
K14810

For machine intelligence applications to work successfully,
machines must perform reliably under variations of data and must
be able to keep up with data streams. Internet-Scale Pattern
Recognition: New Techniques for Voluminous Data Sets
and Data Clouds unveils computational models that address
performance and scalability to achieve higher levels of reliability.
It explores different ways of implementing pattern recognition
using machine intelligence.

Based on the authors’ research from the past 10 years, the text
draws on concepts from pattern recognition, parallel processing,
distributed systems, and data networks. It describes fundamental
research on the scalability and performance of pattern recognition,
addressing issues with existing pattern recognition schemes for
Internet-scale data deployment. The authors review numerous
approaches and introduce possible solutions to the scalability
problem.

By presenting the concise body of knowledge required for
reliable and scalable pattern recognition, this book shortens the
learning curve and gives you valuable insight to make further
innovations. It offers an extendable template for Internet-scale
pattern recognition applications as well as guidance on the
programming of large networks of devices.

Computer Science

Internet-Scale Pattern Recognition

Internet-Scale
Pattern Recognition
New Techniques for Voluminous
Data Sets and Data Clouds

Internet-Scale Pattern Recognition
New Techniques for Voluminous Data Sets and Data Clouds

Anang Hudaya Muhamad Amin
Asad I. Khan
Benny B. Nasution

Muhamad Amin,
Khan, and Nasution

K14810_Cover.indd 1 10/15/12 11:09 AM

Internet-Scale
Pattern Recognition
New Techniques for Voluminous
Data Sets and Data Clouds

Internet-Scale
Pattern Recognition
New Techniques for Voluminous
Data Sets and Data Clouds

Anang Hudaya Muhamad Amin
Asad I. Khan
Benny B. Nasution

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20121207

International Standard Book Number-13: 978-1-4665-1097-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

“Knowledge is the conformity of the object and the intellect.”— Averroes

Contents

Preface xi

Acknowledgments xv

About the Authors xvii

I Recognition: A New Perspective 1

1 Introduction 3

1.1 As We See, We Learn . 3

1.2 Recognition at a Large Scale 4

1.3 Computational Intelligence Approach for Pattern Recognition 8

1.4 Scalability in Pattern Recognition 11

1.4.1 Common Barriers . 11

1.4.2 Possible Solutions . 12

1.4.3 Distributed Computing Solution for Scalability of PR
Schemes . 13

2 Distributed Approach for Pattern Recognition 15

2.1 Scalability of Neural Network Approaches 16

2.1.1 Pattern Storage Capacity 16

2.1.2 Inter-Neuron Communication Frequency 17

2.2 Key Components of DPR . 20

2.2.1 Learning Mechanism 20

2.2.2 Processing Approach 21

2.2.3 Training Procedure . 21

2.3 System Approaches . 22

2.4 Pattern Distribution Techniques 25

2.4.1 Subpattern Distribution 25

2.4.2 Pattern Set Distribution 26

2.5 Current DPR Schemes . 27

2.5.1 Graph Neuron . 27

2.5.2 Hierarchical Graph Neuron 29

2.5.3 Distributed Hierarchical Graph Neuron 30

vii

viii Contents

2.6 Resource Considerations for DPR Implementations 30

2.6.1 Resource-Aware Approach 31

2.6.2 Message-Passing Model in DPR 31

II Evolution of Internet-Scale Recognition 33

3 One-Shot Learning Considerations 35

3.1 One-Shot Learning Graph Neuron (GN) Scheme 36

3.1.1 Pattern Representation 37

3.1.2 Recognition Procedure 38

3.2 One-Shot Learning Model . 41

3.2.1 Bias Array Design for Pattern Memorization 42

3.2.2 Collaborative-Comparison Learning Technique 42

3.3 GN Complexity Estimation 44

3.4 Graph Neuron Limitations 46

3.5 Significance of One-Shot Learning 48

4 Hierarchical Model for Pattern Recognition 49

4.1 Evolution of One-Shot Learning: The Hierarchical Approach 49

4.1.1 Solution to Crosstalk Problem 51

4.1.2 Computational Design for a Hierarchical One-Shot
Learning DPR Scheme 52

4.1.3 HGN Recognition Procedure 55

4.2 Complexity and Scalability of Hierarchical DPR Scheme . . 57

4.2.1 Complexity Estimation 57

4.2.2 Scalability in HGN Approach 60

4.3 Reducing Hierarchical Complexity: A Distributed Approach 60

4.3.1 Distributed Neurons of HGN Network 61

4.3.2 Distributed HGN Approach 63

4.4 Design Evaluation for Distributed DPR Approach 65

4.4.1 Non-Uniform Distribution 65

4.4.2 Uniform Distribution 69

5 Recognition via Divide-and-Distribute Approach 73

5.1 Divide-and-Distribute Approach for One-Shot Learning IS-PR
Scheme . 73

5.1.1 Associative Memory (AM) Concept in Pattern Recog-
nition . 74

5.1.2 DHGN Computational Design 75

5.1.3 Dual-Phase Recognition Procedure 80

Contents ix

5.2 Dimensionality Reduction in Pattern Pre-Processing 87

5.2.1 Structural Reduction 87

5.2.2 Content Reduction . 88

5.3 Remarks on DHGN DPR Scheme 89

III Systems and Tools 91

6 Internet-Scale Applications Development 93

6.1 Distributed Computing Models for IS-PR 93

6.1.1 Commodity Grid (CoG) 94

6.1.2 Cloud Computing . 94

6.1.3 Peer-to-Peer (P2P) Computing 98

6.2 Parallel Programming Techniques 100

6.2.1 Message-Passing Scheme 100

6.2.2 GPU Programming . 103

6.3 From Coding to Applications 104

IV Implementations and Applications 107

7 Multi-Feature Classifications for Complex Data 109

7.1 Data Features for Pattern Recognition 110

7.2 Distributed Multi-Feature Recognition 111

7.2.1 Conceptual Design and Implementation 112

7.2.2 Complexity Estimation 113

7.3 Handwritten Object Classification with Multiple Features . . 116

7.3.1 Handwritten Object 117

7.3.2 Classification Procedures 118

7.4 Distributed Multi-Feature Recognition Perspective 120

8 Pattern Recognition within Coarse-Grained Networks 121

8.1 Network Granularity Considerations 121

8.1.1 DHGN Configurations for Adaptive Granularity . . . 122

8.1.2 DHGN Commodity Grid Framework 124

8.2 Face Recognition Using the Multi-Feature DPR Approach . 128

8.2.1 Color and Spatio-Structural Features Consideration . 129

8.3 Distributed Data Management within Cloud Computing . . 132

8.3.1 Cloud Data Access Scheme 133

8.3.2 DHGN Approach for Cloud Data Access 135

8.4 Adaptive Recognition: A Different Perspective 138

x Contents

9 Event Detection within Fine-Grained Networks 139

9.1 Distributed Event Detection Scheme for Wireless Sensor
Networks . 139

9.1.1 WSN Event Detection 140

9.1.2 DHGN-WSN Event Detection Configuration 141

9.1.3 Dimensionality Reduction in Sensory Data 143

9.1.4 Event Classification 144

9.1.5 Performance Metrics: Memory Utilization 145

9.1.6 Spatio-Temporal Analysis of Event Data 146

9.2 Integrated Grid-Sensor Scheme for Structural Analysis . . . 148

9.2.1 Integrated Grid-Sensor Network Framework for Struc-
tural Engineering . 150

9.2.2 Structural Analysis, Design, and Monitoring
Applications . 151

9.3 Distributed Event Detection: A Lightweight Approach 156

V The Way Forward 159

10 Recognition: The Future and Beyond 161

10.1 Medium of Change . 161

10.2 Future of Internet-Scale PR 162

10.3 Making a Case . 163

10.3.1 Changing the Fundamentals 164

10.3.2 Recognition as Commodity 165

Bibliography 167

Index 177

Preface

We would argue that the thinking behind pattern recognition has been inordi-
nately constrained by the characteristics of prevailing computing machinery.
Otherwise, given the volume of literature on pattern recognition that has been
generated over the past 50 years, it would be fair to expect that some elemen-
tary forms of human vision or hearing would be demonstrable by now. It is
not feasible to model processes that take place in the human brain as stored
programs on sequential processors. The technology in this regard tethers on
edges. Reading text reliably only works in tightly controlled environments.
Similarly, recognizing the simplest of spoken words cannot be guaranteed
when the speech style is subtly altered. Recognizing other types of sounds
remains a work in progress.

Pattern recognition, even at the simplest levels available to a newborn,
remains beyond the grasp of contemporary algorithms. We need to question
the fundamentals that have been driving research in this area for over half
a century. Why is the level of pattern recognition available to the simplest
of biological brains not yet achievable by computers? Is there an unknown
factor, the absence of which is making it impossible to implement reliable
pattern recognition? Are we missing something obvious? Without entering
the realm of quantum mechanics, we will address these questions and put
forth views that may seem somewhat unorthodox and challenge conventional
wisdom. Maverick claims alone will certainly not prove the validity of our
arguments. Therefore, we will methodically build up evidence by describing
our techniques and putting forth the results. If we can demonstrate elementary
forms of human pattern recognition on a machine, it is important that we also
describe the applications that will make use of it.

With better computers and greater connectivity, we are rapidly approaching
the limits of conventional technologies. Vast amounts of data are starting
to appear, but there are no clear means to benefit from the data without
substantial human intervention. With the exception of a few very narrow
applications, there is very little scope for independent machine action. As
computers generate more data and networks communicate at higher speeds,
the human operator becomes the bottleneck. In the absence of reliable machine
intelligence, the human operator must personally manage continuous streams
of information. Let us consider the case of a highly skilled radiologist who
can access the records of patients remotely. Sophisticated means to access
patient data provide no relief to our lone specialist. However, this operator-
level bottleneck can be alleviated if the preliminary reading of images can be

xi

xii Preface

entrusted to machines. In doing so, the machines must perform reliably under
all unforeseeable variations in data and must be able to keep up with the
data streams’ reliability and speed. The main focus of the research presented
in this text is to unveil a computational model that will supply performance
and scalability to achieve higher levels of reliability. However, to truly grasp
the essence of these techniques, one must exorcise some of the preconceived
notions of machine intelligence, especially with respect to iterative learning in
artificial neural networks.

The phrase “the network is the computer,” attributed to John Gage when
he was with Sun Microsystems, may have been a good slogan to capture the
market exuberance of the late 1990s. However, this statement also carries pro-
found technical meaning, especially if we add to it and re-state: the network is
the “better” computer. Only a network can increase its size indefinitely under
the proper conditions. Therefore, a network that computes may continue to
increase its capacity without the bottleneck of the von Neumann archetype.
Equally, if not more importantly, only the network pathways provide an end-
less source of parallelism. A computer that is embodied within a network will
continue to increase its computational prowess and parallelism. It is impor-
tant to distinguish between a logical network simulated as a stored computer
program in the conventional archetype and a program that automatically dis-
tributes itself across every link of the network, i.e., an in-network program.
It may be asked, if all that is needed is a new type of computer archetype
and an accompanying programming style, why has it not yet been designed?
The answer lies in the way knowledge disciplines are organized. To make this
relatively simple concept a reality, strong interactions among the networking,
parallel and distributed computing, and artificial intelligence disciplines are
required. There are powerful disincentives to working across disciplines, and
the collective volume of literature thwarts individual effort. Therefore, it is
important that knowledge is extracted and suitably trimmed for the purpose
at hand. This text draws upon concepts from pattern recognition, parallel pro-
cessing, distributed systems, and data networks and presents the concise body
of knowledge that is required for reliable and scalable pattern recognition.

Looking ahead, we see steady growth in devices other than the standard
computers being attached to the Internet. Some of these devices carry sensors
and are able to extensively read their surroundings. In particular, wireless sen-
sor networks offer intriguing possibilities. Commodity devices, such as smart
phones, also carry considerable environment-sensing hardware. The demand
to recognize event signatures, perhaps even predict certain types of events,
is inevitable once such devices become part of daily life. We expect that the
knowledge presented in this text will help with the programming of large net-
works of devices and will provide an extendable template for Internet-scale
pattern recognition applications.

Khan first published the key principles of programming a network to func-
tion as a scalable, single-cycle learning, associative memory system in 2002 [1].
Mihailescu and Khan [2] later found that the technique was vulnerable to the

Preface xiii

pattern crosstalk problem. Nasution and Khan [3] addressed this vulnerabil-
ity by hierarchically connecting the networks, and the results were published
in early 2008. The approach was vastly improved by Muhamad Amin and
Khan [4] by introducing knowledge from the parallel and distributed comput-
ing domain into a solution derived from the integration of the data networking
and artificial intelligence domains. Therefore, we hope that this text, which
is based on our research efforts of the past 10 years, will shorten the learn-
ing curve for our readers and provide them with valuable insights for further
innovation.

Acknowledgments

We hereby acknowledge the following people and organizations for their contri-
butions to this book: Amir Basirat, Amiza Amir, Raja Azlina Raja Mahmood,
and Professor Bala Srinivasan of Clayton School of Information Technology,
Monash University, Australia, for their constructive critique and helpful ideas
in building the contents of this book. Fredrik Sandin, Blerim Emruli, Sven
Molin and other people from EISLAB, Lule̊a Technical University, Sweden
for their comments and other contributions, as part of the STINT (Swedish
Foundation for International Cooperation in Research and Higher Education)
collaborative research project. We are also grateful for the continuous support
and help from the publishing team at CRC Press, including Li-Ming Leong
and Randi Cohen. Finally, to all our family, colleagues and friends who have
endlessly supported us in many different ways, ensuring the success of this
book.

xv

About the Authors

Anang Hudaya Muhamad Amin, PhD, is a senior lecturer in the Faculty
of Information Science and Technology, Multimedia University, Malaysia. He
received a BTech (Hons.) in Information Technology from Universiti Teknologi
PETRONAS, Malaysia, and Master of Network Computing and PhD from
Monash University, Australia. His research interests include artificial intelli-
gence with specialization in distributed pattern recognition and bio-inspired
computational intelligence, wireless sensor networks, and distributed comput-
ing.

Asad I. Khan, PhD, received his BSc from the University of Engineering
and Technology, Lahore, Pakistan in 1980. He received the MSc with distinc-
tion from Heriot-Watt University, Edinburgh, UK in 1990, and was awarded a
PhD in 1994 by the Faculty of Engineering at Heriot-Watt University. He was
appointed a lecturer at Heriot-Watt in 1993 and later took up a computer cen-
tre management role at Monash University in Australia. During this period he
was involved with the design of large storage and high performance comput-
ing projects. He was appointed a senior lecturer in the Faculty of Information
Technology at Monash University in 2000. During this period he co-authored
one of the first books on parallel finite element computations. Dr. Khan’s work
on parallel processing, evolutionary computing, and bio-inspired techniques
has led to several large research grants from British, Australian, and Swedish
Research Councils and leading industrial bodies. He is a co-recipient of two
large research grants from the Australian government. His theoretical research
areas comprise parallel computation, neural networks, and distributed pattern
recognition. His applied research involves development of e-research systems
and intelligent sensor networks. He is an Australian Research Council asses-
sor and regularly reviews for a number of leading computing and engineering
publication outlets. His research has been reported in leading newspapers and
online media such The Age, Sydney Morning Herald, Computer World, ZD-
NET, and Research News. He has been invited to speak at the University of
Melbourne, Australia; University of Coimbra, Portugal; NATO Advance Re-
search Workshop, Sesimbra, Portugal; and the NATO Advance Study Insti-
tute, Berchestgaden, Germany. He has published over 80 fully refereed papers.

Benny B. Nasution, PhD, received a Dipl.Ing. from Switzerland in 1993,
then a MEng and PhD from Australia in 2000 and 2007, respectively. He was
awarded a Swiss Government Scholarship for 1989–1995, and an Australian
Government Scholarship from 1998 to 2000 and 2002 to 2007. In 2004, he was

xvii

xviii About the Authors

awarded the IBM Award at Tokyo Research Lab (TRL) in Japan. In 2007 he
won the Mollie Holman Medal (the best thesis of the year).

Part I

Recognition: A New
Perspective

1

Chapter 1

Introduction

“One is obliged to admit that perception and what depends upon
it is inexplicable on mechanical principles, that is, by figures and
motions. In imagining that there is a machine whose construction
would enable it to think, to sense, and to have perception, one
could conceive it enlarged while retaining the same proportions,
so that one could enter into it, just like into a windmill. Supposing
this, one should, when visiting within it, find only parts pushing
one another, and never anything by which to explain a perception.”
— Leibniz, Monadology

1.1 As We See, We Learn

As human beings, our physiological structure enables us to look, speak,
hear, taste, smell, touch, and feel our surroundings. If we look at a familiar
object, say a tree, we can tell that it is a tree and not a chimney or a water
reservoir. Our ability to recognize and differentiate between objects that we
see, hear, and touch would not be possible without the presence of a powerful
sensory system. Our brain and our nervous system allow us to experience our
surroundings through a combination of senses and memories.

It is estimated that the human brain comprises approximately 80 to 120
billion neurons, which respond to a multitude of actions, perceptions, and
emotions. From a physical perspective, our brains could be considered as
large-scale interconnected networks of sensory systems and memories. See-
ing, identifying, and recalling what we have observed make up a significant
portion of the activities conducted within these large-scale networks.

The recall process, also known as recognition, is a part of information pro-
cessing that happens in our brain-nervous systems. Watkins and Gardiner
[5] suggested a two-stage theory, in which recall begins with a search and
retrieval process that is followed by a decision or recognition process. The
correct information is chosen in the decision process from that which has
been retrieved. Recognition of objects and other forms of events or stimuli is
part of our brains’ activities. Strong interest in this area has led to further
understanding of the recognition process and how it can be performed us-

3

4 Internet-Scale Pattern Recognition

ing computational approaches. The study of the recognition process based on
computational theories and the biological behavior of the nervous system can
be traced back to the 1950s, when digital computers started being used for
information processing. The ability to recognize and extract valuable informa-
tion from raw data has motivated extensive research on pattern recognition
techniques. Such techniques aspire to emulate the behavior of neural systems
in living organisms.

To fully understand the concept of pattern recognition, there is a need to
differentiate between some of the terms that are commonly used interchange-
ably, namely pattern recognition, data mining, and pattern classification.

Pattern recognition is the process of identifying an object or entity based on
its descriptions and a set of measurements, commonly referred to as a pattern.
Keeping with the previous example, a tree can be characterized by its vertical
cylindrical shape, leaves, bark, and branches. In pattern recognition, we use
these features to identify and differentiate a tree from other objects, such as
a chimney or water reservoir.

To obtain useful information from data, it is important for applications to
extract features or patterns. Pattern extraction from data is commonly known
as data mining and involves uncovering patterns, associations, anomalies, in-
teresting data structures, and traces of events. Recognition of patterns plays
an important role in data mining applications in a variety of fields, including
the life and physical sciences, economics, finance, and engineering.

Pattern classification is the process of assigning an object or entity to a
class that shares similar characteristics or features. For example, biological
taxonomy uses pattern classification to identify and label individuals as a
class of species that have similar characteristics and behaviors.

The aim of any pattern recognition scheme is to achieve high recall ac-
curacy for any recognition problem. However, almost every approach has to
substantially increase its algorithmic complexity to accommodate this goal.
Some promising approaches in assimilating and comprehending the function-
alities of biological nervous systems have been proposed. Nevertheless, the
highly cohesive procedures and processing-centric algorithmic design of these
approaches may limit the capabilities of such approaches. Because require-
ments for the intensive collection and retrieval of data are appearing as a
consequence of the data deluge phenomenon, it is important that we also
consider the recognition process from the perspective of scalability.

1.2 Recognition at a Large Scale

Provided that we have solved the scalability problem, the Internet provides
levels of connectivity and complexity that bear a resemblance to the human

Introduction 5

brain. Harnessing the potential of this interconnectivity of high-performance
machines over large-scale networks may provide recognition schemes for large-
scale and complex data. With the advent of high-resolution digital instruments
and sensors in areas such as biomedical and satellite imaging, such large-scale
and complex data are becoming increasingly available.

Machine intelligence is important in large-scale data applications. In
biomedical imaging, intelligence schemes are commonly used to analyze and
extract important and critical features from high-dimensional images obtained
through sophisticated imaging techniques, such as Magnetic Resonance Imag-
ing (MRI). In addition, computational intelligence schemes can be used by
medical experts to assist in their diagnosis. With the advancements in high-
speed networking technology, medical experts can conduct a collaborative di-
agnosis by collecting data from instruments over large networks and storing
or updating these data in distributed repositories. With this capability at
hand, the amount of data generated as part of the distributed system is at
the Internet-scale.

Depending on the in-depth resolution of satellite imaging, the size of the
generated data can be huge. Satellite imaging is important in a number of
applications, including the geographical information system (GIS) and the
global positioning system (GPS). To produce useful geographical images, the
raw images taken from the satellite camera must be processed. A number of
processes are required, including image extraction and manipulation. These
processes ensure that the data satisfy the resolution and size requirements
for specific applications. Machine intelligence schemes can be very useful in
performing these operations effectively.

A rapid growth in large-scale scientific analysis activities has inspired the
development of sophisticated and state-of-the-art facilities. One example is a
synchrotron, a scientific facility that performs cyclic particle acceleration. The
data generated by such facilities are images of the interaction of the particle
beam with targets at a sub-atomic scale. An average beam line can produce
hundreds of megabytes (Mb) of images continuously throughout the year. Syn-
chrotron facilities are being used for a number of applications including large
molecule crystallography and other chemical analyses. In addition, sophisti-
cated data-capture instruments and sensors developed for high energy physics
facilities, such as the Large Hadron Collider (see Figure 1.1) and Interfero-
metric Synthetic Aperture Radar (InSAR), consistently generate extremely
large volumes of highly complex and often invaluable data.

These state-of-the-art data capture and storage technologies are the key
factors that have led to the generation of highly complex and large-scale data.
The volumes alone make it impractical for data analysts to analyze and ex-
plore the data without the assistance of highly sophisticated computational
tools. As mentioned earlier, the data mining and analysis capabilities of ex-
isting applications have not achieved their fullest potential. This shortfall is
attributed mainly to the algorithmic complexity of existing data mining ap-
plications. For instance, the complexity of a decision tree classification tool

6 Internet-Scale Pattern Recognition

FIGURE 1.1: Inside the Large Hadron Collider (LHC) tunnel. An example of
a large-scale data generation facility (Source: CERN).

can range from O (n logn) to O
(

n2
)

or worse, depending on the type of prun-
ing applied [6]. These types of algorithms are computationally expensive and
infeasible for large data sets.

The integration of computational devices within the Internet architecture
has seen rapid expansion in commodity use items, such as phones, and com-
modity use infrastructures, such as roads. Sensory data are generated and
used remotely to interact with the environment. This connectivity between
devices and sensory-enabled objects is commonly known as the Internet-of-
Things (IoT) and proposes pervasive computability and sensor-led control
through a plethora of smart objects, around us. These smart objects are ev-
eryday physical things that have been enhanced with a small electronic device
to provide local intelligence and connectivity to the Internet [7]. This enhance-
ment bridges the gap between the physical and information domains. With
seamless connectivity between smart objects and high-performance compu-
tational systems, such as Internet servers, it may become possible for us to
create large-scale sense-compute systems that exhibit the efficiencies of bio-
logical nervous systems.

Imagine a household equipped with fully connected smart devices with em-
bedded sensors. These sensors would detect the level of heat emitted by each
attached device and collectively determine the heat level generated. Informa-
tion on current weather conditions obtained from the Internet could then be
used to adjust the thermostat of an air-conditioner to load-balance the heat
from all of the devices with the existing room/house conditions, thus creating
an intelligent and adaptive heat control system. To be effective, this sensing
capability requires a massive amount of data to be extracted continuously in
real-time. Therefore, a mechanism to extract these data should be considered.
In this context, we can use patterns to represent a collection of sensory data
over a specific timeframe. We can implement recognition on these patterns to
detect and adjust the level of heat required.

As another example, one can imagine wirelessly connected sensors embed-
ded along a road between two cities, primarily for the purpose of traffic man-
agement. The sensors could signal an incoming tsunami or seismic event and
provide invaluable minutes before a cataclysmic event. Such a network could
also provide real-time data for calculating routes and arrival times.

Introduction 7

An environment where sensors are embedded in smart objects and living
infrastructures, such as roads and buildings, provides seamless monitoring of
our living conditions and more effective means of conducting our day-to-day
activities. Consider the use of sensor networks that are attached to roads for
traffic monitoring. In a peak period when many vehicles pass a particular
intersection with traffic lights, the sensors will communicate with the traffic
light system to change the system settings to allow more vehicles to pass
through on a congested route. Indirectly, such systems will improve the quality
of life for people.

The state of miniaturization and cost of production of wireless sensors make
it quite feasible to build such systems. However, one major impediment pre-
vents their implementation. The data arising from the sensors would be in-
cessant, and due to the rapid generation of sensory data from the nodes, the
data will rapidly become extremely large. Therefore, any such system must
continue to keep up with data using superior filtering, storage, and processing.

To fully understand the information gained from these sensor data, a mech-
anism to learn and adapt to its characteristics is required. The sensor data
that fit into the spatial and/or temporal domains would generate a signature
and/or trend for a given space and/or time. This signature can be detected
using a pattern recognition approach.

The data deluge phenomenon that we are currently experiencing is affecting
the way that we process these data. It is not realistic to use simple analytical
means to understand the information obtained from a multitude of sources
with large magnitudes of size and dimension. A paradigm shift in data process-
ing is necessary. Common pattern recognition applications that execute within
a CPU-centric environment to recall or memorize megabytes or gigabytes of
data may not be effective when processing terabytes of data. The recognition
scheme must be considered from a larger perspective, i.e., the Internet-scale
perspective.

pattern recognition is a term that will be referred to as recognition involv-
ing large-scale data. These data may be coming from different sources ranging
from sophisticated devices and facilities to simple but large-scale data collec-
tion mechanisms, such as a wireless sensor network (WSN) deployment for
monitoring environmental conditions. The key aspect of Internet-scale pat-
tern recognition is a larger capacity for the recognition of data. Therefore,
the means by which data are analyzed must scale with the growth of the
data. There are several key technologies that contribute to this Internet-scale
pattern recognition approach. These include distributed systems, parallel com-
puting technologies, and machine intelligence. In its simplest definition, a
distributed system is a collection of independent computers that appear to
be a single coherent system to its users. Formally, a distributed system is a
computer architecture containing multiple inter-connected processors. These
processors are inter-connected via communication networks that perform a
particular task or operate collectively.

8 Internet-Scale Pattern Recognition

A distributed system offers resource-sharing capabilities and is able to adapt
to the incremental growth of resources. It also provides reliable resource avail-
ability. Distributed systems have evolved from topological networks, such as
the Ethernet, to the current cloud computing technology. Cloud computing
is a form of utility computing that enables large-scale activities and opera-
tions to be performed beyond the boundaries of local networks or within a
particular organizational structure. The large amount of resources available
within the computational cloud provides the means for performing complex
large-scale engineering or scientific analyses, including recognizing data at the
Internet-scale.

Parallel computing technology addresses how information can be processed
more efficiently. Our universe can be viewed as a parallel computer, in which
all of the elements perform their operations simultaneously. In the last sev-
eral decades, parallel computing technology has advanced from simple multi-
threading computations to multi-core and graphical processing unit (GPU)
computing technologies. By performing concurrent computations, parallel
computing enables large-scale problems to be solved more efficiently. For ex-
tensive pattern recognition processes on existing Internet-scale data, parallel
computing is a similar to the discovery of fire.

The rapid development of machine intelligence schemes is also contribut-
ing to the development of Internet-scale pattern recognition. From classical
statistical approaches to sophisticated machine learning techniques, compu-
tational intelligence schemes are critically important in numerical analysis
and other experimentations involving scientific data. Nevertheless, a key issue
that needs to be addressed is the scalability of such schemes when processing
Internet-scale data.

This book describes fundamental research on the scalability of pattern
recognition. Scalability in the context of pattern recognition can be defined
as the ability to either handle growing amounts of patterns in a graceful man-
ner or to be readily enlarged. The scalability issues of the existing pattern
recognition schemes for Internet-scale data deployment will be presented. A
number of different approaches will be extensively reviewed, and a number of
possible solutions for the scalability problem will be introduced.

1.3 Computational Intelligence Approach for Pattern
Recognition

The development of computational intelligence schemes can be traced back
to the first computational intelligence test conducted by Alan Turing in 1950.
Computational intelligence involves schemes that use a set of procedures and
operations to mimic the intelligence of biological organisms. One of the best

Introduction 9

examples is the biological neural system that has been implemented by the
artificial neural network (ANN) approach.

The artificial neural network (ANN) approach was defined in the 1950s by
the introduction of the Perceptron approach by Rosenblatt [8]. The concept
of an artificial neural network is fundamental to neural computing, which
emerged from the knowledge and understanding of how biological neural sys-
tems store and manipulate information. Neural networks can be considered
as massive parallel computing systems comprising a large number of small,
interconnected processors, known as neurons [9]. One of the benefits of ANN-
based pattern recognition is that it allows the system to learn and adapt to
the nature of the data. This adaptive feature allows the recognition schemes
to be used in a wide range of applications. Therefore, it may offer a more scal-
able approach for large-scale recognition. Figure 1.2 shows a generic example
of a neural network structure for pattern recognition.

Pattern recognition applications that use the neural network approach rely
heavily on the learning algorithm. This algorithm is essential to determine
the efficiency and accuracy of the pattern store and recall operations. Learn-
ing algorithms use a sequential training procedure to allow neural networks
to learn complex non-linear input-output relationships and adapt themselves
to the data. Prominent approaches in learning algorithms include Hebbian
learning [10] and incremental learning [11].

FIGURE 1.2: Generic neural network architecture for pattern recognition with
two layers of hidden neurons.

10 Internet-Scale Pattern Recognition

Apart from neural networks, machine learning is also widely used in pat-
tern recognition. Machine learning, as defined by Nilsson [12] refers to changes
in the systems that perform tasks associated with artificial intelligence (AI).
Machine learning is also considered to be a deterministic approach for pattern
recognition. It is commonly used in conjunction with other neural network
schemes. Some examples of machine learning approaches include genetic pro-
gramming, support vector machines (SVMs), and Bayesian networks.

Implementations of machine learning approaches for pattern recognition
require a priori knowledge of the types of functions or kernel machines to be
used for a specific recognition domain. For instance, a linear SVM has the
ability to perform classification on binary problems and is not suitable for
multi-class domains. For the machine to work on a specific set of data, the
machine learning approach commonly requires extensive and iterative learning
procedures to obtain the best parameter estimates. These two issues affect
the feasibility of using the machine learning approach to design a scalable and
generic pattern recognition scheme.

Machine learning approaches based on ANNs offer low levels of both scala-
bility and adaptability, which are mainly due to the following criteria of neural
network approaches:

1. Some neural network/machine learning approaches can be conducted
within a parallel environment, e.g., Hopfield networks and feed-forward
neural networks. This parallelization capability enables recognition to be
conducted on large-scale data. However, the complexity of these algo-
rithms hinders its capability to perform pattern recognition in a purely
parallel manner.

2. Enhancements in unsupervised machine learning schemes, such as the
K-mean clustering algorithm, provide an opportunity for heterogeneous
patterns and data to be used in the recognition processes. Nevertheless,
these algorithms require strenuous training and complex recognition pro-
cedures.

3. Limited storage capacity. For example, to obtain optimum recognition,
the number of estimated random patterns stored by the Hopfield net-
work is 0.138N where N represents the number of units in the network
[13].

4. Some neural networks can learn from the data used in the recognition
process. However, memorization by the learning process requires a large
number of similar class data.

In addition, ANNs and other machine learning approaches suffer from a num-
ber of issues, including the following:

1. For many neural network schemes, the iterative procedure in the weight
adjustment during data training, such as the feed-forward network, im-
poses significant delays in processing.

Introduction 11

2. Over-fitting problem: A small training set cannot represent actual large-
scale data.

3. The recognition function within neural networks or machine learning
works only for a specific problem within the recognition domain. Net-
work retraining is required for different sets of problems.

The existing literature on computational intelligence shows that the scalabil-
ity and adaptability of machine learning approaches outweigh other pattern
recognition approaches. Some machine learning approaches can be used in
parallel environments, and recognition loads are distributed across computa-
tional nodes. Nevertheless, these algorithms require extensive and complex
computations to derive the best solution for the recognition process.

1.4 Scalability in Pattern Recognition

The emergence of the data deluge phenomenon has brought forward the
need for recognition schemes for Internet-scale patterns. We can divide large-
scale pattern recognition into two perspectives. The first perspective is recog-
nition of a large number of patterns. In this context, the focus is on the volume
of the patterns. The recognition process recognizes or classifies patterns into
a large number of clusters, and a large number of patterns are stored. The
second perspective is recognition of large patterns. In this case, the pattern
data are huge, as in the areas of face or image recognition.

In this section, we consider some of the common barriers encountered when
implementing pattern recognition for large-scale data sets and some of the
possible solutions. Our interest lies in the implementation of widely avail-
able distributed computing infrastructures for scalable pattern recognition
schemes.

1.4.1 Common Barriers

Pattern recognition is an important tool in evaluating and analyzing large-
scale data that have been produced in a wide range of applications. Neverthe-
less, current approaches incur excessive computational complexity to adapt to
these large and highly complex data sets. When processing large and highly
complex data sets, there are a number of barriers that need to be addressed
with respect to the implementation of pattern recognition. These include the
following:

1. Size of data: As the size of the data set increases, existing pattern recog-
nition schemes must be able to manage data in an efficient manner with
specific concerns for storage and transport. Methods in a recognition

12 Internet-Scale Pattern Recognition

process that store and communicate data must take into account the
size of the data sets used.

2. Dimensions of data: The sophisticated approaches in data capture tech-
nology allow for highly dimensional data to be extracted from the envi-
ronment. In this context, pattern recognition applications must be able
to cater to different dimensionalities of data in their implementations.

3. Algorithmic complexity: Existing pattern recognition schemes are pow-
erful and have the ability to provide highly accurate solutions. Neverthe-
less, they incur high algorithmic complexity in their implementations,
which is attributed to the iterative nature and complex mathematical
foundations of the algorithms. Some algorithms are exponential and in-
feasible for large-scale data. Furthermore, the expensive computations
of existing pattern recognition schemes can be computationally time-
consuming, especially when processing complex large-scale data.

These barriers are the common factors in determining the scalability of a par-
ticular pattern recognition approach. Each approach must be able to address
increasing size and dimensionality of the data, while minimizing its complexity.
In this regard, scalability evaluations of existing pattern recognition schemes
are valuable to most pattern recognition application developers.

1.4.2 Possible Solutions

Scalability is an important factor in today’s pattern recognition approaches.
The existing outgrowth of data in daily usage shows that the capability of ex-
isting algorithms must continue to grow to serve these Internet-scale data. For
example, according to Anderson [14], every 72 minutes there is one petabyte
of data processed by Google’s server. This value will continue to increase as
the storage and processing mechanisms advance. The question of scalability
as described by Pal and Mitra [15] is as follows: Can the pattern recognition
algorithm process large data sets efficiently, while building from them the best
possible models?

There are several techniques to scale up pattern recognition algorithms
for large-scale data sets. These techniques can be divided into a number of
approaches:

1. Data Approach: This type of technique modifies the data prior to the
recognition process. Some of the techniques are data reduction, dimen-
sionality reduction, and data partitioning. The aim of this approach is
to minimize the size and dimensionality of the data for efficient recog-
nition. However, this approach may undermine the data integrity by
representing the large data domain using a small data set.

2. Learning Approach: Pattern recognition algorithms require a learning
mechanism. This mechanism may be computationally expensive. There-

Introduction 13

fore, reducing the complexity of the learning mechanism is an objective
of scalability. Examples of improving scalability using the learning ap-
proach include active learning [16] and incremental learning [11]. A sig-
nificant limitation of this approach is that the accuracy of the algorithm
may be sacrificed for the sake of fast and simple learning capabilities.

3. Distributed Computing Approach: The advancement in networking tech-
nologies has enabled large-scale computations to be performed within
the body of a network itself. Rapid developments in high performance
computing and grid technologies allow a collaboration of resources to
work for a specific application. In this context, existing pattern recogni-
tion algorithms may be implemented on a distributed computing plat-
form using parallel processing. Some examples of scalable pattern recog-
nition schemes using this approach include the works carried out in
[1, 17].

1.4.3 Distributed Computing Solution for Scalability of PR
Schemes

The distributed computing approach for scaling existing pattern recognition
algorithms has the potential to be the optimum solution. However, some of
the existing algorithms are highly complex and difficult to parallelize. Devel-
opments of neural network algorithms for pattern recognition have provided
an interesting insight into the implementation of pattern recognition in dis-
tributed computing. In their nature, neural networks are formed through the
collaboration of computational nodes, known as neurons. Due to the tightly
coupled nature of existing neural network schemes, the integration of these two
components is still in its infancy. It was initially conceived for single-processing
(CPU-centric) architectures, which rely heavily on iterative techniques. There-
fore, more work is needed to attain the effectiveness and efficiency of neural
network algorithms for pattern recognition using the distributed computing
approach.

Given the rapid advancement in existing distributed processing technolo-
gies, distributed computing may provide seemingly unlimited scalability for
large-scale processing. Implementations of pattern recognition schemes in a
distributed manner are possible in a variety of distributed computing environ-
ments using a simple, computationally inexpensive, and embarrassingly par-
allel recognition algorithm. Therefore, distributed pattern recognition (DPR)
may be a solution for Internet-scale pattern recognition. Further discussions
on the distributed computing approach will be presented in Chapter 2.

Chapter 2

Distributed Approach for Pattern
Recognition

Implementing pattern recognition in a distributed manner may be a solution
for the Internet-scale data generation and application problems. Distributed
pattern recognition (DPR), the formal term for this type of recognition ap-
proach, can be defined as the extension of existing pattern recognition schemes
to include the delegation of the recognition process across a distributed system.
Most of the past initiatives in DPR have focused on providing a distributed
architecture for pattern recognition [18, 19, 20, 21, 22]. However, this type
of solution creates a high dependency on the hardware implementation. Be-
cause the implementation of these approaches across different architectural
platforms and network environments is limited by their inflexibility, the issue
of scalability in this context has yet to be solved.

A DPR scheme that is based solely on an algorithmic approach, independent
of any hardware implementation, has yet to be fully realized. Though there
are some recent studies on the implementation of a distributed approach for
existing pattern recognition schemes [2, 23, 24, 25], these studies manipulated
the methods of a particular algorithm to perform the recognition function
(from sequential to parallel mechanisms). Furthermore, existing distributed
approaches have been unable to reduce the computational complexity of their
respective algorithms, a necessity for deployment in a distributed environ-
ment. In addition, these studies have not considered the communication costs
incurred by the highly iterative features of the existing pattern recognition
schemes.

The deployment of pattern recognition applications for large-scale data sets
is an open issue that needs to be addressed. Several approaches have been pro-
posed, including data reduction, active learning and distributed approaches
in large-scale recognition. Nevertheless, a common denominator of these tech-
niques is the algorithmic complexity of the recognition schemes. Because the
distributed approach for pattern recognition can provide extensive support for
resource availability in response to the increasing size, complexity and amount
of data, it offers a significant advantage for large-scale data analysis. The ul-
timate goal for any DPR approach is to be able to extract useful information
from a large-scale analysis of a huge collection of data.

Because pattern recognition is considered to be highly problem specific and
has little prospect as a generic commodity application, DPR remains a rela-

15

16 Internet-Scale Pattern Recognition

tively unexplored area. The complexity of existing pattern recognition algo-
rithms limits their distribution factor. Several initiatives have attempted to
parallelize and distribute a pattern recognition algorithm across a distributed
system. However, the parallelization process poses a significant hurdle for this
type of implementation.

The neural network approach is a promising tool for Internet-scale pattern
recognition. This method has the ability to perform parallel computations us-
ing interconnected neurons. However, there are several implementation issues,
including convergence problems, complex iterative learning procedures, and
the fact that the training data required for optimum recognition leads to low
scalability.

In this chapter, we will further discuss the important characteristics and
aspects of DPR.

2.1 Scalability of Neural Network Approaches

In general, scalability can be achieved using a distributed approach. There-
fore, the scalability factors for the pattern recognition schemes can be derived
from the scalability requirements for any distributed system. There are two
important factors that are closely related to the scalability of recognition
schemes: storage capacity and inter-neuron communication frequency for neu-
ral network implementation. As Srinivas and Janakiram [26] explained, these
two factors have been proposed based on the scalability requirements for dis-
tributed systems. The following subsections discuss these two factors in the
context of common neural network approaches.

2.1.1 Pattern Storage Capacity

A baseline evaluation of storage capacity is based on how an increase in
the number of stored patterns affects a given network. For each processing
node, the memory capacity for pattern storage is analyzed. In recognition
approaches, the importance of memory capacity lies in its ability to provide
a scalable storage medium for large-scale patterns. Within a given neural
network, the effect that the quantity of patterns has on the size of the memory
required per node is evaluated.

Existing neural networks, such as Hopfield networks [27] (See Figure 2.1)
and feed-forward neural networks, rely largely on the weight calculations in
their recognition processes. In this context, each processing node would have
a collection of weight-input values stored within its memory. For P patterns,
the simplest approximation for the size of the memory, M , is given by the
following equation:

Distributed Approach for Pattern Recognition 17

FIGURE 2.1: Hopfield neural network representation.

M =
P
∑

n=1

wnin (2.1)

Where w represents the correlated weight, and i represents the input value
for the nth stored pattern. This type of memory consumption effect occurs in
different neural network schemes, including the feed-forward neural network,
Hopfield network, radial basis function (RBF) neural network, morphological
associative memory (MAM) [28], and Hamming associative memory [29]. The
accuracy of the Hopfield network will significantly deteriorate if the number
of patterns stored is greater than 0.138N, where N represents the number of
nodes in the network.

Not all neural network approaches have this type of memory representation.
For instance, the memory representation of a Kohonen SOM [30] is different
from other neural networks (See Figure 2.2). For each node in the SOM lattice,
a pattern is represented using a vector-weight representation. Each node stores
a set of weights for a particular pattern vector. Thus, for a d dimensional
pattern vector, there is an equivalent number of weights, w; w = d.

2.1.2 Inter-Neuron Communication Frequency

The communication frequency of a neural network implementation is re-
lated to the number of communications, i.e., messages or signals, projected by
a single node (or neuron) toward other nodes in the network. In actual im-
plementations, a high communication frequency leads to network congestion,
which limits the scalability of the recognition implementation. Therefore, for
a network to be scalable, it is important that the communication frequency
be kept to a minimum.

18 Internet-Scale Pattern Recognition

FIGURE 2.2: A Kohonen SOM node formation for a two-dimensional repre-
sentation.

Communications between nodes in existing neural networks, such as feed-
forward, Hopfield, and RBF neural networks, are highly iterative in nature,
which is due to the common weight adjustment/feedback methods used to
generate an optimum result during recognition processes for a single pat-
tern/pattern vector. Within multi-layer networks, the communication fre-
quency of each node depends on the number of nodes per layer. For each
pattern, the number of messages/signals communicated, C, by each node in
a multi-layer network with n nodes per layer can be determined using the
following equation:

C = nw (2.2)

Where w is the number of iterations required for the weight adjustment.
An increase in the size of the network or the number of weight adjustment
iterations leads to a higher number of projected signals. Therefore, this ap-
proach is not an efficient scalable scheme for pattern recognition. Figure 2.3
illustrates this phenomenon.

A one-shot learning procedure is offered by some of the associative memory
(AM) schemes for pattern recognition, including morphological and Hamming
associative memories. This type of procedure reduces the need for an iterative
process to derive optimum recognition results. Furthermore, this type of neural
network performs lattice-based operations, in which communications between
nodes are kept to a minimum, and operations are performed in a singular

Distributed Approach for Pattern Recognition 19

FIGURE 2.3: Estimated number of signals/messages generated, C by each
neuron within a single layer of a common neural network scheme for several
numbers of iterations, w.

manner, i.e., no collaboration between nodes. This effect of iterative procedure
reduction is also experienced within a Kohonen SOM network.

The inability of most existing neural network schemes to scale up stems
from their complex nature and iterative learning procedures. Furthermore,
the training-validation-test mechanism produces significant delays in execu-
tion and creates a strong dependency between the training and test data.
Therefore, there is a need to consider an algorithm that has limited complex-
ity and training-test data dependency.

Although the scalability of a number of the existing neutral network schemes
is limited, some intelligent recognition schemes are able to scale up with large-
scale data, e.g., the one-shot learning Graph Neuron (GN) algorithm. The
Graph Neuron (GN) is a graph-based associative memory algorithm [2, 31,
32] that is highly scalable and implements single-cycle learning for pattern
recognition. Furthermore, the GN adopts an in-network processing approach,
i.e., computational processes occur within the body of the network itself. The
GN has been proposed for several pattern recognition implementations [33,
34].

20 Internet-Scale Pattern Recognition

2.2 Key Components of DPR

There are three main components of a scalable distributed pattern recogni-
tion scheme: the learning algorithms, the processing approach, and the train-
ing procedure.

2.2.1 Learning Mechanism

In pattern recognition, learning approaches play an important role in deter-
mining the efficiency and accuracy of the pattern store and recall operations.
Prominent approaches include Hebbian learning [10], incremental learning
[11], and one-shot learning. Hebbian learning is a classical learning technique
that is based on the synaptic plasticity concept. The output of a neuron has a
significant impact on the input to other neurons. Hebbian learning is a well-
known technique for spatio-temporal pattern recognition in auto-associative
neural networks. However, the potential for saturation and “catastrophic for-
getting”makes the Hebbian learning technique less scalable. Most of the ex-
isting neural network algorithms implement Hebbian learning, including the
Hopfield and feed-forward neural networks. A simple form of Hebbian learning
follows the rule:

wab = xaxb (2.3)

Where wab represents the weight connecting neuron b to a. The input of
neuron a and postsynaptic response of neuron b are represented by xa and
xb, respectively.

Incremental learning was developed to solve the scalability issue in pattern
recognition [35]. It simplifies the problem of large training sets, specifically in
machine learning algorithms, such as the Support Vector Machine (SVM) [36].
In incremental learning, training data are divided into several subsets. Each
data subset individually undergoes a training phase. Subsequently, the results
from each training session are combined to form the actual results. When
there are a large number of training patterns, this training approach increases
the scalability of the algorithm. However, problems are encountered when
using the method to treat large-scale patterns. More computational resources
are required to process larger patterns. Furthermore, this approach tends to
be tightly coupled and requires computations of kernel functions, which are
costly.

In one-shot learning, a minimal amount of initial data are required for a
system to learn information. Past implementations of this learning mecha-
nism used a probabilistic approach, such as the Bayesian classifier [37, 38].
Categories of objects can be learned from a small data set. One-shot learning
will learn from the information obtained from these categories. In the sense

Distributed Approach for Pattern Recognition 21

that the learning process continues by the introduction of new patterns, the
one-shot learning approach emulates incremental learning. The Graph Neuron
(GN) [2] approach implements one-shot learning from a conceptually differ-
ent perspective. The learning algorithm of a GN is implemented using the
neuron-adjacency comparison approach.

2.2.2 Processing Approach

Distributing the input space within a pattern recognition algorithm im-
proves the processing speed. Current trends in recognition approaches indicate
a move toward parallel processing, in which recognition processes are carried
out in parallel for different data sets.

Existing neural network recognition schemes, including Hopfield networks,
are iterative in nature, and thus are time and resource intensive. These factors
limit the ability of the existing recognition schemes to scale up as the quan-
tity and size of the patterns stored increases. Furthermore, existing schemes
are tightly coupled and have been developed only for single-processor envi-
ronments. Numerous analyses have proven that parallel processing speeds-up
the execution of processes. This follows Amdahl’s law: when a higher fraction
of the tasks can be parallelized, parallel processing can achieve the maximum
speed. Figure 2.4 shows the estimated increase in speed (speedup) for processes
containing different parallelizable portions. Note that as the fraction of the
tasks that can be parallelized increases, the speed of the processes increases.

Parallel and distributed processing provides a fast processing mechanism
that outperforms the single-processing approach. Nevertheless, in pattern
recognition, the nature of the recognition algorithm makes it difficult to obtain
an encompassing parallel approach.

2.2.3 Training Procedure

In the recognition context, training is the process of building up the algo-
rithm for the actual recognition process. It allows the algorithm to learn from
a sample data set before the actual recognition takes place. Depending on
the requirements of the recognition algorithm, training can be achieved from
small or large training data sets. In addition, training can be performed in a
multi-cycle or single-cycle manner.

For generalization purposes, existing deterministic pattern recognition algo-
rithms usually require large training data sets. In this view, the training data
set should have all of the characteristics of the actual data. However, this
is not usually the case. Furthermore, the nature of the learning mechanisms
discussed earlier involve multi-cycle training.

Single-cycle training in learning was introduced by Khan [1] in the Graph
Neuron (GN) implementation. The GN learning method involves recognizing
adjacency values between neurons rather than revising weights between nodes,

22 Internet-Scale Pattern Recognition

FIGURE 2.4: Comparison of the estimated processing speedup between recog-
nition processes with different parallel fractions (P) as a function of the num-
ber of parallel processors used.

as in the Hebbian and incremental learning approaches. Because the training
in a GN is conducted within a single-cycle, the recognition process is faster.

2.3 System Approaches

Existing distributed pattern recognition schemes have been designed and
deployed using a top-down approach. Relatively CPU-centric (or sequential-
based) algorithms were modified and enhanced to perform in a distributed
manner. Furthermore, existing schemes tend to only partially apply the dis-
tribution mechanism, i.e., only in the context of training and validation. Some
of these examples include feed-forward neural networks and self-organizing
maps. Different types of distribution approaches have been considered [39]:

1. Process Farming: In this approach, the recognition process is distributed
across a number of parallel processors. Each processor uses a copy of
the algorithm to carry out a training process, as shown in Figure 2.5.
In this configuration, each processing network consists of a master node
and several worker nodes. Each worker node performs training or recog-
nition processes independently. However, for the purposes of evalua-
tion/adjustment, updates (in terms of a bias weight and errors) must be

Distributed Approach for Pattern Recognition 23

FIGURE 2.5: Distributed pattern recognition based on the process farming
approach.

sent to the master node after each cycle. This process is iteratively per-
formed until the optimum bias weight and errors have been achieved by
the network. Each processor uses a subset of the training data. There-
fore, each processor performs the training procedure on a subset of the
overall data.

2. Pipelining: The recognition procedure of the pipelining approach follows
an incremental method. The training process is conducted subsequently
using a pipeline procedure similar to that shown in Figure 2.6. Each
processor contains a copy of the algorithm and performs a recognition
process on a particular training subset. However, each time the weight
and error changes are passed from one processor to another, they are
modified, evaluated, and incorporated into each subsequent weight and
error calculation.

The top-down approach towards distributed pattern recognition has several
limitations including the following:

1. Recall Disintegrity: Due to the vertical splitting of data, the distribution
of a training data set into a number of subsets can create disintegrity in
the training process and influence the actual recall process. The weight
changes produced by the algorithm on a highly cohesive training set, i.e.,

24 Internet-Scale Pattern Recognition

FIGURE 2.6: Distributed pattern recognition based on the process pipelining
approach.

training data that is hardly classified due to dissimilar feature values,
are significantly different than the weight changes produced on a loosely
cohesive data, i.e., data that is easily classified and clustered.

2. Highly Congestive Network: In terms of the number of training cycles
required to obtain an optimum output, algorithms such as the feed-
forward neural network and Hopfield network are highly iterative in
nature. A large number of iterations in the training/recognition process
will lead to massive communication exchanges within any distributed
environment, and thus create a highly congested network.

3. Unchanged Level of Complexity: In existing distributed pattern recog-
nition schemes, actual pattern recognition processes are applied at a
smaller scale, i.e., similar algorithms are used with a smaller training
space. Therefore, the complexity of the algorithm is unchanged. By re-
ducing the amount of training data used, executing recognition processes
at a smaller scale may improve the algorithm’s performance time. How-
ever, the processing time also depends on the number of learning cycles
implemented for each recognition process. Though the complexity of
the algorithm remains unchanged, it is hard to estimate its resource re-
quirements. Therefore, this approach may not be applicable for resource-
constrained networks, such as wireless sensor networks (WSNs).

Distributed Approach for Pattern Recognition 25

2.4 Pattern Distribution Techniques

Implementations of existing neural network/machine learning approaches
for pattern recognition have shown some limitations. These include the gener-
alization problem and complex learning mechanisms. These limitations affect
the scalability of the approaches for real-time and large-scale recognition de-
ployments. Furthermore, existing approaches are CPU-centric, i.e., they have
been developed with the single-processing mechanism in mind. According to
Ikeda et al. [40], it is difficult for current neural network approaches to imple-
ment actual associative memory principles, in which simple low-cost devices
are equipped with these algorithms for pattern recognition purposes.

In solving the scalability issue within pattern recognition applications, we
intend to shift the recognition paradigm from a sequential-based CPU-centric
approach toward a parallel in-network approach. The in-network processing
paradigm concentrates on the delegation and distribution of processes over the
body of a network rather than utilizing a single-processing device or node. The
ability of a system to distribute data across a number of processors or nodes
in the network is an important aspect in the distributed approach for pattern
recognition. It is essential that pattern distribution techniques be applied. In
this section, two different pattern distribution techniques are described:

1. Subpattern Distribution: Each pattern is partitioned into subpatterns
for recognition over the entire network. Each node within the network
receives a subpattern for processing.

2. Set Distribution: A pattern set containing a number of patterns is dis-
tributed for recognition. Each pattern subset will be executed by a spe-
cific processing node within the network.

Figure 2.7 shows a comparison of the techniques. These techniques will be
discussed in the following subsections.

2.4.1 Subpattern Distribution

The subpattern distribution technique in the DPR approach involves di-
viding a pattern into small-scale subpatterns. These subpatterns will be dis-
tributed across several processing nodes for the recognition process. The work
of Garai and Chaudhuri [25] on the Distributed Hierarchical Genetic Algo-
rithm (DHGA) for efficient optimization and pattern matching is an example
of this distribution technique. In this work, the entire search space is divided
into subspaces, and the search process is conducted at this level. Parallel ge-
netic algorithms are implemented on each subspace.

Ikeda et al. [40] proposed a distributed approach for Hamming associative
memory using the decoupled Hamming AM approach. The input vector is

26 Internet-Scale Pattern Recognition

FIGURE 2.7: A comparison between subpattern and pattern subset distribu-
tion techniques.

partitioned into a number of modules known as windows. Each window is used
in a Hamming memory operation. The recognition results from each Hamming
memory are sent to a decision network to determine the final output from the
system. Mu et al. [41] extended the decoupled Hamming AM approach by
introducing a voting mechanism into the decision-making process.

In addition to the division of the input space into subspaces, pattern dis-
tribution techniques include a recognition process that is based on the atomic
pattern components that make up the entire pattern representation. For in-
stance, Khan and Mihailescu [2] proposed parallel pattern recognition in a
wireless sensor network (WSN) environment using a Graph Neuron (GN) ap-
proach. In their work, sensory data obtained from a sensor node was con-
sidered to be a component of the entire pattern represented by the network.
Subpattern distribution techniques allow recognition process to be performed
on minimal data, i.e., due to the size of the subpattern, the complexity is
low. Nevertheless, this technique is impossible to deploy in all deterministic
approaches. Some algorithms are highly cohesive, and the whole input space
must be included in its computations to obtain an optimum result.

2.4.2 Pattern Set Distribution

Pattern set distribution is a common approach in distributed pattern recog-
nition. It involves the distribution of separate input data sets to each of the
processing entities within the network.

Patterns are also distributed during the pre-processing stage of the clas-
sification/recognition process. For instance, Kokiopoulou and Frossard [42]
proposed a distributed support vector machine (SVM) approach for the clas-
sification of images within a sensor network. In this method, the input signal is

Distributed Approach for Pattern Recognition 27

distributed into different feature subspaces. These feature subspaces are pre-
processed and sent to a final module that conducts the classification process.
This approach alleviates the need for large training data sets for SVM.

Some pattern set distribution techniques also distribute patterns to process-
ing entities within a network. For instance, Lobo, Bandeira, and Moura-Pires
[43] proposed a distributed SOM for a ship recognition process using acous-
tic signatures. This type of technique requires that results are collected from
each processing entity and further processed by an intensive post-processing
mechanism. The pattern set distribution technique does not minimize the
computational complexity of the recognition algorithm. However, it reduces
the execution time and allows for parallel processing implementations. This
technique is suitable for recognition schemes that analyze a large number of
patterns. However, the technique does not fit well into systems that cater to
high-dimensional and large-scale data, such as Magnetic Resonance Imaging
(MRI) images.

Existing distributed pattern recognition approaches tend to employ the set
distribution technique. This technique alleviates the need for a large number
of training data sets, which leads to fast learning speeds. Nevertheless, the
complexity issue remains unsolved. Examples of DPR schemes that use the
set distribution technique include the works carried out in [42, 44, 45].

2.5 Current DPR Schemes

A number of purely distributed pattern recognition approaches have been
pursued. Several neural network schemes have been developed that have a dis-
tributed processing capability, such as the Hamming AM and Morphological
AM. Nevertheless, the algorithmic distribution capability has yet to be further
analyzed. In recent years, DPR methods based on the original Graph Neu-
ron (GN) algorithm have been developed. Established extensions include the
Hierarchical GN (HGN) [3] and Distributed Hierarchical GN (DHGN) [46]
algorithms. In this section, we will discuss briefly some of the fundamental
characteristics of these schemes.

2.5.1 Graph Neuron

Graph Neuron (GN) is a pattern recognition algorithm that implements a
simple associative memory (AM) architecture, which provides the capability
of pattern recall based on similar or incomplete patterns. In an associative
memory architecture, the store and recall operations are based on an asso-
ciation with the input rather than the address of the memory content as
is used in a conventional memory architecture. Therefore, pattern recogni-

28 Internet-Scale Pattern Recognition

tion algorithms that are based on associative memory have higher recognition
accuracy than algorithms that implement recognition using a conventional
memory architecture. Other associative memory algorithms include the Hop-
field network, Kernel Associative Memory (KAM), Morphological Associative
Memory (MAM), and Hamming Associative Memory.

In addition to its associative memory architecture, GN follows some char-
acteristics of graph-based pattern recognition algorithms, as demonstrated in
[47, 48, 49, 50]. However, GN implements in-network processing, and thus
solves the scalability issue encountered in other graph-based pattern recog-
nition algorithms, as described in [51]. According to Nasution [52], the in-
network processing capability of GN offers two advantages: 1) it eliminates the
computational problems encountered in large patterns and pattern databases
and 2) its implementation is ideal for resource-constrained environments, such
as event detection in wireless sensor networks (WSNs).

An overview of graph-based algorithms for pattern recognition is presented
below. Some of their characteristics were inherited by GN.

2.5.1.1 Graph-Based Pattern Recognition

A graph comprises a set of vertices and edges. Therefore, a graph, G, is
represented by G = (V, E), where V is the set of vertices (also known as
nodes or points), E represents the edges (also known as lines or arcs), and
E ⊂ V × V . An edge, e ∈ E, connects two vertices, x, and y ∈ V , and is
denoted by e = (x, y). Graph vertices and edges can contain one or more
pieces of information. If only a single piece of information is available, the
graph is called a labeled graph. If more information is contained on vertices
or edges, the graph is called an attributed graph. Figure 2.8 shows an example
of a labeled graph.

In graph-based pattern recognition, each pattern is represented as a graph.
A modeled (or stored) pattern, Pstore, and an input pattern, Pinput, are repre-
sented by graphs Gstore and Ginput, respectively. As described in [53], pattern
recognition based on a graph representation follows the graph matching prob-
lem: Given Gstore = (Vs, Es) and Ginput = (Vi, Ei), where |Vs| = |Vi|, a
one-to-one mapping, f : Vi → Vs, exists, such that for any input pattern
element (x, y) ∈ Ei ⇐⇒ (f (x) , f (y)) ∈ Es. This mapping function implies
isomorphism, and Ginput is said to be isomorphic to Gstore. This type of
problem is known as exact graph matching. If two graphs have different sets
of attributes or different numbers of vertices or edges, isomorphism does not
occur and an inexact graph matching algorithm is used.

In the field of computer vision, graphs are used to represent images for
the purpose of recognition. In graph-based image recognition, regions of an
image are represented by vertices, and edges are used to signify relationships
between regions. An important issue in graph-based pattern recognition is
that the complexity of the algorithm is significantly affected by an increase
in either the size or quantity of the pattern stored. According to Caetano et

Distributed Approach for Pattern Recognition 29

FIGURE 2.8: A labeled graph with a vertex set V = {1, 2, 3, 4, 5, 6, 7} and
edge set E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {2, 6}, {5, 7}, {1,
7}}.

al. [50], the number of possible matches between two graphs grows factorially
with the size. Therefore, scalability is an important issue to be resolved.

The in-network processing capability of Graph Neuron eliminates the scala-
bility issue experienced by other graph-based pattern recognition algorithms.
General Neuron scales up appropriately with an increase in both pattern size
and database. Recognition processes are distributed to a set of processing
nodes and processed in parallel. In addition, GN can perform exact and inex-
act pattern matching based on different sets of attributes. The GN architecture
and some implementations will be discussed further in Chapter 3.

2.5.2 Hierarchical Graph Neuron

The Hierarchical Graph Neuron (HGN) [3] implements a one-shot memo-
rization and recall operation using a novel distributed algorithm. The HGN is
an enhancement to the graph neuron (GN) algorithm. This improved scheme
recognizes incomplete or noisy patterns. The HGN filters noise and crosstalk
out of the patter data input by linking multiple GN networks, which resolves
the crosstalk problem (see Section 3.4) encountered in closely matched pat-
terns. The HGN scheme is a lightweight, in-network processing algorithm that
does not require expensive floating point computations. It is very suitable for
real-time applications and tiny devices, such as wireless sensor networks. The
HGN can perform direct pattern matching procedures, and the short response
time is insensitive to increases in the number of stored patterns. Moreover,

30 Internet-Scale Pattern Recognition

the HGN does not require that the operator define rules or set thresholds to
achieve the desired results nor does it require heuristics, which entail iterative
operations for memorization and pattern recall.

2.5.3 Distributed Hierarchical Graph Neuron

The Distributed Hierarchical Graph Neuron (DHGN) [46] is a parallel as-
sociative memory-based pattern recognition algorithm that extends the func-
tionalities and capabilities of the GN algorithm. It is a single-cycle learning
algorithm that has an in-network processing capability. By efficiently dissemi-
nating recognition processes across the network, the algorithm is able to reduce
computational loads [54]. Therefore, it is suitable for deployment in wireless
sensor networks and other fine-grained computational networks. In addition,
DHGN can be deployed as a recognition engine for large-scale data-processing
on coarse-grained networks, such as computational grids and clouds [55, 56].

2.6 Resource Considerations for DPR Implementations

Neural networks designed as processing schemes for pattern recognition ap-
plications have inspired many to attempt their deployment in a physical com-
putational network, such as grid and local networks. The fundamental prin-
ciples of in-network distributed processing for complex computations have
been established by the methods used to communicate inputs and outputs
between processing nodes. Nevertheless, there are several issues that need to
be addressed when an in-network approach is used to deploy complex algo-
rithms. These issues include resource considerations and incurred communi-
cation costs.

Current approaches for implementing pattern recognition algorithms in dis-
tributed environments have focused on improving the performance time and
providing scalability in response to increasing data size and dimension. Nev-
ertheless, these approaches are overburdened by their highly complex compu-
tations and require significant resources to perform in a distributed manner.
For example, the computational complexity of a recognition process using
a Hopfield network with n neurons on a single processor is equivalent to
O (n logn). For the algorithm to exhibit peak performance, it is important
that the network acquire sufficient computational resources. However, not all
types of computational networks available in the current technological climate
can acquire sufficient resources.

Resource-awareness is an important aspect absent from existing DPR
schemes. Because the granularities of networks differ, it is essential for the
computational and storage costs incurred by a distributed scheme are consid-

Distributed Approach for Pattern Recognition 31

ered. With available applications ranging from complex data mining processes
to event detection, distributed systems have been applied in day-to-day op-
erations ranging from high performance computing networks to lightweight
and resource-constrained WSNs. To provide expandable coverage for different
types of applications, a dynamic and robust distributed pattern recognition
scheme must be able to perform under different network granularities.

2.6.1 Resource-Aware Approach

Resource considerations for conventional and distributed pattern recogni-
tion are distinctly different. In a distributed approach, the system must be
able to utilize the available resources effectively and efficiently. To ensure
proper utilization and communication of resources between processing nodes,
a communication model needs to be considered.

Distributed pattern recognition (DPR) has the capability to scale up the
process when the size of the problem increases. However, scalability depends
on resource availability within a particular computational network. Resource
availability is influenced by the capacity and stability of the computational
network.

The network capacity of distributed applications, such as DPR, can be
viewed in terms of the granularity of the network. Commonly, computational
networks take the form of a coarse-grained network, such as grid computing, or
a fine-grained network, such as a wireless sensor network (WSN). The process-
ing capacity and capability of these networks may differ. Because application
deployment tends to focus on a single problem domain, most existing DPR
schemes are unable to adapt to different network granularities. Nevertheless,
some DPR schemes, such as the DHGN, have been developed with adaptive
network granularity considerations [4] and can be deployed in both coarse-
and fine-grained networks.

In addition to capacity, the stability of a computational network plays an
important role in determining its resource availability. A stable network is de-
fined as a network with minimal or no resource interference resulting from fault
or error occurrences. For a particular application, such as DPR, to perform its
function with minimal or no interruptions, a fault tolerance mechanism needs
to be considered.

2.6.2 Message-Passing Model in DPR

Process communication plays an important role in any distributed system
and determines how efficiently a system adapts to different network configu-
rations and characteristics. Processes can be communicated within a network
using message exchanges between processing nodes. In any distributed sys-
tem, each processing node might require data exchange with other nodes to
complete a specific task or process. A thorough analysis of inter-process com-
munication must be performed to ensure that the proposed system is capable

32 Internet-Scale Pattern Recognition

of handling different network conditions. Similarly, the process communica-
tion aspects of the distributed algorithms being proposed require significant
consideration.

A number of inter-process communication models have been developed in re-
cent years. These models include message-passing, shared memory, and mobile
agent. These models aid in the understanding of the communication proce-
dures occurring within a computational network. Message-passing is an inter-
process communication model developed as a guideline for process cooperation
between computing nodes in a parallel environment. This model is based on
a set of fundamental principles including:

1. Each process has its own local memory.
2. Processes communicate their data using a message exchange structure

(sending and receiving messages).
3. The transfer of data requires cooperative operations between each pro-

cess involved, i.e., each send operation must have a corresponding receive
operation.

The cooperative operations in the message-passing model address how com-
munication is being conducted between processing nodes within a network.
These operations form the components of a message-passing library, which
in return are used in the implementation of message-passing communication.
Examples of message-passing libraries include the Message Passing Library
(MPL) introduced for IBM SP2, the Parallel Virtual Machine (PVM), and
Message Passing Interface (MPI). The MPI library provides extensive porta-
bility and can be deployed on different types of platforms. The MPI specifica-
tion for message-passing has been established as a standard. An enhancement
of MPI standard, known as MPI-2, offers dynamic task control and a func-
tional parallel I/O capability [57]. Further discussions on this message-passing
model are included in Chapter 6.

Part II

Evolution of Internet-Scale
Recognition

33

Chapter 3

One-Shot Learning Considerations

An interesting area of current research focuses on developing capabilities of
smart objects, such as sensors to do complex processing beyond simple data
collection, including mechanisms for energy conservation, in lightweight de-
vices. Sensors that are able to perform recognition or clustering of events
in situ minimize the communication time between sensors and controlling de-
vices, such as the base station, and thus improve the performance of the entire
network at a large-scale. Such capabilities are limited by the complex com-
putation requirements of existing recognition or clustering algorithms, such
as highly iterative training, frequent weight adjustments, and an inability to
perform data distribution for large-scale processing.

One-shot learning is a type of learning mechanism that was inspired by the
ability of biological systems, such as a human being, to recognize objects at
a single glance [37]. It is estimated that a child has learned almost all of the
10,000 to 30,000 object categories by the age of six. Data can be recognized or
clustered quickly and efficiently if objects can be recognized without having
to iteratively memorize its characteristics or features.

One-shot learning was developed as a mechanism for systems to learn infor-
mation with a minimal amount of initial data. In the artificial, computational
world, the key motivation and intuition for one-shot learning is that systems,
like humans, can use prior information of object categories to learn and classify
new objects.

An important characteristic that differentiates one-shot learning from other
styles of learning is the emphasis on the principle of knowledge transfer, which
encapsulates prior knowledge of learned categories and allows for learning on
minimal training examples [58]. The question remaining to be answered is how
this might be achieved. According to Lake et al. [59], one hypothesis is that the
sharing of partial knowledge is core to one-shot learning. This type of learning
through inference is also used in the Graph Neuron (GN) implementation by
Khan and Mihailescu [2]. In GN, patterns are stored based on the similarities
of adjacent pattern elements within a particular pattern. These similarities
are stored and are the basis of comparison for incoming patterns. In a work
conducted by Bart and Ullman [60], a one-shot learning scheme was carried
out using selected features that were derived from the learned classification
tasks performed in prior learning.

35

36 Internet-Scale Pattern Recognition

FIGURE 3.1: A two-dimensional GN network for a binary pattern of size five
bits.

In this chapter, we will discuss the aspects of one-shot learning and its
applicability in DPR applications. This discussion will also include the systems
and network considerations for a DPR deployment using a one-shot learning
approach. In addition, this chapter will further describe the Graph Neuron
(GN) approach (see Section 2.5.1), a one-shot learning DPR scheme designed
for WSN implementations [2, 34].

3.1 One-Shot Learning Graph Neuron (GN) Scheme

A GN network is built using a composition of inter-connected processing
nodes, known as Graph Neurons (GNs), which follow the size and dimension
of a given pattern. In its simplest form, a GN network forms a two-dimensional
array of neurons. Each neuron is labeled with a value and position, i.e., a col-
umn and row position. Figure 3.1 shows a GN network with a two-dimensional
array formation.

A GN network receives an input and stores or processes the input according
to the instruction received. Creating a method capable of parallel, in-network
processing was an emphasis in the development of the GN method. In con-
trast, other recognition algorithms are most often implemented using CPU-
sequential processing. The parallel, in-network processing capability allows
GN to perform fast recognition regardless of the size of the input patterns.
Furthermore, by disseminating patterns into pattern elements and distribut-
ing them across the network, the storage capacity of this approach is high.
According to Nasution [52], the GN algorithm was developed based on the hy-
pothesis that changing the design emphasis from high-speed sequential CPU
processing to parallel network centric processing will result in a better asso-
ciative memory resource.

One-Shot Learning Considerations 37

FIGURE 3.2: GN network activation from input pattern “ABBAB.”

3.1.1 Pattern Representation

The GN pattern representation follows the representation of patterns in
other graph-matching based algorithms described in the previous subsection.
Each neuron in the network holds an information pair, (value, position), which
contains information about the elements that constitute the pattern. In corre-
spondence with the graph-based structure, each neuron acts as a vertex that
holds pattern element information in the form of a value or identification (ID).
The adjacency communication between two or more neurons is represented by
the edge of a graph. Message communications in a GN network are restricted
to adjacent neurons (of the array). As described in Khan et al. [31], if the num-
ber of neurons in the network increases, there is not a corresponding increase
in the communication. Figure 3.2 shows a two-dimensional GN graph-based
structure for a given input pattern. Note that only GNs that have a matched
pattern element and position will be activated and perform communication
with its adjacent neurons. This self-organization creates links between neurons
and builds up pattern information in the network.

Each neuron in the same row holds a similar ID or value, but their po-
sitions (column position) differ within the network, as shown in Figure 3.2.
These value assignments uniquely mark the position of each neuron with its
column number in the network. This type of arrangement is just one of the
possible structural neuron arrangements of the network. Neuron arrangement
will be discussed further in later chapters. To determine the positions of other
neurons, each neuron within the network must be able to obtain information
pertaining to the size of the network. For recognition processes, this informa-
tion is important in identifying adjacent neurons.

An input pattern for a GN network might be a signal spike, or stimulus
resulting from user activation or information derived from an executable pro-
gram or sensory device. In addition, it might represent bit elements of an
image [61] or a stimulus/signal spike produced in a network intrusion detec-
tion application [34]. Each neuron is able to identify its ID from the pattern
that has been introduced. For instance, a GN that holds the value “B” will

38 Internet-Scale Pattern Recognition

only respond to a pattern signal that has element “B” in the same position.
To generate the network that matches the criteria of the patterns that will be
used, a GN network must be able to obtain prior knowledge of the pattern.
This type of network is a supervised GN network.

3.1.2 Recognition Procedure

The GN recognition process involves the memorization of adjacency infor-
mation obtained from the edges of the graph. Adjacency information for each
GN is represented using the (left, right) formation. Each activated neuron
records the information retrieved from its adjacent left or right neuron. In
the GN terminology, this adjacency information is known as a bias entry,
and each neuron maintains an array of bias entries. The entries for the entire
stored pattern are collectively stored in the bias arrays. Each neuron holds a
single bias array, which contains all of the bias entries obtained in recogni-
tion processes. Because each neuron is only required to store a single array,
the storage complexity of the GN recognition process is low. Furthermore,
the bias array of each neuron stores only the unique adjacency information
derived from the input patterns.

In the graph-matching representation, pattern recognition based on a GN
network implements the graph comparison approach by treating each pattern
as a graph, each element of a pattern as a vertex, and the position between
elements as an edge. Consider the following example: Given two patterns, Pin

and Pst, Pin is said to match Pst if the following conditions are satisfied:

1. The number of vertices in Pin, Vin, is equivalent to the number of vertices
in Pst, Vst, i.e., |Vin| = |Vst|.

2. The number of edges in Pin, Ein is equivalent to the number of edges in
Pst, Est, i.e., |Ein| = |Est|.

3. The bias entry, b ∈ Bin for each vertex v ∈ Vin is a subset of bias array,
Bst, for each vertex v ∈ Vst, i.e., b ∈ Bst.

The pattern recognition process initially takes place in the following phases:

3.1.2.1 Pattern input phase

An input pattern, defined by p (value, position) pairs, is sequentially broad-
cast throughout the network. Each neuron responds only to the input pair that
corresponds to the pre-defined position and value settings of the neuron; it
disregards the remainder of the pattern. From Figure 3.3, GN X(1) has a
pre-defined value = “X” and position = 1 and will respond to the first letter
of pattern P1, i.e., “X”YXX, which is input as pair p1(X,1). This neuron will
ignore the rest of the message. Similarly, GN Y(2) will respond to the second
pair p2(Y,2); GN X(3) will respond to p3(X,3); and GN X(4) will respond

One-Shot Learning Considerations 39

FIGURE 3.3: Illustration of the bias array in a GN recognition process for
different input patterns.

to p4(X,4). All other neurons will remain inactive during this pattern input
phase.

3.1.2.2 Synchronization phase

A broadcast signal is sent to all of the neurons to mark the end of the
incoming pattern.

3.1.2.3 Bias array update

During this phase, each activated neuron contacts its adjacent nodes to
learn which nodes responded to the input. As shown in Figure 3.3, for the
input pattern P1 (XYXX), GN X(1) will update its local bias array with
the entry [GN Y(2)]. Similarly, GN Y(2) will update its bias array with the
entry [GN X(1), GN X(3)] ; GN X(3) will add [GN Y(2), GN X(4)] to its
bias array; and GN X(4) will add [GN X(3)]. Each bias array entry records

40 Internet-Scale Pattern Recognition

TABLE 3.1: Store and Recall Responses of a GN Array

Input Sequence Input Pattern Output

First XXYX #### (Store)
Second XXYX XXYX (Recall)

the adjacent nodes that are activated in a particular pattern input phase. A
row of the bias array represents a part of the stored pattern. A bias entry is
defined if the set of adjacent neurons does not match any existing rows of the
bias array. A new pattern is found when at least one activated neuron cannot
find a matching entry in its bias array. In this stage, new patterns are stored,
and previously encountered patterns are recalled. Table 3.1 shows the process
when pattern “XXYX” is stored and then recalled. Note that when a pattern
is stored for the first time, the output from the GN network is a null entry,
represented by the “#” pattern in the table. A null response indicates that
no match was found, and the segments of the pattern were stored by the GN
array.

Stages 1 and 2 of the GN learning phase take place in a completely parallel
and decentralized manner. As shown in Figure 3.3, the maximum size of a bias
array is two and occurs in GN (Y,2) after the array has stored four patterns.
Scalability tests, using as many as 16,384 nodes, have shown that increases
in the size of the network result in nominal increases in the computational
complexity [33].

In the supervised GN approach, the size of the network depends on the size
of the patterns and the number of unique elements in the pattern used for
recognition or classification purposes. Given pattern P = a, the number of
GNs, N (a), required in a one-dimensional GN network analysis is given as
follows.

N (a) = sa • ea (3.1)

where sa represents the size, and ea is the number of unique elements of pat-
tern a. Eventually, an increase in the dimensions of the patterns will increase
the number of GNs in the GN network. Therefore, given the dimension of
pattern a as da, the number of GNs can be determined as follows.

N (a) = sa • ea • da (3.2)

The GN approach has been used in a number of applications involving pat-
tern recognition and classification. With lightweight and distributed features,
GN implementations have been applied in resource-constrained networks, such
as wireless sensor networks (WSNs). Khan and Mihailescu [2] proposed a GN
implementation for pattern recognition in a WSN. A simulation of sensory

One-Shot Learning Considerations 41

reactions on an artificial nervous system using a WSN showed that the GN
approach is able to differentiate between internal stress patterns in the net-
work and patterns that result from external loading conditions in a structural
health monitoring (SHM) application. In addition, the data storage capacity
requirements of a GN are low. Therefore, GN is most suitable for a WSN de-
ployment. Baig et al. [34] proposed using a GN pattern recognition algorithm
to detect a distributed denial of service (DDoS) attack in a WSN. The GN
algorithm was able to detect DDoS attack patterns in a WSN by analyzing
the internal traffic flow of the network. This implementation of a GN has been
tested on three different network topologies, and the results have shown that
it produces high recognition accuracies for all topologies.

The GN algorithm also offers an energy-efficient mechanism for pattern
recognition. This follows the work of Baqer and Khan [62] on energy-efficient
pattern recognition approaches for WSNs. In their work, event detection based
on the GN was demonstrated. By conducting the detection and analysis in
situ, i.e., at the sensor node level, the GN was shown to offer an energy-
efficient mechanism for event detection in WSNs. This is in contrast to existing
approaches, which perform the analysis at the base station.

The ability of the Graph Neuron (GN) algorithm to provide a fast, efficient
and scalable solution for pattern recognition makes it suitable for deploy-
ment in a number of different network environments ranging from resource-
constrained networks, such asWSNs, to large-scale networks, such as the Inter-
net and peer-to-peer (P2P) networks. Nevertheless, a GN implementation has
its own limitations, including a large number of required neurons in large-scale
and multi-dimensional patterns and inaccuracies introduced by a phenomenon
known as the intersection or crosstalk problem. Given that the structure of
a GN network can be abstracted in the form of memory structure or actual
processing nodes working together to form a GN network, the first limitation
is less significant. The intersection problem is an important limitation of the
GN algorithm. This problem is a result of GN’s inability to obtain full pat-
tern information. The GN builds up pattern information using links between
adjacent neurons. Learning or adapting information by means of adjacency re-
lationships between neurons is known as the comparative-collaboration tech-
nique for one-shot learning.

3.2 One-Shot Learning Model

Graph Neuron implements a one-shot learning approach in its recognition
procedure. In this learning approach, learning occurs collaboratively between
nodes rather than independently by each processing node, as is implemented

42 Internet-Scale Pattern Recognition

FIGURE 3.4: Abstract representation of a GN and its storage framework.

in methods such as Hebbian and incremental learning. The term used for this
collaborative learning is Collaborative-Comparison Learning (CCL) [63].

3.2.1 Bias Array Design for Pattern Memorization

In a GN-based implementation, patterns are stored as associations between
the elements of the pattern. This pattern representation is different from other
neural network approaches, which store patterns as a composition of values.
The pattern storage mechanism adopted by GN is a bias array. Figure 3.4
shows an abstract representation of a GN and its storage structure.

GN minimizes the storage required for input patterns. For one-dimensional
input patterns, the growth of the storage element of each neuron is limited by
the Index{left, right} format of a bias entry. Consider a comparison between
a GN bias entry and the storage capacity requirements of each neuron in a
feed-forward neural network, given different binary pattern sizes used in the
networks. In a feed-forward network, each neuron requires input from all of
the elements within a pattern. When given a pattern, p with n input elements
(i.e., the size) and d dimensions, each neuron must memorize dn combinations
of patterns. Conversely, the storage capacity required for memorization by
each neuron in a GN network is only d2. From this perspective, GN offers
significantly higher storage efficiency than the feed-forward neural network.

3.2.2 Collaborative-Comparison Learning Technique

In a GN-based implementation, an adjacency comparison approach is em-
ployed in the learning scheme using simple signal/data comparisons. Each GN
holds a segment of the overall subpattern. Collectively, these neurons represent
the entire subpattern. Consider the GN subnet structure shown in Figure 3.5.
The entire “ABCDE” pattern can be stored using five GNs, each responsible
for capturing the values of its adjacent neurons. By linking these neurons into
a one-dimensional structure, we can determine the GNs that collaboratively
contain a memory of the “ABCDE” pattern.

One-Shot Learning Considerations 43

FIGURE 3.5: Collaborative-comparison learning approach for the one-
dimensional pattern “ABCDE.”Each activated graph neuron (GN) stores the
signals received from its adjacent neurons.

The collaborative-comparison learning approach compares an external in-
put pattern to the stored entries of each neuron’s bias array, which is a lo-
cal data structure containing the history of adjacent node activation. Each
neuron learns by comparing the signals from its adjacent neighbors and
the recorded entries within its memory, i.e., the bias array. A bias array
σ = {s1, s2, . . . , sx} , comprises signal entries, si for i ∈ x. If the exter-
nal signal set matches any of the stored entries, i.e., sext ∈ σ, the bias index,
i, of the matched si will be recalled. Otherwise, the signal will be added into
the memory as sx+1. There are two advantages to using this approach: 1) the
bias array design for pattern storage minimizes the data storage requirement
and 2) all types of data can be processed. For instance, the signal can be data
vectors or frequency signals, and thus spatial and temporal data can be accom-
modated. In addition, the collaborative-comparison learning technique does
not require the synaptic plasticity rule used by other learning mechanisms,
such as Hebbian and incremental learning. Thus, new patterns are learned
without affecting previously stored information.

44 Internet-Scale Pattern Recognition

3.3 GN Complexity Estimation

An estimate of the computational complexity of the recognition procedure of
a GN implementation follows. A Big-O analysis of the bias array update phase
of the GN procedure was performed. Because the core recognition function in
the GN procedure is the bias array update of each GN, a limited analysis is
justified. The pseudocode for the bias array update procedure for each neuron
is as follows:

Algorithm 1 Bias Array Update Procedure for a GN

1: input.l← leftGN

2: input.r← rightGN

3: for all σl,r ∈ σ do
4: if inputl,r ≡ σl,r then
5: return σl,r

6: exit FOR
7: else
8: if σl,r is last entry then
9: σl,r + 1 = inputl,r

10: else
11: continue
12: end if
13: end if
14: end for

Consider the bias array update as a function f (σ) = Tf(σ) (N). Algorithm 1
clearly demonstrates that the function implements a linear search mechanism
for each input pattern, and thus its complexity is O (N). We can deduce
that Tf(σ) (N) = O (N). By implementing a simple linear search technique to
identify recall or introduce new patterns into the network, the Big-O analysis
proves that GN offers a low complexity recognition process.

A storage capacity analysis provides another complexity estimate for the
GN implementation. This analysis estimates the maximum size of the bias
array for each input pattern stored in the GN network. For a two-dimensional
GN structure, the maximum number of bias entries is determined by the
number of possible combinations of (left, right) entries σent, obtained from
adjacent neurons. The number of possible combinations is directly related to
the number of rows (or pattern elements) in the composition. In addition, the
maximum bias array size for each neuron depends on its position. For a given
number of rows, nrow, there are two possible values for the maximum bias
array size, σmax of a neuron:

One-Shot Learning Considerations 45

FIGURE 3.6: Maximum bias array size analysis for a GN implementation as
a function of pattern size. The results for several numbers of different pattern
elements are shown.

1. If the neuron is at the edge, σmax,e = nrow.

2. For a non-edge neuron, σmax,ne = n2
row.

For a pattern of size, S = a, the total maximum bias array capacity for all
neurons in the network, max σ, can be estimated using the following equation:

maxσ = nrow × (σmax,ne × (a− 2) + 2σmax,e)

= nrow ×
(

n2
row × (a− 2) + 2nrow

)

= n2
row × (nrow × (a− 2) + 2)

(3.3)

The total maximum bias array capacity of a one-dimensional GN network is
significantly affected by the number of different elements in the input patterns.
However, the size of the pattern only moderately influences the maximum
capacity. In this context, large-scale patterns with minimum variation between
elements will have a lower impact on the bias array capacity than large-scale
patterns with high variation between elements. Figure 3.6 shows the growth
of the total bias array size for a GN network as a function of the number of
different pattern elements and pattern size.

The total maximum bias array size grows linearly with pattern size. In this
regard, the GN network has proven to offer scalability for large-scale patterns.
An increase in the dimension of the patterns also affects the total size of the
bias array. This is due to an increase in the number of possible combinations

46 Internet-Scale Pattern Recognition

of entries. For instance, in a three-dimensional GN network, the bias entry of
each neuron is (left, right, top, bottom), which is equivalent to n4

row.

3.4 Graph Neuron Limitations

The GN pattern recognition approach exchanges subpattern information
between two or more adjacent neurons. For instance, a GN network will mem-
orize the pattern “abcdef” in the form of subpatterns: “ab,”“abc,”“bcd,”“cde,”
“def,” and “ef.”Note that the number of subpatterns is equivalent to the num-
ber of active neurons.

The GN’s limited awareness of the overall pattern affects the accuracy of
its recognition scheme. As the size of the pattern increases, it is more diffi-
cult for a GN network to obtain an overview of the pattern’s composition.
Different patterns that have a similar subpattern structure lead to false recall
and incomplete results. Let us suppose that a GN network can allocate six
possible element values, e.g., “u,”“v,”“w,”“x,”“y,” and “z,” for a five-element
pattern. The pattern “uvwxz” is introduced, followed by “zvwxy.” These two
patterns are stored by the GN array. Next, we introduce the pattern “uvwxy”;
this will produce a recall. Because the last pattern does not match the pre-
viously stored patterns, the recall is false. The reason for this false recall is
that a GN only knows of its own value and the values of its adjacent neurons.
The input patterns are stored as the segments “uv,”“uvw,”“vwx,”“wxy,” and
“xy.”The last input pattern, though different from the two previous patterns,
comprises the segments also found in previously stored patterns. Figure 3.7
uses a graphical representation to simplify this example.

FIGURE 3.7: An illustration of the crosstalk phenomenon for patterns input
to a GN network.

One-Shot Learning Considerations 47

FIGURE 3.8: Crosstalk phenomenon in GN pattern recognition.

The example is extended by analyzing the bias array of the GN network
for the example given previously. Figure 3.8 shows an illustration of the bias
array analysis of the GN network for the crosstalk example. Note that the
recall made for pattern “uvwxy” is perceived to be true by all of the activated
neurons because all the subpatterns are found. However, the actual recall is
inaccurate because the test pattern as a whole does not match the stored
patterns. This phenomenon is known as intersection or crosstalk problem.

In Figure 3.8, the bias arrays for patterns “uvwxz” and “zvwxy” are stored.
When the “uvwxy” pattern is introduced, all of the bias entries of the two
original patterns are recalled, and thus a false recall is created.

The inability of the GN algorithm to obtain an overview of the entire pattern
leads to false recalls. A mechanism to eliminate this problem needs to be
devised. Nasution and Khan [3] suggested a hierarchical GN implementation.
In the next chapter, we will discuss the algorithmic design and implementation
of the hierarchical GN model. We will also analyze the complexity of the model
and the recognition accuracy of the pattern classification.

48 Internet-Scale Pattern Recognition

3.5 Significance of One-Shot Learning

In this chapter, one-shot learning was presented. The significance of a learn-
ing mechanism in an Internet-scale environment cannot be understated. Cur-
rent pattern recognition implementations cannot deny that the recognition ef-
ficiency can adapt to an increasing scale of data through this one-shot learning
mechanism. A scheme that can implement learning using the fewest number of
possible steps is admirable. An example of such a scheme, Graph Neuron pat-
tern recognition, was presented. Although the implementation has limitations,
we believe that the concept should be further explored and its capabilities ex-
tended.

Chapter 4

Hierarchical Model for Pattern
Recognition

The computational complexity of neural network algorithms is an important
factor in determining the effectiveness and efficiency of a pattern recognition
scheme. The computational resource requirements, such as processing time
and memory space, are heavily impacted by increases in the computational
complexity. Therefore, an increase in the size and/or the dimensionality of the
patterns disproportionately affects the computational resource requirement.
As mentioned in Chapter 1, size and dimensionality are two key aspects in
Internet-scale pattern recognition. Internet-scale pattern recognition can be
defined as the recognition process for large-scale data. It has been influenced
by the development of sophisticated data-harvesting techniques and growth
in data storage technologies.

In Chapter 2, the theoretical background of the distributed pattern recog-
nition (DPR) scheme and some examples of DPR implementations were pre-
sented. A one-shot learning mechanism is considered important in the design
of effective and scalable DPR schemes. In Chapter 3, we presented the Graph
Neuron (GN) algorithm, a DPR scheme that uses one-shot learning. This fast
learning approach distributes learning using the adjacency comparison ap-
proach. A discussion of the limitations of the GN algorithm, including false
recalls generated by the crosstalk problem, was also presented.

In this chapter, the discussion of a GN-based DPR scheme will be extended.
This chapter will elaborate on the details of the hierarchical concept and model
for a GN implementation. The hierarchical approach eliminates the crosstalk
problem of the single-layer GN scheme. The effects of a hierarchical structure
on the complexity and scalability of the DPR scheme will also be discussed.

4.1 Evolution of One-Shot Learning: The Hierarchical
Approach

To solve the crosstalk problem in the GN pattern recognition algorithm,
Nasution and Khan [3] proposed a hierarchical structure for GN, known as the
Hierarchical Graph Neuron (HGN). The guiding principle for the development

49

50 Internet-Scale Pattern Recognition

FIGURE 4.1: The layout of a Hierarchical Graph Neuron (HGN) for a binary
pattern of size 5 bits.

of the HGN was to expand the capability of “perceiving neighbors”within the
network. This was achieved by adding higher layers of GNs that see all of
the pattern information and provide a bird’s eye view of the overall pattern.
Figure 4.1 shows the hierarchical layout of the HGN for a binary pattern of
size 5 bits.

Figure 4.1 demonstrates that the HGN comprises of layers of GN networks
arranged in a pyramid-like formation. This arrangement holds all of the in-
formation related to the structure of the patterns stored in the network. The
HGN network, as shown in Figure 4.1, is only used in pattern recognition
applications involving one-dimensional patterns. However, the HGN does not
limit the dimensionality of patterns. For applications that involve complex
patterns, the HGN can be expanded to two, three, or even multi-dimensional
hierarchies. Figure 4.2 shows examples of an HGN composition for a two-
dimensional pattern of size 49 (7 × 7) and a three-dimensional pattern of size
147 (7 × 7 × 3). For simplicity, several pattern elements have been omitted
from this figure.

There is an interesting side effect to increasing the dimensions of an HGN
network. According to Nasution [52], an increase in the dimension of the
hierarchical composition leads to a significant reduction in the number of
GNs in the hierarchy. This behavior improves the efficiency of the network
for large-scale patterns. For example, given a one-dimensional pattern of size
147, the total number of GNs required is: 147 + 145 + 143 + . . . + 3 + 1
= 5476. A two-dimensional (21 × 7 = 147) GN composition requires: 21 × 7
+ 21 × 5 + 21 × 3 + 21 + 19 + . . . + 3 + 1 = 436 GNs. In this example,
increasing the dimensionality by 1 led to a 92% reduction in the number of

Hierarchical Model for Pattern Recognition 51

FIGURE 4.2: HGN composition for two- and three-dimensional patterns of
size 49 and 147, respectively.

GNs in the composition. Higher dimensional structures have a significantly
smaller network size.

As discussed in the previous chapter, pattern representation in a GN net-
work applies the graph-based (value, position) structure. The HGN imple-
mentation follows a similar approach. In addition to (value, position), the
HGN requires the size of the patterns. Patterns used in the HGN recognition
scheme must have an odd-size length. This requirement caters to the hierar-
chical structure of the HGN network and results in one top neuron which sees
the overall pattern structure. Patterns with an even-size length must add a
“dummy” value at the end of the pattern.

4.1.1 Solution to Crosstalk Problem

The main limitation of the Graph Neuron implementation, the intersec-
tion or crosstalk issue, is attributed to its inability to see the entire pattern
structure. This limitation has been overcome by the hierarchical GN network
layout of the HGN. In this subsection, further analysis of this solution will be
presented.

A one-dimensional HGN network for patterns of size 5 bits, shown in Figure
4.3, will be considered. For six different pattern elements, the number of GNs
required for this composition is 6 × ((5 + 1) ÷ 2)2 = 54.

When the pattern “uvwxz” is introduced into the HGN network, each GN
that has a (value, position) that matches an element in the pattern will be
activated. Therefore, GNs U 1, V 2, W 3, X 4, and Z5 will be activated. Once
activated, each base layer GN executes a recognition process by exchanging

52 Internet-Scale Pattern Recognition

FIGURE 4.3: HGN composition for crosstalk example (see Figure 3.8).

its value with the adjacent GNs. The resulting bias array structure is shown
in Table 4.1. All active, non-edge GNs (V 2, W 3, and X 4) will send their
bias index to their corresponding GN in the higher layer (in this case, V 2→
1V 1, W3→ 1W2, and X4→ 1X3). Once a layer-1 GN receives a bias index,
it is activated. The recognition process at this level compares the base level
bias indices received by adjacent layer-1 GNs. The bias array contents of each
GN in layer-1 are also shown in Table 4.1. The active, non-edge GN, 1W 2,
sends its index to the top layer GN, TW. At this stage, TW checks its bias
array for an appearance of the index retrieved from 1W 2. If it appears in
the bias array, TW will recall the index and propagate it back to all GNs
in the network. Otherwise, a new index will be generated and propagated to
the network. Tables 4.2 and 4.3 show the bias arrays obtained when patterns
“zvwxy” and “uvwxy” are introduced into the network.

In the HGN implementation, pattern“uvwxy”was found to be different from
patterns “uvwxz” and “zvwxy.” Therefore, the crosstalk problem is solved by
this hierarchical scheme.

4.1.2 Computational Design for a Hierarchical One-Shot
Learning DPR Scheme

The hierarchical composition of a GN network is built up by layers of neu-
rons. The size of the HGN network is important in constructing an efficient
composition that is based on the availability and capacity of the processing

Hierarchical Model for Pattern Recognition 53

TABLE 4.1: Bias Array Entries for All Active GN in the HGN Composition
Illustrated in Figure 4.3 When the Pattern “uvwxz” Is Introduced

Layer Active GN Bias Array Entries

Base

U1 1(#, V2)
V2 1(U1, W3)
W3 1(V2, X4)
X4 1(W3, Z5)
Z5 1(X4, #)

Middle
1V1 1(#, 1, 1)
1W2 1(1, 1, 1)
1X3 1(1, 1, #)

Top TW 1

TABLE 4.2: Bias Array Entries for All Active GN in the HGN Composition
Illustrated in Figure 4.3 When the Pattern “zvwxy” Is Introduced

Layer Active GN Bias Array Entries

Base

Z1 1(#, V2)

V2
1(U1, W3)
2(Z1, W3)

W3 1(V2, X4)

X4
1(W3, Z5)
2(W3, Y5)

Y5 1(X4, #)

Middle
1V1

1(#, 1, 1)
2(#, 2, 1)

1W2
1(1, 1, 1)
2(2, 1, 2)

1X3
1(1, 1, #)
2(1, 2, #)

Top
TW

1
2

54 Internet-Scale Pattern Recognition

TABLE 4.3: Bias Array Entries for All Active GN in the HGN Composition
Illustrated in Figure 4.3 When the Pattern “uvwxy” Is Introduced

Layer Active GN Bias Array Entries

Base

U1 1(#, V2)

V2
1(U1, W3)
2(Z1, W3)

W3 1(V2, X4)

X4
1(W3, Z5)
2(W3, Y5)

Y5 1(X4, #)

Middle
1V1

1(#, 1, 1)
2(#, 2, 1)

1W2
1(1, 1, 1)
2(2, 1, 2)
3(1, 1, 2)

1X3
1(1, 1, #)
2(1, 2, #)

Top TW
1
2
3

nodes in a physical network. As mentioned previously, the patterns used in
the HGN recognition scheme must be odd-size patterns. Therefore, the base
layer of the HGN network must also fulfill this requirement. To analyze the
number of neurons required for an HGN network to conduct recognition on
patterns of size S, we use and extend the methods described in [52].

In HGN pattern recognition, the number of neurons required to process one-
dimensional patterns of size S = x comprising v different pattern elements,
n (x), is obtained from the following equation:

n (x) = vx+ v (x− 2) + v (x− 4) + . . .+ v

n(x) = v

(x−1
2)
∑

i=0

(x− 2i)

n (x) = v

(

x+ 1

2

)2

(4.1)

For two-dimensional patterns of size S = x × y, the number of neurons
required, n (x, y), is obtained as follows:

Hierarchical Model for Pattern Recognition 55

n (x, y) = xy + (x− 2) y + (x− 4) y + . . .+ y + (y − 2) + (y − 4) + . . .+ 3 + 1

n (x, y) =

(x−1
2)
∑

i=0

(x− 2i)

y − y

(y−1
2)
∑

i=0

(y − 2i)

n (x, y) =

(

(

x+ 1

2

)2

− 1

)

y +

(

y + 1

2

)2

(4.2)

However, the equation above does not take into account the number of
different pattern elements, v. The effect of v on n (x, y) is introduced in the
following equation:

n (x, y) = v

((

(

x+ 1

2

)2

− 1

)

y +

(

y + 1

2

)2
)

(4.3)

To illustrate the effect that higher-dimensional patterns have on the number
of neurons required in an HGN implementation, the numbers of neutrons for
one- and two-dimensional HGN compositions are plotted as a function of the
binary pattern size in Figure 4.4. The two-dimensional composition is limited
to patterns with quadratic-value sizes, i.e., x = y.

The graph shows that a two-dimensional composition requires significantly
fewer neurons than a one-dimensional structure. However, the complexity of
the HGN algorithm for higher-dimensional structures is not guaranteed to be
equivalent to the one-dimensional composition. Furthermore, for large-scale
patterns, the size of the network might be very large. In a high-dimensional
representation, the collective size of the bias array might be significant. More
discussions on this aspect will be presented in later sections.

4.1.3 HGN Recognition Procedure

There are a number of stages in the HGN pattern recognition procedure,
including recognition at every layer within the hierarchical structure. The
communication paths within the HGN layers are similar to the simple GN
implementation. The HGN communications propagate from the base layer
neurons to the top neuron, and consequently, from the top neuron to the base
layer neurons.

The HGN communications procedure is as follows. Each neuron in the base
layer receives an input pattern from an external entity, which we refer to as
the Stimulator and Interpreter (SI) module after Nasution and Khan [3]. Each
neuron that receives an input is called an active neuron. Each active neuron
in the base layer acknowledges that it is active by sending its p(column, row)

56 Internet-Scale Pattern Recognition

FIGURE 4.4: Total number of neurons in an HGN for one- and two-
dimensional compositions as a function of pattern size.

pair to all of the adjacent neurons. For each active neuron in the base layer,
the p(column, row) pairs received from adjacent neurons make up the bias
array entry for the current input pattern. In the end, each non-edge neuron
received two pairs from its adjacent neurons; neurons on the edges receive a
single pair. Each active neuron must determine its bias index. If the incoming
pair combination is found in its bias array, then the index of the entry is
noted. Otherwise, a new index is generated to store and reference the pattern.
Each active non-edge neuron sends its index to its corresponding neuron in
the same column of the higher layer. This process continues until the top layer
has been reached. The top layer neuron decides if the input is to be treated
as a new pattern and stored or treated as a previously known pattern and
recalled. A new index value is propagated downward for a stored pattern, and
an existing index value is propagated downward for a recalled pattern.

In the HGN recognition procedure, the bias array structure of the hierar-
chical composition follows the bias array formation in a GN network. Nev-
ertheless, it has been modified to accommodate the recognition procedures
of higher layer neurons based on adjacency comparisons made by lower layer
neurons. These are the bias entry conditions for neurons within any HGN
network:

Hierarchical Model for Pattern Recognition 57

1. For neurons in the base layer, their bias entry takes the form
{left, right}, where left and right represent the row number of left-
adjacent and right-adjacent neurons, respectively.

2. For neurons in the middle layer, their bias entry takes the form
{leftIndex, lowerIndex, rightIndex}, where leftIndex, lowerIndex,
and rightIndex represent indices obtained from its left, lower (within
the same column), and right neurons, respectively.

3. The bias entry structure of the top layer neuron is in the form
{lowerIndex}, which is the index obtained from its lower layer neuron
(within the same column).

4.2 Complexity and Scalability of Hierarchical DPR
Scheme

4.2.1 Complexity Estimation

The following discussion focuses on the complexity analysis of the HGN
pattern recognition scheme. We will focus on the bias array capacity analysis
and Big-O estimation of the HGN network. A similar analysis was carried out
on a GN network in Section 3.3.

For Big-O estimation, the HGN strictly follows the adjacency compari-
son approach of the GN recognition procedure. The difference between the
HGN and GN implementations is their execution process. The HGN applies
multiple-stage execution (based on the hierarchical structure), and GN im-
plements single-stage execution. Therefore, the Big-O estimation of the com-
plexity of the HGN is O (n).

In the storage capacity analysis, we consider the bias array capacity of each
neuron within the HGN composition. A detailed analysis of the HGN storage
capacity has been discussed in [3]. Though we do not intend to repeat the
explanation in this book, a summary of the complexity estimation will be
presented.

In this analysis, the size of the bias array is observed as different patterns are
stored. The number of possible pattern combinations increases exponentially
with increasing pattern size. The impact of the pattern size on the bias array
storage is an important factor in any bias array complexity analysis. The
analysis is conducted by segregating the bias arrays according to the layers of
a particular HGN network. The following equations show the bias array size
estimation for binary patterns. This bias array size is determined using the
number of bias entries recorded for each neuron.

58 Internet-Scale Pattern Recognition

4.2.1.1 At the base layer (0):

The size of the bias array for a base layer neuron in an HGN composition
strictly follows the estimation given for the GN algorithm. The maximum
size of the bias array for each neuron is derived from the number of possible
adjacency information combinations (from preceding and succeeding neurons).
We consider the number of rows (different pattern elements), nrow, for each
pattern set used. The maximum bias array size for a non-edge neuron in an
HGN for one-dimensional patterns, σ(max,ne,0), is given by the following:

σ(max,ne,0) = n2
row (4.4)

Each neuron at the edge of the layer receives adjacency information only
from its preceding or succeeding neuron. Therefore, its maximum bias array
size, σ(max,e,0), is given by the following:

σ(max,e,0) = nrow (4.5)

The maximum bias array size for edge neurons is equivalent to the number
of different pattern elements. Consequently, the total size of the bias array for
all neurons in the base layer, σ(total,0) for patterns of size S = a is derived
using an approach similar to that described in Section 3.3:

σ(total,0) = nrow

(

σ(max,ne0) × (a− 2) + 2σ(max,e,0)

)

= nrow

(

n2
row × (a− 2) + 2nrow

)

= n2
row (nrow × (a− 2) + 2)

(4.6)

4.2.1.2 At layer i:

In an HGN implementation, neurons in the middle layer receive indices from
lower/base layer neurons and perform a recognition procedure using these
values. Therefore, the maximum bias array size of neurons at lower/base layer
affects the calculation of bias array estimates for the middle layer neurons.
The maximum size of the bias array for a non-edge neurons in middle layer i,
is derived as follows:

σ(max,ne,i) = n2
row × σ(max,ne,i−1)

= n2
row × n2i

row

= n2i+2
row

(4.7)

Similarly, for edge neurons:

Hierarchical Model for Pattern Recognition 59

σ(max,e,i) = nrow × σ(max,e,i−1)

= nrow × n2i
row

= n2i+1
row

(4.8)

The total size of the maximum bias array for all neurons in middle layer i,
is determined from the following equation:

σ(total,i) = nrow

(

σ(max,ne,i) (a− (2i+ 2)) + 2σ(max,e,i)

)

= nrow

(

n2i+2
row (a− (2i+ 2)) + 2n2i+1

row

)

= n2i+3
row

(

nrow (a− (2i+ 2)) + 2n2i+2
row

)

(4.9)

4.2.1.3 Neurons at the top layer:

At the top layer, the maximum size of the bias array is derived from the
maximum bias array size of the non-edge neuron in the previous level. There-
fore, the maximum size of the bias array at the top level is as follows:

σ(max,top) = nrow × σ(max,ne,top−1)

= nrow × na−1
row

= na
row

(4.10)

The maximum bias array size for the HGN composition, σHGN , is obtained
by summing of all the bias arrays given in the previous equations.

σHGN =σ(total,0) +

(a+1
2)−2
∑

i=1

σ(total,i) + σ(max,top)

σHGN =n2
row (nrow (a− 2) + 2)

+

(a+1
2)−2
∑

i=1

n2i+3
row (a− (2i+ 2) + 2) + 2n2i+2

row

+ na
row

(4.11)

To analyze the complexity of an HGN implementation, the maximum bias
array size was derived. The results indicate that the size of the bias array is
sensitive to the size of the network and the pattern size. However, this result
is based on totally unique patterns and does not account for patterns that
have similar subpattern features or a close resemblance. In this context, a
uniform distribution could be used to estimate the average bias array size for

60 Internet-Scale Pattern Recognition

a given pattern set being stored in the network. The average size of the bias
array can be determined from the number of stored patterns divided by the
maximum number of unique patterns (from combinations of different pattern
elements for a given pattern size), i.e.,

np

na
row

, where np represents the number

of patterns stored in the HGN composition.

4.2.2 Scalability in HGN Approach

The HGN pattern recognition scheme is capable of performing highly ac-
curate analyses on patterns using an in-network processing approach. Instead
of relying on single-processing (or CPU-centric) recognition schemes, this ap-
proach enables collaborations between processing nodes to recognize large-
scale patterns. Nevertheless, an increase in the pattern size leads to an over-
grown network. As shown in Sections 4.1.2 and 4.2.1, the pattern size has a
significant effect on the number of neurons required and the storage capacity
of each neuron’s bias array.

The number of neurons generated in an HGN implementation has a
quadratic dependence on the size of the pattern. Figure 4.5 shows the number
of neurons in a one-dimensional HGN recognition scheme for patterns as a
function of the number of different elements and the pattern size.

To prevent the overgrowth of the network, Nasution [52] proposed distribut-
ing a complex HGN composition across a number of high performance com-
puters. The proposed distribution will be discussed further in the next section.

4.3 Reducing Hierarchical Complexity: A Distributed
Approach

As demonstrated in Section 4.1.2, the size of the HGN network grows sig-
nificantly with increasing pattern size and dimension. For instance, given a
binary pattern recognizer with 128-bit pattern representation, the number of
neurons required in a one-dimensional HGN implementation is 8450; a two-
dimensional implementation with 16×8 representation requires approximately
326 neurons. In applications that have resource-constraint characteristics, such
as event detection in wireless sensor networks (WSNs)(WSN), a large num-
ber of neurons might not be available. To reduce the effect of the hierarchical
structure, a number of approaches have been considered and will be discussed
in this book.

Hierarchical Model for Pattern Recognition 61

FIGURE 4.5: Growth rate of neurons in an HGN composition as a func-
tion of the number of different pattern elements and the pattern size.
©IEEE. Reprinted, with permission, from Amin, A.H.M.; Khan, A.I.; “A
divide-and-distribute approach to single-cycle learning HGN network for
pattern recognition,” 11th International Conference on Control Automa-
tion Robotics & Vision (ICARCV), 2010, pp.2118-2123, 7-10 Dec. 2010 doi:
10.1109/ICARCV.2010.5707852.

4.3.1 Distributed Neurons of HGN Network

According to Nasution [52], an HGN network can be decomposed into a
number of sub-compositions, according to the number of hosts available in
the physical network. Figure 4.6 shows a one-dimensional HGN composition
for a pattern of size 13, distributed onto four different hosts. Each neuron in
the composition is treated as a memory block on a host that is communicated
through an allocated terminal known as a port. In a computer system, a port
is used to establish communication channels between processes.

Each neuron in this network model is supplied with an additional param-
eter known as the port number. The port number identifies each neuron and
is used in inter-neuron communications. The communication between hosts
is achieved using physical communication, such as the Ethernet (using IP
address). Limitations of this approach include the following:

1. Additional parameter and indices. Each neuron in the composition needs
to acquire a unique port number, column index, row index, and ID. The

62 Internet-Scale Pattern Recognition

FIGURE 4.6: Decomposition of an HGN onto a number hosts in a physical
network.

layer index is also required to indicate the neuron’s level in the hierarchy.
These additional indices and parameter increase the complexity of the
processes involved in the HGN recognition scheme. In addition, these
values must be pre-assigned before performing the actual recognition
process. Nevertheless, the change in complexity is minimal.

2. The port number assigned to each neuron must be pre-determined. In
addition, each neuron must be able to calculate the port number of
its adjacent neurons before any communication can occur. This pre-
arrangement requires all neurons to evoke an additional pre-processing
step to identify and calculate the destination ports of its preceding and
succeeding neurons.

3. All of the hosts involved must stay“alive”for the duration of the recogni-
tion process. This effect will create high-interdependency between hosts.
The recognition process will be prone to a total failure if any single host
fails. In addition, the massive and rapid passing of messages between
neurons with different port numbers results in a cost of communication
between hosts.

Hierarchical Model for Pattern Recognition 63

With these limitations in mind, a different arrangement of the HGN compo-
sition was proposed by Khan and Muhamad Amin [46, 64], that can be dis-
tributed across a physical network with low-interdependency between hosts
and a low requirement for the number of neurons within its structure. More-
over, changes to the complexity level of the HGN are minimized, thereby
retaining its overall structure.

4.3.2 Distributed HGN Approach

This section describes an overview of the distributed HGN scheme. A case
study on this approach has been published as a book chapter by Khan et al.
[64]. The HGN with distributed approach implements divide-and-distribute
techniques by dividing patterns into subpatterns, and delegating these sub-
patterns to each host available to carry out the recognition procedure using
the HGN sub-composition.

The distributed HGN extends the original HGN infrastructure wherein its
composition is decomposed into several sub-compositions. The method is dif-
ferent from the previous approach, in which the entire HGN structure was
decomposed and delegated to available hosts. The distributed HGN decom-
poses the HGN network by creating smaller sub-networks, each acting as an
actual HGN network that performs recognition on subpatterns. Instead of
using the whole patterns as inputs, each pattern is segmented into smaller
parts and each of the pattern segments acts as an input to the respective
HGN sub-network composition. Figure 4.7 shows the logical illustration of
the decomposition of the HGN into HGN sub-compositions.

Each of the HGN subnets has the ability to process pattern segments inde-
pendently. Therefore, the compositions may be independently mapped onto
the available nodes in the network without losing the accuracy of the HGN.
Figure 4.8 shows a comparison between the numbers of GNs required for the
original HGN formation and our proposed distributed HGN approach. The
comparison is based on binary pattern segments of bit-size 7, which corre-
sponds to an overall pattern of 7-bit increments for the HGN. The distributed
HGN scheme requires less than 1500 nodes to process a 245-bit binary pat-
tern. The original HGN structure requires approximately 30,000 nodes for a
similar recognition process.

An important consideration in the development of this approach was that
the distribution of the large HGN network to smaller HGN subnets allowed
each subnet to be assigned to a specific host in a physical network. There are
two advantages to having a smaller composition on each host:

1. Due to the smaller HGN structure, a smaller capacity of memory space
is allocated for each HGN subnet.

2. Maintaining only inter-HGN communications reduces communication
costs for inter-neuron communications.

64 Internet-Scale Pattern Recognition

FIGURE 4.7: HGN Decomposition into distributed HGN sub-networks. The
HGN network is decomposed into three HGN subnets.

FIGURE 4.8: Comparison of the numbers of GNs required in the HGN and
the distributed HGN as a function of pattern size. A 7-bit pattern segment is
used for each HGN subnet in the distributed HGN scheme.

Hierarchical Model for Pattern Recognition 65

Within each host, the HGN subnet is structured as an executable code, and
each neuron is represented as an associative data structure in a block of mem-
ory space for storing and recalling patterns. The communications between
neurons is achieved using either a sequential or parallel processing approach,
via a message-passing infrastructure, such as Message Passing Interface (MPI).
Each neuron can also be represented as a processing unit in a multi-core pro-
cessor machine. Different configurations of this distributed HGN scheme will
be discussed in the next chapter.

To obtain an overall view of patterns, the distributed HGN scheme allows
communications between HGN subnets residing on different hosts. The com-
munications involve message exchanges containing indices obtained from each
of the HGN subnets for every subpattern analyzed by the network. Cumula-
tively, these indices represent the entire pattern structure.

The accuracy and scalability of a distributed approach for the HGN algo-
rithm have been verified using two significant factors related to the deployment
of an application on any distributed systems:

1. The varying capabilities of the participating nodes

2. The distribution of the computational load

Two distributed schemes were simulated. The first verification addresses vary-
ing processing capabilities within a distributed system through the non-
uniform approach. The second demonstrates the distributiveness of the ap-
proach through the uniform distributed HGN model. The following section
describes the design of this distributed HGN approach by considering these
two factors.

4.4 Design Evaluation for Distributed DPR Approach

We consider two different network distribution approaches for distributing
the HGN network into different subnets. These approaches are the uniform
and non-uniform approaches.

4.4.1 Non-Uniform Distribution

The distributed approach in HGN takes the form of multiple HGN com-
positions. These compositions are distributed across the network. In the non-
uniform model, the compositions may vary in size. For this simulation, a
7-21-7 composition was chosen; there are three sub-structures, comprising
two 7-element HGNs, and one 21-element HGN. Figure 4.9 illustrates these
compositions. Note that in this diagram, the middle host/network has been
determined to be substantially larger than the other two hosts/networks.

66 Internet-Scale Pattern Recognition

FIGURE 4.9: Non-uniform distributed HGN approach with 7-21-7 composi-
tions for 35-element patterns with two possible values. (With kind permission
from John Wiley & Sons, Inc.: Mobile Intelligence, “An Online Scheme for
Threat Detection Within Mobile Ad Hoc Networks,”pp. 380-411, 2010, Khan,
A. I. and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.13,
http://dx.doi.org/10.1002/9780470579398.ch17.)

The non-uniform distribution takes the environment into account. Some
parts of the network might have lower power resources, and thus their process-
ing capabilities are lower than other parts of the network. With this scenario
in mind, the effect of an unbalanced composition on the pattern recognition
accuracy of the distributed approach is analyzed.

The results of this simulation show that the non-uniform model offers an
almost equivalent level of accuracy to the HGN. Furthermore, it requires less
neurons in its composition. The number of neurons required for a single HGN
composition can be derived from Equation 4.1. The number of neurons re-
quired, n

(

x(all,s)

)

for s subnets in a distributed HGN composition for a pat-
tern of size S = a is determined using the following equation:

n
(

x(all,s)

)

= v

(

(

a1 + 1

2

)2

+

(

a2 + 1

2

)2

+ . . .+

(

as + 1

2

)2
)

; for

s
∑

i=1

ai

= v

(

s
∑

i=1

(

ai + 1

2

)2
)

(4.12)

Note that the squared term in Equation 4.12 is be substantially smaller
than the squared term in Equation 4.1 for the same sized problem, resulting
in fewer required neurons.

The mapping process in our simulation begins with the input of the pat-
terns. Each of the patterns, as shown in Table 4.4, are segmented and loaded

Hierarchical Model for Pattern Recognition 67

TABLE 4.4: Character Representations of 35-bit Patterns Using a Horizontal
Scanning Approach

Character 35-bit Representation

A 00100010101000111111100011000110001
I 11111000010000110001100011000101110
J 01111100001000001110000010000111110
S 10001100010101000100010101000110001
X 10001100010101000100010101000110001
Z 11111000010001000100010001000011111

(With kind permission from John Wiley & Sons, Inc.: Mobile Intelligence,“An
Online Scheme for Threat Detection Within Mobile Ad Hoc Networks,” pp.
380-411, 2010, Khan, A. I. and Muhamad Amin, A. H. and Raja Mahmood,
R. A., Table 17.2, http://dx.doi.org/10.1002/9780470579398.ch17.)

FIGURE 4.10: The HGN subnets successfully store the bitmap pattern
for character “I” at index 2 after the bit map pattern for character
“A” was stored in index 1. (With kind permission from John Wiley &
Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat Detec-
tion Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A. I.
and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.14,
http://dx.doi.org/10.1002/9780470579398.ch17.)

into the HGN subnets by the SI module. Figure 4.10 shows the bitmap of
character “I” analyzed by the distributed HGN. Character “I” is stored after
character “A,”which has the index value of 1. The results show character “I”
is a new pattern, which has the index value of 2. For this simulation, each
segment was input sequentially. However, in an actual implementation, the
processing of these pattern segments will occur in parallel, vastly improving
the execution time.

4.4.1.1 Pattern Recognition Process

The overall store or recall decision depends on the decisions reached by the
individual HGN subnets. The top-layer neurons of each subnet decide if the
subpattern produces a recall or a store. If the pattern segment has not been

68 Internet-Scale Pattern Recognition

FIGURE 4.11: Results for a 1-bit distortion pattern of character “A.” The
first HGN subnet shows that a new subpattern has been found (with assigned
index 0), whereas other compositions correctly recall this as the pattern as-
sociated with index 1 (bitmap pattern of “A”). (With kind permission from
John Wiley & Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat
Detection Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A.
I. and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.15,
http://dx.doi.org/10.1002/9780470579398.ch17.)

identified, the active top neuron outputs the index value 0. Otherwise, the
recalled index of the subpattern will be output. Figure 4.11 shows the result
of a 1-bit distorted character pattern “A” introduced to the network after the
character patterns “A,”“I,”“J,”“S,”“X,” and “Z” have been stored.

Figure 4.11 shows that only one of the subnets records the subpattern as
a new pattern. Other subnets recall the index value of 1, which is the index
for the stored character pattern “A”. The decision of whether the pattern is
a recall or store is made based on the cumulative decisions of the distributed
HGN subnets using the recall value. Equation 4.13 shows the formula for
the recall, Rc of a distributed HGN scheme with s subnets. Note that n(r,i)

represents the neurons that produce an index that is similar to the index of
the targeted pattern class, r and n(t,i) represents each neuron in subnet i.

Rc =

∑s
i=1 n(r,i)

∑s
i=1 n (t, i)

(4.13)

Using the example from Figure 4.11, the recall value for a 1-bit distortion
pattern of character “A” is (4 + 121 + 16) ÷ (16 + 121 + 16) = 141 ÷ 153 =
0.9216. Therefore, its recall percentage is 92.16%.

The distribution of patterns into multiple HGN subnets might improve the
recall accuracy of the scheme. According to [64], the recall percentages of 1-bit
distorted patterns are significantly higher in the distributed HGN approach
than the HGN. This behavior is attributed to the encapsulation effect of the
distributed HGN, i.e., the effects of a distortion in a particular subnet do
not affect the other subnets. Figure 4.12 shows the encapsulation effect. It
also shows the internal state of the subnets from the 1-bit distorted pattern
of character “A.” The effects of the distortion are limited to the subnet that

Hierarchical Model for Pattern Recognition 69

FIGURE 4.12: A 1-bit distortion occurring in the overall input pattern ’A’
stays encapsulated within the left composition. (With kind permission from
John Wiley & Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat
Detection Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A.
I. and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.23,
http://dx.doi.org/10.1002/9780470579398.ch17.)

analyzed the distorted part of the pattern; the remaining subnets are not
affected by the distortion.

The HGN subnets are able to provide higher recall accuracy owing to this
encapsulation effect. The downside to this effect is that if the distortion occurs
in the larger subnet, the recall accuracy might be adversely affected. This
problem can be easily resolved by using compositions of similar size. The
uniform approach implements equal-sized compositions.

4.4.2 Uniform Distribution

The uniform model of the distributed HGN is introduced to delimit the
effects of distortion location experienced in the non-uniform model. In this
pattern recognition simulation, five HGN subnets for 7-bit subpatterns were
implemented to analyze 35-bit binary character patterns. Figure 4.13 shows
the structure of the compositions.

The uniform approach was developed to enable the distribution of the HGN
algorithm for networks comprising small devices and/or limited processing and
storage capabilities. With the relatively smaller sized subnets, each processing
node/neuron is able to store smaller pattern segments, and thus requires less
processing capability for the pattern recognition process. Having similar sized
compositions also removes the problem of a single composition affecting the
accuracy of the results.

It was reported in [64], that the uniform model’s recall values are signif-
icantly higher than those of the HGN. The increase in the recall accuracy
is owing to the encapsulation effect. The distortions are generally compart-
mentalized in a specific composition(s), and thus do not affect the findings of

70 Internet-Scale Pattern Recognition

FIGURE 4.13: Uniform distributed model composition for analyzing
35-bit binary patterns. (With kind permission from John Wiley &
Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat Detec-
tion Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A. I.
and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.25,
http://dx.doi.org/10.1002/9780470579398.ch17.)

other compositions. The added benefit of the uniform approach is that all the
compositions are similar in size, and the problem of an over-sized composition
affecting the accuracy of the results is alleviated.

Figure 4.14 shows the encapsulation effect in the uniform distributed ap-
proach for character “A”with a 2-bit distortion.

This figure indicates that the distorted pattern segments are encapsulated
in the first and the third compositions from the left. The rest of the pattern
segments are recalled as character“A” (represented by the bias index entry of
1).

Generally, the uniform approach produces higher recall accuracy values for
distorted patterns than the non-uniform approach. The standard-size encap-
sulation of the local distortions ensures the better performance of the uniform
model of the distributed HGN. A close-up view of the difference in the effects
of distortions in the HGN and the uniform approach are illustrated in Figure
4.15. This figure shows the results for a 1-bit distortion using three 7-bit HGN
subnets and one 21-bit HGN composition for pattern recognition.

The distortion effect in the HGN composition cannot be localized, and it
propagates along the right hand side of the composition (Figure 4.15), leading
to a null recall. It is evident that the smaller and similar sized distributed
compositions have a better chance of discovering the distorted pattern than a
single HGN composition.

In this chapter we have established the fundamental principles of distributed
pattern recognition (DPR) schemes. To fulfill the scalability requirements of
recognition over large-scale or Internet-scale data, the computational design
of these schemes must take into account the size of the network and the neu-
ron capacity. The distributed HGN was chosen as an example to accomplish
these requirements. In the next chapter, we will explore the distribution factor,
the distributed HGN algorithm, and its capabilities as a distributed pattern
recognition algorithm. The distributed HGN (DHGN) as a GN-based algo-
rithm can be considered to be an associative memory (AM) algorithm and
has the ability to perform parallel recognition processes.

Hierarchical Model for Pattern Recognition 71

FIGURE 4.14: Encapsulation effect in the uniform model for charac-
ter “A” with a 2-bit distortion. The effects of the distortions are local-
ized in two compositions on the left and do not influence the findings
of the remaining compositions. (With kind permission from John Wiley
& Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat Detec-
tion Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A. I.
and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.34,
http://dx.doi.org/10.1002/9780470579398.ch17.)

FIGURE 4.15: The effects of a 1-bit distortion in the pattern are localized
in the uniformly distributed compositions (lower). The effects of the dis-
torted pattern are propagated along the right side of the HGN composi-
tion, leading to a false conclusion. (With kind permission from John Wi-
ley & Sons, Inc.: Mobile Intelligence, “An Online Scheme for Threat De-
tection Within Mobile Ad Hoc Networks,” pp. 380-411, 2010, Khan, A.
I. and Muhamad Amin, A. H. and Raja Mahmood, R. A., Figure 17.41,
http://dx.doi.org/10.1002/9780470579398.ch17.)

Chapter 5

Recognition via
Divide-and-Distribute Approach

As discussed in the previous chapter, the effectiveness of one-shot learning
pattern recognition, such as Graph Neuron (GN)–based algorithms can be
improved by dividing patterns into subpatterns and distributing them across
multiple computational networks. This improvement has a two-fold effect.
First, the scalability of the recognition process improves. This approach al-
lows recognition to scale up with the size of patterns and the network capacity
to conduct the recognition. Second, the distribution of patterns into subpat-
terns of equal or different sizes allows for error encapsulation in a particular
subnet, and thus recognition is performed more accurately. Nevertheless, the
effects of error encapsulation can only be observed when the error is small and
concentrated.

Graph Neuron (GN)–based algorithms have been developed based on two
different concepts, graph-matching and associative memory. These two con-
cepts give GN-based algorithm implementation the added advantage of scal-
ability. The simple recognition procedure and lightweight algorithm of the
GN give it the ability to perform pattern recognition processes on distributed
systems. Furthermore, GN algorithms incur low computational and commu-
nication costs when deployed in a distributed system. Previous chapters have
analyzed both the GN and HGN approaches and introduced a distributed
version of the HGN, the Distributed Hierarchical Graph Neuron (DHGN).

5.1 Divide-and-Distribute Approach for One-Shot Learn-
ing IS-PR Scheme

An important aspect in the development of pattern recognition schemes is
the algorithmic design. A proper design is efficient and has the ability to gen-
erate a more accurate classification strategy. In this chapter, the algorithmic
design and prospects of using the proposed DHGN algorithm for Internet-
scale pattern recognition schemes are extensively discussed. The proposed
algorithm extends the scalability of the existing Hierarchical Graph Neuron
(HGN) implementation by reducing the computational requirement incurred

73

74 Internet-Scale Pattern Recognition

by the number of neurons required for the recognition processes. The recogni-
tion accuracy is comparable to the HGN implementation. In the DHGN, the
recognition process can be deployed as a composition of sub-processes that
are being executed in parallel across a distributed network. Each sub-process
is conducted independently, making it less cohesive than other pattern recog-
nition approaches.

5.1.1 Associative Memory (AM) Concept in Pattern Recog-
nition

From a pattern recognition perspective, AM refers to a set of functions
(or a learning network) that has the ability to make an association between
input and output. Associative memory, M, as defined in [65], is a system
that provides an input-output relationship as follows: a → M → b where a

and b are the input and output, respectively. From this perspective, each input
vector is associated with an output vector. The association can be represented
as a fundamental set of associations: {(aµ, bµ) | µ = 1, 2, . . . , p}. This set is a
priori knowledge that must be known by the AM system.

There are two types of AM for pattern recognition, namely auto-associative
memory (auto-AM) and hetero-associativememory (hetero-AM). In auto-AM,
the system recognizes an input pattern and produces its associated output pat-
tern. Therefore, for a given set of associations, (aµ, bµ), the auto-AM rule is
true under the following condition: aµ = bµ, ∀µ ∈ {1, 2, . . . , p}. Auto-AM
enables the system (either neural network or learning system) to pass input
patterns through as output patterns without any changes, due to input pat-
terns and output patterns having similar characteristics. The Hopfield network
is an example of an auto-AM algorithm.

Alternatively, hetero-AM pattern recognition follows the rule of association;
incomplete input patterns can lead to complete output patterns. Therefore, in
terms of the association set, (aµ, bµ), when aµ 6= bµ, the following rule applies:
for ∃µ ∈ {1, 2, . . . , p}. In this case, given distorted pattern āx of original
pattern ax, the hetero-AM system will be able to gain full recall of pattern ax.
Bidirectional associative memory (BAM) is a neural network approach that
adopts the hetero-AM concept. Hetero-AM also offers the ability to conduct
a recognition based on patterns of different sizes, such as demonstrated in the
work of Kosko [66].

Associative Memory approaches, such as the Hopfield network and Fuzzy
Associative Memory (FAM) [67], tend to be computationally intensive and
iterative. In contrast, Morphological Associative Memory (MAM) [68] pro-
vides a solution within a single iteration, and thus implements single-cycle
learning. However, MAM is a tightly coupled scheme, which relies on global
maximum/minimum computations and is not readily distributed.

Graph Neuron (GN) based algorithms, including the HGN and DHGN,
implement an auto-associative memory approach in their recognition proce-
dure. GN has the ability to recall patterns that have been memorized by the

Recognition via Divide-and-Distribute Approach 75

network. The memorization can occur in the pre-execution stage or instanta-
neously during the recognition process. The former means that the GN algo-
rithm performs a supervised recognition; the latter represents an unsupervised
mechanism. Furthermore, GN algorithms perform recognition on patterns of
equivalent size. Therefore, the features of auto-AM have been fulfilled.

The scalability of the DHGN and other GN-based algorithms is owing to
the adoption of an associative memory approach. The DHGN is an associa-
tive memory system that is capable of recognizing patterns (either original or
noisy), and it is able to match multiple streams of input with historical data
in the network in real-time [61]. For a given pattern, the DHGN also performs
an internal association, in the sense that an association between elements of
a pattern is considered. For example, given a pattern, P , comprising five ele-
ments, {p1, p2, p3, p4, p5}, the DHGN also takes into account the associations
set {(p1, p2) , (p2, p3) , (p3, p4) , (p4, p5)}. The following subsection will fur-
ther discuss the architecture of the DHGN in line with its pattern recognition
process.

5.1.2 DHGN Computational Design

The DHGN formalizes the distributed HGN scheme described in Chapter 4.
By dividing and distributing subpatterns, the DHGN adds a clustering mech-
anism for pattern recognition. Each of the subpatterns undergoes a one-shot
recognition procedure. The results of the sub-recognition add cumulatively to
obtain the actual recognition result.

The DHGN network constitutes a number of DHGN subnets (HGN sub-
composition) and a Stimulator/Interpreter Module (SI module) node, as de-
scribed in Muhamad Amin and Khan [4]. Figure 5.1 shows the complete ar-
chitecture of the DHGN network. In this figure, the decomposition of binary
image pattern “K” into subpatterns is illustrated. This decomposition is per-
formed by the SI module node. The input activates the GN nodes that cor-
respond to the bits of the input pattern. In doing so, each pattern element of
a subpattern is mapped to the relevant GNs in the respective subnet. Each
subnet integrates its responses and sends the results to the SI module to form
an overall response.

Communications within the DHGN network occur in a single-cycle environ-
ment, i.e., each pattern is passed through the network only once. Recognition
result is produced in the form of recall (pattern is known) or store (pattern
is memorized). Within each DHGN subnet, the communication between GNs
occurs once for each subpattern. By eliminating the need for an iterative
mechanism to recall or store patterns, the DHGN offers a fast recognition
procedure.

Each DHGN subnet is derived from a composition of inter-connected GNs.
The size of the subnet depends on the size of the subpattern and the number
of different elements in the subpattern. Therefore, to define the size of each

76 Internet-Scale Pattern Recognition

FIGURE 5.1: Pattern recognition processes using DHGN algorithm where a 7
x 5 bitmap of letter K is mapped as subpatterns over 7 hierarchically formed
GN sub-networks. (With kind permission from Springer Science+Business Me-
dia: AI 2008: Advances in Artificial Intelligence, “Single-Cycle Image Recog-
nition Using an Adaptive Granularity Associative Memory Network”, LNCS,
2008, 386-392, Muhamad Amin, A.H., and Khan, A.I., Fig.1, W. Wobcke and
M. Zhang (Eds.), http://dx.doi.org/10.1007/978-3-540-89378-3 39.)

subnet, we consider the number of neurons, ngn, required for a subpattern of
size ssp composed of v different element given by the following equation:

ngn = v

(

ssp + 1

2

)2

(5.1)

5.1.2.1 Network Generation

In order for the DHGN scheme to perform recognition on patterns, it must
first be generated. Network generation involves the construction of SI mod-
ule node and a collection of DHGN subnets. SI module node is a control
node, responsible for managing the inputs and outputs among the DHGN
subnets. The distribution of DHGN subnets within the network depends
on the pattern decomposition by the SI module. Given a pattern vector
P = {p1, p2, p3, . . . , pm} of size m, and subpattern length ssp. The number
of DHGN subnets nsn that needs to be generated is determined by Equation
5.2:

Recognition via Divide-and-Distribute Approach 77

nsn =
m

ssp
, ssp ≤ m (5.2)

The neurons within a DHGN subnet are structured in hierarchical manner,
similar to the HGN. Each layer within the DHGN subnet is populated with
neurons. The number of layers, lgn, required within a DHGN subnet is given
by the following equation:

lgn =
ssp + 1

2
(5.3)

Note that the number of neuron layers could be directly determined from
the calculation of size of the network as shown in Equation 5.1. The conditions
for GN node generation within a particular layer are as follows:

1. At base layer l0, the number of neurons generated nl0
gn is equivalent to

the size of subpattern multiplied by the number of different elements v,
i.e., nl0

gn = ssp × v.

2. At a middle layer li, the number of neurons nli
gn varies according to the

level of the layer i in the hierarchy, except for the top layer. Therefore,
nli
gn = v (ssp − 2i).

3. At the top layer lt, the number of processing neurons required is equiv-
alent to the number of different elements v. Hence, nlt

gn = v.

In the network generation stage, SI module is also responsible for initializing
DHGN subnets. The initialization involves communication of possible input
values to the base layer neurons before the actual store/recall operations can
start. The message communication between SI module and base layer neurons
(within each DHGN subnets) is conducted using a specific message communi-
cation protocol that has been developed for bitmap patterns. SI module sends
the possible input values to each DHGN subnet using the instruction, mes-
sage format. For example, if binary values are to be communicated then the
message would be initialize, (0,1).

Each initialization message received by the base layer neurons is used for
coordination within the base layer. Each neuron represents a specific position.
The following pseudo code shows the formation of the base layer neurons for
binary pattern recognition:

Note that the initialization process involves uploading distinct (value, po-
sition) pairs into the respective neurons for later use in the store/recall oper-
ations.

78 Internet-Scale Pattern Recognition

Algorithm 2 Base Layer Neuron Formation

1: for ngn ∈ l0 do
2: if GNid ≤ ssp then
3: ngn,val = 1
4: else
5: ngn,val = 0
6: end if
7: end for

5.1.2.2 Neuron Communications

Communications in the DHGN recognition scheme involve a message-
passing mechanism to allow communication between processing nodes using
exchange messages. The mechanism consists of two different types of commu-
nication, namely macro- and micro-communication. In macro-communication,
communication costs at system level are taken into account, i.e., com-
munications incurred between the SI module and DHGN subnets. Micro-
communication is responsible for the communication between neurons in a
particular subnet for each pattern introduced into the system.

Macro-communication in DHGN implementations occurs between the SI
module node and either the base or top layer of neurons in each subnet. It
occurs at three different phases:

1. Network generation phase: The SI module is responsible for communi-
cating possible input values of the pattern, which are used in the recog-
nition process, to all base layer neurons in the DHGN subnets. Equation
5.4 shows the number of messages communicated by the SI module to
these neurons, nmsg (SI → sn):

nmsg (SI → sn) = nsn × ssp × v (5.4)

In this equation, nsn represents the number of available subnets. This
equation is based on the assumption that all DHGN subnets are of the
same size. The messages communicated from the SI module to each
neuron are in the instruction, message format, as described earlier.

2. Pattern input phase: After all DHGN subnets have been generated, the
SI module will perform a divide-and-distribute process on the input
pattern. This process decomposes the pattern into a number of subpat-
terns, based on the number of subnets available. Consequently, these
subpatterns are sent to each subnet in the network. However, in the
actual implementation, the SI module will communicate directly with
each neuron in the base layer of each DHGN subnet. Therefore, the
number of messages communicated is similar to the number of messages
communicated in the network generation phase (Equation 5.4).

Recognition via Divide-and-Distribute Approach 79

3. Result communication phase: After the recognition process in each
DHGN subnet is completed, the results (in terms of recall or store) are
communicated back to the SI module for further analysis. In this com-
munication, messages comprising the subnet id (snid), status (snst), and
index stored/recall (snidx), in the form of snid, snst, snidx are sent to
the SI module by all of the top-layer neurons in each subnet. The total
number of messages communicated from the subnets to the SI module,
nmsg (sn→ SI), is equivalent to the number of subnets available, nsn.
Therefore, nmsg (sn→ SI) = nsn.

The following relations describe the micro-communications between neurons
in each DHGN subnet.

5.1.2.2.1 Base layer For each neuron in the base layer, the number of
message communications can be derived from the number of messages commu-
nicated between adjacent neurons for each input subpattern. For neurons at
the edge of the base layer, the number of communication exchanges is equiva-
lent to the number of different elements in the subpattern. Non-edge neurons
communicate with adjacent neurons in both the preceding and the succeed-
ing columns and communicate bias indices to the neurons at the next higher
layer. The amount of message exchange is v2 + 1, where v is the number of
possible element values. The cumulative communication costs for each input
recognition process for all neurons in the base layer of a single DHGN subnet
is derived from the following equation:

nl0
msg =

((

v2 + 1
)

× (ssp − 2) + 2v
)

(5.5)

5.1.2.2.2 Middle layers The communication costs for neurons in the
middle layers are similar to that of the base layer. However, the number of neu-
rons available differs for each layer. For each middle layer i, where 1 ≤ i ≤ lt,
the number of message exchanges for a single input subpattern recognition is
derived as follows:

nli
msg =

((

v2 + 1
)

× (ssp − (2i+ 2)) + 2v
)

(5.6)

Equation 5.7 presents the cumulative communication costs for all neurons
in the middle layers:

n
l(i,total)
msg =

lt−1
∑

i=1

((

v2 + 1
)

× (ssp − (2i+ 2)) + 2v
)

(5.7)

80 Internet-Scale Pattern Recognition

5.1.2.2.3 Top layer These neurons are only responsible for communi-
cating the final index for each subpattern stored/recalled to the SI mod-
ule. The costs for communicating these indices were included in the macro-
communication evaluation.

This subsection has presented a detailed description of the DHGN architec-
ture for distributed pattern recognition. This architecture represents an ab-
stract formation of the network. In reality, this architecture can be deployed
in a coarsely distributed or finely distributed network environment.

5.1.3 Dual-Phase Recognition Procedure

The DHGN architecture that has been described in the previous subsection
comprises two important entities: the SI module and the DHGN subnets.
Recognition of patterns mainly occurs within each DHGN subnet. However, at
this instant, all each subnet knows is a sub-composition of the overall pattern.
The DHGN system must restructure the overall information of the pattern
and produce a result for the entire pattern, i.e., whether the input pattern
is known to the system or not. Another phase of recognition is required that
involves the results of the recognition processes executed by the subnets.

The recognition procedure for the DHGN implementation can be analogi-
cally represented as a distributed analysis procedure, as shown in Figure 5.2.
Imagine there is a large block of data that needs to be analyzed. Given a set
of analysts, this large block of data can be decomposed into sub-structures of
data, and each analyst would work on a sub-structure. In the end, the results
of the analysis must be recompiled to form an overall result for the analysis
of the large block of data.

The DHGN distributed pattern recognition performs pattern analysis in
two phases:

1. Subpattern recognition

2. Pattern reconstruction and recognition

Note that these two phases occur consequently and within a single-cycle recog-
nition mechanism.

5.1.3.1 Phase 1: Subpattern Recognition

In the DHGN implementation, the core recognition process is conducted at
the subpattern level. There are four stages involved in this process.

Stage 1. After receiving an input from the SI module, each activated neu-
ron in the base layer will send a signal message to the nodes in
the adjacent columns containing the row number/address of the
activated neuron. The activated neurons on the edges of the layer
will only send the activation signal message to the neurons in the
penultimate columns. The activated neurons that receive the signal

Recognition via Divide-and-Distribute Approach 81

FIGURE 5.2: Analogical representation of the DHGN distributed pattern
recognition scheme.

messages from their adjacent neighbors will respond by updating
their bias array, noting the activation signals. All other neurons
will remain inactive.

Stage 2. All active neurons in the base layer will update their bias arrays. If
the bias entry value, σent (left, right) received from the activated
neurons in both the preceding and succeeding columns have been
recorded, the index of the entry is sent to the respective neuron in
the same position at the higher layer. If the σent (left, right) value
is not found within the bias array, a new index will be created and
sent to the neuron in the higher layer. Note that active neurons
at the edges of the base layer do not communicate with higher
layer neurons. Because of the pyramid-like structure of the DHGN
subnets, there are no neurons present at the edges of a higher layer.

Stage 3. The DHGN neurons in the layer above the base that receives a
signal message, containing the index of the bias entry that has
been created or recalled from stage 2, will be activated. A pro-
cess similar to stages 1 and 2 will occur. However, the contents
of the signal messages from preceding and succeeding columns will
be in the form σent (left, middle, right) for non-edge neurons and
either σent (left, middle) or σent (middle, right) for the edge neu-
rons. The values for left, middle, and right are derived from the
indices retrieved from the lower layer neurons. For instance, left
is for the preceding neuron’s index received from its lower layer

82 Internet-Scale Pattern Recognition

counterpart. After the message communication between adjacent
neurons is completed, the active neurons will update their bias ar-
rays and send the stored/recalled index/indices to the neuron at
the same position in the higher layer (except for the neurons at the
edges). This stage will be repeated for each layer above the base
layer, until the top layer neurons are reached.

Stage 4. One of the top layer neurons will receive a bias index from a neuron
in the layer underneath. This top layer activated neuron node will
search its bias array for the index. If the index is found, this node
will trigger a recall flag with the recalled index. Otherwise, it will
trigger a store flag and store the new index in its bias array. It will
send a signal message to the SI module with the message format
{snid, snst, snidx}, where status is either recall or store. The signal
message sent by the top layer active neuron marks the completion
of the recognition procedure at the subpattern level. In a DHGN
implementation, the lower bias arrays are updated when a new entry
is found. Note that the bias index for lower layer neurons might not
be the same for a given pattern index.

Figure 5.3 shows the process workflow of the proposed recognition algorithm.

5.1.3.2 Phase 2: Pattern Reconstruction and Recognition

Recognition results obtained by the SI module from all subnets in a DHGN
network require further analysis to derive an overall recall of the respec-
tive input subpattern. Two methods have been considered. These are recall-
percentage and voting methods. These methods differ in terms of the mech-
anism adopted. This research intends to compare and contrast these two ap-
proaches from an accuracy perspective.

5.1.3.2.1 Recall-percentage method The recall-percentage method
underlines the use of bias indices obtained from all neurons in each subnet.
The main principle of this approach is that the recall/store decision is based
on the cumulative decisions of all neurons in the network.

This method requires that an additional procedure be conducted by
each DHGN subnet for the purposes of index collection before final
recognition results are submitted to the SI module. For each subpat-
tern introduced into the subnet and after all of the recognition pro-
cesses have been completed, the activated top neuron will collect all of
the index information (idx) from all of the neurons underneath it. These
indices are be compiled and structured with the format {idx, count}.
These outputs are sent to the SI module using the message format
{snid; (idx1 : count1) , (idx2 : count1) , (idx3 : count1) , . . . , (idxn : countn)} for
all n indices recalled or stored.

Recognition via Divide-and-Distribute Approach 83

FIGURE 5.3: DHGN pattern recognition process workflow. This diagram rep-
resents a DHGN network with three-layer subnets. (With kind permission
from Springer Science+Business Media: Neural Process. Lett., “Distributed
Multi-Feature Recognition Scheme for Greyscale Images,” vol.33, issue 1,
pp. 45-59, (February 2011), Muhamad Amin, A.H., and Khan, A.I., Fig.3,
http://dx.doi.org/10.1007/s11063-010-9163-8.)

84 Internet-Scale Pattern Recognition

An advantage of the recall-percentage implementation for recognition at the
pattern level is the high recall value precision, in terms of the percentages of
pattern indices being recalled. For a given input pattern, the DHGN is able to
provide a precise recall value. The DHGN also has the ability to use previous
input patterns that have been stored in the network to analyze the pattern
composition.

The recall-percentage method also comes with a number of limitations.
These include its effect on the DHGN recognition accuracy, as described in
Section 4.3.2. The nature of the DHGN recognition process implies that a
slight change in the structure of the subpattern will affect the index calculation
of the entire subnet.

The recall-percentage method also raises issues regarding the level of con-
fidence in the outputs of the system. For instance, assuming a recognition
output of a pattern obtained from a DHGN network consists of three pat-
terns previously stored — P1 : 0.4; P2 : 0.3; P3 : 0.3; — the result of this
recognition will favor P1 as the recalled pattern. However, criteria of P2 and
P3 have also been detected in the pattern. Therefore, there is a need to es-
tablish a level of confidence for this type of result from the perspective of
recognition.

5.1.3.2.2 Voting method Most of the existing pattern recognition
schemes apply rejection techniques to remove highly distorted patterns from
its classification procedure. This technique adopts the rejection/accuracy rate
as a parameter to indicate levels of similarity between patterns. The technique
offers a precise means to obtain a good classification measurement. However, it
is most suitable for deployment in a single-decision system, i.e., the classifica-
tion is conducted using a single classifier/recognizer. A decision-making mech-
anism is needed to combine all of the decisions (in terms of accuracy/rejection)
made by each of the classifiers.

One possible method for combining decisions on classification is the voting
method. There are several forms of voting available in the literature. These
include majority, common-consent, unison, and unanimity voting [69, 70]. In
a DHGN implementation, majority voting is used as a means to obtain a com-
bined decision on the recalls made by each of the subnets within a recognition
network.

For each recognition process, whether the input pattern has been recognized
(i.e., recall) or is new to the network (i.e., store) is decided by obtaining
the majority consent from all of the DHGN subnets. For a pattern to be
recalled, the network should confirm that most of the subpatterns belong to
the respective input pattern. The adopted majority voting concept follows the
work by Cruz, Sossa and Barrón [71] and is described in [4].

In this pattern reconstruction and recognition process, the SI module will
initially receive all of the results from the recognition at the subpattern level
in the form of signal messages from the DHGN subnets. After all of these

Recognition via Divide-and-Distribute Approach 85

FIGURE 5.4: Samples of binary character images.

messages are received, the actual recognition process is carried out. There are
two stages involved at this level.

1. All of the indices received from the DHGN subnets for original patterns
are stored in a two-dimensional vector matrix, S = {s11, s12, . . . , smn}.
The width of the matrix is equivalent to the size of the pattern, i.e., m;
the height corresponds to the number of stored patterns, n.

2. The frequency of the indices is calculated for each test pattern. All of the
indices for the test pattern are stored in a vector, R = {r1, r2, . . . , rm}.
The width of the matrix is equivalent to the size of the pattern. If an
entry in vector R gives the list of indices as {1, 2, 2, 2, 1}, this indicates
that three subnets have given a recall result of pattern 2; two subnets
have given a recall result of pattern 1. Therefore, based on the voting
approach, the pattern will be recalled as pattern 2.

To describe the voting mechanism, a simple pattern recognition problem fol-
lows. Figure 5.4 shows four binary character images: A, E, U, and a distorted
version of A.

The binary patterns for characters A, E, U, and the distorted image A, PA,
PE , PU , and PĀ are shown below:

PA =

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

PE =

1 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1

PU =

1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

PĀ =

0 1 1 1 0
0 1 0 1 0
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

86 Internet-Scale Pattern Recognition

TABLE 5.1: Recalled Indices Retrieved from the DHGN Subnets after Each
Pattern Input

DHGN Subnets
k1 k2 k3 k4 k5 k6 k7

Patterns

PA 1 1 1 1 1 1 1
PE 2 2 2 2 2 2 2
PU 3 3 3 3 1 1 2
P d
A 4 1 1 1 1 1 1

Each pattern is decomposed into subpatterns and is sent to the DHGN
subnets for the first level recognition process. In this example, each character
pattern is decomposed into seven subpatterns; each subpattern represents a
row of binary values, as shown below:

PA =

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

→

P 1
A = (00100)

P 2
A = (01010)

P 3
A = (10001)

P 4
A = (11111)

P 5
A = (10001)

P 6
A = (10001)

P 7
A = (10001)

The results of the recognition process from the subpattern level are sent
back to the SI module node. These results, in the form of recalled/new indices
for each subnet, sn, are received by the SI module node and are represented
by a voting matrix, V, shown in Table 5.1.

The results of the recognition processes show that when the character pat-
tern A is introduced, all subnets respond with index 1. This shows that all
subnets agree that this is a newly stored pattern. Similarly, when pattern E
is being introduced, all subnets give feedback with an increase in the index
value, i.e., index 2. Consequently, pattern U obtains various results from the
DHGN subnets. Four out of seven subnets produce a new index, two subnets
recall the index of pattern A, and one gave the index of pattern E. In this case,
the maximum number of recalled/new indices is chosen as the recalled/new
pattern. Similarly, for the distorted pattern A, the index recalled most often
is index 1, which correlates with pattern A. Therefore, pattern A is recalled.

Consider that P is an array of stored patterns, P = {p1, p2, p3, . . . , pm},
wherem represents the number of patterns being stored. For any pattern px to
be recalled, the maximum vote V px

max, is obtained using the following equation:

V px
max = argmax (wx) , x ∈ m (5.8)

Recognition via Divide-and-Distribute Approach 87

where wx represents the voting element of pattern px in the voting vector
WP . Note that the recognition process for each pattern occurs in a single-
cycle containing a fixed number of steps. Additionally, the DHGN can adopt
an unsupervised learning approach, which requires no prior training on pattern
data.

5.2 Dimensionality Reduction in Pattern Pre-Processing

Pre-processing is an important task carried out before any recognition pro-
cedure. To ensure that pattern data are in the specific form required by the al-
gorithm or implementation, pre-processing is a pre-requisite for some pattern
recognition systems. Moreover, to ensure that the data are well-distributed
and do not contain any outlier values, raw pattern data might need to be
normalized before recognition.

Complex data, such as images, environmental sensory readings, and biomed-
ical and biochemical structural data, are usually of high dimensions (more
than one). There are two approaches that can be used to reduce the dimen-
sional complexity of data:

1. Structural reduction: In this approach, the structure of the data is re-
duced to a lower dimension.

2. Content reduction: In this approach, high dimension data are reduced to
an equivalent low-dimension form using a data dimensionality reduction
technique.

In this section, these two approaches are discussed in relation to a DHGN
implementation.

5.2.1 Structural Reduction

Structural reduction in DHGN pre-processing reduces the structural com-
position of patterns from high-dimensional structure to its corresponding low-
dimensional representation. In this approach, pattern data undergoes struc-
tural deformation, but the contents or elements within the pattern remain
intact. Structural reduction works on the premise that the structure of data
is unlikely to be play a significant role in determining the characteristics of
the pattern.

Consider two-dimensional binary images of size 7-by-5 bits, i.e., 35-bit im-
ages, as shown in Figure 5.5. In the structural reduction approach, images
are rearranged into a one-dimensional bit-string. This rearrangement enables
the algorithm to work on patterns in a low structural dimension. From the
perspective of a DHGN implementation, this approach enables each subnet to

88 Internet-Scale Pattern Recognition

FIGURE 5.5: Structural reduction on binary character images into one-
dimensional bit-string representation.

conduct the recognition process using a simple one-dimensional DHGN subnet
structure. Therefore, it reduces the structural complexity of the DHGN sub-
nets in the network. An advantage of using this structural reduction approach
is that it reduces the structural complexity of patterns while maintaining the
integrity of the contents or elements of the patterns. Thus, the content infor-
mation in each pattern is preserved.

A limitation of this approach is the loss of structural information related
to the pattern. The structure of the pattern or data is unknown to the sys-
tem. Consider the images in Figure 5.5. The DHGN pattern recognizer does
not know that the image represents a character “E.”Rather, it acknowledges
the bit information and its association between neighboring pixels in a one-
dimensional formation.

5.2.2 Content Reduction

In content reduction, more generally known as the dimensionality reduc-
tion approach, features are selected or extracted from the data and are used
in the pattern recognition system. It also transforms the data from a high-
dimensional space to its equivalent low dimension format. Examples of dimen-
sionality reduction techniques include Principal Components Analysis (PCA),
the Linear Discriminant Analysis (LDA), Local Linear Embedding (LLE), and
Kohonen maps.

The dimensionality reduction approach allows the recognition system to
obtain the best and most cost-efficient data representation of the original raw

Recognition via Divide-and-Distribute Approach 89

data obtained from sensory devices or the surroundings. However, some di-
mensionality reduction techniques require expensive computations for feature
processing, selection, and extraction.

There are other techniques that have been proposed for dimensionality re-
duction that incur a low-level of computational complexity. For instance, in
content-based image retrieval (CBIR), histograms and signatures are com-
monly used for dimensionality reduction for images retrieved using color fea-
tures [72].

5.3 Remarks on DHGN DPR Scheme

This chapter has presented the Distributed Hierarchical Graph Neuron
(DHGN), an approach proposed for distributed pattern recognition. The
DHGN implements a divide-and-distribute technique for the HGN networks.
The single-cycle learning and in-network processing features of GN-based algo-
rithms in the DHGN lead to an efficient recognition scheme that has high recall
accuracy [4]. Furthermore, because of its ability to distribute the recognition
process across a computational network, the recognition times of the DHGN’s
distributed pattern recognition scheme are low and stable. The DHGN is able
to lower the storage capacity and communication complexities of the pattern
recognition process. In addition, the two-level recognition implemented in the
DHGN algorithm offers recognition at both the pattern and subpattern lev-
els, which contributes to the higher recall accuracy for simple and complex
data. Moreover, the use of dimensionality reduction schemes, such as binary
signature, implies low computational requirements for a DHGN deployment.
The extensive works on the DHGN DPR scheme for image and optical char-
acter (OCR) recognition can be reviewed in [4, 46, 73]. Note that the DHGN
scheme discussed in this chapter were being considered for complex data that
have multiple data values and dimensions. This consideration will be further
discussed in Part IV of this book.

Part III

Systems and Tools

91

Chapter 6

Internet-Scale Applications
Development

Since the advent of Internet andWorld Wide Web (WWW) technologies in the
mid-1990s, we have witnessed the explosive growth of distributed applications
ranging from business applications, such as e-commerce, financial services,
and healthcare, to engineering and scientific applications, such as industrial
automation, event detection, and biomedical diagnosis. There are two forces
driving this growth: the availability of multiple distributed system models
and the development of different types of parallel programming techniques.
The availability of several distributed models enables system developers to
consider the best approach to address requirements specific to a user. Paral-
lel programming techniques allow developers to customize the parallelization
scheme to address a specific problem and to a develop system or application
software that is deployable and scalable with the expansion of data. Significant
attention should be paid to the distributed system models and programming
techniques used to develop Internet-scale pattern recognition schemes in dis-
tributed applications. These aspects ensure the scalability and efficiency of
the recognition schemes when processing large-scale and complex data.

In this chapter, we will discuss the two forces driving the expansion of
distributed applications for Internet-scale environments. We will present ex-
amples of distributed models and parallel programming techniques that are
commonly used in distributed applications development.

6.1 Distributed Computing Models for IS-PR

In this section, a number of existing distributed computing models will be
presented. These include the commodity grid, cloud computing, and peer-to-
peer (P2P) computing. These distributed models are extensions of conven-
tional distributed system models, such as the client-server and processor-pool
models, and were developed to provide a more scalable approach for complex
and large-scale computational applications.

93

94 Internet-Scale Pattern Recognition

6.1.1 Commodity Grid (CoG)

The evolution of grid computing has led to the development of grid soft-
ware, which coordinates the requirements of the grid environment. Software
for the grid must address various issues, such as virtualization, security, re-
source, data and information management. Commodity-Grid Middleware pro-
vides end-users the ability to access and process information across the grid
environment. Commodity Grid is derived from the merger of commodity com-
puting and grid computing technologies. Distributed computing technologies,
such as JINI, CORBA, and DCOM, originated from commodity computing.
The integration of commodity and grid service technologies aims to enhance
the functionality, maintenance, and deployment of grid services. The Com-
modity Grid (CoG) Project [74] is an initiative to develop commodity-grid
services. CoG offers an end-to-end solution for grid workflow management. It
also provides the architecture for grid-enablement of different types of appli-
cations.

6.1.1.1 Java CoG Kit

The Java CoG Kit is a tool for developing a grid workflow management
system. It was derived from the CoG Project. The CoG Kit provides end-
users an abstraction of the services provided by a grid system. The end-users
are not required to know the underlying processes of the system. Their only
requirement is to input data into the grid and receive the outputs. The Java
CoG Kit provides process abstraction and workflow management using a lay-
ered approach. Figure 6.1 shows the layered approach of the Java CoG Kit
adopted from [75].

Note that there are a number of services underneath the layered architec-
ture that can be accessed by the end-users. In addition, the Java CoG Kit
allows the integration of several grid middleware products. The Java Cog
Kit provides abstractions for some processes, such job execution, file trans-
fer, workflow abstraction, and job queuing. The Java CoG Kit introduces the
concept of Gridfaces. Gridfaces offer abstractions with respect to the locality
of the services provided in the grid. For instance, a grid end-user may browse
a remote grid directory to locate a stand-alone application or grid portal.

6.1.2 Cloud Computing

Cloud computing is a new computing paradigm. In business perspective, it
allows users to tap into tremendous computing resources on pay-per-use basis
without any needs to invest in new infrastructure, training new personnel, or
licensing new software. In scientific computing perspective, cloud eventually
derived from grid computing paradigm in which a collaboration of computing
resources being made available for users, similar to the analogy of power grid
made available to each household.

Internet-Scale Applications Development 95

FIGURE 6.1: Java CoG Kit layered approach for service abstractions.

6.1.2.1 Cloud versus Grid

The evolution of distributed systems has shifted from infrastructure-
oriented architecture to service-oriented architecture. Figure 6.2 shows this
change in perspective in detail. With the advent of networking technologies,
the style of computing has also changed. The collaboration of services de-
ployed across different computing networks and the capability of using these
services without platform or infrastructure limitations have shifted computing
to a large scale.

FIGURE 6.2: The evolution of the distributed computing paradigm from the
perspective of the Internet infrastructure.

96 Internet-Scale Pattern Recognition

Apart from the systems point of view, cloud computing also has its origin
from the Internet infrastructural perspective. The cloud computing capability
is derived from the advancement of Internet and web technologies. In addi-
tion, cloud computing has benefited from the rapid development of communi-
cation technologies. Through large-scale network deployments, such as a grid,
wide-area networks (WAN), and the Internet, users are able to do large-scale
computations using either dedicated or shared network resources.

6.1.2.1.1 Definitions The term grid computing was coined in the mid-
1990s to describe technologies that allow consumers to obtain computing re-
sources on demand. These services were initially intended for advanced sci-
ence and engineering applications. A well-structured definition of cloud com-
puting was introduced by Foster et al. [76]: “A large-scale distributed com-
puting paradigm that is driven by economies of scale, in which a pool of ab-
stracted, virtualized, dynamically scalable, managed computing power, storage,
platforms, and services are delivered on demand to external customers over
the Internet.”

Cloud computing can be differentiated from other existing distributed sys-
tems in the following ways:

• Cloud computing is massively scalable. Resources can be instantaneously
added and/or removed.

• Cloud computing is driven by economies of scale.

• Cloud computing can deliver different levels of services to customers
and offers abstraction of implementation, i.e., users are unaware of the
details of the underlying application deployment.

6.1.2.1.2 Cloud addresses grid limitations Heterogeneity is an im-
portant issue in grid computing implementations. Large sets of heterogeneous
hardware and software owned by different organizations with different usage
policies pose a challenge to grid-based applications. Middleware applications
and libraries on top of the grid fabric offer a mechanism for homogenization.
However, difficulties still arise in cross-grid applications that run across differ-
ent numbers of virtual organizations (VOs). In normal configurations, users
are likely to be entangled in complex resource management and facilitation
tasks.

In contrast, cloud systems emerged to provide a determined set of capabil-
ities to the users; interface is the purpose of the design. These systems are
often developed using a top-down design, in which the usability of the inter-
face, i.e., the application, is the primary goal. Furthermore, cloud systems can
be developed on top of existing grid infrastructures. Table 6.1 shows some of
the differences between cloud and grid systems, as described by Foster et al.
[76].

Internet-Scale Applications Development 97

TABLE 6.1: Similarities and Differences between Cloud and Grid Systems

Perspective Grid Cloud

Bottom up: From existing Top-down: From interface design

Design heterogeneous resources to towards hardware and computing

development of abstraction resources development and

layers for general usage. management.

Business Project-oriented: Users have Consumption basis: Customers

Model an allocation of service pay providers for the amount

units that they can spend. of services used.

Support different types of Support different types of applications:

Application applications: From high performance However, it is unlikely to support HPC

Model computing (HPC) to high applications. Applications can be

throughput computing (HTC). loosely coupled, transaction-oriented,

and interactive.

Compute Batch-scheduled: Users submit batch Interactive: Resources are shared by

Model jobs (via GRAM) to request all users at the same time.

resources for a period of time.

Virtual data in data grids: Virtual Data are shared between cloud and

Data data captures the relationship client computing

Model between data, programs, and

computations and prescribes various

abstractions within the data grid.

6.1.2.2 Cloud Services

Cloud services are usually provided at three different levels, namely infra-
structure, platform, and software. Infrastructure as a Service (IaaS) offers
hardware, software and other equipment to deliver application environments
with a resource usage-based pricing model. An example of this type of service
is Amazon’s Elastic Cloud Computing (EC2). These services provide public
access to computing and storage resources under pay-per-use model. In IaaS,
the cloud infrastructure scales according to the application resource require-
ments.

Platform as a Service (PaaS) provides users the capability of developing
and deploying custom applications on the cloud. PaaS provides an integrated
environment for software development and testing. An example of PaaS is
Google’s App Engine, which enables users to build web-based applications for
systems that run Google applications.

Software as a Service (SaaS) focuses on providing special-purpose software
that consumers can access through the Internet based on a usage-based pric-
ing model. An example of this type of service is Salesforce.com. Salesforce.com
offers CRM (Customer Relationship Management) services. At present, Sales-
force.com also delivers IaaS and PaaS services.

98 Internet-Scale Pattern Recognition

A wide range and variety of applications can be deployed on a cloud infra-
structure. Consequently, data distribution and organization must be highly
efficient. However, highly scalable data management schemes are in their in-
fancy. Our aim is to offer a solution for existing data management schemes
that are highly scalable and adaptive to dynamic changes in the applications
environment of the cloud.

Cloud systems overcome the limitations of existing grid implementations
by providing different levels of services in response to the users’ requirements.
Cloud systems can be deployed on top of existing grid infrastructures by
providing an abstraction interface, which hides its complexities from the users.
It is our hope that the future of cloud computing includes greater utilization
of existing grid infrastructure.

6.1.3 Peer-to-Peer (P2P) Computing

The term “peer-to-peer (P2P) computing”was coined during the turn of the
twenty-first century and refers to a system that utilizes distributed resources to
perform functions in a fully decentralized manner. The P2P computing model
enables direct resource sharing between peers [77]. This capability makes a
system built on the P2P platform cost efficient and effective. In grid comput-
ing, the participants might be clusters or high performance desktops that are
administered under a well-defined policy and trust. In contrast, a P2P com-
munity comprises diverse and anonymous participants with fewer restrictions.
A node can join and leave a P2P network without facing any bureaucracy,
and some P2P networks can scale up to hundreds of thousands or even mil-
lions of peers. More scalability means that more resources can be shared.
Unfortunately, this scalability comes with the trade-off of a dynamic network.
However, the peers in most of the available P2P systems are self-organized
and are able to recover automatically in the event of peer failure. A P2P
network operates without a server, i.e., all communicating peers are equal,
which reduces the risk of a single point of failure. The fault tolerance of the
system is ensured through data redundancy. A P2P network is more econom-
ical than a centralized or grid-based system because there is no server, which
is expensive to acquire and maintain, and the peers are not required to be
powerful machines with better connections, which must be maintained. How-
ever, P2P networks are challenged by data within the network because there
is no authority to monitor the network. Specifically, several issues arise in
file-sharing such as content pollution, out-of-control dissemination of sensitive
data, malicious peers, and copyright infringement.

P2P computing provides an alternative to existing client-server models. It
has a scalable resource sharing capability. Figure 6.3 compares a high-level
view of interconnectivity in a P2P computing model with a client-server ap-
proach. Current research efforts in P2P computing are focused on the devel-
opment of a dynamic file-sharing system. However, its real potential could lie

Internet-Scale Applications Development 99

FIGURE 6.3: High-level views of a P2P computing model (left) and a client-
server model (right).

far beyond this simple function. It might be possible to use P2P for complex
operations, such as collaborative processing, in large-scale problems.

Some of the goals for the P2P system described in [78] include the following:

• Cost sharing/reduction: Reduces the operational costs associated with
large and centralized resources by distributing these resources to peers.

• Improved scalability/reliability: The scalability and reliability of P2P
systems are enhanced using innovative algorithms for resource discovery
and search.

• Resource aggregation and interoperability: Because of its ability to ag-
gregate resources, computationally expensive applications can be effi-
ciently performed in a P2P system, e.g., distributed systems such as
SETI@home.

• Increased autonomy: Each node in a P2P system has full autonomy on
the resources that reside on the network, without depending on a central
server.

• Anonymity/privacy: Users can hide their profiles.

• Dynamism: The computing environment within a P2P system is as-
sumed to be highly dynamic, i.e., resources, such as compute nodes,
continuously enter and leave the system.

• Enabling ad-hoc communication and collaboration: The dynamism of
P2P systems allows for ad hoc communication and peer-to-peer collab-
oration.

100 Internet-Scale Pattern Recognition

FIGURE 6.4: Inter-process communication approaches for a distributed com-
puting environment.

6.2 Parallel Programming Techniques

In this section, we will briefly discuss two parallel programming domains
that are commonly used in distributed computing environments: message pass-
ing interface (MPI) and graphical processing unit (GPU) programming. These
programming techniques enable communications between processes to be per-
formed in a distributed and parallel manner and allow these processes to use
shared or distributed resources across the entire computational network.

6.2.1 Message-Passing Scheme

Message-passing is a communication procedure through which two or more
processes share information. This approach is a type of inter-process commu-
nication, in which information is shared by means of message communications.
Message-passing is different from the shared data approach, in that each pro-
cess is capable of sending and receiving information rather than accessing a
common repository of shared data (see Figure 6.4).

A message-passing system provides a set of message-based inter-process
communication (IPC) protocols, which shield the details of complex net-
work protocols and multiple heterogeneous platforms from programmers. The
system enables processes to communicate by exchanging messages. Message-
passing programs are written using simple communication primitives, such as
send and receive. The message-passing scheme serves as a suitable infrastruc-
ture for building higher level IPC systems, such as RPC (Remote Procedure
Call) and DSM (Distributed Shared Memory).

There are a number of desirable features for a good message-passing scheme.
These include the following:

• Simplicity: The scheme should be easy to understand and comprehend.
It should not have complex communication procedures. The sole purpose
of message passing is to ensure information can be exchanged between
one or more processes.

Internet-Scale Applications Development 101

FIGURE 6.5: Different types of failures in message communication.

• Uniform semantics : Local and remote communications should imple-
ment similar primitives for data exchange.

• Efficiency: A good message-passing scheme minimizes the number of
messages communicated between processes. For efficiency, some opti-
mization is typically adopted. For example, avoiding the cost of estab-
lishing and terminating connections between the same pair of processes
for each and every message exchange between them; minimizing the cost
of maintaining connections; and piggybacking the acknowledgment of a
previous message on the next message.

• Reliability: Message passing schemes must be able to handle lost and
duplicate messages. Fault tolerance and error control approaches should
be considered. There are three types of communication failures that
require full consideration by the message passing system developers:
lost request message, lost response message, and unsuccessful execution
of the request. Figure 6.5 illustrates each of these failures.

6.2.1.1 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a set of specifications that details the
message passing libraries for developers and users. MPI by itself is not a li-
brary. It is the specification of what such a library should be. The goal of Mes-
sage Passing Interface is to provide a widely used standard for writing message
passing programs. The interface provides a practical, portable, efficient, and
flexible standard for the development of message passing applications.

For the development of parallel programs, MPI offers a number of benefits:
standardization, portability, performance opportunities, enhanced functional-
ity, and different forms of availability. In the context of standardization, MPI is
the only message passing library considered to be a standard. It is supported
by all major platforms and many specialized high-performance computing
(HPC) systems. Practically, it has replaced all previous message passing li-
braries, such as OpenMP. Developers are not required to modify message

102 Internet-Scale Pattern Recognition

FIGURE 6.6: General MPI program structure

passing source code when porting a program to a platform that supports or
is compliant with the MPI standard. In addition, MPI offers great function-
ality for message passing. In MPI version 1 (MPI-1), there are over 115 mes-
sage passing routines. In MPI-2, these routines have been extended to include
other key functionalities, such as dynamic processes, one-sided communica-
tion, and parallel I/O. There are a variety of MPI implementations available
through both the vendor and public domains. These includeMPICH/MPICH-
2 (Argonne National Laboratory), LAM MPI (Indiana University, USA), and
OpenMPI (collaborative project between academic and business institutions).

MPI is native to the ANSI C programming language. However, there have
been several initiatives to implement MPI using languages such as C++ (MPI-
2 provides such capability, see [57]) and Java [79]. Figure 6.6 shows a common
MPI program structure.

The MPI specification lends itself to virtually any distributed memory par-
allel programming model. In addition, MPI is commonly used to implement
(behind the scenes) shared memory models, such as data parallelism, on dis-
tributed memory architectures. MPI can be executed on different hardware
platforms, e.g., distributed memory, shared memory, or even hybrid shared-
distributed systems. In the MPI implementation, all parallelism is explicit,
i.e., the programmer is responsible for identifying parallelism and implement-
ing parallel algorithms using MPI constructs. In addition, the number of tasks
dedicated to run a parallel program is static. New tasks cannot be dynamically

Internet-Scale Applications Development 103

FIGURE 6.7: Comparison of the number of CPU and GPU cores (adapted
from [80]).

spawned during run time. This limitation was addressed by MPI-2 specifica-
tion.

6.2.2 GPU Programming

GPU programming is a set of tools and techniques for developing GPU com-
puting applications. For scientific and engineering applications, GPU comput-
ing utilizes the graphical processing unit as a co-processor to accelerate CPU
performances. This is achieved by off-loading computationally intensive and
time-consuming portions of the programming code from CPU to GPU. From
the user’s perspective, applications run faster when the massively parallel pro-
cessing power of GPU is harnessed.

Compared with the CPU, GPU contains more core processing units that
are smaller in size. A typical CPU consists of four to eight cores, while a GPU
comprises hundreds of smaller cores. Figure 6.7 shows an abstract comparison
between CPU and GPU cores (adopted from [80]). As an example, the Intel
Xeon processor has 108 million transistors, while the Radeon R300 GPU has
110 million transistors, and the GeForce FX GPU has 125 million transis-
tors [81]. The numbers of transistors in these GPU units outnumber those in
current CPUs.

In regards to the programming perspective, there are two parallel program-
ming models that are commonly used to implement GPU applications. These
are CUDA by NVIDIA and OpenCL.

104 Internet-Scale Pattern Recognition

FIGURE 6.8: Conversion of a normal loop condition to an OpenCL kernel.

6.2.2.1 CUDA

CUDA is a set of proprietary API and language extensions for GPU pro-
gramming that works on NVIDIA’s GPUs. CUDA can be used via the runtime
API or the hardware API [82]. The runtime API provides C-like routines and
extensions for application development. The hardware API provides more flex-
ibility, in that it offers low-level control of hardware, but requires more code
and programming effort. Both CUDA and OpenCL implement a piece of code
that runs on GPU, known as the kernel. CUDA can be written in high-level
programming languages such as C, C++, and Fortran.

6.2.2.2 OpenCL

Open Computing Language (OpenCL) [83] is a GPU programming model
that can be used on multiple platforms. OpenCL implements a C-like language
for programming compute device programs. The key feature of OpenCL is
portability. Unlike a CUDA kernel, an OpenCL kernel can be compiled at
runtime, which would add to an OpenCL’s running time. Because OpenCL is
intended for different GPU platforms, its kernel can be developed based on the
specific platform to be used. Figure 6.8 shows the conversion of a sequential
program to OpenCL.

6.3 From Coding to Applications

In this chapter, we have discussed system models and programming lan-
guages that can be used to develop Internet-scale applications. By harness-
ing the tremendous potentials of the distributed system architecture, which
range from high-speed Internet connectivity to inter-process communications
in GPU computing, we are able to develop scalable systems that can adapt

Internet-Scale Applications Development 105

to the scale of data. Because we are moving rapidly toward extremely large
scale data generation, scalability is an important issue to be addressed. It has
been reported that Amazon Web Services (AWS) estimates that its S3 storage
service will soon have more than a trillion objects in storage and be capable of
handling a million requests per second [84]. Therefore, distributed and parallel
programming techniques and models must be developed for future system and
application developers.

Part IV

Implementations and
Applications

107

Chapter 7

Multi-Feature Classifications for
Complex Data

Pattern recognition involves a set of processes to define similarities and/or
differences between two or more patterns. Patterns or data must be evaluated
or measured to find distinctive characteristics. The first step in any pattern
recognition scheme is to identify measurable quantities or characteristics of
patterns that match a specific class of data. These measurable quantities are
known as features. According to Theodoridis and Koutroumbas [85], features
can be defined as a set of measurements used for recognition and classifica-
tion. These measurements form a feature vector that is used for recognition
purposes. In image recognition, examples of features include colors, edges, and
spectrum frequencies.

Pattern recognition, as described in the previous chapters, is a series of
processes including data acquisition, data pre-processing, and classification
[86]. Each data presented for recognition is assigned to the data class that most
closely matches the features of the data. These features are extracted before
any classification/recognition process takes place. The extraction process is
performed during the pre-processing stage of pattern recognition. In existing
pattern recognition schemes, the number of features used tends to be very
large. A phenomenon known as the “curse of dimensionality” arises as a result
of the high dimensionality of the computational space.

This chapter focuses on pattern recognition schemes involving multiple fea-
tures. A multiple-feature implementation enables a holistic approach to the
pattern recognition procedure that takes into consideration all significant fea-
tures representing a particular set of patterns, such as images and sensor read-
ings. This multi-feature consideration is important when considering complex
data in an Internet-scale environment. The multi-feature approach was de-
signed to reduce the bias effect caused by selecting only a single feature for
classification/recognition purposes. To avoid the curse of dimensionality, cur-
rent approaches in pattern recognition require a significant amount of effort
to analyze different forms of features. This effort limits their ability to seam-
lessly and effectively perform recognition and classification on complex data
sets. Furthermore, the computational complexity of most existing schemes
inhibits their ability to scale up to an increasing number of features.

It is envisioned that the distributed approach can be implemented in
Internet-scale pattern recognition involving multiple features. It is argued that

109

110 Internet-Scale Pattern Recognition

a set of distributed computational networks working collaboratively can scale
the pattern recognition scheme in response to an increasing number of features.
In addition, the performance of this multi-feature scheme can be improved
by a single-cycle learning distributed pattern recognition algorithm, such as
the DHGN. In contrast to other contemporary machine learning approaches,
our approach allows induction of new patterns in a fixed number of steps.
While doing so, it exhibits a high level of scalability, i.e., the performance
and accuracy do not degrade as the number of stored patterns increases.
The pattern recognition capability remains comparable with contemporary
approaches, such as the support vector machine (SVM), self-organizing map
(SOM), and artificial neural network (ANN). Furthermore, all computations
are completed within the pre-defined number of steps. The one-shot learning
in this method is achieved by sidestepping the commonly used error/energy
minimization and random walk approaches. The network functions as a ma-
trix that holds all possible solutions for the problem domain. The DHGN
approach finds and refines the initial solution by passing the results through
a pyramidal hierarchy of similar arrays. In doing so, it eliminates/resolves
pattern defects; distortions up to 20% are tolerated [64]. Previously encoun-
tered patterns are revealed and new patterns are memorized without the loss
of stored information. In fact, the pattern recognition accuracy continues to
improve as the network processes more sensory inputs [3].To achieve this goal,
the DHGN distributed pattern recognition algorithm is extended for multi-
feature recognition and the analysis of complex data.

7.1 Data Features for Pattern Recognition

Consider the data representation shown in Figure 7.1. Using the mean pixel
value as a feature for a set of images, we are considering the following one-
dimensional problem: determine to which class a particular image belongs.
However, as another feature is added, e.g., the standard deviation of the pixel
value, additional computation is required to determine the correlations be-
tween features that produce distinctive classes of images. As more features are
added, the computational costs of determining the correlations become pro-
gressively higher. According to Theodoridis and Koutroumbas [85], although
two features may carry good classification if treated separately, their high
mutual correlations implies that there is little gained by combining these fea-
tures in the feature vector. The increased complexity does not benefit the
recognition process.

In classification algorithms of existing pattern recognition schemes, the
number of features directly translates to the number of classifier parame-
ters. Therefore, increasing the number of features leads to complexity. The

Multi-Feature Classifications for Complex Data 111

(a) Mean pixel value. (b) Mean pixel value, µ vs.
standard deviation, σ.

FIGURE 7.1: Data feature representation for a set of images.

algorithm must determine and continue to adjust synaptic weights during the
recognition process [87]. To ensure the efficiency of the recognition scheme, it
is imperative that the number of features be kept to a minimum. Neverthe-
less, selecting features for recognition is a complex process that needs to be
performed objectively.

To address the curse of dimensionality, current approaches extend the recog-
nition process by introducing a feature selection mechanism to select the fea-
tures that best represent the entire data set. However, dimensionality reduc-
tion adds to the complexity of the recognition processes and requires the use of
costly algorithms, such as the principal component analysis (PCA). Further-
more, erroneous feature selection can affect the accuracy of the recognition
scheme. A simple recognition scheme that is capable of analyzing more than
one feature and does not use a feature selection mechanism to determine the
best features for data representation is needed.

7.2 Distributed Multi-Feature Recognition

The scalability of commonly used pattern recognition techniques involving
multiple features usually deteriorates as the number of training and testing
data sets increases. In this chapter, we will look at multi-feature recognition
by including the distributiveness that occurs in natural schemes. The DHGN
algorithm has been modeled with a fully distributed approach for recogni-
tion using multiple data features. The following subsections will describe the
distributed DHGN scheme for multi-feature recognition.

The DHGN multi-feature scheme conducts distributed pattern recogni-
tion using features obtained from pattern data through a feature extraction
method. It provides a scalable approach; the number of features required for

112 Internet-Scale Pattern Recognition

FIGURE 7.2: DHGN multi-feature recognition scheme, a collection of DHGN
networks that analyze patterns using multiple sets of features.

recognition can be extended provided sufficient computational resources are
available. The number of features, f , is directly proportional to the computa-
tional resources available for the recognition scheme, c; f ∝ c. These resources
are in the form of distributed computational networks, which provide greater
scalability for recognition purposes.

7.2.1 Conceptual Design and Implementation

The design for multi-feature recognition comprises a collection of DHGN
networks. Each network performs a distributed recognition scheme for a single
feature. Figure 7.2 presents the DHGN multi-feature recognition approach.

In this configuration, a coordinator node is used for data acquisition and
networks coordination. This node communicates the patterns received to the
SI module node on each DHGN network. Each SI module has a copy of the
pattern set for the recognition process. The SI module starts the recognition
process by generating a single feature obtained from the input patterns. The
feature data are used as a pattern for recognition purposes. The rest of the
recognition procedures in each network are similar to the original DHGN
scheme. The results for each recognition process conducted by each DHGN
network are sent to its respective SI module. Each SI module produces a result
for the recognition/classification of each pattern in context with the operator-
specific accuracy parameter(s). These parameters can include recall, precision,
and error values. The results are passed to coordinator node, and the error is

Multi-Feature Classifications for Complex Data 113

calculated. The error per test object, Perr, for a given number of test objects
ot is calculated for each feature using the following equation:

Perr =
F+ve + F−ve

ot
(7.1)

where F+ve and F−ve represent the number of false positives and negatives,
respectively.

The following scenario illustrates recognition accuracy calculations based
on error values. There are a series of patterns, P , containing n classes, P =
{p1, p2, . . . , pn}, and a set of features, F = {f1, f2, . . . , fm}. For each pattern
class, px, x = 1, 2, . . . , n, select the feature, fy, y = 1, 2, . . . ,m that minimizes
the recognition error, errfx , for all test patterns. The recall accuracy, rpx

, for
each pattern class is derived using the following equation:

rpx
= argmin {errf1 : errfm} , x = 1, 2, . . . , n (7.2)

Note that the minimum error is not the only parameter that can be used to
determine the most effective recall accuracy for multi-feature pattern recogni-
tion. Other parameters include the normal mean, median, standard deviation,
and other statistical estimations, such as Bayes and maximum-likelihood es-
timators.

7.2.2 Complexity Estimation

In multi-feature recognition using the DHGN distributed pattern recog-
nition (DPR) scheme, the approach applied to recognizing features in each
pattern is similar to the original DHGN implementation described in Chapter
5. Therefore, the complexity of the basic recognition function (for recognition
at the subpattern level) is as low as the originally proposed scheme. However,
in the multi-feature scheme, the voting mechanism is applied at two levels,
i.e., at the SI module and the coordinator nodes.

At the SI module node, voting determines the matched pattern class for a
given pattern. At the coordinator node, voting selects the feature that gives
the optimal value for the specified accuracy parameter.

7.2.2.1 Voting Scheme at the SI Module

The voting scheme applied at the SI module assigns the test pattern into
a specific pattern class, based on a similar characteristic or feature value.
Inputs to this voting process are the indices retrieved from all of the DHGN
subnets. Each SI module handles a specific feature for a particular dataset. The
maximum voting scheme in this DHGN implementation finds the maximum
number of similar indices returned from the subnets. The voting scheme has
two stages, namely vote counting and maximum vote search.

114 Internet-Scale Pattern Recognition

In the vote counting process, the SI module performs an index-matching
process to compare the index obtained from the test pattern with the indices
of patterns stored for each pattern class. The following pseudocode illustrates
this process:

Algorithm 3 SI Module Voting Scheme

1: for i = 1 to MaxTestPatternNo do
2: for j = 1 to MaxSubnetNo do
3: for k = 1 to MaxStoredPatternNo do
4: if i.index ≡ k.index then
5: k.vote ++
6: end if
7: end for
8: end for
9: end for

The complexity of this process can be further analyzed using a Big-O anal-
ysis. We can deduce that the complexity of the vote-counting process is n-
polynomial, where n = 3. Given a vote-counting function f (vcnt), its com-
plexity in Big-O notation is as follows:

f (vcnt) = O
(

n3
)

(7.3)

Where n represents a single executable instruction in the function. After
the numbers of votes are counted, the SI module performs a search function
to identify the pattern class that has the highest votes for the tested pattern.
This function will execute a linear search to find the maximum number of
votes.

7.2.2.2 Voting Scheme at the Coordinator Node

The voting scheme at the coordinator node is used to select the best accu-
racy parameter of a feature from a collection of available features that have
been used in earlier recognition schemes implemented on multiple DHGN net-
works. Each SI module will communicate the results of the recognition of
features as patterns to the coordinator node for further analysis. The coor-
dinator stores all of the accuracy parameters received from the SI modules.
Table 7.1 shows a sample of errors obtained from two SI module nodes for
each feature, on five different pattern classes.

Based on the values obtained from Table 7.1, we can conclude that Feature
1 is the best feature to represent pattern classes 1, 3, and 4 because its errors
are less than the errors of Feature 2. Pattern classes 2 and 5 are likely to
be represented by Feature 2. The voting function in the coordinator node

Multi-Feature Classifications for Complex Data 115

TABLE 7.1: Examples of Data Obtained from SI Modules, in the Form of
Errors for Each Feature

Feature
Pattern Class

1 2 3 4 5
1 5.26 4.25 1.78 0.85 3.99
2 21.03 3.25 9.36 10.05 2.01

represents linear search complexity. The following pseudocode outlines the
coordinator’s voting function:

Algorithm 4 Coordinator Voting Scheme

1: MinFeature = 99.99
2: for i = 1 to MaxPatternClass do
3: for j = 1 to MaxFeatureNo do
4: if i.j.FeatErr ≤MinFeature then
5: MinFeature = i.j.FeatErr

6: end if
7: end for
8: end for

This algorithm is used to find the minimum error obtained from the recog-
nition process for each feature. Similar to the vote counting function in the
SI module nodes, we can derive a Big-O notation for the coordinator’s voting
function, f (vmin) as a n-polynomial function with executable instructions,
n = 2. Therefore, the following Big-O notation applies:

f (vmin) = O
(

n2
)

(7.4)

Figure 7.3 shows the estimated execution time for the voting function for
10,000 pattern classes as a function of the number of features used, nfeat. It
is assumed that the computation time of an instruction is 1 μs. Note that
the minimum voting function takes only one second to select the lowest error
from 100 features on 10,000 pattern classes (trained patterns). This voting
process exhibits higher scalability for recognition through the distribution of
recognition procedure on a group of collaborative DHGN networks.

The DHGN multi-feature recognition scheme allows recognition to be per-
formed in a scalable manner, extending its capability of using multiple pat-
tern features in the recognition procedure. By having a distributed architec-
ture in the recognition scheme, the DHGN provides an avenue for recogni-
tion/classification to be executed in a highly scalable manner, while main-
taining its low computational complexity. However, the proposed pre- and

116 Internet-Scale Pattern Recognition

FIGURE 7.3: Estimated execution time for minimum voting function in the
coordinator node for 10,000 pattern classes as a function of the number of
features.

post-processing mechanisms described in this section do not entail a rigid
framework. Different types of data analysis and feature extraction can be ac-
commodated in this scheme. The DHGN multi-feature scheme is considered to
be commodity application that can be used in different application domains.

7.3 Handwritten Object Classification with Multiple
Features

In this section, we demonstrate the capabilities of the DHGN distributed
scheme as a single classifier for combined multi-feature pattern recognition on
handwritten character objects. A comparative evaluation with previous work
performed by Duin and Tax [88] will be discussed. Note that this work on the
DHGN multi-feature scheme is not intended to showcase an optimal solution
with high accuracy for complex pattern recognition. Rather, this study was
carried out to provide an alternative scalable pattern recognition scheme for
multi-feature patterns.

Multi-Feature Classifications for Complex Data 117

FIGURE 7.4: MNIST character “2” data set.

7.3.1 Handwritten Object

A handwritten object is a character representation based on a set of lines
and strokes captured by an optical reader during a manual handwriting pro-
cess. Some of the basic features of handwritten objects include aspect ra-
tio, pixel percentages, number of strokes and position of the character on
the specified axes. To classify handwritten objects, a recognition procedure is
conducted using one or more of these features. Because of patterns complex-
ity, the recognition process for handwritten objects takes into account more
than one feature. Some of the available handwritten object data sets also use
other numerical features, such as Fourier coefficients, Zernike moments, and
morphological features.

There are a number of handwritten object databases available, including
the MNIST database introduced by LeCun et al. [89]. Figure 7.4 shows a
training data set for the character “2” of the MNIST data set.

One of the commonly used data sets is the handwritten numeral characters
extracted from a set of Dutch utility maps. This data set comprises ten classes

118 Internet-Scale Pattern Recognition

TABLE 7.2: Discretization of Feature Data Using Variable-Binning Methods

Bins

Feature min max µ 1 2 3 4 5

Zernike 0.0011 777.86 88.64 ≤25 26-50 51-90 91-400 401-800

Fourier 0.0002 0.7965 0.1320 ≤ 0.001 0.002-0.05 0.06-0.14 0.15-0.50 0.51-0.80

of characters ranging from numerals “0” to “9.” Each class holds 200 objects.
It is publicly available from the UCI Machine Learning Repository [90].

7.3.2 Classification Procedures

The classification process in our proposed DHGN multi-feature scheme in-
volves a series of single-cycle stages that have been applied to the feature
data set of numeral characters described earlier. A three-stage process was
considered in the recognition scheme: feature pre-processing, recognition, and
results evaluation. It should be noted that our proposed scheme implements
a single-classifier for multi-feature recognition. The following subsection will
detail out these implementation stages.

7.3.2.1 Stage 1: Feature Pre-Processing

In the pre-processing stage, all selected features undergo a discretization
process to transform continuous feature values into a discrete format. This
process is a pre-requisite for the existing DHGN scheme that implements the
recognition procedure using discrete-format data.

Discretization was performed on the feature set using a binning approach.
For each feature set, a number of bins (thresholds) were defined within a range
of values. These bins were created based on the parameter values obtained
from the whole feature set. Table 7.2 shows a sample of the bins defined for
two of handwritten object features: Zernike moments and Fourier coefficients.

The discretization process reduces the feature data composition by trans-
forming the feature set from a continuous to a discrete data space. This reduces
the complexity of the data set used in the recognition procedure. However,
because the actual values are lost during the conversion, the discretization
process results in an inaccurate data representation.

The output of the discretization process is a set of patterns for each feature.
These patterns correspond to the test objects used in the tests. Table 7.3
shows a sample of patterns for the Zernike moment feature obtained from
the discretization process. The size of the patterns reflects the number of
values/coefficients for each feature; the dimension of patterns corresponds to
the number of bins, i.e., 5.

Multi-Feature Classifications for Complex Data 119

TABLE 7.3: Pattern Samples of the Zernike Moment Feature Obtained Using
Discretization

Object ID Feature Pattern

1 12343000132001234000030000400120033010033011400
2 01243000222001134001320022300220131012033011400
3 01243000121001234001200022400100130011034011400
4 12243000112001233001120023300120131001034002400
5 01143000122001234000120022300120132001033012400

7.3.2.2 Stage 2: Multi-Feature Recognition

In multi-feature recognition for multiple features of numeral character ob-
jects, each DHGN network performs recognition on a specific feature set. The
sizes of the networks are not uniform.

The recognition process begins when the coordinator node communicates
the feature patterns to the SI module node on each network according to
the specific feature assigned to the DHGN network. The communications of
patterns in this scheme follow the message-passing model described in Section
2.6.2.

The SI module node in each network divides and distributes the received
patterns to the available subnets in the network. Each DHGN subnet initiates
a recognition process at subpattern level. The results of each recognition pro-
cess are sent back to the SI module node where the maximum voting process
is used identify the best match pattern class for each pattern. After complet-
ing the voting process, the SI module determines the accuracy parameters
used in the scheme. These parameters can include commonly used recognition
accuracy parameters, such as precision rate, recall rate, accuracy level, and
error value. These values are communicated to the coordinator node for the
results evaluation stage.

7.3.2.3 Stage 3: Results Evaluation

The results evaluation stage determines the best or optimal feature to be
selected as the best representative for each pattern class in the recognition
scheme. This process occurs within the coordinator node. The values obtained
from the SI module nodes are compared to the accuracy parameter(s). This
evaluation stage of the DHGN multi-feature recognition applies a generic ap-
proach, and different sets of recognition accuracy parameters can be used in
the classification process. This approach allows for flexibility in the decisions
on classification, in that different accuracy factors can be observed and ana-
lyzed.

120 Internet-Scale Pattern Recognition

7.4 Distributed Multi-Feature Recognition Perspective

Given the extensive capabilities of existing data capture technologies to
retrieve and generate complex data, it is important to consider a multi-feature
approach for pattern recognition. Existing scheme are not able to scale up with
the enormous Internet-scale data. A distributed perspective in implementing
pattern recognition is required. In this chapter, we have discussed a number of
benefits in implementing a distributed pattern recognition scheme, including
the following:

1. A distributed approach for pattern recognition, such as the DHGN, al-
lows more features to be used in the recognition process, e.g., by allo-
cating an additional DHGN network for each feature recognition.

2. The single classifier mechanism of the DHGN can be used for any number
of features. In contrast, existing multi-feature schemes merely implement
combined-classifiers for classification.

In this chapter, we have presented a distributed approach for multi-feature
pattern recognition. The implementation of a single-cycle learning DHGN
algorithm for distributed feature analysis on a collaborative computational
network was discussed. The proposed approach implements a single classifier
scheme for different feature sets. This is achieved using a divide-and-distribute
approach on the available features for each data set. The proposed approach
is not affected by the curse of dimensionality, which results from multiple fea-
tures. By allowing features to be added to the analysis using available com-
putational networks, the DHGN approach implements a scalable recognition
scheme.

Chapter 8

Pattern Recognition within
Coarse-Grained Networks

A distinctive difference between conventional and distributed pattern recog-
nition is the resource consideration. In a distributed approach, the system
must be capable of utilizing the available resources effectively and efficiently.
A good communication model must be considered to ensure proper utiliza-
tion and communication of resources between processing nodes. Distributed
pattern recognition (DPR) has the ability to scale up the process as the size
of the problem increases. However, the scalability depends on the resource
availability in a particular computational network. Resource availability is
influenced by the capacity and stability of the computational network. The
network capacity in distributed applications, such as DPR, is observed in
terms of the granularity of the network. Commonly, computational networks
are either coarse-grained, such as a computational grid, or fine-grained, such
as a wireless sensor network (WSN). The processing capacities and capabili-
ties of these networks differ. Because the application deployment focused on
a single problem domain, most existing pattern recognition schemes are non-
adaptive to different network granularities. The DHGN pattern recognition
scheme described in Chapter 5 was developed with adaptive network granu-
larity consideration [4] and the algorithm can be deployed in both coarse- and
fine-grained networks.

In this chapter, we will look at the network granularity aspect of distributed
pattern recognition (DPR). We will demonstrate how the DHGN algorithm
can be deployed in a network of different granularity, which allows for flexible
recognition of different forms of Internet-scale data. In addition, we will discuss
specific pattern recognition applications in coarse-grained networks.

8.1 Network Granularity Considerations

Granularity of a computational network refers to the levels of its compo-
sition. A coarse-grained network mainly consists of a few large processing
entities, which are capable of handling significantly high computational loads.
An example of this type of network is a computational grid network. Con-

121

122 Internet-Scale Pattern Recognition

TABLE 8.1: Comparison of Fine- and Coarse-Grained Network Specifications

Network Granularity
Specifications Coarse-Grained Fine-Grained

No. of Processing Nodes Low to High High
Processing Capacity High Low
Storage Capacity High Low
Energy Supply High Low
Example Computational Grid WSN

versely, fine-grained networks are defined as a network that comprises many
small processing nodes that perform simple and lightweight tasks, such as
the wireless sensor network (WSN). Table 8.1 compares the specifications of
coarse- and fine-grained computational networks.

The DHGN implementation for distributed pattern recognition takes into
account these two levels of granularity. This is essential in providing a scalable
and robust scheme that can be used in different network conditions. Further-
more, because of the network granularity considerations, the DHGN algorithm
is made aware of the resource availability of the computational network to be
used in the recognition process.

8.1.1 DHGN Configurations for Adaptive Granularity

Two configurations for the DHGN implementation will be presented: fully
distributed and clustered.

8.1.1.1 Fully Distributed Configuration

The original configuration of the DHGN algorithm described in Chapter 5
distributed all of the neurons in a DHGN subnet to the processing nodes. This
implies that each node is responsible for a single neuron in a DHGN subnet.
This configuration eliminates the requirement for high processing capability
and storage capacity because the computing node performs the recognition
process on a single atomic element of the input subpattern. However, the
communication costs for each node require considerable attention. Each node
is required to communicate frequently with other neighboring nodes to up-
date its bias array. Figure 8.1 shows the fully distributed configuration of the
DHGN algorithm for a WSN. Note that each neuron is mapped to a process-
ing node. Processing nodes that are close together are grouped into individual
DHGN subnets.

This fully distributed DHGN configuration can be deployed in a fine-grained
network that comprises sensor nodes with restricted computing resources, such
as WSN. A major challenge in this implementation is the rapid inter-node
communications required for message exchange during the recognition process.

Pattern Recognition within Coarse-Grained Networks 123

FIGURE 8.1: Fully distributed DHGN configuration for a fine-grained net-
work.

The DHGN deployment must be able to perform single-hop communication
between adjacent nodes for the message exchange process. To ensure that
efficient energy-communication utilization is achieved during the recognition
process, the physical distance should be taken into account when implementing
the DHGN distributed recognition application in WSN. A DHGN deployment
in fine-grained networks will be presented in the next chapter.

8.1.1.2 Clustered Configuration

The clustered configuration maps each DHGN subnet over a single process-
ing node. Each node is capable of conducting the recognition process based
on the input subpatterns obtained from the SI module node. In this config-
uration, the recognition process involves the entire input subpattern and the
processing node is expected to acquire high processing capability and storage
capacity. However, because the communication involves only message com-
munication from the SI module node to each of the processing nodes, the
communication costs between sensor nodes are minimized. Figure 8.2 shows
the clustered configuration of the DHGN algorithm for WSN.

Each processing node in the clustered DHGN configuration can perform
recognition on each subpattern independently. The node must be able to pro-
vide sufficient processing and storage capacity to conduct the recognition pro-
cess. This configuration is intended to be used on coarse-grained networks,

124 Internet-Scale Pattern Recognition

FIGURE 8.2: Clustered DHGN configuration for a coarse-grained network.
Each DHGN node is capable of performing the entire subpattern recognition
processes.

such as grid and cloud computing, in which additional processing and storage
capacity can be made available.

An important benefit of having this DHGN cluster performed on a single
processing node is that it eliminates all of the communication actions in the
DHGN message-passing model for distributed systems. For each subpattern
recognition process, each node communicates the index generated to the SI
module. The absence of communication between nodes reduces the chances
of recognition failures attributed to transmission or communication errors.
When the clustered configuration is used to implement the DHGN, the DHGN
subnets are formed using the internal memory structure of a single node. An
associative array structure for each DHGN subnet was adopted. Table 8.2
shows the associative array structure for a DHGN subnet with 5-bit binary
subpatterns.

Communications between each GN memory structure in the DHGN subnet
are conducted using conventional value store/retrieve processes, which update
values using value assignment.

8.1.2 DHGN Commodity Grid Framework

Distributed pattern recognition provides an avenue for achieving Internet-
scale pattern recognition using a state-of-the-art data classifier for fast track-

Pattern Recognition within Coarse-Grained Networks 125

TABLE 8.2: DHGN Subnet Associative Array Structure after Subpatterns
00001 and 11111 Have Been Memorized

GN ID Row Layer Value
Bias Array

Index Entry
1 1 0 0 1 #,1
2 1 0 0 1 1,1
3 1 0 0 1 1,1
4 1 0 0 1 1,2
5 1 0 0 - -
6 2 0 1 1 #,2
7 2 0 1 1 2,2
8 2 0 1 1 2,2
9 2 0 1 1 2,2

10 2 0 1
1 1,#
2 2,#

11 1 1 # 1 #,1,1
12 1 1 # 1 1,1,1
13 1 1 # 1 1,1,#
14 2 1 # 1 #,1,1
15 2 1 # 1 1,1,1
16 2 1 # 1 1,1,#
17 1 2 # 1 1
18 2 2 # 1 2

ing large-scale data analyses. A framework proposed by Muhamad Amin
and Khan [55] employs a grid-enabled DHGN distributed pattern recogni-
tion scheme. The framework comprises a commodity-grid (CoG) network
[74] for pattern recognition implementation using the DHGN approach. The
commodity-grid provides an easy-to-use front-end for accessing a distributed
system supporting complex operations.

The proposed framework for our distributed pattern recognition is a com-
bination of a commodity-grid based architecture and the single-cycle learning
DHGN associative memory approach for pattern recognition. The commodity
grid infrastructure enables us to offer the pattern recognition service to multi-
ple users from different expertise domains and application areas. For instance,
climatic change research can use the proposed system for long-term climate
pattern discovery, while the bioinformatics field can use this resource for pro-
tein structure recognition and classification. This extends the scalability of
the DHGN DPR scheme across different application domains.

126 Internet-Scale Pattern Recognition

FIGURE 8.3: Proposed commodity grid-based distributed pattern recognition
framework.

8.1.2.1 DPR Architecture

The system architecture for the pattern recognition application directly
follows the DHGN clustered configuration described earlier. Figure 8.3 shows
the grid network layout for the proposed framework.

Communication between the DHGN subnets and the SI module is performed
using existing file transfer or resource allocation services, such as GridFTP
or GRAM. Each DHGN subnet can be hosted by a single computing node,
or group of nodes within a subnet. The communications between the nodes
in each subnet are handled by a Message Passing Interface (MPI), which
facilitates the parallel DHGN computations.

The proposed distributed pattern recognition is a real-time application that
is able to produce the results in a single cycle of computations. Furthermore,
each of the DHGN subnets executes independently, and thus provides a high
level of scalability and efficiency by removing the requirement for inter-subnet
communications. The SI role and a DHGN subnet role can be easily inter-
changed, i.e., any node in the grid can take over the SI role for the framework.

Pattern Recognition within Coarse-Grained Networks 127

FIGURE 8.4: DPR-commodity grid workflow.

8.1.2.2 DPR Workflow

Workflow support is the key to diversifying this application as a generic
resource for E-Research. Figure 8.4 illustrates the workflow for the proposed
distributed pattern recognition framework.

The proposed framework utilizes both the commodity-grid processes and
the core pattern recognition service. Note that the front-end of the system is
managed by the CoG portal.

8.1.2.3 DPR-CoG Framework

Figure 8.5 shows the framework for implementing the distributed pattern
recognition system. The framework is designed to cater to different types
of users/applications that require flexible access to a large-scale low-latency
pattern recognition resource. The CoG portal and engine provide the authen-
tication and security services for the users.

The framework used in this study implements the Karajan CoG grid en-
gine [91]. Figure 8.6 shows the Karajan architecture for a commodity grid.

128 Internet-Scale Pattern Recognition

FIGURE 8.5: Framework for commodity-grid based pattern recognition.

The Karajan architecture offers additional libraries for the front-end design
through its HTML and forms libraries. It uses the task library for grid inte-
gration, which is based on the Java CoG Kit abstractions.

8.2 Face Recognition Using the Multi-Feature DPR Ap-
proach

With the advent of Internet connectivity, the outgrowth of images pro-
duced and posted on the Web is tremendous in numbers. The nature of the
images is diverse. Some images are taken by normal or highly specialized cam-
eras and some, such as MRI and seismic images, are sophisticated and multi-
dimensional. Images are used in a variety of fields, including arts, engineering,
and sciences. Images are commonly used to recognize or detect objects, such
as a human face.

Face recognition is a well-known application that implements pattern recog-
nition concepts and approaches. Numerous computational designs and imple-
mentations have been proposed in the literature. Each of these approaches
contributes to accuracy and/or efficiency of the application. In this section,
we will present a distributed approach for face recognition using the multi-
feature DHGN algorithm. Our intent is not to outweigh the capabilities of
current and more establish facial recognition schemes, but to give an insight
into how this complex operation on Internet-scale data can be performed in
a distributed manner. Further details on the analysis of the recognition accu-

Pattern Recognition within Coarse-Grained Networks 129

FIGURE 8.6: The Karajan grid engine architecture.

racy of the DHGN multi-feature scheme applied to face recognition have been
presented in [92].

8.2.1 Color and Spatio-Structural Features Consideration

The DHGN multi-feature scheme takes a holistic approach to incorporating
simultaneously the color and spatio-structural features into the recognition
process. A binary signature scheme proposed by Nascimento and Chitkara
[93] was adopted for content-based image retrieval (CBIR) in the pattern
recognition procedure. This scheme integrates the global binary signature with
an edge detection technique, such as Sobel’s [94], for DHGN single-cycle image
recognition. In this multi-feature recognition approach, any number of features
can be included for pattern analysis by incorporating a sufficient number of
DHGN networks.

8.2.1.1 Global Binary Signature Scheme for Color Recognition

A common approach used to represent color distributions of an image is the
Global Color Histogram (GCH). Given an n-color model, a GCH is developed

130 Internet-Scale Pattern Recognition

FIGURE 8.7: Edge map generated by applying Sobel’s edge detection tech-
nique to an original gray-scale facial image.

with an n-dimensional feature vector,{p1, p2, . . . , pn}, where pi represents the
normalized percentage of color pixels that corresponds to each color element in
an image. Nascimento and Chitkara [93] proposed an alternative approach for
color distribution representation using a global binary signature scheme. It is a
compact form of the existing GCH that uses binary bit-strings as a signature.
This signature is an abstract representation of the image’s color distribution.
The bit-strings are of a pre-determined size, which makes it ideal for use in
DHGN binary pattern representations.

8.2.1.2 Edge Detection for Structural Information

Edges provide important spatio-structural information for image recogni-
tion. This multi-feature DPR scheme includes edge detection in the color-
based recognition process. The outputs from the edge detection process are
represented as an edge map. Figure 8.7 shows the transformation of a gray-
scale image to the corresponding edge map using Sobel’s edge detection tech-
nique.

With the ability to capture and convert the two main features of an im-
age, i.e., colors and edges, into binary patterns, the distributed multi-feature
recognition scheme is able to apply a highly scalable single-cycle learning tech-
nique for binary patterns in a computational network for multi-feature pattern
recognition. Any number of features can be included in the scheme provided
a separate network is available for each feature (see Figure 7.2).

An interesting characteristic of the DHGN implementation for multi-feature
recognition is the constant recall time for each feature. This characteristic is
independent of the number of input patterns presented. Furthermore, the
scheme minimizes the recall time. Figure 8.8 shows the overall store/recall
times for each DHGN subnet in a face recognition simulation using 1000 im-
ages. In a simulated computation network, each DHGN subnet processed all

Pattern Recognition within Coarse-Grained Networks 131

FIGURE 8.8: Store/recall times for each subpattern in each DHGN
subnet during the edge recognition process.(With kind permission from
Springer Science+Business Media: Neural Process. Lett., “Distributed Multi-
Feature Recognition Scheme for Greyscale Images,” vol. 33, issue 1, pp.
45-59, (February 2011), Muhamad Amin, A.H., and Khan, A.I., Fig.12,
http://dx.doi.org/10.1007/s11063-010-9163-8.)

of the images in less than 30 seconds. The processing times will substantially
be less for a real computational network with parallel processing resources.
These speeds make it possible to process live image data streams and large
data sets in real time.

The DHGN multi-feature scheme provides a highly efficient and scalable
mechanism for multi-feature pattern recognition on coarse-grained computa-
tional networks. This multi-feature recognition approach represents a holistic
process where more features can be taken into consideration without any
changes to the approach. The scheme has shown to be highly scalable and
the processing time and recognition accuracy are not adversely affected with
the increase in number of processed patterns. The approach discussed in this
section works well on gray-scale images and it can be applied to a number of
fields that require gray-scale image analysis. The flexibility to include any im-
age feature at any point creates a“plug-and-play”capability for dynamic image
analysis. This scheme opens up the possibility for real-time image recognition
on Internet-scale data sets in biomedical imaging and video streaming. Fur-
thermore, through distribution of features, the DHGN is capable of performing
the recognition process on patterns with increasing size and dimension. Note

132 Internet-Scale Pattern Recognition

that the use of facial images in the recognition simulation does not imply
that DHGN is a face recognition application with a promising high level of
accuracy. Rather, the simulation indicates the capability of DHGN to perform
distributed multi-feature recognition on complex patterns, such as gray-scale
images.

8.3 Distributed Data Management within Cloud Com-
puting

Existing data management and access schemes in clouds are mainly based
on Google File System (GFS) and MapReduce schemes. Problems arise when
data are partitioned between numerous available nodes therein. A new method
for partitioning and distributing data, known as resource virtualization in
cloud computing, has been explored by Basirat et al. [56]. Loosely coupled
associative computing techniques, which have not been commonly considered
for clouds, can provide the required breakthrough for data management in
Internet-scale infrastructures. Applications based on associative computing
models can efficiently utilize the underlying hardware to dynamically scale
up and down the system resources. In doing so, the main hurdle to providing
scalable partitioning and distribution of data in clouds is removed, bringing
forth a vastly superior solution for virtualizing data intensive applications and
the system infrastructure to support the pay-per-use basis.

What is really required for any cloud system is a complete data access
scheme that enables data partitioning on-the-fly and has the ability to dissem-
inate processing nodes for specific data retrieval/storage tasks. A number of
possibilities have been explored to consolidate the data access scheme using an
efficient partitioning approach. This integration within a complete end-to-end
scheme will enable data storage and retrieval processes to be performed effec-
tively, regardless of the distribution of data within the cloud system. The aim
is to develop a distributed data access scheme that enables data access to be
conducted effectively by means of the distributed pattern recognition (DPR)
approach. Data will be treated as a pattern, and data storage and retrieval will
be performed through an unsupervised pattern recognition mechanism. This
approach envisages data retrieval to be implemented as a distributed pattern
recognition process that is implemented through the integration of loosely
coupled computational networks. A divide-and-distribute approach allows for
the dynamic distribution of these networks within the cloud.

Pattern Recognition within Coarse-Grained Networks 133

8.3.1 Cloud Data Access Scheme

Data access schemes for a cloud infrastructure perform some important
tasks, i.e., to administer a distribution of data across different networks and
to provide data services for remote clients. In this section, we are going to
discuss a cloud data access scheme using Google’s MapReduce technique.

Google’s MapReduce is a programming model intended for large-scale data
processing in a massively parallel manner. It was developed to solve issues in-
volving parallelization of computational processes and data distribution across
heterogeneous networks. The MapReduce implementation also addresses load
balancing, network performance, and fault tolerance issues [95].

The MapReduce programming model was inspired by other primitive lan-
guages, such as Lisp. It involves two functions: map and reduce. The map
function is written by users and takes an input pair and produces a set of
intermediate key/value pairs. Intermediate values associated with the same
intermediate key are grouped by the MapReduce library and passed to the
reduce function. The reduce function, also written by the user, merges all the
intermediate values to form a possibly smaller set of values. Typically each
invocation of the reduce function produces zero or one output.

Consider the following examples of map and reduce functions. Given a mul-
tiplication operation in a function f (z), the following procedures illustrate
both the map and reduce applications:

f (z) = map (×2, (2, 4, 6))→ ((2× 2) , (4× 2) , (6× 2)) = (4, 8, 12)

f (z) = reduce (×, (2, 4, 6))→ ((2× 4)× 6) = 48

Note that the map function is able to run the operation in parallel for all
the inputs, whereas the reduce function works sequentially from left to right.

In the data access mechanism, the map and reduce functions are used to
retrieve data from a collection of distributed repositories. The map function
extracts the desired information based on a condition set by the user (it could
be the condition within an SQL query). It works on the atomic level of data
(a tuple or a file). The reduce function performs an operation on the data
retrieved by the map function and obtains a set of values or a single value, as
required by the user.

An important feature of MapReduce is its ability to parallelize the opera-
tions by working on each individual data and performing these tasks on-site.
Consider the following example. Suppose there is a set of data related to em-
ployees’ personal details, as shown in Table 8.3. An SQL query is performed to
retrieve the average salary per department for executive employees as follows:

With this SQL query, MapReduce will conduct the map operation to obtain
the name and salary amount of each employee in a department. Consequently,
the reduce function will calculate the average salary according to each depart-
ment. Figure 8.9 shows these operations.

Some problems arise in this type of processing configuration. For example,
the map function conducts its operation assuming that data are distributed

134 Internet-Scale Pattern Recognition

Algorithm 5 SQL Query for Employee Data Example

1: Select E.deptName,
2: Average(E.salaryAmt) as avgSalary
3: from Employee E
4: where P.status = Exec
5: groupby E.deptName

TABLE 8.3: Samples of Employee Data

employID employFName employLName deptName status salaryAmt

00001 Robert Harris Admin Exec 3000
00002 Mary Richardson HR Non-Exec 2000
00003 Edward Prack Admin Exec 3500
00004 Nancy Ling IT Exec 3500
00005 Raj Kumar IT Non-Exec 2000
00006 James Harley Finance Exec 4000

FIGURE 8.9: MapReduce implementation on a cloud system to determine
the average executive salary for each department using the employee data in
Table 8.3.

Pattern Recognition within Coarse-Grained Networks 135

vertically, i.e., different records are distributed across the network. However,
there are situations where some parts of the records are stored in different
locations. For instance, a large database table is split into different sub-tables.

In addition, the operations of the MapReduce functions produce many in-
termediary entities between the map and reduce functions. These entities, as
shown in Figure 8.9, are in the form of intermediate files. The contents of
these files must be sorted before being fed to the reduce function. These sys-
tem sorts and redistributions incur additional processing and communication
costs.

In view of these issues, a data access scheme that enables retrieval to be
conducted across multiple records and data segments in a single-cycle and par-
allel approach is considered. The access mechanism is implemented according
to the nature of the database. The retrieval process will be conducted on a
set of records that reside in a particular node. No alterations will be made
to the condition of the record itself. A parallel retrieval approach is used, in
which records in each storage node are analyzed locally without incurring any
communication costs. A distributed pattern matching/recognition approach,
such as the DHGN, can be used to retrieve data from the cloud.

8.3.2 DHGN Approach for Cloud Data Access

Through the redesign of the data management architecture, data records
are treated as patterns. This treatment enables data storage and retrieval
by association over and above the existing simple data referential mecha-
nisms. Processing the database and handling the dynamic load is performed
through a distributed pattern recognition approach that is implemented in
integrated and loosely coupled computational networks and is followed by
a divide-and-distribute approach that allows for the dynamic distribution of
these networks within the cloud. The DHGN cloud access scheme relies on
communications between adjacent nodes. The decentralized content location
schemes are implemented to discover the adjacent nodes in a minimal number
of hops. A GN-based algorithm for optimally distributing the DHGN subnets
(clusters or sub-domains) across the cloud nodes is provided to automate the
boot-strapping of the distributed application and to investigate dynamic load
balancing over the network. Figure 8.10 shows how DHGN subnets are po-
sitioned in the cloud environment using a Hadoop’s distributed file system
(DFS) architecture.

Note that the DHGN subnets perform data mapping on each of the data
nodes within the DFS infrastructure. Within each DHGN subnet, the records
are stored in an associative pattern; each DHGN neuron corresponds to a
single data field. The mapping process occurs within the body of the DHGN
subnet. The SQL condition will activate the neuron that holds the respective
data field. Figure 8.11 shows the data representation in the DHGN data access
cloud scheme.

136 Internet-Scale Pattern Recognition

FIGURE 8.10: DHGN distributed data management model using the Hadoop
DFS architecture.

FIGURE 8.11: Data mapping process using a DHGN subnet as a repository,
based on the pattern associative concept.

Pattern Recognition within Coarse-Grained Networks 137

FIGURE 8.12: Total recognition times for each DHGN subnet in binary pat-
tern recognition using different numbers of subpatterns derived from 16 KB bi-
nary images. ©IEEE. Reprinted, with permission, from Amin, A.H.M.; Khan,
A.I.; “A divide-and-distribute approach to single-cycle learning HGN network
for pattern recognition,” Control Automation Robotics & Vision (ICARCV),
2010 11th International Conference on 7-10 Dec. 2010, pp. 2118-2123, doi:
10.1109/ICARCV.2010.5707852.

Note that the red-colored neurons are the query-activated neurons. The
DHGN subnet will extract information from the database that pertains to the
respective value specified in the query. In this example, the neuron that han-
dles data on the status of the employee will select all of the tuples containing
the “exec” status (see Algorithm 5).

The DHGN’s pattern matching capability and the short response time re-
main insensitive to the increases in the number of stored patterns and make
this approach ideal for cloud computing (see Figure 8.12). Moreover, the
DHGN does not require rules to be defined, manual interventions by an op-
erator to set thresholds to achieve the desired results, or heuristics entailing
iterative operations for the memorization and recall of patterns [56]. In ad-
dition, this approach allows induction of new patterns in a fixed number of
steps and maintains a high level of scalability, i.e., the performance and accu-
racy do not degrade as the number of stored pattern increases over time. Its
pattern recognition capability is comparable with contemporary approaches.
Furthermore, all computations are completed in the pre-defined number of
steps, and thus the approach implements one shot, i.e., single-cycle learning.

138 Internet-Scale Pattern Recognition

8.4 Adaptive Recognition: A Different Perspective

In this chapter, we have presented a series of discussions on and exam-
ples of distributed pattern recognition (DPR) applications in coarse-grained
computational networks. Network granularity is important when considering
different types of Internet-scale data and applications. To achieve a scalable
recognition scheme, we believe that such applications must be adaptive to
different levels of network granularity. Recognition in the context of present
time is not limited to complex data analysis, which runs on high-performance
machines. Rather, we see the rapid development of lightweight devices that
can perform complex operations, e.g., sensors, mobile phones, and any other
wearable devices.

We have demonstrated the capabilities of a purely DPR scheme, such as the
DHGN, to address two different application perspectives in a coarse-grained
network, i.e., data recognition and management. Analyzing large-scale and
complex data, such as images, is difficult without the availability of scalable
recognition schemes that work in computational networks. The criticality of
the information required, e.g., a medical analysis, adds to the importance of
having a fast recognition scheme that can scale up with large amounts of data.

In addition to image recognition, distributed data management is considered
to be a promising avenue for Internet-scale and distributed pattern recognition
applications. Using a data association approach, it is believed that the DPR
scheme can enhance the performance of existing data access schemes, such as
MapReduce, which has been proven effective in the cloud environment.

In the next chapter, we will consider applications of Internet-scale pattern
recognition in a different form of network, i.e., the fine-grained network.

Chapter 9

Event Detection within
Fine-Grained Networks

The intensive development of wireless technologies and the increasing minia-
turization of RF devices and micro electro-mechanical systems (MEMS) have
been driving forces in the advancement of small and tiny computing devices,
such as WSN technology. These devices are inter-connected and form a com-
putational network that is capable of providing a frontline processing scheme
for applications such as event detection and remote monitoring. Because this
type of network has a large number of computing nodes that have limited
power, storage, and processing capabilities, it is referred to as a fine-grained
network.

The ability to acquire resource-awareness characteristics was discussed in
the previous chapter and is essential for the design of distributed applications,
including pattern recognition. The DHGN as a distributed pattern recognition
scheme was developed with adaptive granularity characteristics built into its
design. A distributed and parallel pattern recognition scheme for applications
in fine-grained systems was introduced by Khan and Mihailescu [2].

In a fully distributed configuration, each GN is assigned to a single compute
node, and the collaborations of inter-connected compute nodes form a DHGN
subnet. The simple bias array search computations involved for each node
make this configuration well-suited for fine-grained networks that have limited
processing and storage capabilities, such as a WSN. We will demonstrate the
robustness and scalability of the DHGN for a distributed recognition process
over a fine-grained network using a number of DPR applications.

9.1 Distributed Event Detection Scheme for Wireless
Sensor Networks

Highly complex computations, iterative learning, and large training set re-
quirements are some of the weaknesses of event detection schemes commonly
deployed in Wireless Sensor Networks (WSNs). These schemes often apply
conventional neural networks or machine learning algorithms that require ex-

139

140 Internet-Scale Pattern Recognition

tensive retraining and a huge number of training data sets for effective general-
ization. Furthermore, the centralized processing or single-processing approach
used in existing schemes creates some significant problems. For example, the
constant flow of sensory data results in high communication overheads; re-
routing procedures and relocation activities of sensor nodes that often occur
in real-time applications; and significantly long delays in detecting critical
events when computational bottlenecks are present. These problems limit the
event detection schemes’ ability to scale up to massive sensory data processing.

Artificial neural networks (ANNs) and other machine learning techniques
are the most commonly applied classification techniques in event detection
schemes for WSNs. Some of these schemes implement the Kohonen Self-
Organizing Map (SOM) or other activation-based neural networks, such as
the Radial Basis Function (RBF) neural network. Because of their learning
complexity and highly cohesive training-validation approach, these schemes
cannot scale up to the dynamics of the WSN network.

9.1.1 WSN Event Detection

Breakthroughs in communication technologies have enhanced the perfor-
mance of existing coarse-grained networks, such as cloud and grid computing.
Research has also led to the rapid growth of emerging fine-grained networks,
such as wireless sensor networks (WSNs). These networks emerged from the
confluence of wireless communication, extensive computational schemes, and
sophisticated sensor technology. For example, WSNs are created from a collec-
tion of self-organized wireless and battery-powered devices that have sensing
capabilities. The emergence of these self-organized networks of tiny processing
devices has led to the ability for parallel and distributed computing deploy-
ment in fine-grained systems.

Unfortunately, the current scenario in WSN deployment is still far away
from its tremendous potential. A WSN has only been demonstrated for hum-
ble applications such as meter reading in buildings and a basic form of eco-
logical monitoring. Achieving the full potential of this technology requires the
development of an intelligent computational scheme.

Common approaches implemented in existing WSN applications usually
involve a number of processing steps, including sensory data capture and con-
veyance of these data to a central entity, known as the base station, for further
refinement and analysis. Consequently, if it is called up for widespread use,
this approach leads to a system bottleneck. Because of latency between the
data capture/aggregation and processing time, processing delays occur inter-
mittently. These limitations make WSNs less suitable for real-time monitoring
applications. Therefore, a new approach for data processing in a WSN must
be designed that has the ability to process the sensory data in situ and in
a decentralized manner and can generate highly condensed and sophisticated
outputs internally. These abilities alleviate the bottleneck problem in WSNs

Event Detection within Fine-Grained Networks 141

FIGURE 9.1: A generic wireless sensor node architecture. (This figure is a
copyright of and reproduced with permission of Civil-Comp Ltd. Previously
published in [96].)

TABLE 9.1: Berkeley Mica Mote Sensor Node Specifications

Component Specification

CPU: 8-bit 4 MHz
Memory: 128 KB Flash and 4 KB RAM

Communication: 916 MHz 40 Kbps Radio
Power: 2 AA Batteries

(This table is a copyright of and reproduced with permission of Civil-Comp
Ltd. Previously published in [96].)

using on-site computations, and they improve performance by reducing the
processing delay experienced in existing approaches.

Figure 9.1 shows a generic wireless sensor node architecture. Currently,
there are a number of commercially available wireless sensor nodes for
different types of applications. These include the Berkeley Mica Mote
(http://www.xbow.com) and the UCLA iBadge. The specifications of the
Berkeley Mica Mote sensor node, which is used in a number of surveillance
networks, are listed in Table 9.1.

On a macro level, a WSN is built up from a network of wireless sensor nodes
that are linked together through a common entity, known as the base station
or sink. Because of limited power and processing capabilities, communications
between sensor nodes and the base station usually involve a series of data
aggregation techniques to reduce the volume of traffic enroute to the base
station.

9.1.2 DHGN-WSN Event Detection Configuration

In a fully distributed DHGN configuration, a collection of sensor nodes
collaborate and form a DHGN subnet to perform event detection based on
the sensory readings obtained from their environment. This is illustrated in
Figure 9.2.

142 Internet-Scale Pattern Recognition

FIGURE 9.2: DHGN distributed event detection framework. (Muhamad
Amin, A.H., Khan, A.I., and Raja Mahmood, R.A. “A distributed event
detection scheme for wireless sensor networks,” In Proceedings of the 7th
International Conference on Advances in Mobile Computing and Multime-
dia (MoMM ’09), pp. 295–299. ©2009 ACM, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1821748.1821804)

Note that the SI module is intended to be deployed in a controlling node,
such as the base station, or a super-node. The DHGN subnet module is lo-
cated in each WSN subnet that is located within a specific sensory region.
The event classification process (evaluation of event/non-event signals) in the
DHGN event detection scheme is a dual-layer process. The first layer focuses
on the subpattern recognition in the DHGN subnet, whereas the second layer
involves pattern classification using a voting scheme that is conducted by
the SI module. Subpattern recognition is the process of determining the re-
call/store status of an input subpattern. This process is conducted in DHGN
subnets. The output of this process is either a recalled index of the stored
subpattern or a new index for the input subpattern. This index is sent to the
SI module for pattern classification. Note that the DHGN considers an event
as a pattern that represents a state of normality or abnormality for the entire
sensory network.

Event Detection within Fine-Grained Networks 143

FIGURE 9.3: Sensor node placement in a Cartesian grid. Each node is allo-
cated to a specific grid area. (This figure is copyright of and reproduced with
permission of Civil-Comp Ltd. Previously published in [96].)

For complex event detection (multiple sensory schemes), each DHGN sub-
net is mapped to a sensor node using a clustered configuration. The detection
scheme comprises a collection of wireless sensor nodes and a sink. We exam-
ine the deployment of the WSN in a two-dimensional plane with n sensors,
represented by a set W = (w1, w2, . . . , wn), where wi denotes the ith sensor.
The sensors are uniformly placed in a grid-like area, A = (x× y), where x

represents the x-axis coordinate of the grid area, and y represents the y-axis
coordinate of the grid area. Each sensor node is assigned to a specific grid
area, as shown in Figure 9.3. The location of each sensor node is represented
by the coordinates of its grid area (xi, yi).

For the communication model, a single-hop mechanism for data transmis-
sion from the sensor node to the sink is proposed. The “autosend” approach is
used to minimize errors associated with the loss of packets during data trans-
mission. Because of the front-end processing approach, the proposed scheme
does not involve massive transmissions of sensor readings from the sensor
nodes to the sink. Previous research has shown that the single-hop mechanism
is the most suitable approach for the DHGN deployment. Communication be-
tween the sink and the sensor nodes is performed using a broadcast method.

9.1.3 Dimensionality Reduction in Sensory Data

Event detection involves the recognition of significant changes or abnormal-
ities in sensory readings. In heterogeneous sensor networks, sensory readings
are of different types and values, e.g., temperature, light intensity, and wind
speed. In the DHGN implementation, these data must be pre-processed and
transformed into an acceptable format while maintaining the values of the

144 Internet-Scale Pattern Recognition

TABLE 9.2: Examples of Simple Temperature Readings and Their Respective
Binary Signature

Temperature Threshold Range (◦C) Binary Signature

0–20 10000
21–40 01000
41–60 00100
61–80 00010
81–100 00001

readings. As an example, to obtain a standardized format for the pattern in-
put from various sensory readings, the use of an adaptive threshold binary sig-
nature scheme for dimensionality reduction and standardization is considered
for multiple sensory data. The binary signature is a compact representation
that is capable of representing different types of data with different values
using a binary format [72]. Table 9.2 shows examples of temperature data
ranges that have been converted into a series of binary signatures.

9.1.4 Event Classification

The DHGN distributed event detection scheme involves a bottom-up classi-
fication technique, in which the classification of events is determined from the
sensory readings obtained through the WSN. The approach pre-processes pat-
terns using dimensionality reduction techniques, such as the adaptive thresh-
old binary signature scheme. These patterns are propagated to all available
DHGN subnets for recognition and classification purposes.

The recognition process involves finding dissimilarities between the input
patterns and previously stored patterns. Any dissimilar patterns will create a
response for further analysis, whereas similar patterns will be recalled. This
research used the supervised single-cycle learning approach in a DHGN to
perform recognition based on the stored patterns. The stored patterns in
our proposed scheme include the set of ordinary events that are translated
into normal surrounding/environmental conditions. These patterns are de-
rived from the results of an analysis conducted at the base station, which is
based on the continuous feedback from the sensor nodes. Figure 9.4 shows the
workflow for the distributed event detection.

The event detection scheme using the DHGN incorporates twos levels of
recognition: front-end recognition and back-end recognition. Front-end recog-
nition involves using the DHGN pattern matching mechanism to determine
if the sensor readings obtained by the sensor nodes indicate an extraordinary
event or a normal surrounding condition. Conversely, the spatial occurrence
detection is conducted through the back-end recognition. In this approach, the
use of signals sent by sensor nodes is considered to be a pattern for detecting
event occurrences in a specific area or location.

Event Detection within Fine-Grained Networks 145

FIGURE 9.4: A process workflow for the DHGN distributed event detection
in a WSN. (This figure is a copyright of and reproduced with permission of
Civil-Comp Ltd. Previously published in [96].)

9.1.4.1 Pattern Matching at Sensory Level

The occurrences of abnormal events are detected using a pattern matching
approach. Sensory readings are considered to be patterns, and any significant
changes in the structure of normal patterns are classified as events or critical
events that must be reported back to the sink (or other master node). The
use of a clustered DHGN configuration maps each sensor node with a DHGN
subnet that is able to accept a number of different sensory readings as a single
subpattern. The following algorithm describes our proposed pattern matching
approach for event detection at the sensor level.

In this algorithm, the output of the pattern matching process is a signal,
which alerts the SI module of the detection of a new event. The base sta-
tion will respond by performing a spatio-temporal analysis on the readings
obtained.

9.1.5 Performance Metrics: Memory Utilization

Memory utilization estimation for the DHGN algorithm involves an analysis
of the bias array capacity for all of the GNs in the distributed architecture

146 Internet-Scale Pattern Recognition

Algorithm 6 Pattern Matching Function at the Sensor Level

1: given n sensory readings for time t: St = (s1, s2, ...sn)
2: convert St to a binary signature Bt. Therefore f(binsig) : St 7→ Bt

3: trigger = FALSE

4: eventAlert.Sensor = FALSE

5: repeat
6: for i = 0 to MAXREADINGS do
7: {check for matched subpatterns (sensory readings) in sensor data

storage}
8: if new.Bt == s[i].Sensor then
9: {new.Bt: new readings, matching process is conducted using the

DHGN algorithm}
10: exit FOR
11: else
12: s[MAXREADINGS + 1].Sensor = new.Bt

13: trigger = TRUE

14: eventAlert.Sensor = TRUE

15: end if
16: end for
17: until trigger = TRUE

18: send eventAlert.Sensor and s[MAXREADINGS+1].Sensor to SI mod-
ule function at base station

19: MAXREADINGS = MAXREADINGS + 1

and the storage capacity of the SI module node. A detailed analysis of the
bias array capacity for the GN-based algorithm was presented in Chapter 3.
Based on that analysis, it can be concluded that the efficient storage/recall
mechanism of the DHGN offers efficient memory utilization. Furthermore, it
only uses memory to store newly discovered patterns rather than storing all
pattern inputs. Figure 9.5 compares the estimated memory capacities for a
DHGN processing cluster to the maximum memory size of a typical physical
senor node (Table 9.1) as a function of the subpattern size.

As shown in the Figure 9.5, as the size of subpattern increases, the memory
space requirement increases considerably. Note that the small subpattern sizes
consume less than 1% of the total memory space available. Therefore, the
DHGN implementation is best deployed for small subpattern sizes.

9.1.6 Spatio-Temporal Analysis of Event Data

The spatio-temporal analysis is a process of observing the frequency and
distribution of events within the wireless sensor networks. It is conducted at
the base station with computational grid-enabled infrastructure, since it has
the bird’s eye view of the overall network. An analysis on forest fire detection

Event Detection within Fine-Grained Networks 147

FIGURE 9.5: Maximum memory consumption for each DHGN subnet as a
function of the pattern size. The DHGN uses minimal memory space when
processing small pattern sizes.

by including a spatio-temporal consideration has been reported in [96]. In
this work, pattern recognition was performed on the overall responses from
the wireless sensor nodes obtained. In this context, the signals sent by each
sensor node will colectively form a spatio-temporal representation in the form
of spatial coordinates and time instances. The detection area used in this
analysis is represented in the form of Cartesian coordinates with the grid size
of 9×5 obtained from the data set in [97]. Figure 9.6 shows a scenario of
spatio-temporal analysis using the proposed scheme.

Note the changes in the distribution of event across different geographical
coordinates over 25 time instances (t01 to t25). Note that the light-shaded
area represents the area in which forest fire was detected using the allocated
wireless sensor node with DHGN scheme, while dark-shaded area represents
the area in which its sensor node responses with non-event signal. The non-
shaded area represents area with no active node at the respective time in-
stances.

This capability of deploying spatio-temporal event detection opens up fur-
ther possibility for enhanced event detection mechanism capable of providing
measures on the distribution of events over a specified time period. Further-
more, simple event tracking approach may be performed by examining the
order of magnitude and the direction of the occurrences of events, as shown
in Figure 9.7.

148 Internet-Scale Pattern Recognition

FIGURE 9.6: Spatio-temporal view of the forest fire distribution across the
affected area, which is represented in the form of Cartesian coordinates. (This
figure is a copyright of and reproduced with permission of Civil-Comp Ltd.
Previously published in [96].)

9.2 Integrated Grid-Sensor Scheme for Structural Anal-
ysis

The development of state-of-the-art structures has led to a requirement
for efficient structural health monitoring and management (SHM). Sophisti-
cated structures, such as aerospace vehicles, offshore oil and gas structures,
military maritime vehicles, and intelligent buildings, require continuous and
rapid health analysis, design, and monitoring. These activities are essential
to ensuring the optimal operational performance of such critical structures.
Furthermore, these structures are highly invested and incur extremely high
replacement costs. SHM involves continuous processes of analyzing, designing,
and monitoring structures. These processes are important in obtaining the up-
to-date status of the structures and maintaining their performance. Several
approaches have been considered by engineering practices. These include the

Event Detection within Fine-Grained Networks 149

FIGURE 9.7: Analysis of event data triggered by the sensor nodes and re-
ceived by the base station. (Muhamad Amin, A.H., Khan, A.I., and Raja
Mahmood, R.A. “A distributed event detection scheme for wireless sensor
networks,” In Proceedings of the 7th International Conference on Advances in
Mobile Computing and Multimedia (MoMM ’09), pp. 295–299. ©2009 ACM,
Inc. Reprinted by permission. http://doi.acm.org/10.1145/1821748.1821804)

use of wireless sensor network (WSN) technology in SHM, which enables the
analysis and monitoring to be conducted in real time. The sensors are built-in
to monitor the state of the structures and provide instantaneous feedback.

In this section, we outline a full-scale SHM framework that adopts wire-
less sensors and grid integration. It allows for complete structural analysis,
design, and monitoring to be conducted within the design and monitoring
life cycle and in a single processing environment. This integrated grid-sensor
framework is a combination of WSNs for data recognition and a collection
of commodity-grid based processors for large-scale structural data analysis.
The proposed framework implements an in-network processing, or compressed
sensing, scheme known as Graph Neuron (GN), which enables real-time mon-
itoring in resource constrained sensor networks. With suitable extension, GN
can also be deployed in grid-enabled environments. This approach allows for
multi-level data analysis and monitoring to be conducted in the SHM frame-
work.

The SHM framework encompasses several processes that work in a cyclic
manner. In keeping with a holistic framework for the structural engineering
processes, the required processes will be conducted within a single life cycle.
The life cycle is characterized by three main processes: structural analysis,
structural design, and structural monitoring. These processes are inter-related,
as shown in Figure 9.8.

150 Internet-Scale Pattern Recognition

FIGURE 9.8: Structural design and monitoring life cycle.

9.2.1 Integrated Grid-Sensor Network Framework for Struc-
tural Engineering

The integrated grid-sensor network framework for structural engineering
embeds both grid computing environments for parallel adaptive finite element
analysis (FEA) and WSNs for SHM. The framework offers seamless analysis,
design, and monitoring for structural health within a single life cycle. This ap-
proach introduces a new level of sophistication into the management of com-
plex and often very expensive engineering structures. Furthermore, the com-
bination of real-life information obtained from the sensors and the theoretical
structure information developed using finite element analysis can lead to fur-
ther economies in the structural design. The integrated framework combines
a WSN and a grid environment in a single architectural platform. This frame-
work enables the structural analyses to be farmed out to the computational
grid community and provides continuous monitoring for such analyses (and
other SHM applications) using a WSN. This framework requires an adaptive
system architecture that is able to provide real-time or near real-time commu-
nication between the WSN and the computational grid. Furthermore, rapid
structural analysis, design, and monitoring require fast processing with large
storage capacity for storing real-time structural information generated by the
network. These requirements can be delivered using existing computational
grid technology, such as the commodity grid described in Section 8.1.2.

The system architecture for this integrated framework implements a com-
modity grid and a high-speed WSN-to-grid network. Figure 9.9 presents this
architecture.

The computational grid for this framework also takes into account the data
storage capability, as shown in this figure. Note that the grid environment can
be further extended to include multiple compute grids. In addition, grid proxy
is implemented to ensure that other WSN networks are able to utilize the grid
for their structural health analysis and design. Therefore, this framework can
act as a shared commodity for the entire structural engineering community.

Event Detection within Fine-Grained Networks 151

FIGURE 9.9: Conceptual system architecture for the proposed integrated
grid-sensor network framework for the structural engineering life cycle.

9.2.2 Structural Analysis, Design, and Monitoring Applica-
tions

There are three specific applications for the integrated grid-sensor network
framework in a structural engineering life cycle: structural pattern matching
within a WSN, parallel adaptive FEA, and grid-enabled pattern recognition
for the feedback and data integrity analysis. These applications are incorpo-
rated in a single grid workflow, as shown in Figure 9.10.

9.2.2.1 One-Shot Structural Pattern Matching in a Sensor Net-
work

Adaptive FEA [99] provides the means to predict the behavior of a range
of electromechanical and structural systems that are under the influence of
anticipated load conditions accurately. These analyses are heavily relied on
in complex engineering designs. Meaningful information can be derived by
correlating the input patterns, gathered in situ by a WSN, with the patterns
calculated by an FEA using the latent associative memory of the network. Be-
cause the associative memory must be implemented in a network that has very
limited computational resources, the governing algorithm must be modified to
suit the limitations of the operating environment. This would generally entail
the replacement of complex sequential algorithms with parallel/decentralized
algorithms. Moreover, some drop in the accuracy of pattern matching might
occur, which could be offset by further processing at the remote system’s end
(WSN base station). To provide an accurate pattern matching scheme and
simultaneously reduce the computational requirements in resource-restricted
networks while provide responses in real time, a GN algorithm is considered.

The GN approach (see Section 3.1) models the parallelism available in nat-
urally occurring associative memory (AM) systems and bypasses the defi-
ciencies present in some contemporary approaches. The GN is implemented

152 Internet-Scale Pattern Recognition

FIGURE 9.10: Workflow for the proposed integrated grid-sensor network
framework. (This figure is a copyright of and reproduced with permission
of Civil-Comp Ltd. Previously published in [98].)

Event Detection within Fine-Grained Networks 153

FIGURE 9.11: A continuum of L-shaped plates with embedded WSNs. (This
figure is a copyright of and reproduced with permission of Civil-Comp Ltd.
Previously published in [98].)

as a self-organizing (ad hoc) virtual network of processing nodes. Each node
executes the same copy of a very simple AM algorithm, which provides a nat-
ural framework for supporting parallelism. The algorithm is best suited for
immensely parallel systems, such as WSNs.

9.2.2.1.1 GN for stress pattern detection in a WSN In SHM, an
arbitrary L-shaped plate with in-plane loading is used as an object of inves-
tigation. It is assumed that each of these plates is embedded with a WSN, as
shown in Figure 9.11.

Complex shapes can be formed using these simple L-shaped plates. The em-
bedded WSN can measure strain, stress, displacement, or any other parameter
of importance in the design of this continuum. These parameters are assumed
to be vectors orthogonal to the plane of the WSN. The in-plane stresses have
been selected as the orthogonal vector for this study. Two stress states, of the
six possible states under the horizontal and vertical load conditions, were arbi-
trarily selected to demonstrate the in-network pattern recognition capability
of the application. It is assumed that these two stress patterns are highly detri-
mental to the continuum and must be watched so that their occurrences are
detected in real time. These patterns can result for non-critical stress states.
However, the final determination of the pattern detected by the WSN is per-
formed outside of the network, where greater computational resources can
be made available for interpolating stress readings obtained from a relatively
coarse-grained WSN.

9.2.2.2 Parallel Adaptive Mesh Refinement

The patterns picked up by the WSN through in-network processing can only
represent binary level variations in the patterns. It is possible that the pattern

154 Internet-Scale Pattern Recognition

detected is not the critical pattern. In addition, these patterns represent a
very coarse sample comprising relatively few readings. Therefore, WSN node
readings (in each pre-selected sample) must be compared with the critical
patterns. Adaptive mesh refinement provides a well-adjusted finite element
mesh, which can be used for interpolating the values at a finer scale. The
interpolated values can be readily compared with the critical pattern values.
This would verify if the critical pattern was indeed encountered in one or more
of the WSNs.

To develop the finite element mesh, we propose a parallel processing ap-
proach to finite element mesh generation that harnesses the capability of
computational grid networks to process large-scale data. We propose a parallel
adaptive finite element mesh generated using a Domain Decomposition (DD)
concept. In Domain Decomposition, a domain of interest is decomposed into
multiple sub-domains. Each sub-domain is delegated to a single processing
node in the computational grid network.

9.2.2.2.1 Adaptive finite element analysis The state of the mechan-
ical, structural, and electrical components may be effectively modeled using
the well-established numerical technique, adaptive FEA. A stress-strain based
finite element model was selected to distinguish between the various stress
states. To achieve a finite element solution that is close to the actual response
of the material, it can be assumed that the continuum is idealized using a
large number of elements. The size of each element is very small in compari-
son to the dimensions of the continuum. Therefore, the actual element stresses
will tend to be constant over each of the elements, and the solution can be
regarded as accurate for all practical purposes. However, doing so requires the
use of a very fine mesh. To avoid the computational cost associated with a
very fine mesh, an adaptive refinement of the mesh is carried out.

Figure 9.12 provides a detailed distribution of stresses over the L-plate from
the previous sub-section. However, the values obtained from the WSN will only
provide the readings at the center of each of the six WSN nodes embedded in
the plate. The values at other points in the WSN must be estimated using an
interpolation scheme that can refine the values measured by the sparse set of
WSN nodes to a continuum.

9.2.2.2.2 Parallel approach to finite element mesh generation Fi-
nite element analysis is considered to be a purely sequential approach for
mesh generation. However, several studies have parallelized this approach.
These studies include the works by Jimack and Nadeem [100] on the parallel
domain decomposition algorithm for adaptive finite element solution of three-
dimensional convection-diffusion problems; and Fragakis and Onate [101] in
their work on parallel Delaunay triangulation for particle finite element meth-
ods. To generate the mesh for the L-plated surface in the previous sub-sections,
we implemented a geometric decomposition of the surface, as shown in Figure

Event Detection within Fine-Grained Networks 155

FIGURE 9.12: An iteratively refined adaptive finite element discretization
showing the distribution of the horizontal loading. (This figure is a copyright
of and reproduced with permission of Civil-Comp Ltd. Previously published
in [98].)

9.13. Note that each sub-surface is assigned to a specific processing node in
the grid.

Once the mesh is generated from the initial structural pattern obtained
from the GN pattern matching scheme, the next procedure in our integrated
grid-sensor network framework is the pattern recognition process involving
the meshes (both normal and damaged structural patterns).

9.2.2.3 DPR Scheme for Damage Detection Using Mesh Repre-
sentation

To provide a continuous measure in structural analysis, design, and moni-
toring, we propose a second-level recognition for the structural pattern. At this
level, the recognition process involves the recognition of a damaged structural
mesh representation using the stored meshes of normal structural conditions.
The meshes generated from the previous stage of the framework are treated
as images, and a distributed image recognition scheme, such as the DHGN, is
deployed.

Using the sub-domain meshes generated from the parallel adaptive finite
element mesh generation, we compare the meshes obtained from the WSN
network with the pre-stored meshes in the computational grid network. Fig-
ure 9.14 shows a simple mesh recognition process using the DHGN approach.

156 Internet-Scale Pattern Recognition

FIGURE 9.13: Geometric decomposition of the L-shaped surface for vertical
load conditions. Note that each sub-surface is assigned to a single processing
node in the grid. (This figure is a copyright of and reproduced with permission
of Civil-Comp Ltd. Previously published in [98].)

By distributing the recognition process on sub-domain meshes, the recogni-
tion time and complexity are minimized, and solutions can be provided in
real or near real time. This distributed recognition scheme is able to enhance
the integrated framework and deliver a real time solution for new types of
structures.

9.3 Distributed Event Detection: A Lightweight Ap-
proach

In this chapter, two distributed pattern recognition applications in a fine-
grained system were presented: distributed event detection in a WSN and
an integrated sensor-grid framework for structural health monitoring (SHM).
These examples demonstrated the capabilities of DPR algorithms, such as the
DHGN and GN, to perform a distributed and lightweight detection mechanism

Event Detection within Fine-Grained Networks 157

FIGURE 9.14: Damage detection using the DHGN distributed pattern recog-
nition scheme. (This figure is a copyright of and reproduced with permission
of Civil-Comp Ltd. Previously published in [98].)

for event occurrences in a resource-constrained network, such as a WSN. There
are several benefits to the DPR implementation. The distributed approach
uses a simple bias array representation that offers low memory consumption
for event data storage. Furthermore, the recognition scheme only stores sub-
patterns/patterns that relate to normal events rather than keeping the records
of all occurring events. This work also demonstrated that this new approach is
most effective for small subpattern sizes because it uses only a small portion of
the memory space of a typical physical sensor node in a WSN. In addition to
this efficient memory usage, DPR schemes, such as the DHGN, eliminate the
need for complex computations for event classification techniques. With the
adoption of single-cycle learning and adjacency comparison approaches, the
DHGN implements non-iterative and lightweight computational mechanisms
for event recognition and classification. The distributed characteristic of the
DHGN implies that it is readily deployable over a distributed network. With
such features, the DHGN can perform as a front-end detection scheme for
event detection in a WSN. Through a divide-and-distribute approach, com-
plex events are perceived as a composition of events occurring at a specific
time and location. By incorporating a spatio-temporal evaluation of events,
this new approach would be able to be used in event tracking in the future.

Part V

The Way Forward

159

Chapter 10

Recognition: The Future and Beyond

“I have an almost religious zeal — not for technology per se, but for
the Internet, which is for me the nervous system of mother Earth,
which I see as a living creature, linking up.”— Dan Millman

10.1 Medium of Change

Through the evolution of time, we can see how a simple electronic calculator
has superseded the abacus, which was devised by people in the pre-historic era
thousands of years ago. The functionalities of both devices are similar, i.e., a
tool for arithmetic calculations. Currently, the use of the electronic calculator
has reached far beyond the capabilities and functionalities of its predecessors
while preserving its basic set of operations. Complex numerical calculations
can be performed using existing scientific calculators that are available in the
market.

The reason for starting the final chapter with this example is that we can see
that improvements of functionality can be expected from changes that have
been made to a device or object that is being used. As has once been said by
Marshall McLuhan [127], “A change of medium inevitably leads to a change
in the message.” From this perspective, in regards to pattern recognition, we
could argue that changes in the way we perform recognition might extend its
functions and capabilities. This is relevant to the discussions that have been
presented in this book. The way we look at how pattern recognition is per-
formed can be changed if we consider a different approach, i.e., a distributed
approach.

This book has been dedicated to exploring different ways of implementing
pattern recognition using machine intelligence. Decades of work in improving
pattern recognition algorithms have reached their height. It is now the time
for us to revisit the fundamentals of biological intelligence, specifically human
intelligence. As was mentioned in the preface of this book, the human brain
is, in its actual form, a fully distributed network of computational machines,
known as neurons. If we are able to map this into existing computational
networks, we see that the Internet is actually a physical brain of our entire

161

162 Internet-Scale Pattern Recognition

computational systems. Just as described in the quote by Dan Millman that
opens this chapter. The question that remains to be considered is how we can
harvest the functionalities of such large-scale systems. This perhaps can be
solved by having computational schemes that work at Internet-scale.

10.2 Future of Internet-Scale PR

Pattern recognition has and will always be a part of our lives. For several
decades, we have put much effort into delegating the recognition process to
machines, specifically computers. The evolution of computing fields, such as
robotics and machine learning, has provided a significant edge in enhancing
the applications involving pattern recognition. In the future, we foresee that
these applications will be extended beyond a simple domain-specific problem.
We may need to take a step and look at the context of collaborative inter-
domains. In addition, the recognition process can be applied beyond simple
textual and numerical data. Rather, it can also be applied on the semantics
of data. Current technological developments under the label of Internet-of-
Things (IoT) [7] and System-of-Systems (SoS) [102] are making it possible to
work from the perspective of collaborative inter-domains.

In today’s common enterprises and industries, monitoring and controlling
large-scale process control systems are important. The information systems
designed for such applications require interoperability between heterogeneous
distributed systems ranging from control networks to enterprise networks.
The significance of the systems interoperability can be observed in industrial
scenarios such as the plant lubrication system, where engineering, control,
monitoring, and maintenance systems are interoperable and require perfect
coordination for the system to perform its functions. In teaching systems, stu-
dent information systems and examination systems can be integrated to create
an automation of student’s examination results and suggestions on possible
course loads to be taken in the future. Although different types of systems are
targeted to achieve a common goal in a particular industry or business, exist-
ing practices seem to be designed as silos, where the tyranny of manual actions
are required to reach interoperability throughout the system. This type of ap-
proach is prone to human errors and is an unnecessary waste of resources. A
complete integration and automation system that performs cross-layer oper-
ations between different systems within a single large-scale system, known as
System of Systems (SoS), has a vast potential for solving these types of prob-
lems. With this approach being developed, it is important that each compo-
nent system can dynamically be discovered, added, or removed. Furthermore,
information exchange can be performed seamlessly between different systems,
acting as a single large-scale ecosystem.

Recognition: The Future and Beyond 163

The Internet-of-Things (IoT) and System-of-Systems (SoS) have the po-
tentials to provide the industry with imminence solutions for integrating and
automating large-scale heterogeneous systems. For instance, in plant mainte-
nance, data captured from the sensors and field devices can be transmitted
immediately to the processing network and be made directly available to the
plant engineer for analysis, trigger a request for parts procurement to the
finance department, or trigger a delivery request to the warehouse manager.
Although conceptually this approach offers significant added-value to the day-
to-day operations of industries and enterprises, there remains a gap between
theory and practice that lies at the knowledge level.

With the advent of IoT and SoS models, fully connected environments are
possible. However, the knowledge potentials of high-connectivity between het-
erogeneous systems in a large-scale ecosystem must be extensively explored.
For example, studies on cause and effect relationships can be extended to in-
clude different elements and parameters. Questions such as whether the flood-
ing of a road or a road accident will impact a household’s electricity usage or
whether the rapid increase of temperature in a boiler room of a plant will re-
duce the duration of the procurement process. These questions will definitely
be frowned upon because they not a part of the normal human experience.
Nevertheless, an increased interconnectivity achieved through both IoT and
SoS models have the potential to make such questions a reality. In the future,
the aims are to discover the knowledge potentials of infrastructures that are
able to add value to the way interpretations and analysis can be accomplished
in our daily life’s operations. This can only be achieved using distributed pat-
tern recognition and analysis schemes when addressing such an Internet-scale
environment.

Developing a capability for large-scale recognition and interpretation
schemes based on both IoT and SoS models will require a detailed understand-
ing of the complex relationship between the devices and information systems
at a bigger scale. A set of accurate recognition models must be formulated
to follow as real systems. This is to provide reasonable approximations of the
resultant behavior. In this perspective, the level of sophistication required in
knowledge of the occurrences of event will be of higher level than what is
currently required, e.g., in weather prediction applications.

10.3 Making a Case

A case for Internet-scale pattern recognition has been made through the
design and implementation of DPR, which has been extensively described in
this book. Recognition by means of computational intelligence can no longer
be established simply on the basis of algorithmic accuracy and efficiency. The

164 Internet-Scale Pattern Recognition

context of scalability must also be considered. Existing demand for large-scale
analyses can only be addressed using the enormous capacity of computational
networks. In addition, a scheme for scalable and fully distributed pattern
recognition is important because it will eliminate the implementation bottle-
neck of existing tightly coupled and highly iterative recognition algorithms.
Through these two mediums of change, pattern recognition can be used far
beyond its existing capabilities.

As previously discussed in Chapter 1, we believe that the means for ex-
isting artificial intelligence to emulate the functions of the human brain and
nervous system is through connectivity. Having a fully distributed approach
for information processing enables more information to be stored, and the ca-
pacity to process such information is significantly increased. With the advent
of seamless interconnectivity between smart devices, such as in the Internet-
of-Things (IoT), this capability for large-scale data processing can be further
extended. Furthermore, sensors attached to these large-scale computational
networks will provide an avenue for real-time information processing with a
life-long learning capability.

Imagine a fully interconnected sensory system composed of wireless sen-
sors and a distributed recognition algorithm that could learn how events are
happening and how it could adapt to any changes experienced throughout its
lifetime, i.e., as a pseudo-conscious system that acts as humans do, avoiding
hurtful situations using past experiences.

In the perspective of network evolution, we can see from the discussions in
later chapters of this book that computational networks have evolved from a
simple local network to computing at tera- or peta-flop scale. Cloud computing
enables a highly scalable means for complex computations and promises enor-
mous resource availability. In addition, the granularity of computational net-
works has evolved from coarse-grained systems, such as a grid, to fine-grained
networks, such as WSNs. The question that remains to be answered is how
we can fully utilize such systems. This perhaps can only be answered if we are
able to change our perspective of computations from sequential Von Neumann
principles to a fully parallel and distributed computing approach. A paradigm
shift is required, from Von Neumann archetype of stored-program computer
to a purely in-network processing approach, in which computations can be
performed in parallel within the body of the network without experiencing
performance bottlenecks resulting from sequential instruction execution and
data operations.

In the following subsections, we will look at the contributions of this book
from two perspectives: the fundamentals of the recognition process and the
idea of pattern recognition as a scalable commodity for information processing.

10.3.1 Changing the Fundamentals

For almost six decades, research on neural networks has focused on the
learning functions to improve the accuracy and efficiency of neuron outputs.

Recognition: The Future and Beyond 165

Less attention has been paid to the aspect of neuron connectivity in the net-
work. On this perspective, we can see a number of significant improvements
in the accuracy of conventional pattern recognition schemes, such as Hop-
field network. Nevertheless, the synaptic plasticity effect of tightly coupled
learning algorithms, such as Hebbian learning, limits the scalability of these
schemes. In relation to pattern recognition, to move beyond the boundaries of
Internet-scale environments, it is important for us to revisit the fundamentals
of neural networks. Throughout the discussions presented in this book, sev-
eral important concepts of in-network processing for pattern recognition were
presented. These included one-shot learning (Chapter 3), the hierarchical pro-
cessing model (Chapter 4), and the divide-and-distribute approach (Chapter
5). These concepts build up the foundations of a DPR approach for Internet-
scale recognition.

With the ability to expand recognition beyond the sequential train-
validation-test approach of existing pattern recognition schemes, DPR enables
recognition processes to be performed in a parallel and distributed manner.
The distributed multi-feature recognition approach, discussed in Chapter 7,
provides a scalable means of implementing recognition procedures on multi-
ple data features. With the expanding network resource availability, one is
capable of implementing pattern recognition using an unlimited number of
features. This factor is important, as we can see from the McGurk effect [103],
because certain features can be retrieved or detected only by using a combi-
nation of features. Instead of identifying information, we are able to generate
information using distributed information processing.

10.3.2 Recognition as Commodity

Apart from changing the perspective of recognition, this book was also
intended to deliver the concept of pattern recognition as a commodity for
information processing applications. As was demonstrated in Chapters 8 and
9, DPR schemes, such as the DHGN, can be deployed in different types of
computational networks. This adaptive feature for network granularity en-
ables recognition processes to be treated as a generic service or commodity
for different types of applications. We have demonstrated the use of DPR
in face recognition and distributed event detection. The unique approach of
the recognition process via in-network computations allows recognition to be
performed regardless of the types of data being used. Thus, this approach
enhances the scalability of the pattern recognition approach by taking into
account the structure and resources available in a particular network.

With this concept of recognition as a commodity, we are able to fully uti-
lize current and future technology, such as cloud computing, which has been
developed with a service-oriented architecture (SOA). We can conceptualize
pattern recognition as a cloud service that can be deployed in different types of
analytical and information processing applications ranging from a simple im-

166 Internet-Scale Pattern Recognition

age finder to complex analytical processes, such as protein structure analysis
in bioinformatics.

Bibliography

[1] A. I. Khan, “A peer-to-peer associative memory network for intelligent
information systems,” in Enabling Organisations and Society Through
Information Systems: The Proceedings of The Thirteenth Australasian
Conference on Information Systems, Melbourne, Victoria, Australia,
pp. 317–326, 2002.

[2] A. I. Khan and P. Mihailescu, “Parallel pattern recognition computa-
tions within a wireless sensor network,” in ICPR (1), pp. 777–780, 2004.

[3] B. B. Nasution and A. I. Khan, “A hierarchical graph neuron scheme for
real-time pattern recognition,” IEEE Transactions on Neural Networks,
vol. 19, no. 2, pp. 212–229, 2008.

[4] A. Muhamad Amin and A. I. Khan, “Single-cycle image recognition
using an adaptive granularity associative memory network,” in AI 2008:
Advances in Artificial Intelligence, (Berlin/Heidelberg), pp. 386–392,
Springer, 2008. Accessed October 6, 2010.

[5] M. J. Watkins and J. M. Gardiner, “An appreciation of generate-
recognize theory of recall,” Journal of Verbal Learning and Verbal Be-
havior, vol. 18, no. 6, pp. 687–704, 1979.

[6] C. Kamath and R. Musick, “Scalable data mining through fine-grained
parallelism: The present and the future,” Advances in Distributed and
Parallel Knowledge Discovery, pp. 29–77, 2000.

[7] H. Kopetz, “Internet of things,” in Real-Time Systems, Real-Time Sys-
tems Series, pp. 307–323, Springer US, 2011.

[8] F. Rosenblatt,“The perceptron — a perceiving and recognizing automa-
ton,”Technical Report No.85-460-1, 1957.

[9] A. K. Jain, R. P. Duin, and J. Mao, “Statistical pattern recognition: A
review,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 1, pp. 4–37, 2000.

[10] D. O. Hebb, “The organization of behavior,”Neurocomputing: Founda-
tions of Research, pp. 43–54, 1988.

[11] J. C. Schlimmer and R. H. Granger, Jr., “Incremental learning from
noisy data,”Machine Learning, vol. 1, no. 3, pp. 317–354, 1986.

167

168 Bibliography

[12] N. Nilsson, “Introduction to machine learning: An early draft of a pro-
posed textbook,” 1996. Accessed October 6, 2010.

[13] H. Sulehria and Y. Zhang, “Study on the capacity of hopfield neural
networks,” Information Technology Journal, vol. 7, no. 4, pp. 684–688,
2008.

[14] C. Anderson, “The end of theory: The data deluge makes the scientific
method obsolete,” 2008. Accessed March 3, 2010.

[15] S. K. Pal and P. Mitra, Pattern Recognition Algorithms for Data Min-
ing: Scalability, Knowledge Discovery, and Soft Granular Computing.
London, UK: Chapman & Hall, Ltd., 2004.

[16] J. Cheng and K. Wang, “Active learning for image retrieval with co-
svm,”Pattern Recognition, vol. 40, no. 1, pp. 330–334, 2007.

[17] G. Xia, Z. Tang, Y. Li, and J. Wang, “A binary hopfield neural net-
work with hysteresis for large crossbar packet-switches,”Neurocomput-
ing, vol. 67, pp. 417–425, 2005.

[18] S.-J. Hsiao, W.-T. Sung, and K.-C. Fan,“Web-based distributed pattern
recognition system,” Information Visualisation, International Confer-
ence on, p. 375, 2002.

[19] Y. Guoqing, C. Songcan, and L. Jun, “Multilayer parallel distributed
pattern recognition system model using sparse ram nets,” Computers
and Digital Techniques, IEEE Proceedings on, vol. 139, pp. 144–146,
Mar 1992.

[20] G. Nagy, “Interactive, mobile, distributed pattern recognition,” in
CIAP05, pp. 37–49, 2005.

[21] H. Al-Hertani and J. Ilow, “Pattern recognition based detection and lo-
calization in a network of randomly distributed sensor nodes,” in ISDA
’05: Proceedings of the 5th International Conference on Intelligent Sys-
tems Design and Applications, (Washington, DC, USA), pp. 412–419,
IEEE Computer Society, 2005.

[22] H.-C. Choi and S.-Y. Oh, “Efficient human-like memory management
based on walsh-based associative memory for real-time pattern recog-
nition,” in IJCNN, pp. 3657–3663, 2006.

[23] A. Talukder, T. Sheikh, and L. Chandramouli, “Real-time intelli-
gent pattern recognition, resource management and control under con-
strained resources for distributed sensor networks,” Neural Networks,
IEEE Proceedings International Joint Conference on, vol. 2, pp. 1321–
1326, July 2004.

[24] I. Turkoglu and A. Arslan, “Optimisation of the performance of neu-
ral network based pattern recognition classifiers with distributed sys-

Bibliography 169

tems,” Parallel and Distributed Systems ICPADS 2001, Proceedings of
the Eighth International Conference on, pp. 379–382, 2001.

[25] G. Garai and B. Chaudhuri, “A distributed hierarchical genetic algo-
rithm for efficient optimization and pattern matching,” Pattern Recog-
nition, vol. 40, no. 1, pp. 212–228, 2007.

[26] A. V. Srinivas and D. Janakiram, “A model for characterizing the scal-
ability of distributed systems,”SIGOPS Oper. Syst. Rev., vol. 39, no. 3,
pp. 64–71, 2005.

[27] J. Hopfield and D. Tank, “Neural computation of decisions in optimiza-
tion problems,”Biological Cybernetics, vol. 52, pp. 141–152, 1985.

[28] G. Ritter and P. Sussner, “An introduction to morphological neural
networks,” Pattern Recognition, International Conference on, vol. 4,
pp. 709–717, 1996.

[29] M. Hassoun and P. Watta, “The hamming associative memory and its
relation to the exponential capacity dam,” in Neural Networks, 1996,
IEEE International Conference on, vol. 1, pp. 583–587, June 1996.

[30] T. Kohonen, Self-Organizing Maps. Springer, 3rd ed., December 2000.

[31] A. I. Khan, M. Isreb, and R. S. Spindler, “A parallel distributed ap-
plication of the wireless sensor network,” in HPCASIA ’04: Proceedings
of the High Performance Computing and Grid in Asia Pacific Region,
Seventh International Conference, (Washington, DC, USA), pp. 81–88,
IEEE Computer Society, 2004.

[32] B. B. Nasution, A. I. Khan, and E. A. Kendall, “Incorporating graph
neurons (gns) to the trusted transient simple network (ttsn) security
control system architecture,” in IASTED Conf. on Software Engineer-
ing, pp. 13–19, 2005.

[33] M. Baqer, A. I. Khan, and Z. A. Baig, “Implementing a graph neu-
ron array for pattern recognition within unstructured wireless sensor
networks,” in EUC Workshops, pp. 208–217, 2005.

[34] Z. A. Baig, M. Baqer, and A. I. Khan,“A pattern recognition scheme for
distributed denial of service (ddos) attacks in wireless sensor networks,”
in ICPR (3), pp. 1050–1054, 2006.

[35] F. Song, H. Liu, D. Zhang, and J. Yang, “A highly scalable incremental
facial feature extraction method,” Neurocomputing, vol. 71, no. 10-12,
pp. 1883–1888, 2008. Neurocomputing for Vision Research; Advances
in Blind Signal Processing.

[36] M. Mavroforakis and S. Theodoridis, “A geometric approach to support
vector machine (svm) classification,”Neural Networks, IEEE Transac-
tions on, vol. 17, pp. 671–682, May 2006.

170 Bibliography

[37] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,”Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 28, pp. 594–611, April 2006.

[38] E. Miller, N. Matsakis, and P. Viola, “Learning from one example
through shared densities on transforms,” in Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference on, vol. 1,
pp. 464–471, 2000.

[39] S. K. Foo, P. Saratchandran, and N. Sundararajan, “Comparison of
parallel and serial implementation of feedforward neural networks,” J.
Microcomput. Appl., vol. 18, no. 1, pp. 83–94, 1995.

[40] N. Ikeda, P. Watta, M. Artiklar, and M. H. Hassoun, “A two-level ham-
ming network for high performance associative memory,” Neural Net-
works, vol. 14, no. 9, pp. 1189–1200, 2001.

[41] X. Mu, P. Watta, and M. Hassoun, “A weighted voting model of as-
sociative memory,” Neural Networks, IEEE Transactions on, vol. 18,
pp. 756–777, May 2007.

[42] E. Kokiopoulou and P. Frossard, “Distributed svm applied to image
classification,” in Multimedia and Expo, 2006 IEEE International Con-
ference on, pp. 1753–1756, July 2006.

[43] V. Lobo, N. Bandeira, and F. Moura-Pires, “Ship recognition using dis-
tributed self organizing maps,” in Proceedings of the 1998 International
Conference on Engineering Applications of Neural Networks (EANN98),
pp. 326–329, 1998.

[44] V. Kumar, S. Shekhar, and M. B. Amin,“A scalable parallel formulation
of the backpropagation algorithm for hypercubes and related architec-
tures,”IEEE Trans. Parallel Distrib. Syst., vol. 5, no. 10, pp. 1073–1090,
1994.

[45] A. Yang, R. Jafari, P. Kuryloski, S. Iyengar, S. S. Sastry, and R. Bajcsy,
“Distributed segmentation and classification of human actions using a
wearable motion sensor network,” tech. rep., Electrical Engineering and
Computer Sciences, University of California at Berkeley, 2007. Accessed
March 17, 2010.

[46] A. I. Khan and A. Muhamad Amin, “One shot associative memory
method for distorted pattern recognition,” in AI 2007: Advances in Ar-
tificial Intelligence, (Berlin/Heidelberg), pp. 705–709, Springer, 2007.
Accessed October 6, 2010.

[47] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern vectors from alge-
braic graph theory,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 27, no. 7, pp. 1112–1124, 2005.

Bibliography 171

[48] S. Auwatanamongkol, “Inexact graph matching using a genetic al-
gorithm for image recognition,” Pattern Recognition Letters, vol. 28,
no. 12, pp. 1428–1437, 2007.

[49] A. Albiol, D. Monzo, A. Martin, J. Sastre, and A. Albiol, “Face recog-
nition using hog-ebgm,” Pattern Recognition Letters, vol. 29, no. 10,
pp. 1537–1543, 2008.

[50] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola,
“Learning graph matching,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, pp. 1048–1058, 2009.

[51] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Free-
man & Co., 1990.

[52] B. B. Nasution, Trusted Transaction Secure Network: Agent-Based Dis-
tributed Security Control System for Traffic on the Internet. PhD thesis,
Faculty of Information Technology, Monash University, 2007.

[53] E. Bengoetxea, Inexact Graph Matching Using Estimation of Distribu-
tion Algorithms. PhD thesis, Département Traitement du Signal et des
Images, Ecole Nationale Supérieure des Télécommunications, 2003.

[54] A. H. M. Amin and A. I. Khan, “Parallel pattern recognition using a
single-cycle learning approach within wireless sensor networks,” in PD-
CAT: Ninth International Conference on Parallel and Distributed Com-
puting, Applications and Technologies, PDCAT 2008, Dunedin, Otago,
New Zealand, December 1-4, 2008, pp. 305–308, 2008.

[55] A. H. Muhamad Amin and A. I. Khan, “Commodity-grid based dis-
tributed pattern recognition framework,”in AusGrid ’08: Proceedings of
the Sixth Australasian Workshop on Grid Computing and e-Research,
(Darlinghurst, Australia), pp. 27–34, Australian Computer Society, Inc.,
2008.

[56] A. H. Basirat, A. H. M. Amin, and A. I. Khan,“Under the cloud: A novel
content addressable data framework for cloud parallelization to create
and virtualize new breeds of cloud applications,” in NCA, pp. 168–173,
2010.

[57] W. Gropp, R. Thakur, and E. Lusk, Using MPI-2: Advanced Features
of the Message Passing Interface. Cambridge, MA, USA: MIT Press,
1999.

[58] Wikipedia, “One-shot learning,” 2008. [Online; Accessed January 26,
2012].

[59] B. Lake, R. Salakhutdinov, and J. Gross, “One-shot learning of simple
visual concepts,” in Proceedings of the 33rd Annual Conference of the
Cognitive Science Society, 2011.

172 Bibliography

[60] E. Bart and S. Ullman,“Cross-generalization: learning novel classes from
a single example by feature replacement,” in Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 05), IEEE Press, 2005.

[61] A. I. Khan, A. H. Muhamad Amin, and R. Raja Mahmood,“Lightweight
event detection scheme using distributed hierarchical graph neuron in
wireless sensor networks,” in Wireless Sensor Networks, In-Tech Publi-
cations, 2010. In-Press.

[62] M. Baqer and A. Khan, “Energy-efficient pattern recognition approach
for wireless sensor networks,” in Intelligent Sensors, Sensor Networks
and Information, 2007. ISSNIP 2007. 3rd International Conference on,
pp. 509–514, December 2007.

[63] A. Muhamad Amin and A. I. Khan,“Collaborative-comparison learning
for complex event detection using distributed hierarchical graph neuron
(dhgn) approach in wireless sensor network,” in AI 2009: Advances in
Artificial Intelligence, (Berlin/Heidelberg), pp. 111–120, Springer, 2009.
Accessed October 6, 2010.

[64] A. I. Khan, A. H. Muhamad Amin, and R. A. Raja Mahmood, “An
on-line scheme for threat detection within mobile ad hoc networks,” in
Research in Mobile Intelligence, John Wiley & Sons, Inc., 2010.

[65] I. Román-God́ınez, I. López-Yáñez, and C. Yáñez-Márquez,“Classifying
patterns in bioinformatics databases by using alpha-beta associative
memories,”Biomedical Data and Applications, pp. 187–210, 2009.

[66] B. Kosko,“Bidirectional associative memories,” IEEE Trans. Syst. Man
Cybern., vol. 18, no. 1, pp. 49–60, 1988.

[67] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1992.

[68] G. Ritter, P. Sussner, and J. Diaz-de Leon, “Morphological associative
memories,” Neural Networks, IEEE Transactions on, vol. 9, pp. 281–
293, March 1998.

[69] R. Battiti and A. M. Colla, “Democracy in neural nets: voting schemes
for classification,”Neural Netw., vol. 7, no. 4, pp. 691–707, 1994.

[70] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-
rithms. Wiley-Interscience, 2004.

[71] B. Cruz, H. Sossa, and R. Barrón, “A new two-level associative memory
for efficient pattern restoration,” Neural Process. Lett., vol. 25, no. 1,
pp. 1–16, 2007.

Bibliography 173

[72] V. Chitkara, M. A. Nascimento, and C. Mastaller, “Content-based im-
age retrieval using binary signatures,” Tech. Rep. 00-18, University of
Alberta, 2001.

[73] A. H. Muhamad Amin, R. A. Raja Mahmood, and A. I. Khan,“Analysis
of pattern recognition algorithms using associative memory approach: A
comparative study between the hopfield network and distributed hierar-
chical graph neuron (DHGN),” in CITWORKSHOPS ’08: Proceedings
of the 2008 IEEE 8th International Conference on Computer and Infor-
mation Technology Workshops, (Washington, DC, USA), pp. 153–158,
IEEE Computer Society, 2008.

[74] G. von Laszewski, I. T. Foster, and J. Gawor,“Cog kits: a bridge between
commodity distributed computing and high-performance grids,” in Java
Grande, pp. 97–106, 2000.

[75] G. von Laszewski and M. Hategan, “Workflow concepts of the java cog
kit,” J. Grid Comput., vol. 3, no. 3-4, pp. 239–258, 2005.

[76] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared,” in 2008 Grid Computing Environ-
ments Workshop, pp. 1–10, IEEE, November 2008.

[77] O. D. Sahin, F. Emekci, D. Agrawal, and A. E. Abbadi, “Content-
based similarity search over peer-to-peer systems,” in In Proceedings
of DBISP2P04, pp. 61–78, 2004.

[78] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer computing,” tech. rep.,
2003.

[79] H. ku Lee, B. Carpenter, G. Fox, and S. B. Lim, “Hpjava: Programming
support for high-performance grid-enabled applications,” International
Journal of Parallel Algorithms and Applications, vol. 19, p. 2004, 2004.

[80] NVIDIA, “What is GPU computing?,” 2012.

[81] J. Fung and S. Mann, “Using multiple graphics cards as a general pur-
pose parallel computer: Applications to computer vision,”in Proceedings
of the Pattern Recognition, 17th International Conference on (ICPR’04)
Vol. 1, ICPR ’04, (Washington, DC, USA), pp. 805–808, IEEE Com-
puter Society, 2004.

[82] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1st ed., 2010.

[83] R. Tsuchiyama, T. Nakamura, T. Iizuka, and A. Asahara, The OpenCL
Programming Book. Fixstars Corporation, 2010.

174 Bibliography

[84] S. Nagarajan, “Data integrity and availability: The challenge of scale
for modern storage systems,”Computer, 2012.

[85] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego,
CA, USA: Academic Press, 2003.

[86] S.-T. Bow, Pattern Recognition and Image Preprocessing. New York,
NY, USA: Marcel Dekker, Inc., 2002.

[87] S. Hongtao, D. D. Feng, and Z. Rong-chun, “Face recognition using
multi-feature and radial basis function network,” in VIP ’02: Selected
Papers from the 2002 Pan-Sydney Workshop on Visualisation, (Dar-
linghurst, Australia, Australia), pp. 51–57, Australian Computer Soci-
ety, Inc., 2002.

[88] R. P. W. Duin and D. M. J. Tax,“Experiments with classifier combining
rules,” in MCS ’00: Proceedings of the First International Workshop on
Multiple Classifier Systems, (London, UK), pp. 16–29, Springer-Verlag,
2000.

[89] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,”Proceedings of the IEEE, vol. 86,
pp. 2278 –2324, November 1998.

[90] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
Accessed October 6, 2010.

[91] G. von Laszewski, M. Hategan, and D. Kodeboyina, “Work coordina-
tion for grid computing,” in Grid Technologies, Southampton, UK: WIT
Press, 2006.

[92] A. H. Muhamad Amin and A. I. Khan,“Distributed multi-feature recog-
nition scheme for greyscale images,”Neural Process. Lett., vol. 33, no. 1,
pp. 45–59, 2011.

[93] M. A. Nascimento and V. Chitkara, “Color-based image retrieval using
binary signatures,” in SAC ’02: Proceedings of the 2002 ACM Sympo-
sium on Applied Computing, (New York, NY, USA), pp. 687–692, ACM,
2002.

[94] R. Kimmel, D. Shaked, M. Elad, and I. Sobel, “Space-dependent color
gamut mapping: a variational approach,” IEEE Transactions on Image
Processing, vol. 14, no. 6, pp. 796–803, 2005.

[95] R. Lämmel, “Google’s mapreduce programming model; revisited,” Sci.
Comput. Program., vol. 68, no. 3, pp. 208–237, October 2007.

[96] A. H. Muhamad Amin and A. I. Khan, “Spatio-temporal forest fire
detection using a distributed hierarchical graph neuron within an in-
tegrated wireless sensor network-grid environment,” in Proceedings of
the Second International Conference on Parallel, Distributed, Grid and

Bibliography 175

Cloud Computing for Engineering, PARENG ’11, (Stirlingshire, UK),
Civil-Comp Press, 2011, doi: 10.4203/ccp.95.50.

[97] P. Cortez and A. Morais, “Data mining approach to predict forest fires
using meteorological data,”in New Trends in Artificial Intelligence, Pro-
ceedings of the 13th EPIA 2007: Portuguese Conference on Artificial
Intelligence, pp. 512–523, 2007.

[98] A. I. Khan and A. H. Muhamad Amin, Integrating Sensory Data within
a Structural Analysis Grid, pp. 389–412. Stirlingshire, UK: Saxe-Coburg
Publications, 2009, doi:10.4203/csets.21.18.

[99] W. Sibai, Adaptive Mesh Refinement with the Morley Thin Plate El-
ement: Static and Free Vibration Analysis. University College of
Swansea, 1989.

[100] P. Jimack and S. Nadeem, “A parallel domain decomposition algorithm
for the adaptive finite element solution of 3-D convection-diffusion prob-
lems,” in Computational Science, International Conf. on, ICCS 2002,
Springer Berlin / Heidelberg, 2002.

[101] Y. Fragakis and E. Onate, “Parallel delaunay triangulation for parti-
cle finite element methods,”Communications in Numerical Methods in
Engineering, vol. 24, no. 11, pp. 1009–1017, 2008.

[102] M. W. Maier, “Architecting principles for systems-of-systems,”Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[103] H. McGurk and J. MacDonald, “Hearing lips and seeing voices,”Nature,
vol. 264, pp. 746–748, December 1976.

K14810

For machine intelligence applications to work successfully,
machines must perform reliably under variations of data and must
be able to keep up with data streams. Internet-Scale Pattern
Recognition: New Techniques for Voluminous Data Sets
and Data Clouds unveils computational models that address
performance and scalability to achieve higher levels of reliability.
It explores different ways of implementing pattern recognition
using machine intelligence.

Based on the authors’ research from the past 10 years, the text
draws on concepts from pattern recognition, parallel processing,
distributed systems, and data networks. It describes fundamental
research on the scalability and performance of pattern recognition,
addressing issues with existing pattern recognition schemes for
Internet-scale data deployment. The authors review numerous
approaches and introduce possible solutions to the scalability
problem.

By presenting the concise body of knowledge required for
reliable and scalable pattern recognition, this book shortens the
learning curve and gives you valuable insight to make further
innovations. It offers an extendable template for Internet-scale
pattern recognition applications as well as guidance on the
programming of large networks of devices.

Computer Science

Internet-Scale Pattern Recognition

Internet-Scale
Pattern Recognition
New Techniques for Voluminous
Data Sets and Data Clouds

Internet-Scale Pattern Recognition
New Techniques for Voluminous Data Sets and Data Clouds

Anang Hudaya Muhamad Amin
Asad I. Khan
Benny B. Nasution

Muhamad Amin,
Khan, and Nasution

K14810_Cover.indd 1 10/15/12 11:09 AM

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Authors
	Part I: Recognition: A New Perspective
	Chapter 1: Introduction
	Chapter 2: Distributed Approach for Pattern Recognition
	Part II: Evolution of Internet-Scale Recognition
	Chapter 3: One-Shot Learning Considerations
	Chapter 4: Hierarchical Model for Pattern Recognition
	Chapter 5: Recognition via Divide-and-Distribute Approach
	Part III: Systems and Tools
	Chapter 6: Internet-Scale Applications Development
	Part IV: Implementations and Applications
	Chapter 7: Multi-Feature Classifications for Complex Data
	Chapter 8: Pattern Recognition within Coarse-Grained Networks
	Chapter 9: Event Detection within Fine-Grained Networks
	Part V: The Way Forward
	Chapter 10: Recognition: The Future and Beyond
	Bibliography
	Back Cover

