect. For example, the following code snippet terminates the program when the window
is closed:

public static void main(String[] args) {
 Frame frame = new Frame();
 // exit when the frame is closed
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent ev){
 System.exit(0);
 }
 });
 frame.setVisible(true);
}

4. The Applet class, unlike JApplet, does not have a menu bar. Of course, it is not common for an applet to
have its own menu.

5. AWT components do not have the paintComponent(Graphics) method. Use the paint(Graphics) method
instead.

6. The AWT component Canvas is usually the base class for deriving a custom component class. Swing does
not have a directly corresponding class. In Swing, JPanel is usually the blank base class for the same
purpose.

7. There is no AWT radio-button class corresponding to the Swing class JRadioButton. You may use Checkbox
and CheckboxGroup objects to achieve the effects of radio buttons. Note, however, that the usage is
different from that of the JRadioButton and ButtonGroup objects in Swing. For example, the following code
snippet creates a group of radio buttons in Swing:

JRadioButton red = new JRadioButton("Red", true);
JRadioButton yellow = new JRadioButton("Yellow", false);
JRadioButton green = new JRadioButton("Green", false);
ButtonGroup group = new ButtonGroup();
group.add(red);
group.add(yellow);
group.add(green);

A similar AWT version is given below:

CheckboxGroup group = new CheckboxGroup();
Checkbox red = new Checkbox("Red", group, true);
Checkbox yellow = new Checkbox("Yellow", group, false);

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Checkbox green = new Checkbox("Green", group, false);

8. The AWT component Scrollbar is often used as an approximation for JSlider. One difference between the
two components is that the Scrollbar fires the AdjustmentEvent and the JSlider generates the
ChangeEvent.

Listings B.1 and B.2 illustrate the procedure of rewriting a Swing program in AWT. Listing B.1 is a typical Swing
program and Listing B.2 is an approximately equivalent AWT version. (See Figure B.4.)

Listing B.1. SwingProg.java
(This item is displayed on pages 446 - 449 in the print version)

 1 /*** Swing program ***/
 2
 3 package appendixB;

[Page 447]
 4
 5 import javax.swing.*;
 6 import java.awt.*;
 7 import java.awt.event.*;
 8 import javax.swing.event.*;
 9
 10 public class SwingProg extends Jframe
 11 implements ActionListener, ChangeListener {
 12
 13 public static void main(String[] args) {
 14 JFrame frame = new SwingProg();
 15 frame.setVisible(true);
 16 }
 17
 18 CirclePanel circle;
 19 JSlider scrollR;
 20 JSlider scrollG;
 21 JSlider scrollB;
 22
 23 public SwingProg() {
 24 setSize(500,350);
 25 JMenuBar menuBar = new JMenuBar();
 26 setJMenuBar(menuBar);
 27 JMenu fileMenu = new JMenu("File");
 28 menuBar.add(fileMenu);
 29 JMenuItem exitItem = new JMenuItem("Exit");
 30 exitItem.addActionListener(this);
 31 fileMenu.add(exitItem);
 32 // exit when the frame is closed
 33 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 34
 35 Container cp = this.getContentPane();
 36 cp.setLayout(new BorderLayout());
 37 // center
 38 JPanel panel = new JPanel();
 39 panel.setLayout(new BorderLayout());
 40 cp.add(panel, BorderLayout.CENTER);
 41 circle = new CirclePanel();
 42 panel.add(circle, BorderLayout.CENTER);
 43 JTextArea textArea = new JTextArea(3,10);
 44 textArea.setText("TextArea");
 45 panel.add(textArea, BorderLayout.SOUTH);
 46 // north
 47 JLabel label = new JLabel("Label");
 48 cp.add(label, BorderLayout.NORTH);
 49 // south
 50 JTextField textField = new JTextField("TextField");
 51 cp.add(textField, BorderLayout.SOUTH);
 52 // west
 53 panel = new JPanel();
 54 panel.setLayout(new GridLayout(1,3));
 55 cp.add(panel, BorderLayout.WEST);
 56 scrollR = new JSlider(JSlider.VERTICAL, 0, 255, 0);
 57 scrollR.addChangeListener(this);
 58 panel.add(scrollR);
 59 scrollG = new JSlider(JSlider.VERTICAL, 0, 255, 0);
 60 scrollG.addChangeListener(this);
 61 panel.add(scrollG);
 62 scrollB = new JSlider(JSlider.VERTICAL, 0, 255, 0);
 63 scrollB.addChangeListener(this);
 64 panel.add(scrollB);
 65 // east

[Page 448]
 66 panel = new JPanel();

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 67 panel.setBackground(Color.lightGray);
 68 panel.setLayout(new GridLayout(4,1));
 69 cp.add(panel, BorderLayout.EAST);
 70 JPanel chPanel = new JPanel();
 71 panel.add(chPanel);
 72 JComboBox choice = new JComboBox();
 73 choice.addItem("red");
 74 choice.addItem("green");
 75 choice.addItem("blue");
 76 chPanel.add(choice);
 77 JPanel cbPanel = new JPanel();
 78 cbPanel.setLayout(new GridLayout(3,1));
 79 panel.add(cbPanel);
 80 ButtonGroup group = new ButtonGroup();
 81 JRadioButton cbR = new JRadioButton("Red", true);
 82 group.add(cbR);
 83 cbPanel.add(cbR);
 84 JRadioButton cbG = new JRadioButton("Green", false);
 85 group.add(cbG);
 86 cbPanel.add(cbG);
 87 JRadioButton cbB = new JRadioButton("Blue", false);
 88 group.add(cbB);
 89 cbPanel.add(cbB);
 90 JPanel btPanel = new JPanel();
 91 panel.add(btPanel);
 92 JButton button = new JButton("Exit");
 93 button.addActionListener(this);
 94 btPanel.add(button);
 95 String[] listItems = {"Red", "Green", "Blue"};
 96 JList list = new JList(listItems);
 97 panel.add(list);
 98 }
 99
100 public void actionPerformed(ActionEvent ev) {
101 String cmd = ev.getActionCommand();
102 if ("Exit".equals(cmd))
103 System.exit(0);
104 }
105
106 public void stateChanged(ChangeEvent ev) {
107 int r = scrollR.getValue();
108 int g = scrollG.getValue();
109 int b = scrollB.getValue();
110 circle.setColor(new Color(r, g, b));
111 }
112
113 }
114
115 class CirclePanel extends JPanel {
116 private Color color = Color.black;
117
118 public CirclePanel() {
119 setBackground(new Color(220,220,220));
120 }
121
122 public void paintComponent(Graphics g) {
123 super.paintComponent(g);
124 g.setColor(color);
125 int w = getWidth();
126 int h = getHeight();
127 int d = (w > h)? h : w;

[Page 449]
128 d -= 30;
129 g.fillOval((w-d)/2,(h-d)/2, d, d);
130 }
131
132 public void setColor(Color c) {
133 color = c;
134 repaint();
135 }
136 }

Listing B.2. AWTProg.java
(This item is displayed on pages 449 - 451 in the print version)

 1 /*** AWT program ***/
 2
 3 package appendixB;
 4
 5 import java.awt.*;

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 6 import java.awt.event.*;
 7
 8 public class AWTProg extends Frame
 9 implements ActionListener, AdjustmentListener {
 10
 11 public static void main(String[] args) {
 12 Frame frame = new AWTProg();
 13 frame.setVisible(true);
 14 }
 15
 16 CircleCanvas circle;
 17 Scrollbar scrollR;
 18 Scrollbar scrollG;
 19 Scrollbar scrollB;
 20
 21 public AWTProg() {
 22 setSize(500,350);
 23 MenuBar menuBar = new MenuBar();
 24 setMenuBar(menuBar);
 25 Menu fileMenu = new Menu("File");
 26 menuBar.add(fileMenu);
 27 MenuItem exitItem = new MenuItem("Exit");
 28 exitItem.addActionListener(this);
 29 fileMenu.add(exitItem);
 30 // exit when the frame is closed
 31 addWindowListener(new WindowAdapter() {
 32 public void windowClosing(WindowEvent ev){
 33 System.exit(0);
 34 }
 35 });
 36 setLayout(new BorderLayout());
 37 // center
 38 Panel panel = new Panel();
 39 panel.setLayout(new BorderLayout());
 40 add(panel, BorderLayout.CENTER);
 41 circle = new CircleCanvas();
 42 panel.add(circle, BorderLayout.CENTER);
 43 TextArea textArea = new TextArea(3,10);
 44 textArea.setText("TextArea");
 45 panel.add(textArea, BorderLayout.SOUTH);
 46 // north
 47 Label label = new Label("Label");
 48 add(label, BorderLayout.NORTH);
 49 // south

[Page 450]
 50 TextField textField = new TextField("TextField");
 51 add(textField, BorderLayout.SOUTH);
 52 // west
 53 panel = new Panel();
 54 panel.setLayout(new GridLayout(1,3));
 55 add(panel, BorderLayout.WEST);
 56 scrollR = new Scrollbar(Scrollbar.VERTICAL,0,1,0,255);
 57 scrollR.addAdjustmentListener(this);
 58 panel.add(scrollR);
 59 scrollG = new Scrollbar(Scrollbar.VERTICAL,0,1,0,255);
 60 scrollG.addAdjustmentListener(this);
 61 panel.add(scrollG);
 62 scrollB = new Scrollbar(Scrollbar.VERTICAL,0,1,0,255);
 63 scrollB.addAdjustmentListener(this);
 64 panel.add(scrollB);
 65 // east
 66 panel = new Panel();
 67 panel.setBackground(Color.lightGray);
 68 panel.setLayout(new GridLayout(4,1));
 69 add(panel, BorderLayout.EAST);
 70 Panel chPanel = new Panel();
 71 panel.add(chPanel);
 72 Choice choice = new Choice();
 73 choice.add("red");
 74 choice.add("green");
 75 choice.add("blue");
 76 chPanel.add(choice);
 77 Panel cbPanel = new Panel();
 78 cbPanel.setLayout(new GridLayout(3,1));
 79 panel.add(cbPanel);
 80 CheckboxGroup group = new CheckboxGroup();
 81 Checkbox cbR = new Checkbox("Red", group, true);
 82 cbPanel.add(cbR);
 83 Checkbox cbG = new Checkbox("Green", group, false);
 84 cbPanel.add(cbG);
 85 Checkbox cbB = new Checkbox("Blue", group, false);
 86 cbPanel.add(cbB);
 87 Panel btPanel = new Panel();
 88 panel.add(btPanel);
 89 Button button = new Button("Exit");

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

 90 button.addActionListener(this);
 91 btPanel.add(button);
 92 List list = new List(3);
 93 list.add("Red");
 94 list.add("Green");
 95 list.add("Blue");
 96 panel.add(list);
 97 }
 98
 99 public void actionPerformed(ActionEvent ev) {
100 String cmd = ev.getActionCommand();
101 if ("Exit".equals(cmd))
102 System.exit(0);
103 }
104
105 public void adjustmentValueChanged(AdjustmentEvent ev) {
106 int r = scrollR.getValue();
107 int g = scrollG.getValue();
108 int b = scrollB.getValue();
109 circle.setColor(new Color(r, g, b));
110 }
111 }

[Page 451]
112
113 class CircleCanvas extends Canvas {
114 private Color color = Color.black;
115
116 public CircleCanvas() {
117 setBackground(new Color(220,220,220));
118 }
119
120 public void paint(Graphics g) {
121 super.paint(g);
122 g.setColor(color);
123 int w = getWidth();
124 int h = getHeight();
125 int d = (w > h)? h : w;
126 d -= 30;
127 g.fillOval((w-d)/2,(h-d)/2, d, d);
128 }
129
130 public void setColor(Color c) {
131 color = c;
132 repaint();
133 }
134 }

Figure B.4. A Swing program and its AWT clone.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 452]

The Swing version uses the components JFrame, JPanel, JButton, JLabel, JTextField, JTextArea, JList,
JComboBox, JRadioButton, JSlider, JMenuBar, JMenu, and JMenuItem. They are replaced in the AWT version by
the components: Frame, Panel (and Canvas), Button, Label, TextField, TextArea, List, Choice, Checkbox,
Scrollbar, MenuBar, Menu, and MenuItem.

Changes are also necessary in using some of the components in AWT. Instead of using the content pane, the
AWT program uses the Frame object as a container to directly add other components. The AWTProg class is an
AdjustmentListener to handle the scrollbar events. The Swing version defines a ChangeListener for the same
task with JSlider. The radio buttons in the two versions are also created differently.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

[Page 452 (continued)]

B.4. Mixing AWT and Swing Components
It is possible to use a combination of AWT and Swing components in the same program. Mixing the two types of
components will not cause any syntax errors, but it may lead to some undesirable visual effects in the resulting
user interface.

The main problem with mixing components is related to the z-order of the components. The z-order determines
which component will be shown on top when several components overlap. The heavyweight AWT components are
opaque, and their z-orders are obtained from the host system. The Swing components can have transparent
pixels, and their z-orders are implemented natively. When an AWT component and a Swing component overlap,
the AWT component will block the Swing component, which may result in an incorrect visual arrangement. For
example, the following program contains one AWT component, a TextArea object, in the right half of a
JSplitPane. When the menu is selected, it may be blocked by the AWT component, if the menu and the text
area overlap (Figure B.5).

Figure B.5. Mixing AWT and Swing components may cause problems. Left: The menu displays
properly when it does not overlap with the AWT component. Right: The menu is partially blocked by

the AWT component because of the z-order limitation.

Listing B.3. SwingAWT.java
(This item is displayed on pages 452 - 453 in the print version)

 1 package appendixB;
 2
 3 import javax.swing.*;
 4 import java.awt.*;
 5
 6 public class SwingAWT extends JFrame {
 7 public static void main(String[] args) {
 8 JFrame frame = new SwingAWT();
 9 frame.setSize(300, 200);
10 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

[Page 453]
11 frame.setVisible(true);
12 }
13
14 public SwingAWT() {
15 // set up menu
16 JMenuBar mb = new JMenuBar();
17 setJMenuBar(mb);
18 JMenu menu = new JMenu("File");
19 mb.add(menu);
20 menu.add(new JMenuItem("Open"));
21 menu.add(new JMenuItem("Save"));
22 menu.addSeparator();
23 menu.add(new JMenuItem("Exit"));
24 // add content
25 Container cp = this.getContentPane();
26 cp.setLayout(new BorderLayout());
27 JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT);
28 JPanel panel = new JPanel();
29 sp.add(panel);
30 cp.add(sp);
31 sp.add(new TextArea("AWT TextArea",10,10));
32 }
33 }

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

If mixing the AWT and Swing components is necessary in a program, care should be taken to avoid the z-order
problem. Besides the JMenuBar class, the Swing components JPopupMenu, JComboBox, JScrollPane,
JInternalFrame often exhibit similar problems. For JPopupMenu and JComboBox objects, you have the option to
turn off the lightweight popup by calling the method:

setLightWeightPopupEnabled(false)

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

Please purchase VeryPDF CHM to PDF Converter on www.verypdf.com to remove this watermark.

	Copyright
	Dedication

	Preface
	Companion Website
	Instructor Resource Website
	Acknowledgments

	Chapter 1. Overview of Computer Graphics
	Objectives
	1.1. Introduction
	Figure 1.1. Main tasks of computer graphics: modeling a virtual world and rendering a scene.

	1.2. Evolution of Computer Graphics Programming
	Figure 1.2. Graphics programming at different levels.
	1.2.1. Hardware Level
	Listing 1.1. Circle.asm (This item is displayed on pages 4 - 7 in the print version)
	Figure 1.3. Determination of the pixels on a circle. From the current pixel, the next pixel will be either to the "east" or to the "southeast."

	1.2.2. Operating-System Level Support
	Listing 1.2. WinCircle.c (This item is displayed on pages 8 - 10 in the print version)
	Figure 1.4. A WIN32 program in C displaying a circle.

	1.2.3. GKS and PHIGS
	Listing 1.3. circle.f
	Figure 1.5. A simple GKS program displaying a circle.

	1.2.4. OpenGL
	Listing 1.4. OpenGLCircle.c
	Figure 1.6. An OpenGL circle program.
	Listing 1.5. OpenGLSphere.c
	Figure 1.7. An OpenGL program displaying a 3D spinning sphere.

	1.2.5. Java
	Figure 1.8. Graphics-system layers.

	1.3. Java Programming Language
	Listing 1.6. AWTDemo.java (This item is displayed on pages 17 - 18 in the print version)
	Figure 1.9. A simple Java GUI program with AWT.
	Listing 1.7. JOGLDemo.java (This item is displayed on pages 19 - 20 in the print version)

	1.4. Java 2D
	Listing 1.8. Demo2D.java (This item is displayed on pages 21 - 22 in the print version)
	Figure 1.10. A Java 2D program. The circle is filled with a gradient paint and the text is semitransparent.

	1.5. Java 3D
	Listing 1.9. Demo3D.java (This item is displayed on pages 23 - 25 in the print version)
	Figure 1.11. A Java 3D program that displays a rotating globe and a 3D text string.
	Figure 1.12. The scene graph of the Java 3D program.

	1.6. Related Fields
	1.7. Resources
	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Chapter 2. 2D Graphics: Basics
	Objectives
	2.1. Introduction

	2.2. 2D Rendering Process
	Figure 2.1. A 2D graphics object is processed in a pipeline of transformation and viewing.

	2.3. 2D Geometry and Coordinate Systems
	Figure 2.2. The 2D coordinate system with the x-axis and y-axis.
	Figure 2.3. A line can be represented by a linear equation.
	Figure 2.4. An ellipse can be represented by a quadratic equation.
	Figure 2.5. Java 2D's coordinate system originates from origin (0, 0) with the x-axis increasing rightward and the y-axis increasing downward.

	2.4. The Graphics2D Class
	Listing 2.1. Hello2D.java
	Figure 2.6. A simple Java 2D application draws a rotated ellipse and a text string.

	2.5. Graphing Equations
	Figure 2.7. A spirograph plot using a parametric equation.
	Listing 2.2. Spirograph.java (This item is displayed on pages 39 - 40 in the print version)

	2.6. Geometric Models
	2.6.1. Shapes
	Figure 2.8. Java 2D defines various shapes.
	Figure 2.9. A quadratic curve is specified by three control points.
	Figure 2.10. A cubic B�zier curve is specified by four control points.
	Figure 2.11. The geometric angle of the radial line for a point on the ellipse is not necessarily equal to the parameter value.

	2.6.2. Example
	Listing 2.3. DrawShapes.java (This item is displayed on pages 44 - 48 in the print version)
	Figure 2.12. Drawing basic shapes defined in Java 2D.

	2.7. Constructive Area Geometry
	Listing 2.4. AreaGeometry.java
	Figure 2.13. Top row: Two shape objects. Bottom row: The results of four area operations: add, intersect, subtract, exclusiveOr.

	2.8. General Path
	Figure 2.14. A shape defined by a GeneralPath object.
	Figure 2.15. Even–odd rule and nonzero rule for interior definition.
	Figure 2.16. Left: Even–odd rule. Right: Nonzero rule.
	Listing 2.5. CustomPath.java (This item is displayed on pages 53 - 54 in the print version)
	Figure 2.17. General paths and regions formed with the even–odd rule and the nonzero rule.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Figure 2.18. A triangle for Question 2.3. (This item is displayed on page 57 in the print version)
	Figure 2.19. Define shape interior from the path.

	Programming Exercises
	Figure 2.20. A moon shape.
	Figure 2.21. A Ying-Yang symbol.

	Chapter 3. 2D Graphics: Rendering Details
	Objectives
	3.1. Introduction

	3.2. Colors and Paints
	3.2.1. Color Space
	3.2.2. Color
	Listing 3.1. TestColors.java (This item is displayed on pages 62 - 64 in the print version)
	Figure 3.1. Colors formed by combinations of red, green, and blue.

	3.2.3. Paint
	Figure 3.2. Paint class hierarchy.
	Listing 3.2. TestPaints.java (This item is displayed on pages 65 - 66 in the print version)
	Figure 3.3. Shapes drawn with cyclic gradient paint, texture paint, and acyclic gradient paint. (This item is displayed on page 67 in the print version)

	3.3. Strokes
	Listing 3.3. TestStrokes.java (This item is displayed on pages 68 - 69 in the print version)
	Figure 3.4. Examples of strokes with different end style, join style, and dash settings. (This item is displayed on page 70 in the print version)

	3.4. Affine Transformation
	Figure 3.5. A translation of (3, -1).
	Figure 3.6. A rotation about the origin.
	Figure 3.7. A reflection about the diagonal line.
	Figure 3.8. A scaling by factors (1.5, 2).
	Figure 3.9. A shearing by factor 1 along the dashed horizontal line.
	Listing 3.4. Transformations.java (This item is displayed on pages 74 - 77 in the print version)
	Figure 3.10. Affine transforms applied to a rectangle.

	3.5. Compositions of Transformations
	Listing 3.5. Composition.java (This item is displayed on pages 79 - 80 in the print version)
	Figure 3.11. Composition of a translation, a rotation, and another translation.

	3.6. Transparency and Compositing Rules
	Table 3.1. (This item is displayed on page 82 in the print version)
	Figure 3.12. Four different events of color occurrence in the probabilistic model of compositing.
	Listing 3.6. Compositing.java (This item is displayed on pages 82 - 84 in the print version)
	Figure 3.13. Overlapping objects rendered with the SRC_OVER rule, one of the twelve compositing rules demonstrated in this example.

	3.7. Clipping
	Listing 3.7. TestClip.java (This item is displayed on pages 85 - 86 in the print version)
	Figure 3.14. The gray area is enclosed by the clip path. Graphical drawings are clipped by the clip path.

	3.8. Text and Font
	Figure 3.15. A common ligature.
	Listing 3.8. FontFun.java (This item is displayed on pages 89 - 90 in the print version)
	Figure 3.16. The first line shows the text drawn with a derived font. The second line draws the bounding rectangle. The third line shows the baseline and the amounts of ascent, descent, and leading.
	Listing 3.9. GlyphClip.java (This item is displayed on pages 91 - 92 in the print version)
	Figure 3.17. Two thousand random ellipses drawn on a clipping shape defined by the glyphs of the string "Java."

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Figure 3.18. A filled shape.
	Figure 3.19. A circular text. (This item is displayed on page 96 in the print version)

	Chapter 4. 2D Graphics: Advanced Topics (Optional)
	Objectives
	4.1. Introduction

	4.2. Spline Curves
	Listing 4.1. BSpline.java (This item is displayed on pages 101 - 103 in the print version)
	Figure 4.1. A B-spline curve rendered with a series of Bézier curves. The polygon represents the control points of the B-spline curve, and the small squares indicate the locations of control points of the Bézier curves. (This item is displayed on page 104 in the print version)

	4.3. Custom Primitives
	Listing 4.2. Heart.java (This item is displayed on pages 105 - 106 in the print version)
	Figure 4.2. A heart-shape primitive constructed with a GeneralPath object using two symmetric cubic curves.
	Listing 4.3. TestHeart.java

	4.4. Image Processing
	Figure 4.3. An image-processing system.
	Figure 4.4. BufferedImageOp is a common interface for buffered image operations.
	Listing 4.4. ImageProcessing.java (This item is displayed on pages 111 - 114 in the print version)
	Figure 4.5. Image sharpening is one of the operations supported by this image-processing example program.

	4.5. Creating Fractal Images
	Listing 4.5. Mandelbrot.java (This item is displayed on pages 116 - 117 in the print version)
	Figure 4.6. The Mandelbrot set colored with the number of iterations.

	4.6. Animation
	Listing 4.6. Rain.java (This item is displayed on pages 119 - 120 in the print version)
	Figure 4.7. A rainy animation.
	Listing 4.7. Clock2D.java (This item is displayed on pages 122 - 123 in the print version)
	Figure 4.8. A real-time analog clock.
	Figure 4.9. One step in the evolution of a cellular automaton.
	Figure 4.10. Game of Life. (This item is displayed on page 126 in the print version)
	Listing 4.8. Life.java (This item is displayed on pages 124 - 126 in the print version)

	4.7. Printing
	Listing 4.9. Printing.java (This item is displayed on pages 128 - 129 in the print version)
	Figure 4.11. Printing over multiple pages.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Figure 4.12. ASCII art.
	Figure 4.13. A bouncing ball.
	Figure 4.14. A pattern generated by a simple cellular automaton.

	Chapter 5. Basic 3D Graphics
	Objectives
	5.1. Introduction

	5.2. 3D Rendering Process
	Figure 5.1. 3D graphics model and view.

	5.3. Java 3D API Overview
	5.3.1. A Simple Example
	Listing 5.1. Hello3D.java (This item is displayed on pages 138 - 139 in the print version)
	Figure 5.2. A simple Java 3D program displays a 3D text string.

	5.3.2. Install Java 3D

	5.4. Java 3D Scene Graphs
	Figure 5.3. A directed graph.
	Figure 5.4. A directed tree.
	Figure 5.5. A scene graph as a DAG.
	Figure 5.6. Legend of scene graphs.
	Figure 5.7. Scene-graph class hierarchy.

	5.5. The Superstructure
	5.6. The Nodes
	5.6.1. The Group Nodes
	Figure 5.8. The Group-node classes.
	Figure 5.9. An OrderedGroup node and its children.
	Figure 5.10. Identical branches may be shared through a SharedGroup node and Link leaf nodes.

	5.6.2. The Leaf Nodes
	Figure 5.11. Leaf-node class.

	5.7. The Node Components
	Figure 5.12. The NodeComponent classes.

	5.8. The Structure of a Java 3D Program
	Figure 5.13. The scene graph for Listing 5.1.
	Listing 5.2. Hello3DfullGraph.java (This item is displayed on pages 152 - 153 in the print version)

	5.9. Backgrounds and Bounds
	Listing 5.3. Hello3Dbackground.java (This item is displayed on pages 154 - 155 in the print version)
	Figure 5.14. A simple Java 3D program with a white background. (This item is displayed on page 156 in the print version)
	Figure 5.15. The scene graph for Listing 5.3. (This item is displayed on page 156 in the print version)
	Figure 5.16. The Bounds class hierarchy.
	Listing 5.4. TestBounds.java (This item is displayed on pages 158 - 159 in the print version)
	Figure 5.17. The effects of influencing bounds. Left: The light has influencing bounds including all three spheres. Center: The light has influencing bounds including only two spheres. Right: The influencing bounds of the light are further reduced to cover only one sphere.
	Figure 5.18. The scene graph for Listing 5.4.

	5.10. Compiling Scene Graphs and Capability Bits
	Listing 5.5. ChangeBackground.java (This item is displayed on pages 161 - 163 in the print version)
	Figure 5.19. The background toggles between a sky image and a random solid color.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Figure 5.20. A graph for Problem 5.2.
	Figure 5.21. A graph for Problem 5.3.
	Figure 5.22. A graph for Problem 5.4.
	Figure 5.23. Scene graph for Problem 5.7.
	Figure 5.24. Scene graph for Problem 5.8.

	Programming Exercises
	Chapter 6. Graphics Contents
	Objectives
	6.1. Introduction

	6.2. Points and Vectors
	Figure 6.1. Vector math classes.

	6.3. Geometry
	Figure 6.2. A sphere represented by triangle meshes of different resolutions. (This item is displayed on page 173 in the print version)
	Figure 6.3. A typical scene-graph shape node.
	Figure 6.4. Geometry class hierarchy.
	6.3.1. GeometryArray
	Figure 6.5. A PointArray geometry.
	Figure 6.6. A LineArray geometry.
	Figure 6.7. A TriangleArray geometry.
	Figure 6.8. A QuadArray geometry.

	6.3.2. GeometryStripArray
	Figure 6.9. A TriangleStripArray.
	Figure 6.10. A TriangleFanArray.

	6.3.3. IndexedGeometryArray
	Figure 6.11. An IndexedTriangleStripArray geometry.
	Listing 6.1. Tetrahedron.java (This item is displayed on pages 179 - 180 in the print version)
	Listing 6.2. TestTetrahedron.java (This item is displayed on pages 180 - 181 in the print version)
	Figure 6.12. A tetrahedron.
	Figure 6.13. The scene graph for Listing 6.2.

	6.3.4. Normals
	Figure 6.14. The surface normal is perpendicular to the tangent plane.
	Figure 6.15. Calculating the normal with the cross product.

	6.4. GeometryInfo
	6.4.1. Using the GeometryInfo Class
	Figure 6.16. Constructing geometry using the GeometryInfo class.
	Listing 6.3. Dodecahedron.java
	Listing 6.4. TestDodecahedron.java (This item is displayed on pages 187 - 188 in the print version)
	Figure 6.17. A dodecahedron.

	6.4.2. Creating Polygon Meshes
	Figure 6.18. A 3D plot of a two-variable function. (This item is displayed on page 192 in the print version)
	Listing 6.5. ViewData.java (This item is displayed on pages 190 - 191 in the print version)

	6.5. Primitives
	Figure 6.19. Primitive classes.
	Figure 6.20. Four primitives. (This item is displayed on page 195 in the print version)
	Listing 6.6. TestPrimitives.java (This item is displayed on pages 193 - 195 in the print version)
	Figure 6.21. Scene graph for Listing 6.4. (This item is displayed on page 196 in the print version)

	6.6. Fonts and Texts
	6.7. Appearance and Attributes
	Figure 6.22. Appearance components.
	Figure 6.23. Rendering a tetrahedron with different appearance attributes. (This item is displayed on page 200 in the print version)
	Listing 6.7. ColorTetrahedron.java
	Listing 6.8. TestAppearance.java (This item is displayed on pages 200 - 203 in the print version)

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Chapter 7. Geometric Transformation
	Objectives
	7.1. Introduction

	7.2. 3D Affine Transformations
	7.2.1. Transformation Matrix
	Listing 7.1. MatrixPanel.java (This item is displayed on pages 212 - 213 in the print version)
	Listing 7.2. TestMatrix.java (This item is displayed on pages 213 - 214 in the print version)
	Figure 7.1. A test program for matrix operations. The transformation matrix is shown in a grid of text fields. A user may edit the entries directly. Six operations on the matrix are provided. The result of the determinant is displayed in the text field at the bottom.

	7.2.2. Transform3D
	7.2.3. Rotation
	Listing 7.3. quatToEuler
	Listing 7.4. TestTransform.java (This item is displayed on pages 219 - 221 in the print version)
	Figure 7.2. Visualizing the actions of transforms.
	Listing 7.5. Axes.java (This item is displayed on pages 222 - 223 in the print version)
	Figure 7.3. The scene graph for TestTransform. (This item is displayed on page 223 in the print version)

	7.3. Transformations in Scene Graphs
	Figure 7.4. The scene graph for Axes class.
	Listing 7.6. Rotation.java (This item is displayed on pages 226 - 227 in the print version)
	Figure 7.5. The rotated cubes about a general axis.
	Figure 7.6. A partial scene graph for Rotation class.

	7.4. Composite Transforms
	Listing 7.7. Mirror.java (This item is displayed on pages 230 - 232 in the print version)
	Figure 7.7. The mirror image constructed with a reflection.
	Figure 7.8. The scene graph for the Mirror class. (This item is displayed on page 233 in the print version)

	7.5. Constructing Geometries with Transformations
	7.5.1. Extrusion
	Listing 7.8. extrudeShape Method (This item is displayed on pages 234 - 235 in the print version)

	7.5.2. Rotation
	Figure 7.9. Construction of a torus by rotations. (This item is displayed on page 236 in the print version)
	Listing 7.9. Torus.java (This item is displayed on pages 236 - 237 in the print version)
	Listing 7.10. TestTorus.java (This item is displayed on pages 237 - 238 in the print version)
	Figure 7.10. Two instances of Torus primitive whose vertices are generated by two sets of rotations.

	7.5.3. Transformation and Shared Branch: An Example
	Listing 7.11. Arrow.java (This item is displayed on pages 239 - 240 in the print version)
	Figure 7.11. A 3D logo.
	Listing 7.12. Logo.java (This item is displayed on pages 240 - 242 in the print version)

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Figure 7.12. Rotating a square to generate a 3D object.

	Chapter 8. Views
	Objectives
	8.1. Introduction

	8.2. Projections
	Figure 8.1. Parallel projection.
	Figure 8.2. Perspective projection.
	Figure 8.3. An example of perspective projection.

	8.3. Specification of a View
	Figure 8.4. A real camera projection.
	Figure 8.5. Viewing matrix definition with eye, look, and up.

	8.4. Java 3D View Model
	Figure 8.6. A typical Java 3D viewing system.
	8.4.1. Configuring a Java 3D View
	8.4.2. The Compatibility Mode
	Listing 8.1. CompatibilityMode.java (This item is displayed on pages 256 - 257 in the print version)
	Figure 8.7. A view using compatibility mode. (This item is displayed on page 258 in the print version)

	8.4.3. View Settings in SimpleUniverse
	Listing 8.2. RotateView.java (This item is displayed on pages 259 - 260 in the print version)
	Figure 8.8. A rotating view lets you see the back sides of an object. (This item is displayed on page 261 in the print version)
	Figure 8.9. The scene graph of the view-rotation example. (This item is displayed on page 261 in the print version)

	8.4.4. Creating Your Own View
	Listing 8.3. MultipleViews.java (This item is displayed on pages 262 - 264 in the print version)
	Figure 8.10. Four views of a scene.
	Figure 8.11. Scene graph of the multiple-view example.

	8.5. Picking
	Figure 8.12. PickShape class hierarchy.
	Figure 8.13. Picking utility classes.
	Listing 8.4. Picking.java (This item is displayed on pages 267 - 270 in the print version)
	Figure 8.14. Picking demo.

	8.6. Head Tracking
	Listing 8.5. HeadTracking.java (This item is displayed on pages 272 - 273 in the print version)
	Listing 8.6. LineAxes.java (This item is displayed on pages 273 - 274 in the print version)
	Figure 8.15. A head-tracking example. A virtual input device provides the simulated tracking input to the head-tracked view.
	Figure 8.16. The scene graph for the head-tracking example.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Chapter 9. Lighting and Texturing
	Objectives
	9.1. Introduction

	9.2. Lights
	Figure 9.1. An ambient light represents weak random reflections.
	Figure 9.2. A directional light emits parallel light rays.
	Figure 9.3. A point light has a specific location and emits light rays in all directions.
	Figure 9.4. A spotlight emits light rays in a cone-shaped region.
	Figure 9.5. The Light classes.
	Listing 9.1. TestLights.java (This item is displayed on pages 285 - 287 in the print version)
	Figure 9.6. The effects of different types of lights. Left: a point light only. Right: all four types of lights.
	Figure 9.7. The scene graph for the example.

	9.3. Illumination Models
	Figure 9.8. Geometry of light reflection.

	9.4. Java 3D Lighting Models
	Listing 9.2. Lighting.java (This item is displayed on pages 291 - 292 in the print version)
	Figure 9.9. Material properties.
	Figure 9.10. Scene graph.

	9.5. Atmospheric Attenuation and Depth Cueing
	Figure 9.11. The Fog class hierarchy.
	Listing 9.3. TestFog.java (This item is displayed on pages 295 - 296 in the print version)
	Figure 9.12. A foggy scene created with atmospheric attenuation.
	Figure 9.13. The scene graph for the fog example.

	9.6. Texture Mapping
	9.6.1. Creating 2D Texture Mapping
	Figure 9.14. Magnification and minification. The grey square represents a pixel.
	Listing 9.4. TextureMapping.java (This item is displayed on pages 299 - 300 in the print version)
	Figure 9.15. A rotating texture-mapped globe. (This item is displayed on page 301 in the print version)
	Figure 9.16. Scene graph for the texture-mapping example. (This item is displayed on page 301 in the print version)

	9.6.2. Texture Coordinates
	Figure 9.17. Texture coordinates define locations in an image.
	Figure 9.18. Mapping an image to the faces of a cube.

	9.6.3. Combining Texture Mapping and Lighting
	Listing 9.5. Cup.java (This item is displayed on pages 303 - 306 in the print version)
	Figure 9.19. A texture-mapped and lit cylinder.

	9.6.4. Texture-Coordinates Generation
	Listing 9.6. CubeTexture.java (This item is displayed on pages 308 - 310 in the print version)
	Figure 9.20. Cube texture applied with different modes of texture-coordinates generation.
	Figure 9.21. The scene graph for the example of texture-coordinates generation.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Chapter 10. Behavior and Interaction
	Objectives
	10.1. Introduction

	10.2. Behavior
	Figure 10.1. Behavior classes.
	Figure 10.2. Interactions between Behavior and WakeupCondition objects.
	Figure 10.3. Wakeup condition class hierarchy.
	Listing 10.1. Clock.java (This item is displayed on pages 319 - 321 in the print version)
	Listing 10.2. ClockBehavior.java (This item is displayed on pages 321 - 322 in the print version)
	Figure 10.4. A clock driven by a Behavior object.
	Figure 10.5. The scene graph of the clock. (This item is displayed on page 323 in the print version)

	10.3. Interaction
	Figure 10.6. Interaction-related classes. (This item is displayed on page 324 in the print version)
	10.3.1. Mouse Behaviors
	Listing 10.3. MoveGlobe.java (This item is displayed on pages 324 - 326 in the print version)
	Figure 10.7. Moving the globe with a mouse.
	Figure 10.8. Scene graph of mouse behavior demo.

	10.3.2. Key Behaviors
	Listing 10.4. TestKeyBehavior.java (This item is displayed on pages 328 - 329 in the print version)
	Figure 10.9. Controlling transformation through the keyboard.
	Figure 10.10. Scene graph of key behavior demo program.

	10.3.3. View Platform Behaviors
	Listing 10.5. MoveView.java (This item is displayed on pages 330 - 332 in the print version)
	Figure 10.11. Manipulating the view. The view changes with the mouse motions.
	Figure 10.12. Scene graph of the View Behaviors example.

	10.4. Behavior and Picking
	10.4.1. Picking and Mouse Behaviors
	Listing 10.6. TestPickBehavior.java (This item is displayed on pages 334 - 335 in the print version)
	Figure 10.13. PickMouseBehavior classes allow manipulations of individual objects.
	Figure 10.14. The scene graph. (This item is displayed on page 337 in the print version)

	10.4.2. Data Visualization
	Listing 10.7. DataViewer.java (This item is displayed on pages 337 - 340 in the print version)
	Figure 10.15. A 3D scatter plot featuring data-point selection and transformations under user control.
	Figure 10.16. Scene graph. (This item is displayed on page 341 in the print version)

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Chapter 11. Animation
	Objectives
	11.1. Introduction

	11.2. Alpha Objects
	Figure 11.1. The waveform of an Alpha object.
	Listing 11.1. TestAlpha.java (This item is displayed on pages 347 - 349 in the print version)
	Figure 11.2. Plotting the waveform of an Alpha object.

	11.3. Interpolators
	Figure 11.3. An interpolator interpolates the intermediate values.
	Figure 11.4. The interpolators.
	Figure 11.5. A PositionPathInterpolator.
	Listing 11.2. TestInterpolator.java (This item is displayed on pages 352 - 356 in the print version)
	Figure 11.6. An interpolator showcase.
	Figure 11.7. The partial scene graph with eight interpolators. For clarity, certain objects such as Alpha, Bounds, Light, Background, and view branch are not shown.
	Listing 11.3. Pendulum.java (This item is displayed on pages 358 - 360 in the print version)
	Figure 11.8. A swinging pendulum.
	Figure 11.9. The scene graph shows additional structure for the pendulum and its driving interpolator.

	11.4. Morphing
	Listing 11.4. Morphing.java (This item is displayed on pages 362 - 364 in the print version)
	Listing 11.5. MorphingBehavior.java (This item is displayed on pages 364 - 365 in the print version)
	Figure 11.10. Morphing example.
	Figure 11.11. Scene graph for the morphing example.

	11.5. LOD
	Listing 11.6. TestLOD.java (This item is displayed on pages 367 - 369 in the print version)
	Figure 11.12. LOD example.
	Figure 11.13. Scene graph of the LOD example. (This item is displayed on page 370 in the print version)

	11.6. Billboard
	Listing 11.7. TestBillboard.java (This item is displayed on pages 371 - 372 in the print version)
	Listing 11.8. AxesBillboard.java (This item is displayed on pages 372 - 373 in the print version)
	Figure 11.14. A Billboard behavior example.
	Figure 11.15. Scene graph of AxesBillboard.

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Figure 11.16. Alpha waveform. (This item is displayed on page 377 in the print version)

	Programming Exercises
	Chapter 12. Additional 3D Topics
	Objectives
	12.1. Introduction

	12.2. 3D Curves
	Figure 12.1. deCasteljau algorithm.
	Listing 12.1. BezierCurve.java (This item is displayed on pages 381 - 382 in the print version)
	Listing 12.2. TestBezierCurve.java (This item is displayed on pages 382 - 383 in the print version)
	Figure 12.2. A cubic Bézier curve.

	12.3. Surfaces
	12.3.1. Bézier Surface
	Listing 12.3. BezierSurface.java (This item is displayed on pages 384 - 385 in the print version)
	Listing 12.4. TestBezierSurface.java (This item is displayed on pages 385 - 387 in the print version)
	Figure 12.3. A bicubic Bézier surface.

	12.3.2. The Utah Teapot
	Listing 12.5. Teapot.java (This item is displayed on pages 388 - 390 in the print version)
	Figure 12.4. The Utah Teapot.

	12.4. Sound
	Figure 12.5. Sound classes.
	Listing 12.6. Sound3D.java (This item is displayed on pages 391 - 393 in the print version)
	Figure 12.6. A point sound associated with the bird.
	Figure 12.7. Scene graph for the sound example.

	12.5. Shadows
	Figure 12.8. Generating a shadow by projection. (This item is displayed on page 395 in the print version)
	Listing 12.7. Shadow.java (This item is displayed on pages 395 - 398 in the print version)
	Figure 12.9. A shadow on the wall created with a polygon from the projection of the object.
	Figure 12.10. Scene graph for the shadow example. (This item is displayed on page 399 in the print version)

	12.6. Geometry Change
	Listing 12.8. MovingShadow.java (This item is displayed on pages 400 - 404 in the print version)
	Figure 12.11. Scene graph for the moving shadow example.

	12.7. Off-Screen Rendering
	Listing 12.9. OffScreen.java (This item is displayed on pages 406 - 408 in the print version)
	Figure 12.12. Creating an image through off-screen rendering.

	12.8. 3D Textures
	Listing 12.10. PerlinNoise.java (This item is displayed on pages 410 - 412 in the print version)
	Figure 12.13. Computer-generated 3D marble texture.
	Listing 12.11. Marble.java (This item is displayed on pages 412 - 414 in the print version)
	Figure 12.14. Scene-graph branch for the marble tetrahedron. (This item is displayed on page 414 in the print version)

	Key Classes and Methods
	Key Terms
	Chapter Summary
	Review Questions
	Programming Exercises
	Appendix A. Mathematical Background for Computer Graphics
	A.1. Introduction

	A.2. Analytic Geometry
	A.2.1. Coordinate Systems
	Figure A.1. The 2D coordinate system has the x-axis and y-axis. (This item is displayed on page 420 in the print version)
	Figure A.2. The 3D coordinate system has the x-axis, y-axis, and z-axis.

	A.2.2. 2D Equations
	Figure A.3. A line can be represented by a linear equation.
	Figure A.4. An ellipse can be represented by a quadratic equation.
	Figure A.5. A parabola can be represented by a quadratic equation.
	Figure A.6. A hyperbola can be represented by a quadratic equation.

	A.2.3. Parametric Equations
	Figure A.7. A line can be represented by a parametric equation.
	Figure A.8. An ellipse can be represented by a parametric equation.

	A.2.4. 3D Equations

	A.3. Complex Numbers and Quaternions
	A.3.1. Complex Numbers
	Figure A.9. Complex numbers can be used to represent geometric objects. (This item is displayed on page 424 in the print version)
	Listing A.1. Complex.java (This item is displayed on pages 425 - 426 in the print version)

	A.3.2. Quaternions

	A.4. Linear Algebra
	A.4.1. Vector Spaces
	Figure A.10. Geometric interpretation of inner product.

	A.4.2. Linear Transformations and Matrices
	Figure A.11. Geometric interpretation of cross product.

	A.5. Geometric Transformations
	A.5.1. Homogeneous Coordinates
	A.5.2. Classification of Transformations
	Figure A.12. Geometric transformations can be classified into translation, rotation, reflection, scaling, shearing, and so on.
	Figure A.13. A translation moves the shape.
	Figure A.14. A rotation rotates the shape.
	Figure A.15. A reflection mirrors the shape.
	Figure A.16. A scaling resizes the shape.
	Figure A.17. A shearing shifts the shape.

	A.6. Calculus
	A.7. Graph Theory
	Figure A.18. A digraph (left) and an undirected graph (right).
	Figure A.19. A DAG (left) and a rooted tree (right).

	Key Terms
	Review Problems
	Figure A.20. A triangle for Problem A.2.

	Appendix B. GUI Programming with AWT and Swing
	B.1. Introduction

	B.2. AWT Components
	Figure B.1. Major AWT components.
	Figure B.2. AWT components appear different in different platforms. Top: Windows 2000. Bottom: Linux. (This item is displayed on page 445 in the print version)
	Figure B.3. AWT components and their Swing equivalents. (This item is displayed on page 445 in the print version)

	B.3. AWT Programming
	Listing B.1. SwingProg.java (This item is displayed on pages 446 - 449 in the print version)
	Listing B.2. AWTProg.java (This item is displayed on pages 449 - 451 in the print version)
	Figure B.4. A Swing program and its AWT clone.

	B.4. Mixing AWT and Swing Components
	Figure B.5. Mixing AWT and Swing components may cause problems. Left: The menu displays properly when it does not overlap with the AWT component. Right: The menu is partially blocked by the AWT component because of the z-order limitation.
	Listing B.3. SwingAWT.java (This item is displayed on pages 452 - 453 in the print version)

