
38mm

Cover design: Gary Thompson

PATTERN
RECOGNITION

T h i r d E d i t i o n

T h i r d

E d i t i o n

Andrew R. Webb
Keith D. Copsey

PATTERN
RECOGNITION

T h i r d E d i t i o n

STATISTICAL
Webb

Copsey

REC
O

G
N

ITIO
N

STA
TISTIC

A
L

PA
TTERN

Andrew R. Webb and Keith D. Copsey
Mathematics and Data Analysis Consultancy, Malvern, UK

Statistical pattern recognition relates to the use of statistical techniques for analysing data
measurements in order to extract information and make justified decisions. It is a very active area
of study and research, which has seen many advances in recent years. Applications such as data
mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting
recognition, all require robust and efficient pattern recognition techniques.

This third edition provides an introduction to statistical pattern theory and techniques, with
material drawn from a wide range of fields, including the areas of engineering, statistics, computer
science and the social sciences. The book has been updated to cover new methods and applications,
and includes a wide range of techniques such as Bayesian methods, neural networks, support
vector machines, feature selection and feature reduction techniques. Technical descriptions and
motivations are provided, and the techniques are illustrated using real examples.

 Statistical Pattern Recognition, Third Edition:

 • Provides a self-contained introduction to statistical pattern recognition.
 • Includes new material presenting the analysis of complex networks.
 • Introduces readers to methods for Bayesian density estimation.
 • Presents descriptions of new applications in biometrics, security, finance and
 condition monitoring.
 • Provides descriptions and guidance for implementing techniques, which will be
 invaluable to software engineers and developers seeking to develop real applications.
 • Describes mathematically the range of statistical pattern recognition techniques.
 • Presents a variety of exercises including more extensive computer projects.

The in-depth technical descriptions make this book suitable for senior undergraduate and graduate
students in statistics, computer science and engineering. Statistical Pattern Recognition is also an
excellent reference source for technical professionals. Chapters have been arranged to facilitate
implementation of the techniques by software engineers and developers in non-statistical
engineering fields.

www.wiley.com/go/statistical_pattern_recognition

STATISTICAL

RED BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING.

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

Statistical Pattern Recognition

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

Statistical Pattern Recognition

Third Edition

Andrew R. Webb • Keith D. Copsey
Mathematics and Data Analysis Consultancy, Malvern, UK

A John Wiley & Sons, Ltd., Publication

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

This edition first published 2011
© 2011 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners.
The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide
accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the
publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Webb, A. R. (Andrew R.)
Statistical pattern recognition / Andrew R. Webb, Keith D. Copsey. – 3rd ed.

p. cm.
Includes bibliographical references and index.

ISBN 978-0-470-68227-2 (hardback) – ISBN 978-0-470-68228-9 (paper)
1. Pattern perception–Statistical methods. I. Copsey, Keith D. II. Title.

Q327.W43 2011
006.4–dc23 2011024957

A catalogue record for this book is available from the British Library.

HB ISBN: 978-0-470-68227-2
PB ISBN: 978-0-470-68228-9
ePDF ISBN: 978-1-119-95296-1
oBook ISBN: 978-1-119-95295-4
ePub ISBN: 978-1-119-96140-6
Mobi ISBN: 978-1-119-96141-3

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

http://www.wiley.com

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

To Rosemary,

Samuel, Miriam, Jacob and Ethan

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

Contents

Preface xix

Notation xxiii

1 Introduction to Statistical Pattern Recognition 1
1.1 Statistical Pattern Recognition 1

1.1.1 Introduction 1
1.1.2 The Basic Model 2

1.2 Stages in a Pattern Recognition Problem 4
1.3 Issues 6
1.4 Approaches to Statistical Pattern Recognition 7
1.5 Elementary Decision Theory 8

1.5.1 Bayes’ Decision Rule for Minimum Error 8
1.5.2 Bayes’ Decision Rule for Minimum Error – Reject Option 12
1.5.3 Bayes’ Decision Rule for Minimum Risk 13
1.5.4 Bayes’ Decision Rule for Minimum Risk – Reject Option 15
1.5.5 Neyman–Pearson Decision Rule 15
1.5.6 Minimax Criterion 18
1.5.7 Discussion 19

1.6 Discriminant Functions 20
1.6.1 Introduction 20
1.6.2 Linear Discriminant Functions 21
1.6.3 Piecewise Linear Discriminant Functions 23
1.6.4 Generalised Linear Discriminant Function 24
1.6.5 Summary 26

1.7 Multiple Regression 27
1.8 Outline of Book 29
1.9 Notes and References 29
Exercises 31

2 Density Estimation – Parametric 33
2.1 Introduction 33

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

viii CONTENTS

2.2 Estimating the Parameters of the Distributions 34
2.2.1 Estimative Approach 34
2.2.2 Predictive Approach 35

2.3 The Gaussian Classifier 35
2.3.1 Specification 35
2.3.2 Derivation of the Gaussian Classifier Plug-In Estimates 37
2.3.3 Example Application Study 39

2.4 Dealing with Singularities in the Gaussian Classifier 40
2.4.1 Introduction 40
2.4.2 Naı̈ve Bayes 40
2.4.3 Projection onto a Subspace 41
2.4.4 Linear Discriminant Function 41
2.4.5 Regularised Discriminant Analysis 42
2.4.6 Example Application Study 44
2.4.7 Further Developments 45
2.4.8 Summary 46

2.5 Finite Mixture Models 46
2.5.1 Introduction 46
2.5.2 Mixture Models for Discrimination 48
2.5.3 Parameter Estimation for Normal Mixture Models 49
2.5.4 Normal Mixture Model Covariance Matrix Constraints 51
2.5.5 How Many Components? 52
2.5.6 Maximum Likelihood Estimation via EM 55
2.5.7 Example Application Study 60
2.5.8 Further Developments 62
2.5.9 Summary 63

2.6 Application Studies 63
2.7 Summary and Discussion 66
2.8 Recommendations 66
2.9 Notes and References 67
Exercises 67

3 Density Estimation – Bayesian 70
3.1 Introduction 70

3.1.1 Basics 72
3.1.2 Recursive Calculation 72
3.1.3 Proportionality 73

3.2 Analytic Solutions 73
3.2.1 Conjugate Priors 73
3.2.2 Estimating the Mean of a Normal Distribution with

Known Variance 75
3.2.3 Estimating the Mean and the Covariance Matrix of a Multivariate

Normal Distribution 79
3.2.4 Unknown Prior Class Probabilities 85
3.2.5 Summary 87

3.3 Bayesian Sampling Schemes 87
3.3.1 Introduction 87

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

CONTENTS ix

3.3.2 Summarisation 87
3.3.3 Sampling Version of the Bayesian Classifier 89
3.3.4 Rejection Sampling 89
3.3.5 Ratio of Uniforms 90
3.3.6 Importance Sampling 92

3.4 Markov Chain Monte Carlo Methods 95
3.4.1 Introduction 95
3.4.2 The Gibbs Sampler 95
3.4.3 Metropolis–Hastings Algorithm 103
3.4.4 Data Augmentation 107
3.4.5 Reversible Jump Markov Chain Monte Carlo 108
3.4.6 Slice Sampling 109
3.4.7 MCMC Example – Estimation of Noisy Sinusoids 111
3.4.8 Summary 115
3.4.9 Notes and References 116

3.5 Bayesian Approaches to Discrimination 116
3.5.1 Labelled Training Data 116
3.5.2 Unlabelled Training Data 117

3.6 Sequential Monte Carlo Samplers 119
3.6.1 Introduction 119
3.6.2 Basic Methodology 121
3.6.3 Summary 125

3.7 Variational Bayes 126
3.7.1 Introduction 126
3.7.2 Description 126
3.7.3 Factorised Variational Approximation 129
3.7.4 Simple Example 131
3.7.5 Use of the Procedure for Model Selection 135
3.7.6 Further Developments and Applications 136
3.7.7 Summary 137

3.8 Approximate Bayesian Computation 137
3.8.1 Introduction 137
3.8.2 ABC Rejection Sampling 138
3.8.3 ABC MCMC Sampling 140
3.8.4 ABC Population Monte Carlo Sampling 141
3.8.5 Model Selection 142
3.8.6 Summary 143

3.9 Example Application Study 144
3.10 Application Studies 145
3.11 Summary and Discussion 146
3.12 Recommendations 147
3.13 Notes and References 147
Exercises 148

4 Density Estimation – Nonparametric 150
4.1 Introduction 150

4.1.1 Basic Properties of Density Estimators 150

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

x CONTENTS

4.2 k-Nearest-Neighbour Method 152
4.2.1 k-Nearest-Neighbour Classifier 152
4.2.2 Derivation 154
4.2.3 Choice of Distance Metric 157
4.2.4 Properties of the Nearest-Neighbour Rule 159
4.2.5 Linear Approximating and Eliminating Search Algorithm 159
4.2.6 Branch and Bound Search Algorithms: kd-Trees 163
4.2.7 Branch and Bound Search Algorithms: Ball-Trees 170
4.2.8 Editing Techniques 174
4.2.9 Example Application Study 177

4.2.10 Further Developments 178
4.2.11 Summary 179

4.3 Histogram Method 180
4.3.1 Data Adaptive Histograms 181
4.3.2 Independence Assumption (Naı̈ve Bayes) 181
4.3.3 Lancaster Models 182
4.3.4 Maximum Weight Dependence Trees 183
4.3.5 Bayesian Networks 186
4.3.6 Example Application Study – Naı̈ve Bayes Text Classification 190
4.3.7 Summary 193

4.4 Kernel Methods 194
4.4.1 Biasedness 197
4.4.2 Multivariate Extension 198
4.4.3 Choice of Smoothing Parameter 199
4.4.4 Choice of Kernel 201
4.4.5 Example Application Study 202
4.4.6 Further Developments 203
4.4.7 Summary 203

4.5 Expansion by Basis Functions 204
4.6 Copulas 207

4.6.1 Introduction 207
4.6.2 Mathematical Basis 207
4.6.3 Copula Functions 208
4.6.4 Estimating Copula Probability Density Functions 209
4.6.5 Simple Example 211
4.6.6 Summary 212

4.7 Application Studies 213
4.7.1 Comparative Studies 216

4.8 Summary and Discussion 216
4.9 Recommendations 217
4.10 Notes and References 217
Exercises 218

5 Linear Discriminant Analysis 221
5.1 Introduction 221
5.2 Two-Class Algorithms 222

5.2.1 General Ideas 222

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

CONTENTS xi

5.2.2 Perceptron Criterion 223
5.2.3 Fisher’s Criterion 227
5.2.4 Least Mean-Squared-Error Procedures 228
5.2.5 Further Developments 235
5.2.6 Summary 235

5.3 Multiclass Algorithms 236
5.3.1 General Ideas 236
5.3.2 Error-Correction Procedure 237
5.3.3 Fisher’s Criterion – Linear Discriminant Analysis 238
5.3.4 Least Mean-Squared-Error Procedures 241
5.3.5 Regularisation 246
5.3.6 Example Application Study 246
5.3.7 Further Developments 247
5.3.8 Summary 248

5.4 Support Vector Machines 249
5.4.1 Introduction 249
5.4.2 Linearly Separable Two-Class Data 249
5.4.3 Linearly Nonseparable Two-Class Data 253
5.4.4 Multiclass SVMs 256
5.4.5 SVMs for Regression 257
5.4.6 Implementation 259
5.4.7 Example Application Study 262
5.4.8 Summary 263

5.5 Logistic Discrimination 263
5.5.1 Two-Class Case 263
5.5.2 Maximum Likelihood Estimation 264
5.5.3 Multiclass Logistic Discrimination 266
5.5.4 Example Application Study 267
5.5.5 Further Developments 267
5.5.6 Summary 268

5.6 Application Studies 268
5.7 Summary and Discussion 268
5.8 Recommendations 269
5.9 Notes and References 270
Exercises 270

6 Nonlinear Discriminant Analysis – Kernel and Projection Methods 274
6.1 Introduction 274
6.2 Radial Basis Functions 276

6.2.1 Introduction 276
6.2.2 Specifying the Model 278
6.2.3 Specifying the Functional Form 278
6.2.4 The Positions of the Centres 279
6.2.5 Smoothing Parameters 281
6.2.6 Calculation of the Weights 282
6.2.7 Model Order Selection 284
6.2.8 Simple RBF 285

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

xii CONTENTS

6.2.9 Motivation 286
6.2.10 RBF Properties 288
6.2.11 Example Application Study 288
6.2.12 Further Developments 289
6.2.13 Summary 290

6.3 Nonlinear Support Vector Machines 291
6.3.1 Introduction 291
6.3.2 Binary Classification 291
6.3.3 Types of Kernel 292
6.3.4 Model Selection 293
6.3.5 Multiclass SVMs 294
6.3.6 Probability Estimates 294
6.3.7 Nonlinear Regression 296
6.3.8 Example Application Study 296
6.3.9 Further Developments 297

6.3.10 Summary 298
6.4 The Multilayer Perceptron 298

6.4.1 Introduction 298
6.4.2 Specifying the MLP Structure 299
6.4.3 Determining the MLP Weights 300
6.4.4 Modelling Capacity of the MLP 307
6.4.5 Logistic Classification 307
6.4.6 Example Application Study 310
6.4.7 Bayesian MLP Networks 311
6.4.8 Projection Pursuit 313
6.4.9 Summary 313

6.5 Application Studies 314
6.6 Summary and Discussion 316
6.7 Recommendations 317
6.8 Notes and References 318
Exercises 318

7 Rule and Decision Tree Induction 322
7.1 Introduction 322
7.2 Decision Trees 323

7.2.1 Introduction 323
7.2.2 Decision Tree Construction 326
7.2.3 Selection of the Splitting Rule 327
7.2.4 Terminating the Splitting Procedure 330
7.2.5 Assigning Class Labels to Terminal Nodes 332
7.2.6 Decision Tree Pruning – Worked Example 332
7.2.7 Decision Tree Construction Methods 337
7.2.8 Other Issues 339
7.2.9 Example Application Study 340

7.2.10 Further Developments 341
7.2.11 Summary 342

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

CONTENTS xiii

7.3 Rule Induction 342
7.3.1 Introduction 342
7.3.2 Generating Rules from a Decision Tree 345
7.3.3 Rule Induction Using a Sequential Covering Algorithm 345
7.3.4 Example Application Study 350
7.3.5 Further Developments 351
7.3.6 Summary 351

7.4 Multivariate Adaptive Regression Splines 351
7.4.1 Introduction 351
7.4.2 Recursive Partitioning Model 351
7.4.3 Example Application Study 355
7.4.4 Further Developments 355
7.4.5 Summary 356

7.5 Application Studies 356
7.6 Summary and Discussion 358
7.7 Recommendations 358
7.8 Notes and References 359
Exercises 359

8 Ensemble Methods 361
8.1 Introduction 361
8.2 Characterising a Classifier Combination Scheme 362

8.2.1 Feature Space 363
8.2.2 Level 366
8.2.3 Degree of Training 368
8.2.4 Form of Component Classifiers 368
8.2.5 Structure 369
8.2.6 Optimisation 369

8.3 Data Fusion 370
8.3.1 Architectures 370
8.3.2 Bayesian Approaches 371
8.3.3 Neyman–Pearson Formulation 373
8.3.4 Trainable Rules 374
8.3.5 Fixed Rules 375

8.4 Classifier Combination Methods 376
8.4.1 Product Rule 376
8.4.2 Sum Rule 377
8.4.3 Min, Max and Median Combiners 378
8.4.4 Majority Vote 379
8.4.5 Borda Count 379
8.4.6 Combiners Trained on Class Predictions 380
8.4.7 Stacked Generalisation 382
8.4.8 Mixture of Experts 382
8.4.9 Bagging 385

8.4.10 Boosting 387
8.4.11 Random Forests 389
8.4.12 Model Averaging 390

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

xiv CONTENTS

8.4.13 Summary of Methods 396
8.4.14 Example Application Study 398
8.4.15 Further Developments 399

8.5 Application Studies 399
8.6 Summary and Discussion 400
8.7 Recommendations 401
8.8 Notes and References 401
Exercises 402

9 Performance Assessment 404
9.1 Introduction 404
9.2 Performance Assessment 405

9.2.1 Performance Measures 405
9.2.2 Discriminability 406
9.2.3 Reliability 413
9.2.4 ROC Curves for Performance Assessment 415
9.2.5 Population and Sensor Drift 419
9.2.6 Example Application Study 421
9.2.7 Further Developments 422
9.2.8 Summary 423

9.3 Comparing Classifier Performance 424
9.3.1 Which Technique is Best? 424
9.3.2 Statistical Tests 425
9.3.3 Comparing Rules When Misclassification Costs are Uncertain 426
9.3.4 Example Application Study 428
9.3.5 Further Developments 429
9.3.6 Summary 429

9.4 Application Studies 429
9.5 Summary and Discussion 430
9.6 Recommendations 430
9.7 Notes and References 430
Exercises 431

10 Feature Selection and Extraction 433
10.1 Introduction 433
10.2 Feature Selection 435

10.2.1 Introduction 435
10.2.2 Characterisation of Feature Selection Approaches 439
10.2.3 Evaluation Measures 440
10.2.4 Search Algorithms for Feature Subset Selection 449
10.2.5 Complete Search – Branch and Bound 450
10.2.6 Sequential Search 454
10.2.7 Random Search 458
10.2.8 Markov Blanket 459
10.2.9 Stability of Feature Selection 460

10.2.10 Example Application Study 462
10.2.11 Further Developments 462
10.2.12 Summary 463

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

CONTENTS xv

10.3 Linear Feature Extraction 463
10.3.1 Principal Components Analysis 464
10.3.2 Karhunen–Loève Transformation 475
10.3.3 Example Application Study 481
10.3.4 Further Developments 482
10.3.5 Summary 483

10.4 Multidimensional Scaling 484
10.4.1 Classical Scaling 484
10.4.2 Metric MDS 486
10.4.3 Ordinal Scaling 487
10.4.4 Algorithms 490
10.4.5 MDS for Feature Extraction 491
10.4.6 Example Application Study 492
10.4.7 Further Developments 493
10.4.8 Summary 493

10.5 Application Studies 493
10.6 Summary and Discussion 495
10.7 Recommendations 495
10.8 Notes and References 496
Exercises 497

11 Clustering 501
11.1 Introduction 501
11.2 Hierarchical Methods 502

11.2.1 Single-Link Method 503
11.2.2 Complete-Link Method 506
11.2.3 Sum-of-Squares Method 507
11.2.4 General Agglomerative Algorithm 508
11.2.5 Properties of a Hierarchical Classification 508
11.2.6 Example Application Study 509
11.2.7 Summary 509

11.3 Quick Partitions 510
11.4 Mixture Models 511

11.4.1 Model Description 511
11.4.2 Example Application Study 512

11.5 Sum-of-Squares Methods 513
11.5.1 Clustering Criteria 514
11.5.2 Clustering Algorithms 515
11.5.3 Vector Quantisation 520
11.5.4 Example Application Study 530
11.5.5 Further Developments 530
11.5.6 Summary 531

11.6 Spectral Clustering 531
11.6.1 Elementary Graph Theory 531
11.6.2 Similarity Matrices 534
11.6.3 Application to Clustering 534
11.6.4 Spectral Clustering Algorithm 535
11.6.5 Forms of Graph Laplacian 535

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

xvi CONTENTS

11.6.6 Example Application Study 536
11.6.7 Further Developments 538
11.6.8 Summary 538

11.7 Cluster Validity 538
11.7.1 Introduction 538
11.7.2 Statistical Tests 539
11.7.3 Absence of Class Structure 540
11.7.4 Validity of Individual Clusters 541
11.7.5 Hierarchical Clustering 542
11.7.6 Validation of Individual Clusterings 542
11.7.7 Partitions 543
11.7.8 Relative Criteria 543
11.7.9 Choosing the Number of Clusters 545

11.8 Application Studies 546
11.9 Summary and Discussion 549
11.10 Recommendations 551
11.11 Notes and References 552
Exercises 553

12 Complex Networks 555
12.1 Introduction 555

12.1.1 Characteristics 557
12.1.2 Properties 557
12.1.3 Questions to Address 559
12.1.4 Descriptive Features 560
12.1.5 Outline 560

12.2 Mathematics of Networks 561
12.2.1 Graph Matrices 561
12.2.2 Connectivity 562
12.2.3 Distance Measures 562
12.2.4 Weighted Networks 563
12.2.5 Centrality Measures 563
12.2.6 Random Graphs 564

12.3 Community Detection 565
12.3.1 Clustering Methods 565
12.3.2 Girvan–Newman Algorithm 568
12.3.3 Modularity Approaches 570
12.3.4 Local Modularity 571
12.3.5 Clique Percolation 573
12.3.6 Example Application Study 574
12.3.7 Further Developments 575
12.3.8 Summary 575

12.4 Link Prediction 575
12.4.1 Approaches to Link Prediction 576
12.4.2 Example Application Study 578
12.4.3 Further Developments 578

12.5 Application Studies 579

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

CONTENTS xvii

12.6 Summary and Discussion 579
12.7 Recommendations 580
12.8 Notes and References 580
Exercises 580

13 Additional Topics 581
13.1 Model Selection 581

13.1.1 Separate Training and Test Sets 582
13.1.2 Cross-Validation 582
13.1.3 The Bayesian Viewpoint 583
13.1.4 Akaike’s Information Criterion 583
13.1.5 Minimum Description Length 584

13.2 Missing Data 585
13.3 Outlier Detection and Robust Procedures 586
13.4 Mixed Continuous and Discrete Variables 587
13.5 Structural Risk Minimisation and the Vapnik–Chervonenkis Dimension 588

13.5.1 Bounds on the Expected Risk 588
13.5.2 The VC Dimension 589

References 591

Index 637

P1: OTA/XYZ P2: ABC
JWST102-fm JWST102-Webb September 8, 2011 8:52 Printer Name: Yet to Come

P1: OTA/XYZ P2: ABC
JWST102-Preface JWST102-Webb August 23, 2011 19:56 Printer Name: Yet to Come

Preface

This book provides an introduction to statistical pattern recognition theory and techniques.
Most of the material presented in this book is concerned with discrimination and classification
and has been drawn from a wide range of literature including that of engineering, statistics,
computer science and the social sciences. The aim of the book is to provide descriptions of
many of the most useful of today’s pattern processing techniques including many of the recent
advances in nonparametric approaches to discrimination and Bayesian computational methods
developed in the statistics literature and elsewhere. Discussions provided on the motivations
and theory behind these techniques will enable the practitioner to gain maximum benefit
from their implementations within many of the popular software packages. The techniques
are illustrated with examples of real-world applications studies. Pointers are also provided
to the diverse literature base where further details on applications, comparative studies and
theoretical developments may be obtained.

The book grew out of our research on the development of statistical pattern recognition
methodology and its application to practical sensor data analysis problems. The book is aimed
at advanced undergraduate and graduate courses. Some of the material has been presented as
part of a graduate course on pattern recognition and at pattern recognition summer schools.
It is also designed for practitioners in the field of pattern recognition as well as researchers
in the area. A prerequisite is a knowledge of basic probability theory and linear algebra,
together with basic knowledge of mathematical methods (for example, Lagrange multipliers
are used to solve problems with equality and inequality constraints in some derivations). Some
basic material (which was provided as appendices in the second edition) is available on the
book’s website.

Scope

The book presents most of the popular methods of statistical pattern recognition. How-
ever, many of the important developments in pattern recognition are not confined to the
statistics literature and have occurred where the area overlaps with research in machine
learning. Therefore, where we have felt that straying beyond the traditional boundaries of
statistical pattern recognition would be beneficial, we have done so. An example is the

P1: OTA/XYZ P2: ABC
JWST102-Preface JWST102-Webb August 23, 2011 19:56 Printer Name: Yet to Come

xx PREFACE

inclusion of some rule induction methods as a complementary approach to rule discovery by
decision tree induction.

Most of the methodology is generic – it is not specific to a particular type of data or
application. Thus, we exclude preprocessing methods and filtering methods commonly used
in signal and image processing.

Approach

The approach in each chapter has been to introduce some of the basic concepts and algorithms
and to conclude each section on a technique or a class of techniques with a practical application
of the approach from the literature. The main aim has been to introduce the basic concept
of an approach. Sometimes this has required some detailed mathematical description and
clearly we have had to draw a line on how much depth we discuss a particular topic. Most
of the topics have whole books devoted to them and so we have had to be selective in our
choice of material. Therefore, the chapters conclude with a section on the key references.
The exercises at the ends of the chapters vary from ‘open book’ questions to more lengthy
computer projects.

New to the third edition

Many sections have been rewritten and new material added. The new features of this edition
include the following:

� A new chapter on Bayesian approaches to density estimation (Chapter 3) including
expanded material on Bayesian sampling schemes and Markov chain Monte Carlo
methods, and new sections on Sequential Monte Carlo samplers and Variational
Bayes approaches.

� New sections on nonparametric methods of density estimation.

� Rule induction.

� New chapter on ensemble methods of classification.

� Revision of feature selection material with new section on stability.

� Spectral clustering.

� New chapter on complex networks, with relevance to the high-growth field of social
and computer network analysis.

Book outline

Chapter 1 provides an introduction to statistical pattern recognition, defining some termi-
nology, introducing supervised and unsupervised classification. Two related approaches to
supervised classification are presented: one based on the use of probability density functions

P1: OTA/XYZ P2: ABC
JWST102-Preface JWST102-Webb August 23, 2011 19:56 Printer Name: Yet to Come

PREFACE xxi

and a second based on the construction of discriminant functions. The chapter concludes with
an outline of the pattern recognition cycle, putting the remaining chapters of the book into
context. Chapters 2, 3 and 4 pursue the density function approach to discrimination. Chap-
ter 2 addresses parametric approaches to density estimation, which are developed further
in Chapter 3 on Bayesian methods. Chapter 4 develops classifiers based on nonparamet-
ric schemes, including the popular k nearest neighbour method, with associated efficient
search algorithms.

Chapters 5–7 develop discriminant function approaches to supervised classification.
Chapter 5 focuses on linear discriminant functions; much of the methodology of this chapter
(including optimisation, regularisation, support vector machines) is used in some of the non-
linear methods described in Chapter 6 which explores kernel-based methods, in particular,
the radial basis function network and the support vector machine, and projection-based meth-
ods (the multilayer perceptron). These are commonly referred to as neural network methods.
Chapter 7 considers approaches to discrimination that enable the classification function to be
cast in the form of an interpretable rule, important for some applications.

Chapter 8 considers ensemble methods – combining classifiers for improved robustness.
Chapter 9 considers methods of measuring the performance of a classifier.

The techniques of Chapters 10 and 11 may be described as methods of exploratory data
analysis or preprocessing (and as such would usually be carried out prior to the supervised
classification techniques of Chapters 5–7, although they could, on occasion, be post-processors
of supervised techniques). Chapter 10 addresses feature selection and feature extraction – the
procedures for obtaining a reduced set of variables characterising the original data. Such
procedures are often an integral part of classifier design and it is somewhat artificial to
partition the pattern recognition problem into separate processes of feature extraction and
classification. However, feature extraction may provide insights into the data structure and
the type of classifier to employ; thus, it is of interest in its own right. Chapter 11 considers
unsupervised classification or clustering – the process of grouping individuals in a population
to discover the presence of structure; its engineering application is to vector quantisation for
image and speech coding. Chapter 12 on complex networks introduces methods for analysing
data that may be represented using the mathematical concept of a graph. This has great
relevance to social and computer networks.

Finally, Chapter 13 addresses some important diverse topics including model selection.

Book website

The website www.wiley.com/go/statistical_pattern_recognition contains supplementary ma-
terial on topics including measures of dissimilarity, estimation, linear algebra, data analysis
and basic probability.

Acknowledgements

In preparing the third edition of this book we have been helped by many people. We are
especially grateful to Dr Gavin Cawley, University of East Anglia, for help and advice. We
are grateful to friends and colleagues (past and present, from RSRE, DERA and QinetiQ)

P1: OTA/XYZ P2: ABC
JWST102-Preface JWST102-Webb August 23, 2011 19:56 Printer Name: Yet to Come

xxii PREFACE

who have provided encouragement and made comments on various parts of the manuscript.
In particular, we would like to thank Anna Skeoch for providing figures for Chapter 12; and
Richard Davies and colleagues at John Wiley for help in the final production of the manuscript.
Andrew Webb is especially thankful to Rosemary for her love, support and patience.

Andrew R. Webb
Keith D. Copsey

P1: OTA/XYZ P2: ABC
JWST102-Notation JWST102-Webb August 26, 2011 17:52 Printer Name: Yet to Come

Notation

Some of the more commonly used notation is given below. We have used some notational
conveniences. For example, we have tended to use the same symbol for a variable as well as a
measurement on that variable. The meaning should be obvious from context. Also, we denote
the density function of x as p(x) and y as p(y), even though the functions differ. A vector
is denoted by a lower case quantity in bold face, and a matrix by upper case. Since pattern
recognition is very much a multidisciplinary subject, it is impossible to be both consistent
across all chapters and consistent with the commonly used notation in the different literatures.
We have adopted the policy of maintaining consistency as far as possible within a given chapter.

p, d number of variables
C number of classes
n number of measurements
nj number of measurements in the jth class
ωj label for class j
X1, . . . , Xp p random variables
x1, . . . , xp measurements on variables, X1, . . . , Xp

x = (x1, . . . , xp)
T measurement vector

X = [x1, . . . , xn]T n × p data matrix

X =

⎡
⎢⎣

x11 . . . x1p
...

. . .
...

xn1 . . . xnp

⎤
⎥⎦

P(x) = prob(X1 ≤ x1, . . . , Xp ≤ xp)

p(x) = ∂P/∂x probability density function
p(x |ω j) probability density function of class j
p(ωj) prior probability of class j
μ = ∫

xp(x)dx population mean
μ j = ∫

xp(x |ω j)dx mean of class j, j = 1, . . . , C
m = (1/n)

∑n
i=1 xi sample mean

m j = (1/n j)
∑n

i=1 zjixi sample mean of class j, j = 1, . . . , C; zji = 1 if
xi ∈ ω j, 0 otherwise; nj-number of patterns in
ωj, nj = ∑n

i=1zji

P1: OTA/XYZ P2: ABC
JWST102-Notation JWST102-Webb August 26, 2011 17:52 Printer Name: Yet to Come

xxiv NOTATION

�̂ = 1
n

∑n
i=1(xi − m)(xi − m)T sample covariance matrix (maximum likelihood

estimate)
n/(n − 1)�̂ sample covariance matrix (unbiased estimate)

�̂ j = 1
nj

n∑
i=1

zji(xi − m j)(xi − m j)
T sample covariance matrix of class j (maximum

likelihood estimate)

S j = nj

n j−1 �̂ j sample covariance matrix of class j (unbiased
estimate)

SW = ∑C
j=1

nj

n �̂ j pooled within class sample covariance matrix

S = n
n−C SW pooled within class sample covariance matrix

(unbiased estimate)
SB = ∑ nj

n (m j − m)(m j − m)T sample between class matrix

SB + SW = �̂

‖A‖2 = ∑
ij A2

ij

N(m,�) normal (or Gaussian) distribution, mean m,
covariance matrix �

N(x; m,�) probability density function for the normal
distribution, mean m, covariance matrix �,
evaluated at x

E[Y |X] expectation of Y given X
I(θ) indicator function, I(θ) = 1 if θ = true else 0

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

1

Introduction to statistical
pattern recognition

Statistical pattern recognition is a term used to cover all stages of an investigation from problem
formulation and data collection through to discrimination and classification, assessment of results
and interpretation. Some of the basic concepts in classification are introduced and the key issues
described. Two complementary approaches to discrimination are presented, namely a decision
theory approach based on calculation of probability density functions and the use of Bayes
theorem, and a discriminant function approach.

1.1 Statistical pattern recognition

1.1.1 Introduction

We live in a world where massive amounts of data are collected and recorded on nearly every
aspect of human endeavour: for example, banking, purchasing (credit-card usage, point-
of-sale data analysis), Internet transactions, performance monitoring (of schools, hospitals,
equipment), and communications. The data come in a wide variety of diverse forms – numeric,
textual (structured or unstructured), audio and video signals. Understanding and making sense
of this vast and diverse collection of data (identifying patterns, trends, anomalies, providing
summaries) requires some automated procedure to assist the analyst with this ‘data deluge’.
A practical example of pattern recognition that is familiar to many people is classifying email
messages (as spam/not spam) based upon message header, content and sender.

Approaches for analysing such data include those for signal processing, filtering, data
summarisation, dimension reduction, variable selection, regression and classification and have
been developed in several literatures (physics, mathematics, statistics, engineering, artificial
intelligence, computer science and the social sciences, among others). The main focus of
this book is on pattern recognition procedures, providing a description of basic techniques

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

2 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

together with case studies of practical applications of the techniques on real-world problems.
A strong emphasis is placed on the statistical theory of discrimination, but clustering also
receives some attention. Thus, the main subject matter of this book can be summed up in a
single word: ‘classification’, both supervised (using class information to design a classifier –
i.e. discrimination) and unsupervised (allocating to groups without class information – i.e.
clustering). However, in recent years many complex datasets have been gathered (for example,
‘transactions’ between individuals – email traffic, purchases). Understanding these datasets
requires additional tools in the pattern recognition toolbox. Therefore, we also examine
developments such as methods for analysing data that may be represented as a graph.

Pattern recognition as a field of study developed significantly in the 1960s. It was very
much an interdisciplinary subject. Some people entered the field with a real problem to solve.
The large number of applications ranging from the classical ones such as automatic character
recognition and medical diagnosis to the more recent ones in data mining (such as credit scor-
ing, consumer sales analysis and credit card transaction analysis) have attracted considerable
research effort with many methods developed and advances made. Other researchers were
motivated by the development of machines with ‘brain-like’ performance, that in some way
could operate giving human performance.

Within these areas significant progress has been made, particularly where the domain over-
laps with probability and statistics, and in recent years there have been many exciting new
developments, both in methodology and applications. These build on the solid foundations
of earlier research and take advantage of increased computational resources readily avail-
able nowadays. These developments include, for example, kernel-based methods (including
support vector machines) and Bayesian computational methods.

The topics in this book could easily have been described under the term machine learning
that describes the study of machines that can adapt to their environment and learn from exam-
ple. The machine learning emphasis is perhaps more on computationally intensive methods
and less on a statistical approach, but there is strong overlap between the research areas of
statistical pattern recognition and machine learning.

1.1.2 The basic model

Since many of the techniques we shall describe have been developed over a range of diverse
disciplines, there is naturally a variety of sometimes contradictory terminology. We shall use
the term ‘pattern’ to denote the p-dimensional data vector x = (x1, . . . , xp)

T of measurements
(T denotes vector transpose), whose components xi are measurements of the features of an
object. Thus the features are the variables specified by the investigator and thought to be
important for classification. In discrimination, we assume that there exist C groups or classes,
denoted ω1, . . . , ωC and associated with each pattern x is a categorical variable z that denotes
the class or group membership; that is, if z = i, then the pattern belongs to ωi, i ∈ {1, . . . , C}.

Examples of patterns are measurements of an acoustic waveform in a speech recognition
problem; measurements on a patient made in order to identify a disease (diagnosis); mea-
surements on patients (perhaps subjective assessments) in order to predict the likely outcome
(prognosis); measurements on weather variables (for forecasting or prediction); sets of fi-
nancial measurements recorded over time; and a digitised image for character recognition.
Therefore, we see that the term ‘pattern’, in its technical meaning, does not necessarily refer
to structure within images.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

STATISTICAL PATTERN RECOGNITION 3

Figure 1.1 Pattern classifier.

The main topic in this book may be described by a number of terms including pattern
classifier design or discrimination or allocation rule design. Designing the rule requires
specification of the parameters of a pattern classifier, represented schematically in Figure 1.1,
so that it yields the optimal (in some sense) response for a given input pattern. This response
is usually an estimate of the class to which the pattern belongs. We assume that we have a
set of patterns of known class {(xi, zi), i = 1, . . . , n} (the training or design set) that we use
to design the classifier (to set up its internal parameters). Once this has been done, we may
estimate class membership for a pattern x for which the class label is unknown. Learning the
model from a training set is the process of induction; applying the trained model to patterns
of unknown class is the process of deduction.

Thus, the uses of a pattern classifier are to provide:

� A descriptive model that explains the difference between patterns of different classes
in terms of features and their measurements.

� A predictive model that predicts the class of an unlabelled pattern.

However, we might ask why do we need a predictive model? Cannot the procedure that
was used to assign labels to the training set measurements also be used for the test set in
classifier operation? There may be several reasons for developing an automated process:

� to remove humans from the recognition process – to make the process more reliable;

� in banking, to identify good risk applicants before making a loan;

� to make a medical diagnosis without a post mortem (or to assess the state of a piece of
equipment without dismantling it) – sometimes a pattern may only be labelled through
intensive examination of a subject, whether person or piece of equipment;

� to reduce cost and improve speed – gathering and labelling data can be a costly and
time consuming process;

� to operate in hostile environments – the operating conditions may be dangerous or
harmful to humans and the training data have been gathered under controlled conditions;

� to operate remotely – to classify crops and land use remotely without labour-intensive,
time consuming, surveys.

There are many classifiers that can be constructed from a given dataset. Examples include
decision trees, neural networks, support vector machines and linear discriminant functions.
For a classifier of a given type, we employ a learning algorithm to search through the parameter
space to find the model that best describes the relationship between the measurements and
class labels for the training set. The form derived for the pattern classifier depends on a number
of different factors. It depends on the distribution of the training data, and the assumptions

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

4 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

made concerning its distribution. Another important factor is the misclassification cost – the
cost of making an incorrect decision. In many applications misclassification costs are hard
to quantify, being combinations of several contributions such as monetary costs, time and
other more subjective costs. For example, in a medical diagnosis problem, each treatment
has different costs associated with it. These relate to the expense of different types of drugs,
the suffering the patient is subjected to by each course of action and the risk of further
complications.

Figure 1.1 grossly oversimplifies the pattern classification procedure. Data may undergo
several separate transformation stages before a final outcome is reached. These transforma-
tions (sometimes termed preprocessing, feature selection or feature extraction) operate on the
data in a way that, usually, reduces its dimension (reduces the number of features), removing
redundant or irrelevant information, and transforms it to a form more appropriate for sub-
sequent classification. The term intrinsic dimensionality refers to the minimum number of
variables required to capture the structure within the data. In speech recognition, a prepro-
cessing stage may be to transform the waveform to a frequency representation. This may be
processed further to find formants (peaks in the spectrum). This is a feature extraction process
(taking a possibly nonlinear combination of the original variables to form new variables). Fea-
ture selection is the process of selecting a subset of a given set of variables (see Chapter 10).
In some problems, there is no automatic feature selection stage, with the feature selection
being performed by the investigator who ‘knows’ (through experience, knowledge of previous
studies and the problem domain) those variables that are important for classification. In many
cases, however, it will be necessary to perform one or more transformations of the measured
data.

In some pattern classifiers, each of the above stages may be present and identifiable as
separate operations, while in others they may not be. Also, in some classifiers, the preliminary
stages will tend to be problem specific, as in the speech example. In this book, we consider
feature selection and extraction transformations that are not application specific. That is
not to say the methods of feature transformation described will be suitable for any given
application, however, but application-specific preprocessing must be left to the investigator
who understands the application domain and method of data collection.

1.2 Stages in a pattern recognition problem

A pattern recognition investigation may consist of several stages enumerated below. Not all
stages may be present; some may be merged together so that the distinction between two
operations may not be clear, even if both are carried out; there may be some application-
specific data processing that may not be regarded as one of the stages listed below. However,
the points below are fairly typical.

1. Formulation of the problem: gaining a clear understanding of the aims of the investi-
gation and planning the remaining stages.

2. Data collection: making measurements on appropriate variables and recording details
of the data collection procedure (ground truth).

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

STAGES IN A PATTERN RECOGNITION PROBLEM 5

3. Initial examination of the data: checking the data, calculating summary statistics and
producing plots in order to get a feel for the structure.

4. Feature selection or feature extraction: selecting variables from the measured set that
are appropriate for the task. These new variables may be obtained by a linear or
nonlinear transformation of the original set (feature extraction). To some extent, the
partitioning of the data processing into separate feature extraction and classification
processes is artificial, since a classifier often includes the optimisation of a feature
extraction stage as part of its design.

5. Unsupervised pattern classification or clustering. This may be viewed as exploratory
data analysis and it may provide a successful conclusion to a study. On the other hand,
it may be a means of preprocessing the data for a supervised classification procedure.

6. Apply discrimination or regression procedures as appropriate. The classifier is designed
using a training set of exemplar patterns.

7. Assessment of results. This may involve applying the trained classifier to an indepen-
dent test set of labelled patterns. Classification performance is often summarised in the
form of a confusion matrix:

True class

ω1 ω2 ω3

Predicted class ω1 e11 e12 e13

ω2 e21 e22 e23

ω3 e31 e32 e33

where eij is the number of patterns of class ωj that are predicted to be class ωi. The
accuracy, a, is calculated from the confusion matrix as

a =

∑
i

eii

∑
ij

eij

and the error rate is 1 − a.

8. Interpretation.

The above is necessarily an iterative process: the analysis of the results may generate
new hypotheses that require further data collection. The cycle may be terminated at different
stages: the questions posed may be answered by an initial examination of the data or it
may be discovered that the data cannot answer the initial question and the problem must be
reformulated.

The emphasis of this book is on techniques for performing the steps 4, 5, 6 and 7.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

6 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

1.3 Issues

The main topic that we address in this book concerns classifier design: given a training set of
patterns of known class, we seek to use those examples to design a classifier that is optimal
for the expected operating conditions (the test conditions).

There are a number of very important points to make about this design process.

Finite design set
We are given a finite design set. If the classifier is too complex (there are too many free
parameters) it may model noise in the design set. This is an example of overfitting. If the
classifier is not complex enough, then it may fail to capture structure in the data. An illustration
of this is the fitting of a set of data points by a polynomial curve (Figure 1.2). If the degree
of the polynomial is too high then, although the curve may pass through or close to the data
points thus achieving a low fitting error, the fitting curve is very variable and models every
fluctuation in the data (due to noise). If the degree of the polynomial is too low, the fitting error
is large and the underlying variability of the curve is not modelled (the model underfits the
data). Thus, achieving optimal performance on the design set (in terms of minimising some
error criterion perhaps) is not required: it may be possible, in a classification problem, to
achieve 100% classification accuracy on the design set but the generalisation performance –
the expected performance on data representative of the true operating conditions (equivalently
the performance on an infinite test set of which the design set is a sample) – is poorer than could
be achieved by careful design. Choosing the ‘right’ model is an exercise in model selection.
In practice we usually do not know what is structure and what is noise in the data. Also,
training a classifier (the procedure of determining its parameters) should not be considered as
a separate issue from model selection, but it often is.

–0.4 –0.2 0.2 0.4

–0.1

0.1

0.2

Figure 1.2 Fitting a curve to a noisy set of samples: the data samples are from a quadratic
function with added noise; the fitting curves are a linear fit, a quadratic fit and a high-degree
polynomial.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

APPROACHES TO STATISTICAL PATTERN RECOGNITION 7

Optimality
A second point about the design of optimal classifiers concerns the word ‘optimal’. There
are several ways of measuring classifier performance, the most common being error rate,
although this has severe limitations (see Chapter 9). Other measures, based on the closeness
of the estimates of the probabilities of class membership to the true probabilities, may be
more appropriate in many cases. However, many classifier design methods usually optimise
alternative criteria since the desired ones are difficult to optimise directly. For example, a
classifier may be trained by optimising a square-error measure and assessed using error rate.

Representative data
Finally, we assume that the training data are representative of the test conditions. If this is
not so, perhaps because the test conditions may be subject to noise not present in the training
data, or there are changes in the population from which the data are drawn (population drift),
then these differences must be taken into account in the classifier design.

1.4 Approaches to statistical pattern recognition

There are two main divisions of classification: supervised classification (or discrimination)
and unsupervised classification (sometimes in the statistics literature simply referred to as
classification or clustering).

The problem we are addressing in this book is primarily one of supervised pattern clas-
sification. Given a set of measurements obtained through observation and represented as a
pattern vector x, we wish to assign the pattern to one of C possible classes, ωi, i = 1, . . . ,
C. A decision rule partitions the measurement space into C regions, �i, i = 1, . . . , C. If an
observation vector is in �i then it is assumed to belong to class ωi. Each class region �i may
be multiply connected – that is, it may be made up of several disjoint regions. The boundaries
between the regions �i are the decision boundaries or decision surfaces. Generally, it is in
regions close to these boundaries where the highest proportion of misclassifications occurs. In
such situations, we may reject the pattern or withhold a decision until further information is
available so that a classification may be made later. This option is known as the reject option
and therefore we have C + 1 outcomes of a decision rule (the reject option being denoted by
ω0) in a C class problem: x belongs to ω1 or ω2 or . . . or ωC or withhold a decision.

In unsupervised classification, the data are not labelled and we seek to find groups in
the data and the features that distinguish one group from another. Clustering techniques,
described further in Chapter 11, can also be used as part of a supervised classification scheme
by defining prototypes. A clustering scheme may be applied to the data for each class separately
and representative samples for each group within the class (the group means for example)
used as the prototypes for that class.

In the following section we introduce two approaches to discrimination that will be
explored further in later chapters. The first assumes a knowledge of the underlying class-
conditional probability density functions (the probability density function of the feature
vectors for a given class). Of course, in many applications these will usually be unknown and
must be estimated from a set of correctly classified samples termed the design or training
set. Chapters 2, 3 and 4 describe techniques for estimating the probability density functions
explicitly.

The second approach introduced in the next section develops decision rules that use the
data to estimate the decision boundaries directly, without explicit calculation of the probability

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

8 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

density functions. This approach is developed in Chapters 5 and 6 where specific techniques
are described.

1.5 Elementary decision theory

Here we introduce an approach to discrimination based on knowledge of the probability
density functions of each class. Familiarity with basic probability theory is assumed.

1.5.1 Bayes’ decision rule for minimum error

Consider C classes, ω1, . . . , ωC, with a priori probabilities (the probabilities of each class
occurring) p(ω1), . . . , p(ωC), assumed known. If we wish to minimise the probability of
making an error and we have no information regarding an object other than the class probability
distribution then we would assign an object to class ωj if

p(ω j) > p(ωk) k = 1, . . . ,C; k �= j

This classifies all objects as belonging to one class: the class with the largest prior prob-
ability. For classes with equal prior probabilities, patterns are assigned arbitrarily between
those classes.

However, we do have an observation vector or measurement vector x and we wish to
assign an object to one of the C classes based on the measurements x. A decision rule based
on probabilities is to assign x (here we refer to an object in terms of its measurement vector)
to class ωj if the probability of class ωj given the observation x, that is p(ω j|x), is greatest
over all classes ω1, . . . , ωC. That is, assign x to class ωj if

p(ω j|x) > p(ωk|x) k = 1, . . . ,C; k �= j (1.1)

This decision rule partitions the measurement space into C regions �1, . . . , �C such that if
x ∈ � j then x belongs to class ωj. The regions �j may be disconnected.

The a posteriori probabilities p(ω j|x) may be expressed in terms of the a priori probabil-
ities and the class conditional density functions p(x|ωi) using Bayes’ theorem as

p(ωi|x) = p(x|ωi)p(ωi)

p(x)

and so the decision rule (1.1) may be written: assign x to ωj if

p(x|ω j)p(ω j) > p(x|ωk)p(ωk) k = 1, . . . ,C; k �= j (1.2)

This is known as Bayes’ rule for minimum error.
For two classes, the decision rule (1.2) may be written

lr(x) = p(x|ω1)

p(x|ω2)
>

p(ω2)

p(ω1)
implies x ∈ class ω1

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 9

A

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

-4 -3 -2 -1 0 1 2 3 4
x

p(x|ω2)p(ω2)

p(x|ω1)p(ω1)

Figure 1.3 p(x|ωi)p(ωi), for classes ω1 and ω2: for x in region A, x is assigned to class ω1.

The function lr(x) is the likelihood ratio. Figures 1.3 and 1.4 give a simple illustration for a
two-class discrimination problem. Class ω1 is normally distributed with zero mean and unit
variance, p(x|ω1) = N(x; 0, 1). Class ω2 is a normal mixture (a weighted sum of normal den-
sities) p(x|ω2) = 0.6N(x; 1, 1) + 0.4N(x;−1, 2). Figure 1.3 plots p(x|ωi)p(ωi), i = 1, 2,
where the priors are taken to be p(ω1) = 0.5, p(ω2) = 0.5. Figure 1.4 plots the likelihood ratio
lr(x) and the threshold p(ω2)/p(ω1). We see from this figure that the decision rule (1.2) leads
to a disconnected region for class ω2.

x

A

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

-4 -3 -2 -1 0 1 2 3 4

lr(x)

p(ω2)/p(ω1)

Figure 1.4 Likelihood function: for x in region A, x is assigned to class ω1.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

10 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

The fact that the decision rule (1.2) minimises the error may be seen as follows. The
probability of making an error, p(error), may be expressed as

p(error) =
C∑

i=1

p(error|ωi)p(ωi) (1.3)

where p(error|ωi) is the probability of misclassifying patterns from class ωi. This is given by

p(error|ωi) =
∫
C[�i]

p(x|ωi)dx (1.4)

the integral of the class-conditional density function over C[�i], the region of measurement
space outside �i (C is the complement operator), i.e.

∑C
j=1, j �=i�j. Therefore, we may write

the probability of misclassifying a pattern as

p(error) =
C∑

i=1

∫
C[�i]

p(x|ωi)p(ωi)dx

=
C∑

i=1

p(ωi)

(
1 −

∫
�i

p(x|ωi)dx
)

= 1 −
C∑

i=1

p(ωi)

∫
�i

p(x|ωi)dx (1.5)

from which we see that minimising the probability of making an error is equivalent to
maximising

C∑
i=1

p(ωi)

∫
�i

p(x|ωi)dx (1.6)

which is the probability of correct classification. Therefore, we wish to choose the regions
�i so that the integral given in (1.6) is a maximum. This is achieved by selecting �i to be
the region for which p(ωi)p(x|ωi) is the largest over all classes and the probability of correct
classification, c, is

c =
∫

max
i

p(ωi)p(x|ωi)dx (1.7)

where the integral is over the whole of the measurement space, and the Bayes’ error is

eB = 1 −
∫

max
i

p(ωi)p(x|ωi)dx (1.8)

This is illustrated in Figures 1.5 and 1.6.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 11

xB

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

p(x|ω2)p(x|ω1)

Figure 1.5 Class-conditional densities for two normal distributions.

Figure 1.5 plots the two distributions p(x|ωi), i = 1, 2 (both normal with unit variance
and means ±0.5), and Figure 1.6 plots the functions p(x|ωi)p(ωi) where p(ω1) = 0.3, p(ω2) =
0.7. The Bayes’ decision boundary defined by the point where p(x|ω1)p(ω1) = p(x|ω2)p(ω2)

(Figure 1.6) is marked with a vertical line at xB. The areas of the hatched regions in Figure 1.5
represent the probability of error: by Equation (1.4), the area of the horizontal hatching is the
probability of classifying a pattern from class 1 as a pattern from class 2 and the area of the
vertical hatching the probability of classifying a pattern from class 2 as class 1. The sum of
these two areas, weighted by the priors [Equation (1.5)], is the probability of making an error.

xB

0

0.05

0.1

0.15

0.2

0.25

0.3

-4 -3 -2 -1 0 1 2 3 4

p(x|ω2)p(ω2)

p(x|ω1)p(ω1)

Figure 1.6 Bayes’ decision boundary for two normally distributed classes with unequal
priors.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

12 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

1.5.2 Bayes’ decision rule for minimum error – reject option

As we have stated above, an error or misrecognition occurs when the classifier assigns a
pattern to one class when it actually belongs to another. In this section we consider the reject
option. Usually it is the uncertain classifications (often close to the decision boundaries) that
contribute mainly to the error rate. Therefore, rejecting a pattern (withholding a decision) may
lead to a reduction in the error rate. This rejected pattern may be discarded, or set aside until
further information allows a decision to be made. Although the option to reject may alleviate or
remove the problem of a high misrecognition rate, some otherwise correct classifications are
also converted into rejects. Here we consider the trade-offs between error rate and reject rate.

First, we partition the sample space into two complementary regions: R, a reject region
and A, an acceptance or classification region. These are defined by

R =
{

x|1 − max
i

p(ωi|x) > t

}

A =
{

x|1 − max
i

p(ωi|x) ≤ t

}

where t is a threshold. This is illustrated in Figure 1.7 using the same distributions as those in
Figures 1.5 and 1.6.

The smaller the value of the threshold t then the larger is the reject region R. However, if
t is chosen such that

1 − t ≤ 1

C

or equivalently,

t ≥ C − 1

C

1 − t

t

A AR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-4 -3 -2 -1 0 1 2 3 4

p(ω1|x)

p(ω2|x)

Figure 1.7 Illustration of acceptance and reject regions.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 13

where C is the number of classes, then the reject region is empty. This is because the minimum
value which max

i
p(ωi|x) can attain is 1/C [since 1 = ∑C

i=1 p(ωi|x) ≤ Cmax
i

p(ωi|x)], when

all classes are equally likely. Therefore, for the reject option to be activated, we must have
t < (C − 1)/C.

Thus, if a pattern x lies in the region A, we classify it according to the Bayes’ rule for
minimum error [Equation (1.2)]. However, if x lies in the region R, we reject x (withhold a
decision).

The probability of correct classification, c(t), is a function of the threshold, t, and is given
by Equation (1.7), where now the integral is over the acceptance region, A, only

c(t) =
∫

A
max

i
[p(ωi)p(x|ωi)] dx

and the unconditional probability of rejecting a measurement, r, also a function of the threshold
t, is the probability that it lies in R:

r(t) =
∫

R
p(x)dx (1.9)

Therefore, the error rate, e (the probability of accepting a point for classification and incorrectly
classifying it), is

e(t) =
∫

A

(
1 − max

i
p(ωi|x)

)
p(x)dx

= 1 − c(t) − r(t)

Thus, the error rate and reject rate are inversely related. Chow (1970) derives a simple
functional relationship between e(t) and r(t) which we quote here without proof. Knowing
r(t) over the complete range of t allows e(t) to be calculated using the relationship

e(t) = −
∫ t

0
sdr(s) (1.10)

The above result allows the error rate to be evaluated from the reject function for the Bayes’
optimum classifier. The reject function can be calculated using unlabelled data and a practical
application of the above result is to problems where labelling of gathered data is costly.

1.5.3 Bayes’ decision rule for minimum risk

In the previous section, the decision rule selected the class for which the a posteriori prob-
ability, p(ω j|x), was the greatest. This minimised the probability of making an error. We
now consider a somewhat different rule that minimises an expected loss or risk. This is a
very important concept since in many applications the costs associated with misclassification
depend upon the true class of the pattern and the class to which it is assigned. For example,
in a medical diagnosis problem in which a patient has back pain, it is far worse to classify a
patient with severe spinal abnormality as healthy (or having mild back ache) than the other
way round.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

14 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

We make this concept more formal by introducing a loss that is a measure of the cost of
making the decision that a pattern belongs to class ωi when the true class is ωj. We define a
loss matrix � with components

λji = cost of assigning a pattern x to ωi when x ∈ ω j

In practice, it may be very difficult to assign costs. In some situations, λ may be measured
in monetary units that are quantifiable. However, in many situations, costs are a combination
of several different factors measured in different units – money, time, quality of life. As a
consequence, they are often a subjective opinion of an expert. The conditional risk of assigning
a pattern x to class ωi is defined as

li(x) =
C∑

j=1

λji p(ω j|x)

The average risk over region �i is

ri =
∫

�i

li (x) p(x)dx

=
∫

�i

C∑
j=1

λij p(ωi|x)p(x)dx

and the overall expected cost or risk is

r =
C∑

i=1

ri =
C∑

i=1

∫
�i

C∑
j=1

λji p(ω j|x)p(x)dx (1.11)

The above expression for the risk will be minimised if the regions �i are chosen such that if

C∑
j=1

λji p(ω j|x)p(x) ≤
C∑

j=1

λjk p(ω j|x)p(x) k = 1, . . . ,C (1.12)

then x ∈ �i. This is the Bayes’ decision rule for minimum risk, with Bayes’ risk, r∗, given by

r∗ =
∫

x
min

i=1,...,C

C∑
j=1

λji p(ω j|x)p(x)dx

One special case of the loss matrix � is the equal cost loss matrix for which

λij =
{

1 i �= j
0 i = j

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 15

Substituting into (1.12) gives the decision rule: assign x to class ωi if

C∑
j=1

p(ω j|x)p(x) − p(ωi|x)p(x) ≤
C∑

j=1

p(ω j|x)p(x) − p(ωk|x)p(x) k = 1, . . . ,C

that is,

p(x|ωi)p(ωi) ≥ p(x|ωk)p(ωk) k = 1, . . . ,C

implies that x ∈ class ωi; this is the Bayes’ rule for minimum error.

1.5.4 Bayes’ decision rule for minimum risk – reject option

As with the Bayes’ rule for minimum error, we may also introduce a reject option, by which
the reject region, R, is defined by

R =
{

x

∣∣∣∣min
i

li(x) > t

}

where t is a threshold. The decision is to accept a pattern x and assign it to class ωi if

li(x) = min
j

l j(x) ≤ t

and to reject x if

li(x) = min
j

l j(x) > t

This decision is equivalent to defining a reject region �0 with a constant conditional risk

l0(x) = t

so that the Bayes’ decision rule is: assign x to class ωi if

li(x) ≤ l j(x) j = 0, 1, . . . ,C

with Bayes’ risk

r∗ =
∫

R
tp(x)dx +

∫
A

min
i=1,...,C

C∑
j=1

λji p(ω j|x)p(x)dx (1.13)

1.5.5 Neyman–Pearson decision rule

An alternative to the Bayes’ decision rules for a two-class problem is the Neyman–Pearson
test. In a two-class problem there are two possible types of error that may be made in the

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

16 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

decision process. We may classify a pattern of class ω1 as belonging to class ω2 or a pattern
from class ω2 as belonging to class ω1. Let the probability of these two errors be ε1 and ε2,
respectively, so that

ε1 =
∫

�2

p(x|ω1) dx = error probability of Type I

and

ε2 =
∫

�1

p(x|ω2) dx = error probability of Type II

The Neyman–Pearson decision rule is to minimise the error ε1 subject to ε2 being equal to a
constant, ε0, say.

If class ω1 is termed the positive class and class ω2 the negative class, then ε1 is re-
ferred to as the false negative rate: the proportion of positive samples incorrectly assigned
to the negative class; ε2 is the false positive rate: the proportion of negative samples classed
as positive.

An example of the use of the Neyman–Pearson decision rule is in radar detection where
the problem is to detect a signal in the presence of noise. There are two types of error that may
occur; one is to mistake noise for a signal present. This is called a false alarm. The second
type of error occurs when a signal is actually present but the decision is made that only noise
is present. This is a missed detection. If ω1 denotes the signal class and ω2 denotes the noise
then ε2 is the probability of false alarm and ε1 is the probability of missed detection. In many
radar applications, a threshold is set to give a fixed probability of false alarm and therefore
the Neyman–Pearson decision rule is the one usually used.

We seek the minimum of

r =
∫

�2

p(x|ω1) dx + μ

{∫
�1

p(x|ω2) dx − ε0

}

where μ is a Lagrange multiplier1 and ε0 is the specified false alarm rate. The equation may
be written

r = (1 − με0) +
∫

�1

{μp(x|ω2) dx − p(x|ω1) dx}

This will be minimised if we choose �1 such that the integrand is negative, i.e.

if μp(x|ω2) − p(x|ω1) < 0, then x ∈ �1

or, in terms of the likelihood ratio,

if
p(x|ω1)

p(x|ω2)
> μ, then x ∈ �1 (1.14)

1 The method of Lagrange’s undetermined multipliers can be found in most textbooks on mathematical methods,
for example Wylie and Barrett (1995).

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 17

Thus the decision rule depends only on the within-class distributions and ignores the a priori
probabilities.

The threshold μ is chosen so that

∫
�1

p(x|ω2) dx = ε0,

the specified false alarm rate. However, in general μ cannot be determined analytically and
requires numerical calculation.

Often, the performance of the decision rule is summarised in a receiver operating char-
acteristic (ROC) curve, which plots the true positive against the false positive (that is, the
probability of detection [1 − ε1 = ∫

�1
p(x|ω1) dx] against the probability of false alarm

[ε2 = ∫
�1

p(x|ω2) dx)] as the threshold μ is varied. This is illustrated in Figure 1.8 for the
univariate case of two normally distributed classes of unit variance and means separated by a
distance, d. All the ROC curves pass through the (0, 0) and (1, 1) points and as the separation
increases the curve moves into the top left corner. Ideally, we would like 100% detection for
a 0% false alarm rate and curves that are closer to this the better.

For the two-class case, the minimum risk decision [see Equation (1.12)] defines the
decision rules on the basis of the likelihood ratio (λii = 0):

if
p(x|ω1)

p(x|ω2)
>

λ21 p(ω2)

λ12 p(ω1)
, then x ∈ �1 (1.15)

The threshold defined by the right-hand side will correspond to a particular point on the ROC
curve that depends on the misclassification costs and the prior probabilities.

In practice, precise values for the misclassification costs will be unavailable and we shall
need to assess the performance over a range of expected costs. The use of the ROC curve as
a tool for comparing and assessing classifier performance is discussed in Chapter 9.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1 − ε1

ε2

d = 1

d = 2
d = 4

Figure 1.8 Receiver operating characteristic for two univariate normal distributions of unit
variance and separation, d; 1 − ε1 = ∫

�1
p(x|ω1) dx is the true positive (the probability of

detection) and ε2 = ∫
�1

p(x|ω2) dx is the false positive (the probability of false alarm).

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

18 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

1.5.6 Minimax criterion

The Bayes’ decision rules rely on a knowledge of both the within-class distributions and the
prior class probabilities. However, situations may arise where the relative frequencies of new
objects to be classified are unknown. In this situation a minimax procedure may be employed.
The name minimax is used to refer to procedures for which either the maximum expected loss
or the maximum of the error probability is a minimum. We shall limit our discussion below
to the two-class problem and the minimum error probability procedure.

Consider the Bayes’ rule for minimum error. The decision regions �1 and �2 are defined by

p(x|ω1)p(ω1) > p(x|ω2)p(ω2) implies x ∈ �1 (1.16)

and the Bayes’ minimum error, eB, is

eB = p(ω2)

∫
�1

p(x|ω2) dx + p(ω1)

∫
�2

p(x|ω1) dx (1.17)

where p(ω2) = 1 − p(ω1).
For fixed decision regions �1 and �2, eB is a linear function of p(ω1) (we denote this

function ẽB) attaining its maximum on the region [0, 1] either at p(ω1) = 0 or p(ω1) = 1.
However, since the regions �1 and �2 are also dependent on p(ω1) through the Bayes’
decision criterion (1.16), the dependency of eB on p(ω1) is more complex, and not necessarily
monotonic.

If �1 and �2 are fixed [determined according to (1.16) for some specified p(ωi)], the error
given by (1.17) will only be the Bayes’ minimum error for a particular value of p(ω1), say p∗

1
(Figure 1.9).

For other values of p(ω1), the error given by (1.17) must be greater than the minimum
error. Therefore, the optimum curve touches the line at a tangent at p∗

1 and is concave down
at that point.

0.0 0.1

a

b

Bayes’ minimum error,eB

error, ẽB , for fixed
decision regions

p∗1 p(ω1)

Figure 1.9 Minimax illustration.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

ELEMENTARY DECISION THEORY 19

The minimax procedure aims to choose the partition �1, �2, or equivalently the value of
p(ω1) so that the maximum error (on a test set in which the values of p(ωi) are unknown)
is minimised. For example, in Figure 1.9, if the partition were chosen to correspond to the
value p∗

1 of p(ω1), then the maximum error which could occur would be a value of b if p(ω1)
were actually equal to unity. The minimax procedure aims to minimise this maximum value,
i.e. minimise

max{ẽB(0), ẽB(1)}

or minimise

max

{∫
�2

p(x|ω1) dx,

∫
�1

p(x|ω2) dx
}

This is a minimum when
∫

�2

p(x|ω1) dx =
∫

�1

p(x|ω2) dx (1.18)

which is when a = b in Figure 1.9 and the line ẽB(p(ω1)) is horizontal and touches the Bayes’
minimum error curve at its peak value.

Therefore, we choose the regions �1 and �2 so that the probabilities of the two types of
error are the same. The minimax solution may be criticised as being over-pessimistic since it
is a Bayes’ solution with respect to the least favourable prior distribution. The strategy may
also be applied to minimising the maximum risk. In this case, the risk is

∫
�1

[λ11 p(ω1|x) + λ21 p(ω2|x)] p(x)dx +
∫

�2

[λ12 p(ω1|x) + λ22 p(ω2|x)] p(x)dx

= p(ω1)

[
λ11 + (λ12 − λ11)

∫
�2

p(x|ω1)dx
]

+ p(ω2)

[
λ22 + (λ21 − λ22)

∫
�1

p(x|ω2)dx
]

and the boundary must therefore satisfy

λ11 − λ22 + (λ12 − λ11)

∫
�2

p(x|ω1) dx − (λ21 − λ22)

∫
�1

p(x|ω2) dx = 0

For λ11 = λ22 and λ21 = λ12, this reduces to the condition (1.18).

1.5.7 Discussion

In this section we have introduced a decision theoretic approach to classifying patterns. This
divides up the measurement space into decision regions and we have looked at various strate-
gies for obtaining the decision boundaries. The optimum rule in the sense of minimising
the error is the Bayes’ decision rule for minimum error. Introducing the costs of making

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

20 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

incorrect decisions leads to the Bayes’ rule for minimum risk. The theory developed assumes
that the a priori distributions and the class-conditional distributions are known. In a real-
world task, this is unlikely to be so. Therefore approximations must be made based on the
data available. We consider techniques for estimating distributions in Chapters 2, 3 and 4.
Two alternatives to the Bayesian decision rule have also been described, namely the
Neyman–Pearson decision rule (commonly used in signal processing applications) and the
minimax rule. Both require knowledge of the class-conditional probability density functions.
The ROC curve characterises the performance of a rule over a range of thresholds of the
likelihood ratio.

We have seen that the error rate plays an important part in decision making and classifier
performance assessment. Consequently, estimation of error rates is a problem of great interest
in statistical pattern recognition. For given fixed decision regions, we may calculate the
probability of error using Equation (1.5). If these decision regions are chosen according to
the Bayes’ decision rule [Equation (1.2)], then the error is the Bayes’ error rate or optimal
error rate. However, regardless of how the decision regions are chosen, the error rate may be
regarded as a measure of a given decision rule’s performance.

Calculation of the Bayes’ error rate (1.8) requires complete knowledge of the class condi-
tional density functions. In a particular situation, these may not be known and a classifier may
be designed on the basis of a training set of samples. Given this training set, we may choose
to form estimates of the distributions (using some of the techniques discussed in Chapters 2
and 3) and thus, with these estimates, use the Bayes decision rule and estimate the error
according to (1.8).

However, even with accurate estimates of the distributions, evaluation of the error requires
an integral over a multidimensional space and may prove a formidable task. An alternative
approach is to obtain bounds on the optimal error rate or distribution-free estimates. Further
discussion of methods of error rate estimation is given in Chapter 9.

1.6 Discriminant functions

1.6.1 Introduction

In the previous section, classification was achieved by applying the Bayesian decision
rule. This requires knowledge of the class-conditional density functions, p(x|ωi) (such
as normal distributions whose parameters are estimated from the data – see Chapter 2),
or nonparametric density estimation methods (such as kernel density estimation – see
Chapter 4). Here, instead of making assumptions about p(x|ωi), we make assumptions about
the forms of the discriminant functions.

A discriminant function is a function of the pattern x that leads to a classification rule. For
example, in a two-class problem, a discriminant function h(x) is a function for which

h(x) > k ⇒ x ∈ ω1

h(x) < k ⇒ x ∈ ω2 (1.19)

for constant k. In the case of equality [h(x) = k], the pattern x may be assigned arbitrarily to
one of the two classes. An optimal discriminant function for the two-class case is

h(x) = p(x|ω1)

p(x|ω2)

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

DISCRIMINANT FUNCTIONS 21

with k = p(ω2)/p(ω1). Discriminant functions are not unique. If f is a monotonic function
then

g(x) = f (h(x)) > k′ ⇒ x ∈ ω1

g(x) = f (h(x)) < k′ ⇒ x ∈ ω2

where k′ = f (k) leads to the same decision as (1.19).
In the C group case we define C discriminant functions gi(x) such that

gi(x) > g j(x) ⇒ x ∈ ωi j = 1, . . . ,C, j �= i

That is, a pattern is assigned to the class with the largest discriminant. Of course, for two
classes, a single discriminant function

h(x) = g1(x) − g2(x)

with k = 0 reduces to the two-class case given by (1.19).
Again, we may define an optimal discriminant function as

gi(x) = p(x|ωi)p(ωi)

leading to the Bayes’ decision rule, but as we showed for the two-class case, there are other
discriminant functions that lead to the same decision.

The essential difference between the approach of the previous section and the discriminant
function approach described here is that the form of the discriminant function is specified and is
not imposed by the underlying distribution. The choice of discriminant function may depend on
prior knowledge about the patterns to be classified or may be a particular functional form whose
parameters are adjusted by a training procedure. Many different forms of discriminant function
have been considered in the literature, varying in complexity from the linear discriminant
function (in which g is a linear combination of the xi) to multiparameter nonlinear functions
such as the multilayer perceptron.

Discrimination may also be viewed as a problem in regression (see Section 1.7) in which
the dependent variable, y, is a class indicator and the regressors are the pattern vectors. Many
discriminant function models lead to estimates of E[y|x], which is the aim of regression
analysis (though in regression y is not necessarily a class indicator). Thus, many of the
techniques we shall discuss for optimising discriminant functions apply equally well to
regression problems. Indeed, as we find with feature extraction in Chapter 10 and also
clustering in Chapter 11 similar techniques have been developed under different names in
the pattern recognition and statistics literature.

1.6.2 Linear discriminant functions

First of all, let us consider the family of discriminant functions that are linear combinations
of the components of x = (x1, . . . , xp)

T ,

g(x) = wT x + w0 =
p∑

i=1

wixi + w0 (1.20)

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

22 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

g = 0
g < 0

g > 0

x
g(x)
|w|

w

|w0|
|w|

Figure 1.10 Geometry of linear discriminant function given by Equation (1.20).

This is a linear discriminant function, a complete specification of which is achieved by
prescribing the weight vector w and threshold weight w0. Equation (1.20) is the equation of
a hyperplane with unit normal in the direction of w and a perpendicular distance |w0|/|w|
from the origin. The value of the discriminant function for a pattern x is a measure of the
perpendicular distance from the hyperplane (Figure 1.10).

A linear discriminant function can arise through assumptions of normal distributions for
the class densities, with equal covariance matrices (see Chapter 2). Alternatively, without
making distributional assumptions, we may impose the form of the discriminant function to
be linear and determine its parameters (see Chapter 5).

A pattern classifier employing linear discriminant functions is termed a linear machine
(Nilsson, 1965), an important special case of which is the minimum-distance classifier. Sup-
pose we are given a set of prototype points p1, . . . , pC, one for each of the C classes ω1, . . . ,
ωC . The minimum-distance classifier assigns a pattern x to the class ωi associated with the
nearest point pi. For each point, the squared Euclidean distance is

|x − pi|2 = xT x − 2xT pi + pT
i pi

and minimum-distance classification is achieved by comparing the expressions xT pi − 1
2 pT

i pi

and selecting the largest value. Thus, the linear discriminant function is

gi(x) = wT
i x + wi0

where

wi = pi

wi0 = −1

2
|pi|2

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

DISCRIMINANT FUNCTIONS 23

•

•

•

•

p1

p2

p3

p4

Figure 1.11 Decision regions for a minimum-distance classifier.

Therefore, the minimum-distance classifier is a linear machine. If the prototype points, pi,
are the class means, then we have the nearest class mean classifier. Decision regions for a
minimum-distance classifier are illustrated in Figure 1.11. Each boundary is the perpendicular
bisector of the lines joining the prototype points of regions that are contiguous. Also, note
from Figure 1.11 that the decision regions are convex (that is, two arbitrary points lying in the
region can be joined by a straight line that lies entirely within the region). In fact, decision
regions of a linear machine are always convex. Thus, the two class problems, illustrated in
Figure 1.12, although separable, cannot be separated by a linear machine. Two generalisations
that overcome this difficulty are piecewise linear discriminant functions and generalised linear
discriminant functions.

1.6.3 Piecewise linear discriminant functions

This is a generalisation of the minimum-distance classifier to the situation in which there is
more than one prototype per class. Suppose there are ni prototypes in class ωi, p1

i , . . . , pni
i , i =

1, . . . ,C. We define the discriminant function for class ωi to be

gi(x) = max
j=1,...,ni

gj
i (x)

•
•
•
•
•
•
••
•
•

� � �

�
�
�
�

�
�
� �

� �
� ••

•
•
•
• �

�
�
�
� •

•
•

•
•••

Figure 1.12 Two examples of groups not separable by a linear discriminant.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

24 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

Figure 1.13 Dirichlet tessellation (comprising nearest-neighbour regions for a set of proto-
types) and the decision boundary (thick lines) for two classes.

where gj
i is a subsidiary discriminant function, which is linear and is given by

gj
i (x) = xT p j

i − 1

2
p j

i

T
p j

i j = 1, . . . , ni; i = 1, . . . ,C

A pattern x is assigned to the class for which gi(x) is largest; that is, to the class of the
nearest prototype vector. This partitions the space into

∑C
i=1 ni regions known as the Dirichlet

tessellation of the space. When each pattern in the training set is taken as a prototype vector,
then we have the nearest-neighbour decision rule of Chapter 4. This discriminant function
generates a piecewise linear decision boundary (Figure 1.13).

Rather than using the complete design set as prototypes, we may use a subset. Methods
of reducing the number of prototype vectors (edit and condense) are described in Chapter 4,
along with the nearest-neighbour algorithm. Clustering schemes may also be employed.

1.6.4 Generalised linear discriminant function

A generalised linear discriminant function, also termed a phi machine (Nilsson, 1965), is a
discriminant function of the form

g(x) = wT φ + w0

where φ = (φ1(x), . . . ,φD(x))T is a vector function of x. If D = p, the number of variables,
and φi(x) = xi, then we have a linear discriminant function.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

DISCRIMINANT FUNCTIONS 25

x2

x1

φ2

φ1

Figure 1.14 Nonlinear transformation of variables may permit linear discrimination.

The discriminant function is linear in the functions φi, not in the original measurements
xi. As an example, consider the two-class problem of Figure 1.14.

A linear discriminant function will not separate the two classes (denoted by the • and 	
symbols in the left-hand illustration), even though they are separable. However, if we make
the transformation

φ1(x) = x2
1

φ2(x) = x2

then the classes can be separated in the φ-space by a straight line as shown in the right-
hand illustration. Similarly, disjoint classes can be transformed into a φ-space in which a
linear discriminant function could separate the classes (provided that they are separable in the
original space).

The problem, therefore, is simple. Make a good choice for the functions φi(x), then use
a linear discriminant function to separate the classes. But, how do we choose φi? Specific
examples are shown in Table 1.1.

Table 1.1 Discriminant functions, φ.

Discriminant function Mathematical form, φi(x)

Linear φi(x) = xi, i = 1, . . . , p

Quadratic φi(x) = xl1
k1

xl2
k2
, i = 1, . . . , (p + 1)(p + 2)/2 − 1

l1, l2 = 0 or 1; k1, k2 = 1, . . . , p

l1, l2 not both zero

νth order polynomial φi(x) = xl1
k1

. . . xlν
kν

, i = 1, . . . ,

(
p + ν

ν

)
− 1

l1, . . . , lν = 0 or 1; k1, . . . , kν = 1, . . . , p

li not all zero
Radial basis function φi(x) = φ(|x − vi|)

for centre vi and function φ

Multilayer perceptron φi(x) = f (xT vi + vi0)

for direction vi and offset vi0. f is the logistic

function, f (z) = 1/(1 + exp(− z))

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

26 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

Clearly there is a problem in that the more functions that are used as a basis set, then the
more parameters that must be determined using the limited training set. A complete quadratic
discriminant function requires D = (p + 1)(p + 2)/2 terms and so for C classes there are
C(p + 1)(p + 2)/2 parameters to estimate. We may need to apply a constraint or to ‘regularise’
the model to ensure that there is no overfitting.

An alternative to having a set of different functions is to have a set of functions of the
same parametric form, but which differ in the values of the parameters they take,

φi(x) = φ(x; vi)

where vi is a set of parameters. Different models arise depending on the way the variable x
and the parameters v are combined. If

φ(x; v) = φ(|x − v|)

that is, φ is a function only of the magnitude of the difference between the pattern x and the
weight vector v, then the resulting discriminant function is known as a radial basis function.
On the other hand, if φ is a function of the scalar product of the two vectors

φ(x; v) = φ(xT v + v0)

then the discriminant function is known as a multilayer perceptron. It is also a model known
as projection pursuit. Both the radial basis function and the multilayer perceptron models can
be used in regression.

In these latter examples, the discriminant function is no longer linear in the parameters.
Specific forms for φ for radial basis functions and for the multilayer perceptron models will
be given in Chapter 6.

1.6.5 Summary

In a multiclass problem, a pattern x is assigned to the class for which the discriminant function
is the largest. A linear discriminant function divides the feature space by a hyperplane whose
orientation is determined by the weight vector w and distance from the origin by the weight
threshold w0. The decision regions produced by linear discriminant functions are convex.

A piecewise linear discriminant function permits nonconvex and disjoint decision regions.
Special cases are the nearest-neighbour and nearest class mean classifier.

A generalized linear discriminant function, with fixed functions φi, is linear in its param-
eters. It permits nonconvex and multiply connected decision regions (for suitable choices of
φi). Radial basis functions and multilayer perceptrons can be regarded as generalised linear
discriminant functions with flexible functions φi whose parameters must be determined or
specified using the training set.

The Bayes’ decision rule is optimal (in the sense of minimising classification error) and
with sufficient flexibility in our discriminant functions we ought to be able to achieve optimal
performance in principle. However, we are limited by a finite number of training samples and
also, once we start to consider parametric forms for the φi, we lose the simplicity and ease of
computation of the linear functions.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

MULTIPLE REGRESSION 27

1.7 Multiple regression

Many of the techniques and procedures described within this book are also relevant to problems
in regression, the process of investigating the relationship between a dependent (or response)
variable Y and predictor (also referred to as regressor, measurement and independent) variables
X1, . . . , Xp; a regression function expresses the expected value of Y in terms of X1, . . . , Xp

and model parameters. Regression is an important part of statistical pattern recognition and,
although the emphasis of the book is on discrimination, practical illustrations are sometimes
given on problems of a regression nature.

The discrimination problem itself is one in which we are attempting to predict the values
of one variable (the class variable) given measurements made on a set of predictor variables
(the pattern vector, x). In this case, the response variable is categorical.

Regression analysis is concerned with predicting the mean value of the response variable
given measurements on the predictor variables and assumes a model of the form,

E[y|x]

=

∫
yp(y|x)dy = f (x; θ)

where f is a (possibly nonlinear) function of the measurements x and θ, a set of parameters of
f . For example,

f (x; θ) = θ0 + θT x,

where θ = (θ1, . . . , θp)
T , is a model that is linear in the parameters and the variables. The

model

f (x; θ) = θ0 + θT φ(x),

where θ = (θ1, . . . , θD)T and φ = (φ1(x), . . . , φD(x))T is a vector of nonlinear functions of
x, is linear in the parameters but nonlinear in the variables. Linear regression refers to a
regression model that is linear in the parameters, but not necessarily the variables.

Figure 1.15 shows an illustrative regression summary. For each value of x, there is a
population of y values that varies with x. The solid line connecting the conditional means,
E[y|x], is the regression line. The dotted lines either side represent the spread of the conditional
distribution (±1 standard deviation from the mean).

It is assumed that the difference (commonly referred to as an error or residual), εi,
between the measurement on the response variable and its predicted value conditional on the
measurements on the predictors,

εi = yi − E[y|xi]

is an unobservable random variable. A normal model for the errors is often assumed,

p(ε) = 1√
(2π)σ

exp

(
−1

2

ε2

σ 2

)

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

28 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

-4

-2

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

y

x

E[y x]E[y|x]

Figure 1.15 Population regression line (solid line) with representation of spread of condi-
tional distribution (dotted lines) for normally distributed error terms, with variance depending
on x.

That is,

p(yi|xi, θ) = 1√
(2π)σ

exp

(
− 1

2σ 2
(yi − f (xi; θ))2

)

Given a set of data {(yi, xi), i = 1, . . . , n}, the maximum likelihood estimate of the model
parameters (the value of the parameters for which the data are ‘most likely’), θ, is that
for which

p({(yi, xi)}|θ)

is a maximum. Assuming independent samples, this amounts to determining the value of θ

for which the commonly used least squares error,

n∑
i=1

(yi − f (xi; θ))2 (1.21)

is a minimum (see the exercises at the end of the chapter).
For the linear model, procedures for estimating the parameters are described in

Chapter 5.

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

NOTES AND REFERENCES 29

1.8 Outline of book

The aim of this book is to provide a comprehensive account of statistical pattern recognition
techniques with emphasis on methods and algorithms for discrimination and classification.
In recent years there have been many developments in multivariate analysis techniques,
particularly in nonparametric methods for discrimination and classification including kernel
methods, but also the use of pattern recognition techniques applied to complex datasets such
as those represented by a network. These are described in this book as extensions to the basic
methodology developed over the years.

This chapter has presented some basic approaches to statistical pattern recognition. Sup-
plementary material on probability theory and data analysis can be found on the book’s
website.

Chapters 2, 3 and 4 describe basic approaches to supervised classification via Bayes’ rule
and estimation of the class-conditional densities. Chapter 2 considers normal-based models.
Chapter 3 develops these models to allow for uncertainty in model parameters. Chapter 4
addresses nonparametric approaches to density estimation.

Chapters 5–7 take a discriminant function approach to supervised classification. Chapter 5
describes algorithms for linear discriminant functions. Chapter 6 considers kernel-based
approaches for constructing nonlinear discriminant functions, namely radial basis functions
and support vector machine methods and alternative, projection-based methods, the multilayer
perceptron neural network. Chapter 7 describes approaches that result in interpretable rules,
often required for some applications to provide insight into the classification process.

Chapter 8 introduces the concept of classifier combination: can improvement be achieved
with an ensemble of classifiers? Some classifiers may perform well in one part of the data
space, other classifiers in another part. How should they be combined?

Chapter 9 addresses the important topic of performance assessment: how good is your
designed classifier and how well does it compare with competing techniques?

Chapters 10 and 11 consider techniques that may form part of an exploratory data analysis.
Chapter 10 describes methods of feature selection and extraction, both linear and nonlinear.
Chapter 11 addresses unsupervised classification or clustering. Chapter 12 considers datasets
that may be represented as complex networks. Many of the techniques employed for the
analysis of such datasets are part of the pattern recognition literature presented in this book.

Finally, Chapter 13 covers additional topics on pattern recognition including model
selection.

1.9 Notes and references

There was a growth of interest in techniques for automatic pattern recognition in the 1960s.
Many books appeared in the early 1970s, some of which are still very relevant today and have
been revised and reissued. More recently, there have been books detailing developments in
pattern recognition, particularly neural network methods and kernel methods.

A very good introduction is provided by the book of Hand (1981a). Perhaps a little out
of date now, it provides nevertheless a very readable account of techniques for discrimination
and classification written from a statistical point of view and is to be recommended. Two
of the main textbooks on statistical pattern recognition are those by Fukunaga (1990) and

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

30 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

Devijver and Kittler (1982). Written with an engineering emphasis, Fukunaga’s book provides
a comprehensive account of the most important aspects of pattern recognition, with many
examples, computer projects and problems. Devijver and Kittler’s book covers the nearest-
neighbour decision rule and feature selection and extraction in some detail, though not at
the expense of other important areas of statistical pattern recognition. It contains detailed
mathematical accounts of techniques and algorithms, treating some areas in depth.

Another important textbook is that by Duda et al. (2001). This presents a thorough account
of the main topics in pattern recognition. Other books that are an important source of reference
material are those by Young and Calvert (1974), Tou and Gonzales (1974) and Chen (1973).
Also, good accounts are given by Andrews (1972), a more mathematical treatment, and
Therrien (1989), an undergraduate text.

Books that describe the ‘neural network’ aspects of developments in pattern recognition
and their relationship to the more traditional methods include those of Haykin (1994), who
provides a comprehensive treatment of neural networks, and Bishop (1995) who provides
an excellent introduction to neural network methods from a statistical pattern recognition
perspective. Ripley’s (1996) account provides a thorough description of pattern recognition
from within a statistical framework. It includes neural network methods, approaches developed
in the field of machine learning, advances in statistical techniques as well as development of
more traditional pattern recognition methods and gives valuable insights into many techniques
gained from practical experience. Hastie et al. (2001) provide a thorough description of modern
techniques in pattern recognition. Other books that deserve a mention are those by Schalkoff
(1992) and Pao (1989).

Bishop (2007) provides an excellent introduction to pattern recognition, particularly recent
developments and details of Bayesian computational methods.

The treatment of pattern recognition by Theodoridis and Koutroumbas (2009) is a com-
prehensive account, with similar goals to this book but with greater emphasis on unsupervised
methods. Each chapter is supported by MATLAB code [see also the books by Nabney (2001),
Theodoridis et al. (2010) and van der Heiden et al. (2004)].

Hand (1997) gives a short introduction to pattern recognition techniques and the central
ideas in discrimination but places greater emphasis on the comparison and assessment of
classifiers.

A more specialised treatment of discriminant analysis and pattern recognition is the
book by McLachlan (1992a). This is a very good book. It is not an introductory textbook,
but provides a thorough account of developments in discriminant analysis. Written from a
statistical perspective, the book is a valuable source of reference of theoretical and practical
work on statistical pattern recognition and is to be recommended for researchers in the field.

Comparative treatments of pattern recognition techniques (statistical, neural and machine
learning methods) are provided in the volume edited by Michie et al. (1994) who report on the
outcome of the Statlog project. Technical descriptions of the methods are given, together with
the results of applying those techniques to a wide range of problems. This volume provides the
most extensive comparative study available. More than 20 different classification procedures
were considered for about 20 datasets.

Books on data mining often give good treatments of pattern recognition, including both
supervised and unsupervised classification (Tan et al., 2005; Witten and Frank, 2005; Han
and Kamber, 2006).

There are many other books on pattern recognition. Some of those treating more specific
parts (such as clustering) are cited in the appropriate chapters of this book. In addition, most

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

EXERCISES 31

textbooks on multivariate analysis devote some attention to discrimination and classification.
These provide a valuable source of reference and are cited elsewhere in the book. There
are also pattern recognition books for specialist applications, for example, medical imaging
(Meyer-Baese, 2003) and forensics (Keppel et al., 2006).

Exercises

In some of the exercises, it will be necessary to generate samples from a multivariate normal
density with mean μ and covariance matrix �, denoted N(μ,�). Many computer packages
offer routines for this. However, it is a simple matter to generate samples from a normal
distribution with unit variance and zero mean (Press et al., 1992). Given a vector Y i of such
samples, then the vector U�1/2Y i + μ has the required distribution, where U is the matrix of
eigenvectors of the covariance matrix and �1/2 is a diagonal matrix whose diagonal elements
are the square roots of the corresponding covariance matrix eigenvalues.

1. Consider two multivariate normally distributed classes,

p(x|ωi) = 1

(2π)p/2|�i|1/2
exp

{
−1

2
(x − μi)

T �−1
i (x − μi)

}

with means μ1 and μ2 and equal covariance matrices, �1 = �2 = �. Show that the
logarithm of the likelihood ratio is linear in the feature vector x. What is the equation of
the decision boundary?

2. Determine the equation of the decision boundary for the more general case of �1 = α�2,
for scalar α (normally distributed classes as in Exercise 1). In particular, for two univariate
distributions, N(0, 1) and N(1, 1/4), show that one of the decision regions is bounded and
determine its extent.

3. For the distributions in Exercise 1, determine the equation of the minimum risk decision
boundary for the loss matrix,

� =
(

0 2
1 0

)

4. Consider two multivariate normally distributed classes [ω2 with mean (− 1, 0)T and ω1

with mean (1, 0)T , and identity covariance matrix]. For a given threshold μ [see Equation
(1.14)] on the likelihood ratio, determine the regions �1 and �2 in a Neyman–Pearson
rule.

5. Consider three bivariate normal distributions, ω1, ω2, ω3 with identity covariance matrices
and means (−2, 0)T , (0, 0)T and (0, 2)T . Show that the decision boundaries are piecewise
linear. Now define a class, A, being the mixture of ω1 and ω3,

pA(x) = 0.5p(x|ω1) + 0.5p(x|ω3)

and class B as bivariate normal with identity covariance matrix and mean (a, b)T , for
some a, b. What is the equation of the Bayes’ decision boundary? Under what conditions
is it piecewise linear?

P1: OTA/XYZ P2: ABC
JWST102-c01 JWST102-Webb August 26, 2011 15:51 Printer Name: Yet to Come

32 INTRODUCTION TO STATISTICAL PATTERN RECOGNITION

6. Consider two uniform distributions with equal priors

p (x|ω1) =
{

1 when 0 ≤ x ≤ 1
0 otherwise

p (x|ω2) =
{

1
2 when 1

2 ≤ x ≤ 5
2

0 otherwise

Show that the reject function is given by

r(t) =
{ 3

8 when 0 ≤ t ≤ 1
3

0 when 1
3 ≤ t ≤ 1

Hence calculate the error rate by integrating (1.10).

7. Reject option. Consider two classes, each normally distributed with means x = 1 and
x = −1 and unit variances; p(ω1) = p(ω2) = 0.5. Generate a test set and use it (without
using class labels) to estimate the reject rate as a function of the threshold t. Hence,
estimate the error rate for no rejection. Compare with the estimate based on a labelled
version of the test set. Comment on the use of this procedure when the true distributions
are unknown and the densities have to be estimated.

8. The area of a sphere of radius r in p dimensions, Sp, is

Sp = 2π
p
2 rp−1

�(p/2)

where � is the gamma function [�(1/2) = π1/2, �(1) = 1, �(x + 1) = x�(x)]. Show
that the probability of a sample, x, drawn from a zero-mean normal distribution with
covariance matrix σ 2I (I is the identity matrix) and having |x| ≤ R is

∫ R

0
Sp(r)

1

(2πσ 2)p/2
exp

(
− r2

2σ 2

)
dr

Evaluate this numerically for R = 2σ and for p = 1, . . . , 10. What do the results tell you
about the distribution of normal samples in high-dimensional spaces?

9. In a two-class problem, let the cost of misclassifying a class ω1 pattern be C1 and the cost
of misclassifying a class ω2 pattern be C2. Show that the point on the ROC curve that
minimises the risk has gradient

C2 p(ω2)

C1 p(ω1)

10. Show that under the assumption of normally distributed residuals, the maximum like-
lihood solution for the parameters of a linear model is equivalent to minimising the
sum-square error (1.21).

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

2

Density estimation – parametric

A discrimination rule may be constructed through explicit estimation of the class-conditional
density functions and the use of Bayes’ rule. One approach is to assume a simple parametric
model for the density functions and to estimate the parameters of the model using an available
training set. The Gaussian classifier and its variants are introduced. The more powerful approach
of mixture models is then presented.

2.1 Introduction

In Chapter 1 we considered the basic theory of pattern classification. All the information
regarding the density functions p(x|ωi) was assumed known. In practice, this knowledge is
often unavailable or only partially known. Therefore, the next question that we must address
is the estimation of the density functions themselves. If we can assume some parametric form
for the distribution, perhaps obtained from theoretical considerations, or an assessment of the
problem domain, then the problem reduces to one of estimating a finite number of parameters.
Often the parametric form is chosen for convenience. In this chapter, special consideration is
given to the normal (also referred to as Gaussian) distribution which leads to algorithms for
the Gaussian classifier. The second major focus is on mixture models, which provide more
general modelling capabilities.

We described in Chapter 1 how the minimum error decision is based on the probability of
class membership p(ω j|x), which using Bayes’ theorem may be written

p(ω j|x) = p(ω j)
p(x|ω j)

p(x)
(2.1)

The probability density function p(x) is the same for all classes [in fact p(x) =∑C
j=1 p(ω j)p(x|ω j), where C is the number of classes]. Thus, assuming that the prior probabil-

ities p(ωj) are known, then in order to make a decision we need to estimate the class-conditional
densities p(x|ω j), for all classes.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

34 DENSITY ESTIMATION – PARAMETRIC

Estimation of the density p(x|ω j) is based on a sample of observationsD j = {x j
1, . . . , x j

n j }
(x j

i ∈ R
d) from class ωj. In this chapter and the next we consider parametric approaches to

density estimation. In the parametric approach, we assume that the class-conditional density
for class ωj is of a known form but has an unknown parameter, or set of parameters, θ j, and
we write this as p(x|θ j). The alternative nonparametric approach to density estimation that
we consider in Chapter 4 does not assume a simple functional form for the density.

2.2 Estimating the parameters of the distributions

We now introduce two approaches to estimating the parameters of a parametric class-
conditional density, namely the estimative approach and the predictive or Bayesian approach.
The focus in this chapter is on the estimative approach, with the Bayesian approach covered
in Chapter 3.

2.2.1 Estimative approach

In the estimative approach to parametric density estimation we use an estimate of the parameter
θ j in the parametric density. Thus we take

p(x|ω j) = p(x|θ̂ j) (2.2)

where θ̂ j = θ̂ j(D j) is an estimate of the parameter θ j based on the data sample D j. A different

data sample D j would give rise to a different estimate θ̂ j , but the estimative approach does
not take into account this sampling variability.

The techniques and classifiers considered in this chapter use maximum likelihood estima-
tion procedures to obtain the parameter estimates. In maximum likelihood estimation we seek
to find the parameters θ̂ j that maximise the likelihood function defined using the data sample
D j, i.e. we seek θ̂ j such that

L(θ̂ j;D j) = max
θ i

L(θi;Di)

where

L(θ j;D j) = p(D j|θ j) = p
(

x j
1, . . . , x j

n j
|θ j

)
(2.3)

is the likelihood function (i.e. the probability density of the data measurements given the
specific value θ j for the distribution parameters).

If the data measurement vectors making up the data sample are independent, then the
likelihood function (2.3) can be written as a product of the known class-conditional densities
for ωj

L(θ j;D j) = p(D j|θ j) =
n j∏

i=1

p
(

x j
i |θ j

)
(2.4)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

THE GAUSSIAN CLASSIFIER 35

The validity of the assumption of independence may depend on the manner in which the
data sample was collected. If the data sample consists of sensor measurements (e.g. camera
imagery) then noise correlations may occur between successive data vectors if the sampling
rate is high, and therefore the data would not be independent. However, it is common to
proceed with an independent likelihood assumption even if there are expected to be cor-
relations between data vectors. This is primarily due to the difficulty of estimating such
correlations.

Under the independence assumption the maximum likelihood estimation problem becomes
one of optimising a known function [Equation (2.4)]. Typically, logarithms will be taken so
that we seek to maximise the log-likelihood function

log(L(θ j;D j)) =
nj∑

i=1

log
(

p
(

x j
i |θ j

))

which due to the strictly increasing nature of the logarithm is equivalent to maximising the
likelihood function.

For some class-conditional densities (e.g. normal, as we shall see in the next section)
an analytic solution for the optimal parameters is available. If an analytic solution is not
available we can use numerical techniques such as gradient ascent or the Nelder–Mead
method to maximise the likelihood function (details of such algorithms are available in Press
et al., 1992). An iterative optimisation scheme is used for optimising the parameters of mixture
model class-conditional densities (Section 2.5).

2.2.2 Predictive approach

An alternative approach to parametric density estimation is the predictive or Bayesian
approach, which is covered in Chapter 3. We write

p(x|ω j) =
∫

p(x|θ j)p(θ j|D j)dθ j (2.5)

where p(θ j|D j) is the Bayesian posterior density function for θ j based on a prior p(θ j) and
the data D j. Thus, we admit that we do not know the true value of θ j, and instead of taking a
single estimate, we take a weighted sum of the densities p(x|θ j), weighted by the distribution
p(θ j|D j) (Aitchison et al., 1977). This predictive approach is usually more complicated than
the estimative approach (both in classifier design, and in application) and may be regarded as
making allowance for the sampling variability of the estimate of θ j .

2.3 The Gaussian classifier

2.3.1 Specification

Perhaps the most widely used classifier is that in which the class conditional densities are
modelled using the normal (Gaussian) distribution.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

36 DENSITY ESTIMATION – PARAMETRIC

Normal (Gaussian) distribution

The probability density function for a normal (Gaussian) distribution with mean μ and
variance σ 2 is

p(x|μ, σ 2) = N(x;μ, σ 2) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
(2.6)

The probability density function for a multivariate normal (Gaussian) distribution with
mean μ and covariance matrix � (a symmetric positive semi-definite matrix) is

p(x|μ,�) = N(x;μ, �) = 1

(2π)d/2|�|1/2
exp

{
−1

2
(x − μ)T �−1(x − μ)

}
(2.7)

where d is the dimensionality of the data.

We model a data vector from class ωj as being drawn from a normal distribution with
mean vector μ j and covariance matrix � j. The class conditional density is then given by

p(x|ω j) = N(x;μ j,� j)

= 1

(2π)d/2|� j|1/2
exp

{
−1

2
(x − μ j)

T �−1
j (x − μ j)

}

Classification is achieved by assigning a pattern x to the class for which the posterior
class probability, p(ω j|x), is the greatest, or equivalently log(p(ω j|x)) is the greatest. Using
Equations (2.1) and (2.2), and the normal modelling of the class conditional densities above,
we have

log(p(ω j|x)) = log(p(x|ω j)) + log(p(ω j)) − log (p(x))

= −1

2
(x − μ j)

T �−1
j (x − μ j) − 1

2
log

(|� j|
)

−d

2
log(2π) + log(p(ω j)) − log(p(x))

Since p(x) is the same for all classes, the discriminant rule is assign x to ωi if gi > gj, for all
j �= i, where

gj(x) = log(p(ω j)) − 1

2
log(|� j|) − 1

2
(x − μ j)

T �−1
j (x − μ j) (2.8)

Classifying a pattern x on the basis of the values of gj(x), j = 1, . . . ,C, gives the normal-
based quadratic discriminant function (McLachlan, 1992a).

In the estimative approach, the quantities μ j and � j in the above are replaced by estimates
based on a training set. The estimates are obtained using maximum likelihood estimation given
a set of (assumed independent) data samples from each class. Suppose that we have a set of

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

THE GAUSSIAN CLASSIFIER 37

samples {x1, . . . , xn},xi ∈ R
d from class ωj. Then the maximum likelihood estimate of the

mean for class ωj is

μ̂ j = 1

n

n∑
i=1

xi, (2.9)

the sample mean vector, and the maximum likelihood estimate for the covariance matrix is

�̂ j = 1

n

n∑
i=1

(xi − μ̂ j)(xi − μ̂ j)
T , (2.10)

the (biased) sample covariance matrix (we show how these estimates can be derived in the
next subsection). Since the maximum likelihood estimate of the covariance matrix is biased
[E(�̂ j) = n−1

n � j, see the exercises at the end of the chapter] it is common practice to replace
it with an unbiased estimate

�̂ j = 1

n − 1

n∑
i=1

(xi − μ̂ j)(xi − μ̂ j)
T

Substituting the estimates of the means and the covariance matrices (termed the ‘plug-in
estimates’) of each class into (2.8) gives the Gaussian classifier or quadratic discrimination
rule: assign x to ωi if gi > gj, for all j �= i, where

gj(x) = log(p(ω j)) − 1

2
log(|�̂ j|) − 1

2
(x − μ̂ j)

T �̂
−1
j (x − μ̂ j) (2.11)

If the training data have been gathered by collecting measurements in the operational
(deployment) environment, then a plug-in estimate for the prior probability, p(ωj), is nj/

∑
ini,

where nj is the number of patterns in class ωj. Other common choices are to use uniform prior
probabilities p(ωj) = 1/C, or expert specified prior probabilities.

We may apply the Gaussian classifier (quadratic discrimination rule) to classify data
vectors (e.g. members of a separate test set, if available). However, problems will occur in
the Gaussian classifier if any of the matrices �̂ j is singular. This is because the singularity
will prevent the inversion of the covariance matrix in the discriminant rule (2.11), and will
also prevent calculation of the logarithm of the determinant of the covariance matrix in the
discriminant rule, since the determinant of a singular matrix is zero. Approaches for dealing
with this are the subject of the next section.

2.3.2 Derivation of the Gaussian classifier plug-in estimates

To derive the intuitively reasonable plug-in estimates [Equations (2.9) and (2.10)] for the
Gaussian classifier, consider the likelihood function for the set of samples, {x1, . . . , xn},
xi ∈ R

d , drawn independently from a normal distribution characterised by θ = (μ,�).
We have

L(θ; x1, . . . , xn) =
n∏

i=1

1

(2π)d/2|�|1/2
exp

{
−1

2
(xi − μ)T �−1(xi − μ)

}

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

38 DENSITY ESTIMATION – PARAMETRIC

Maximisation of this function is easier if we replace � by � = �−1, the inverse of the
covariance matrix (known as the precision matrix). We then have

log(L(μ,�|x1, . . . , xn)) = −nd

2
log(2π) + n

2
log(|�|) − 1

2

n∑
i=1

(xi − μ)T �(xi − μ)

where we have made use of the following matrix determinant property

|A−1| = |A|−1

Differentiating log(L) with respect to μ and � gives1

∂ log(L)

∂μ
= 1

2

n∑
i=1

�(xi − μ) + 1

2

n∑
i=1

�T (xi − μ) =
n∑

i=1

�(xi − μ) (2.12)

and

∂log(L)

∂�
= n

2
�−1 − 1

2

n∑
j=1

(xi − μ)(xi − μ)T (2.13)

To derive Equation (2.13), we have used the result that

∂|A|
∂A

= [adj(A)]T = |A|(A−1)T

so that

∂log(|�|)
∂�

= |�|(�−1)T 1

|�| = (�−1)T = �−1

and also2

(xi − μ)T �(xi − μ) =
d∑

r=1

d∑
s=1

(xir − μr)�r,s(xis − μs)

which makes clear that

∂(xi − μ)T �(xi − μ)

∂�r,s
= (xir − μr)(xis − μs)

1 Differentiation with respect to a d-dimensional vector means differentiating with respect to each component of
the vector. This gives a set of d equations which may be expressed as a vector equation. Similarly for differentiating
with respect to a matrix.

2 Using notation where xir is the rth component of the ith data measurement xi, μr is the rth component of the
mean vector μ and �r, s is the component in the rth row and sth column of the matrix �.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

THE GAUSSIAN CLASSIFIER 39

Equating (2.12) to zero (and multiplying both sides by �−1) gives the maximum likelihood
estimate of the mean [i.e. Equation (2.9)]. Equating (2.13) to zero gives

�−1 = 1

n

n∑
i=1

(xi − μ)(xi − μ)T

Hence, replacing μ by its maximum likelihood estimate, the maximum likelihood estimate
of the covariance matrix is as specified in Equation (2.10). Note that since the maximisation
gives rise to a valid covariance matrix (assuming a suitable amount of data) it does not matter
that we did not perform a constrained maximisation (with the constraint enforcing the fact
that the solution must be a positive semi-definite symmetric matrix).

2.3.3 Example application study

The problem
The purpose of this study is to investigate the feasibility of predicting the degree of recovery
of patients entering hospital with severe head injury using data collected shortly after injury
(Titterington et al., 1981).

Summary
Titterington et al. (1981) report the results of several classifiers, each designed using different
training sets. In this example, results of the application of a quadratic discriminant rule (2.11)
are presented.

The data
The dataset comprises measurements on patients entering hospital with a head injury with a
minimum degree of brain damage. Measurements are made on six categorical variables: Age,
grouped into decades 0–9, 10–19, . . . , 60–69, 70+; EMV score, relating to eye, motor and
verbal responses to stimulation grouped into seven categories; MRP, a summary of the motor
responses in all four limbs, graded 1 (nil) to 7 (normal); Change, the change in neurological
function over the first 24 h, graded 1 (deteriorating) to 3 (improving); Eye Indicant, a
summary of eye movement scores, graded 1 (bad) to 3 (good); Pupils, the reaction of pupils
to light, graded 1 (nonreacting) or 2 (reacting). There are 500 patients in the training and test
sets, distributed over three classes related to the predicted outcome (dead or vegetative; severe
disability; and moderate disability or good recovery). The number of patterns in each of the
three classes for the training and the test sets are: training – 259, 52, 189; test – 250, 48, 202.
Thus there is an uneven class distribution. Also, there are many missing values. These have
been substituted by class means on training and population means on test. Further details of
the data are given by Titterington et al. (1981).

The model
The data in each class are modelled using a normal distribution leading to the discriminant
rule (2.11).

Training procedure
Training consists of calculating the quantities {μ̂ j, �̂ j, j = 1, . . . , C}, the maximum likelihood
estimates of the mean and covariance matrix for each class from the data. The prior class

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

40 DENSITY ESTIMATION – PARAMETRIC

Table 2.1 Left, confusion matrix for training data; right, results for the test data.

True class True class

1 2 3 1 2 3

Predicted 1 209 22 15 Predicted 1 188 19 29
class 2 0 1 1 class 2 3 1 2

3 50 29 173 3 59 28 171

probabilities are taken to be p(ωj) = nj/n, j = 1, . . . , C. A numerical procedure must be used
to calculate the inverse covariance matrix, �̂

−1
j , and the determinant, |�̂ j| for each class. Once

calculated, these quantities are substituted into Equation (2.11) to give C functions, g j(x).
For each pattern, x, in the training and test set, gj(x) is calculated and x assigned to the

class for which the corresponding discriminant function, gj(x), is the largest.

Results
Results on training and test sets for a Gaussian classifier (quadratic rule) are given in Table 2.1
as misclassification matrices or confusion matrices. Note that class 2 is nearly always classified
incorrectly as class 1 or class 3.

2.4 Dealing with singularities in the Gaussian classifier

2.4.1 Introduction

In problems where the data are from multivariate normal distributions with different covariance
matrices, there may be insufficient data to obtain good estimates of the class covariance
matrices. As was noted in the description of the Gaussian classifier (quadratic discrimination
rule), problems will occur if any of the estimates of the covariance matrices �̂ j are singular,
since this will prevent calculation of the discriminant rule [Equation (2.11)]. There are several
common approaches for dealing with this, which we discuss over the next few subsections.
The notation and data measurements are the same as in the previous section.

2.4.2 Naı̈ve Bayes

One of the simplest approaches to avoiding singular covariance matrices is to use diagonal
covariance matrices; that is, set all off-diagonal terms of �̂ j to zero. Since we are considering
multivariate normal distributions, this is equivalent to making the assumption that the features
making up each data vector are statistically independent (given the class to which the data
vector belongs). This gives

p(x|ω j) =
d∏

l=1

N
(
xl; μ̂ jl, σ̂ 2

j,l

)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

DEALING WITH SINGULARITIES IN THE GAUSSIAN CLASSIFIER 41

where μ̂ jl is the lth component of μ̂ j (i.e. the lth component of the mean of the data samples

from class ωj), σ̂ 2
j,l is the lth diagonal element of �̂ j (i.e. the variance of the lth component of

the data samples from class ωj)

σ̂ 2
j,l = 1

n − 1

n∑
i=1

(xij − μ̂ jl)
2

and N(x, μ, σ 2) is the probability density function of the univariate normal distribution
with mean μ and variance σ 2. The discriminant rule is assign x to ωi if gi > gj, for all
j �= i, where

gj(x) = log(p(ω j)) −
d∑

l=1

log(σ̂ j,l) − 1

2

d∑
l=1

(xl − μ̂ jl)
2

σ̂ 2
j,l

The assumption of statistical independence between the features making up each data
vector is made also in the nonparametric naı̈ve Bayes classifier that is considered in
Chapter 4. However, whilst the diagonal covariance matrix Gaussian classifier models each
class-conditional component as an independent univariate normal distribution, a general naı̈ve
Bayes classifier can consider any univariate distribution for a given component.

2.4.3 Projection onto a subspace

Another approach is to project the data to a subspace in which �̂ j is nonsingular, perhaps
using a principal components analysis (PCA) (see Chapter 10), and then to use the Gaussian
classifier in the reduced dimension space. Such an approach is assessed by Schott (1993) and
linear transformations for reducing dimensionality are discussed in Chapter 10.

2.4.4 Linear discriminant function

Even in problems where the data are from multivariate normal distributions with different
covariance matrices, sampling variability may mean that it is better to assume equal covari-
ance matrices (i.e. assume that the class covariance matrices �1, . . . ,�C are all the same).
In this case the discriminant function (2.8) simplifies3 and the discriminant rule becomes:
assign x to ωi if gi > gj, for all j �= i, where gj is (the plug-in estimate of) the linear
discriminant

g j(x) = log(p(ω j)) − 1

2
μ̂

T
j S−1

W μ̂ j + xT S−1
W μ̂ j (2.14)

where μ̂ j is the sample mean vector for class ωj and SW is the estimate for the common class
covariance matrix. This is the normal-based linear discriminant function. The maximum

3 The simplification arises from ignoring terms that are constant for all classes.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

42 DENSITY ESTIMATION – PARAMETRIC

likelihood estimate for the common class covariance matrix is the pooled within-class sample
covariance matrix

SW =
C∑

j=1

n j

n
�̂ j (2.15)

where nj is the number of training data vectors for class ωj and n is the total number of training
data vectors (i.e. across all classes). The unbiased estimate is given by

n

n − C
SW

2.4.4.1 Special cases

For the special case of two classes, the rule (2.14) may be written:

� assign x to class ω1 if

wT x + w0 > 0

� else assign x to class ω2

where in the above

w = S−1
W (μ̂1 − μ̂2) (2.16)

w0 = − log

(
p(ω2)

p(ω1)

)
− 1

2
(μ̂1 + μ̂2)

T w (2.17)

A special case of (2.14) for any number of classes occurs when the matrix SW is taken
to be the identity matrix and the class priors p(ωi) are equal. This is the nearest class mean
classifier: assign x to class ωi if:

−2xT μ̂i + μ̂
T
i μ̂i < −2xT μ̂ j + μ̂

T
j μ̂ j for all j �= i

2.4.4.2 Discussion

The linear discriminant rule (2.14) is quite robust to departures from the equal covariance ma-
trix assumptions (Wahl and Kronmal, 1977; O’Neill, 1992), and may give better performance
than the optimum quadratic discriminant rule for normally distributed classes when the true
covariance matrices are unknown and the sample sizes are small. However, it is better to use
the quadratic rule if the sample size is sufficient.

2.4.5 Regularised discriminant analysis

Regularised discriminant analysis (RDA) was proposed by Friedman (1989) for small-sample,
high-dimensional datasets as a means of overcoming the degradation in performance of the

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

DEALING WITH SINGULARITIES IN THE GAUSSIAN CLASSIFIER 43

quadratic discriminant rule in such conditions. Two parameters are involved: λ, a complexity
parameter providing an intermediate between a linear and a quadratic discriminant rule, and
γ , a shrinkage parameter for covariance matrix updates.

The covariance matrix estimate �̂ j for class ωj [Equation (2.10)] in the quadratic discrim-
inant rule (2.11) is replaced by a linear combination, �λ

j , of the sample covariance matrix �̂ j

and the pooled covariance matrix SW [Equation (2.15)], as follows

�λ
j = (1 − λ)nj�̂ j + λnSW

(1 − λ)nj + λn
(2.18)

where 0 ≤ λ ≤ 1, nj is the number of training data vectors for class ωj, and n is the total
number of training data vectors (i.e. across all classes).

At the extremes of λ = 0 and λ = 1 we have covariance matrix estimates that lead to the
quadratic discriminant rule and the linear discriminant rule, respectively

�λ
j =

{
�̂ j λ = 0

SW λ = 1

The second parameter γ is used to regularise the sample class covariance matrix further
beyond that provided by (2.18),

�
λ,γ

j = (1 − γ)�λ
j + γ c j(λ)Id (2.19)

where Id is the d × d identity matrix and

c j(λ) = Tr{�λ
j }/d,

the average eigenvalue of �λ
j .

The matrix �
λ,γ

j is then used as the plug-in estimate of the covariance matrix in the
normal-based discriminant rule: assign x to ωi if gi > gj, for all j �= i, where

gj(x) = log(p(ω j)) − 1

2
log

(
|�λ,γ

j |
)

− 1

2
(x − μ̂ j)

T
(
�

λ,γ

j

)−1 (
x − μ̂ j

)

Friedman’s approach is to choose the values of λ and γ to minimise a cross-validated
estimate of future misclassification cost (that is, a robust estimate of the error rate using a
procedure called cross-validation – see Chapter 9) – this approach is referred to as RDA. The
strategy is to evaluate the misclassification risk on a grid of points (0 ≤ λ, γ ≤ 1) and to
choose the optimal values of λ and γ to be those grid point values with smallest estimated
risk. In order to reduce the computational cost of calculating each covariance matrix in the
cross-validation procedure, a strategy that updates a covariance matrix when one observation
is removed from a dataset may be employed.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

44 DENSITY ESTIMATION – PARAMETRIC

2.4.5.1 Robust estimates

Robust estimates of the covariance matrices (see Chapter 13) may also be incorporated in the
analysis. Instead of using �λ

j in (2.19), Friedman (1989) proposes �̃
λ

j , given by

�̃
λ

j = (1 − λ)S̃ j + λ
∑C

k=1 S̃k

(1 − λ)Wj + λ
∑C

k=1 Wk

where

S̃ j =
n∑

i=1

zjiwi(xi − μ̃ j)(xi − μ̃ j)
T

μ̃ j =
n∑

i=1

zjiwixi/Wj

Wj =
n∑

i=1

zjiwi

where the wi (0 ≤ wi ≤ 1) are weights associated with each observation and zji = 1 if xi ∈
class ωj and 0 otherwise. For wi = 1 for all i, �̃

λ

j = �λ
j .

2.4.5.2 Discussion

Friedman (1989) assesses the effectiveness of RDA on simulated and real datasets. He finds
that model selection based on the cross-validation procedure performs well, and that fairly
accurate classification can be achieved with RDA for a small ratio of the number of observa-
tions (n) to the number of variables (d). He finds that RDA has the potential for dramatically
increasing the power of discriminant analysis when sample sizes are small and the number of
variables is large.

2.4.6 Example application study

The problem
Face recognition, with relevance to face-based video indexing, biometric identity authentica-
tion and surveillance (Lu et al., 2003).

Summary
The study uses RDA for image-based face recognition, after the images have been projected
onto a lower dimension subspace. Special focus is applied to the small sample size problem,
since the number of available training samples is small compared with the dimensionality of
the feature space.

The data
The data were taken from the Face Recognition Technology (FERET) database (Phillips et al.,
2000). The subset used consisted of 606 grey-scale images of 49 subjects, each having more

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

DEALING WITH SINGULARITIES IN THE GAUSSIAN CLASSIFIER 45

than 10 samples. The imagery covered a range of illuminations and facial expressions. Data
preprocessing was applied, including translation, rotation and scaling.

The model
The initial dimensionality reduction projection is based on a variant (L.F. Chen et al., 2000)
of linear discriminant analysis (see Chapter 5) designed for situations when the number of
samples is smaller than the dimensionality of the samples. RDA is used on the resulting
projected vectors.

Training procedure
Six experimental set-ups were considered, varying in the number of training examples for
each subject (from 2 to 7 examples). In each experiment the test data consisted of all images
apart from those used as training data. Rather than selecting the RDA parameters (λ, γ)
using a validation stage, test results were provided for a range of RDA parameters (a grid of
points). Results were compared with those obtained using the Eigenfaces method of Turk and
Pentland (1991), a popular face recognition procedure in which PCA (see Chapter 10) is used
to reduce the dimensionality of the images, and the nearest class mean classifier is applied to
the resulting reduced dimension vectors.

Results
The performance from the optimal choice of RDA parameters was better than that from the
Eigenfaces method. However, selection of these best RDA parameters without the aid of test
data was not considered.4

2.4.7 Further developments

There have been several investigations of the robustness of the linear and quadratic dis-
criminant rules to certain types of non-normality (Lachenbruch et al., 1973; Chingánda and
Subrahmaniam, 1979; Ashikaga and Chang, 1981; Balakrishnan and Subrahmaniam, 1985).
They can be greatly affected by non-normality and, if possible, variables should be transformed
to approximate normality before applying the rules.

There are several intermediate covariance matrix structures (Flury, 1987) that may be
considered without making the restrictive assumption of equality of covariance matrices used
in the linear discriminant function. These include diagonal, but different, covariance matrices;
common principal components; and proportional covariance matrices models.

Aeberhard et al. (1994) report an extensive simulation study on eight statistical clas-
sification methods applied to problems when the number of observations is less than the
number of variables. They found that out of the techniques considered, RDA was the most
powerful, being outperformed by linear discriminant analysis only when the class covari-
ance matrices were identical and for a large training set size. Reducing the dimensionality
by feature extraction methods generally led to poorer results. However, Schott (1993) finds
that dimension reduction prior to quadratic discriminant analysis can substantially reduce

4 Later experiments by Lu et al. (2005) indicate that good test set performance is maintained when a separate
validation set is used to optimise the RDA parameters.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

46 DENSITY ESTIMATION – PARAMETRIC

misclassification rates for small sample sizes. It also decreases the sample sizes necessary for
quadratic discriminant analysis to be preferred over linear discriminant analysis. Alternative
approaches to the problem of discriminant analysis with singular covariance matrices are
described by Krzanowski et al. (1995).

Further simulations have been carried out by Rayens and Greene (1991) who compare
RDA with an approach based on an empirical Bayes framework for addressing the problem
of unstable covariance matrices (see also Greene and Rayens, 1989). Aeberhard et al. (1993)
propose a modified model selection procedure for RDA and Celeux and Mkhardi (1992)
present a method of RDA for discrete data. Expressions for the shrinkage parameter are
proposed by Loh (1995) and Mkhadri (1995).

An alternative regularised Gaussian discriminant analysis approach is proposed by
Bensmail and Celeux (1996). Termed EDDA (eigenvalue decomposition discriminant anal-
ysis), it is based on the reparametrisation of the covariance matrix of a class in terms of
its eigenvalue decomposition. Fourteen different models are assessed and results compare
favourably with RDA. Raudys (2000) considers a similar development.

Hastie et al. (1995) cast the discrimination problem as one of regression using optimal
scaling and use a penalised regression procedure (regularising the within-class covariance
matrix). In situations where there are many highly correlated variables, their procedure offers
promising results.

Extensions of linear and quadratic discriminant analysis to datasets where the patterns are
curves or functions are developed by James and Hastie (2001).

2.4.8 Summary

Linear and quadratic discriminants (or equivalently Gaussian classifiers) are widely used
methods of supervised classification and are supported by many statistical packages. Problems
occur when the covariance matrices are close to singular and when class boundaries are
nonlinear. The latter case occurs when the actual class distributions are highly non-Gaussian.
The former case can be overcome by regularisation. This can be achieved by imposing
structure on the covariance matrices, pooling/combining covariance matrices or by adding
a penalty term to the within-class scatter. Friedman (1989) proposes a scheme (RDA) that
includes a combination of covariance matrices and the addition of a penalty term.

2.5 Finite mixture models

2.5.1 Introduction

Finite mixture models have received wide application, being used to model non-Gaussian
distributions, including those with multiple modes. They are particularly suitable for modelling
distributions where the measurements arise from separate groups, but individual membership
is unknown. A finite mixture model is a distribution with probability density function of
the form

p(x) =
g∑

j=1

π j p(x; θ j) (2.20)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 47

where

� g is the number of mixture components (often referred to as the model order);

� π j ≥ 0 are the mixture component probabilities (also referred to as mixing proportions),
which satisfy

∑g
j=1π j = 1;

� p(x; θ j), j = 1, . . . , g, are the component density functions (each of which depends on
a parameter vector θ j).

The component densities may be of different parametric forms and can be specified using
knowledge of the data generation process, if available. In the normal (or Gaussian) mixture
model, each component is a multivariate normal distribution, i.e. p(x; θ j) is the probability
density for the multivariate normal distribution with mean vector μ j and covariance matrix � j,
so that θ j = {μ j, � j}. The normal mixture model therefore has probability density function

p(x) =
g∑

j=1

π jN(x;μ j,� j)

Even if the data are not known to be built up from a series of normal components, a normal
mixture model with a sufficient number of components may be a suitable approximation to
the data distribution. Figure 2.1 displays the probability density functions for some example

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

p(
x)

1 component
2 components
3 components

Figure 2.1 Examples of univariate normal mixture model probability density functions. The
dotted line is a single component mixture [(μ, σ) = (0, 1)], the dashed line is a two-component
mixture [π = (0.5, 0.5), (μ1, σ 1) = (−2, 1), (μ2, σ 2) = (2, 1)] and the solid line is a three-
component mixture [π = (0.2, 0.6, 0.2), (μ1, σ 1) = (− 2, 0.7), (μ2, σ 2) = (0, 0.7), (μ3, σ 3) =
(2, 0.7)].

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

48 DENSITY ESTIMATION – PARAMETRIC

univariate normal mixture distributions. We can see that using normal distributed components,
we can obtain both multimodal distributions (the two-component example) and highly non-
Gaussian distributions (the three-component example).

As methods of density estimation, mixture models provide more flexible models than
the simple normal-based models considered earlier in the chapter, and when used as class
conditional densities they provide improved discrimination in some circumstances.

The modelling capability of mixture models may become clearer when one considers
how to draw samples from a mixture model distribution. Samples can be generated using the
following procedure:

� Sample the mixture component j according to the component probability vector (π1, . . . ,
πg) [i.e. so that p(j = i) = π i, i = 1, . . . , g]. To do this we draw a random variable u ∈
U(0, 1) from the continuous uniform distribution on the interval [0, 1], and select the
mixture component j satisfying

∑ j−1
k=1π k < u ≤ ∑ j

k=1π k.

� Then sample the measurement from the selected component density p(x; θ j). For a
normal mixture model, this would involve drawing a sample from the distribution
N(μ j,� j).

By repeating the above procedure we obtain independent samples from the mixture model.
In words, we are drawing random samples from a population consisting of g separate groups,
with the proportions of samples from each group given by the component probabilities
π1, . . . , πg.

2.5.2 Mixture models for discrimination

Mixture models can be used in a discrimination problem by modelling each class conditional
density as a mixture distribution

p(x|ω j) =
gj∑

r=1

π j,r p(x; θ j,r) (2.21)

where gj is the number of components for class ωj, {π j, r ≥ 0, r = 1, . . . , gj} are the mixture
component probabilities for class ωj (satisfying

∑gj

r=1π j, r = 1) and {θ j,r, r = 1, . . . , gj} are
the parameter vectors for the component densities for class ωj.

The class conditional densities (2.21) can be used within the Bayesian classifier as specified
in Equation (2.1). Specifically, the discriminant rule is: assign x to ωi if di > dj, for all
j �= i, where

dj = p(ω j)p(x|ω j)

= p(ω j)

(gj∑
r=1

π j,r p(x; θ j,r)

)
(2.22)

The training phase of the mixture model classifier consists of estimating the parameters of
each mixture model. This is done separately for each class in turn. In the estimative approach
the estimated parameters are used directly as replacements for the parameters π j, r and θ j,r

in (2.22).

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 49

2.5.3 Parameter estimation for normal mixture models

For a normal mixture model with pre-specified model order g, the parameters to be estimated
are the mixture component probabilities {π1, . . . , πg} and the mixture component parameters
θ j = {μ j, � j}, j = 1, . . . , g. The most prevalent technique for optimising the parameters
given a set of n independent observations {x} = {x1, . . . , xn} (the training data) is an iterative
procedure known as the Expectation Maximisation (EM) algorithm. The EM algorithm seeks
to maximise the likelihood function

L(π1, . . . , πg,μ1, . . . ,μg,�1, . . . ,�g) =
n∏

i=1

⎧⎨
⎩

g∑
j=1

π jN(xi;μ j, � j)

⎫⎬
⎭ (2.23)

A full description and motivation of the EM algorithm is provided in Section 2.5.6. In this
section we state the procedure for estimating the parameters of a normal mixture model.

2.5.3.1 Initialisation

The EM algorithm is an iterative procedure that requires an initial set of values for the
parameters. Typically, a clustering algorithm such as k-means clustering is used to provide
reasonable initial values. Clustering algorithms are considered in more detail in Chapter 11.
For the purposes of clarity a k-means initialisation procedure for normal mixture models
is provided in Algorithm 2.1. As described, the k-means algorithm can terminate naturally,
when no further changes are made to the cluster assignments, or can be set to stop when a
maximum number of iterations have taken place (reducing computational expense). Note that
the provided algorithm often leads to a local optimum clustering solution, and is therefore
not recommended as a clustering algorithm if the clusters are to be used with no subsequent
processing (see Chapter 11).

2.5.3.2 Iterative EM procedure

Algorithm 2.2 states the EM procedure for normal mixture models. The procedure iteratively
applies two steps to refine estimates of model parameters: the E-step and the M-step. Full
motivations of these steps are provided in Section 2.5.6 as part of a generic description of
the EM algorithm. In more detail, the EM algorithm for normal mixtures alternates between
the E-step of estimating the wij [Equation (2.24)] and the M-step of calculating π̂ j, μ̂ j and

�̂ j (j = 1, . . . , g) given the values of wij [Equations (2.25), (2.26) and (2.27)]. The process
iterates until convergence of the likelihood, i.e. until the increase in the likelihood from one
iteration to the next falls below a pre-specified small threshold. The monitored likelihoods
are calculated by using the parameter estimates within (the logarithm of) Equation (2.23). For
computational considerations the procedure may be terminated when a maximum allowed
number of iterations has passed.

As with the initialisation procedure described in Algorithm 2.1, it is usual to impose
constraints on each estimated covariance matrix [Equation (2.27)], by adding a suitable
multiple of the identity matrix if necessary (e.g. if the smallest eigenvalue falls below a
threshold). This ensures that all covariance matrices can be inverted, and reduces the risk of
one of the components collapsing down onto one of the training data vectors (i.e. a component
mean equal to one of the data vectors, and the corresponding covariance matrix tending to the

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

50 DENSITY ESTIMATION – PARAMETRIC

Algorithm 2.1 k-means initialisation procedure for normal mixture models.

1. Initialisation: Pick g measurements from {x1, . . . , xn} randomly without replacement, and
use these as initial values for the component mean vectors {μ j, j = 1, . . . , g}.

2. Iterative step:

� For i = 1, . . . , n, determine ψ i ∈ {1, . . . , g} such that:

|xi − μψi
|2 = min

j=1,...,g
|xi − μ j|2

(i.e. find the closest centre to each training data vector).

� If any value ψ i, i = 1, . . . , n, has changed from the previous iteration, recalculate the
component means as follows:

μ j = 1∑n
i=1 I(ψi = j)

n∑
i=1

I(ψi = j)xi

with I(r = j) the indicator function, taking value one if r = j, and 0 otherwise. If none
of the ψ i have changed from the previous iteration then move forward to step 4.

3. If the maximum number of iterations has been exceeded then move to step 4, otherwise
repeat step 2.

4. Initialise the mixture component covariance matrices as follows:

� j = 1∑n
i=1 I(ψi = j)

n∑
i=1

I(ψi = j)(xi − μ j)(xi − μ j)
T

Subsequent use of the EM algorithm is likely to be more efficient if the initial variances
within the covariance matrices are not too small. It is therefore common practice to
impose minimum values for each variance component (i.e. each diagonal element of each
covariance matrix), or a minimum eigenvalue for each covariance matrix. This can be
done by adding a multiple of the identity matrix to the covariance estimates. Indeed, some
practitioners set all the initial covariance matrices to the scaled identity matrix.

5. Initialise the mixture component probabilities as follows:

π j = 1

n

n∑
i=1

I(ψi = j)

zero matrix). Pre-specified constraints on the covariance matrices are considered in the next
subsection.

The EM procedure is very easy to implement but the convergence rate can be poor
depending on the data distribution and the initial estimates for the parameters. To reduce the
risk of being trapped in local maxima of the likelihood function, it is common to repeat the
training process a few times, each time using different initial estimates for the parameters. In
such cases the final model is that giving rise to the largest likelihood.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 51

Algorithm 2.2 Iterative EM procedure for normal mixture models.

Suppose that at the end of iteration m ≥ 0 we have the following parameter estimates:

{π(m)
j , j = 1, . . . , g}, {μ(m)

j , j = 1, . . . , g}, and {�(m)
j , j = 1, . . . , g}

(iteration 0 corresponds to the initialisation stage). The (m + 1)th iteration of the EM algorithm
is then as follows:

1. E-step: Calculate

wij =
π

(m)
j N

(
xi;μ

(m)
j , �

(m)
j

)

∑
k π

(m)

k N
(

xi;μ
(m)

k , �
(m)

k

) (2.24)

for i = 1, . . . , n and j = 1, . . . , g.

2. M-step: For j = 1, . . . , g, update the estimates for the component parameters π j, μ j and
� j in turn as follows:

π̂
(m+1)
j = 1

n

n∑
i=1

wij (2.25)

μ̂
(m+1)
j =

∑n
i=1 wijxi∑n

i=1 wij
= 1

nπ̂
(m+1)
j

n∑
i=1

wijxi (2.26)

�̂
(m+1)

j = 1

nπ̂
(m+1)
j

n∑
i=1

wij

(
xi − μ̂

(m+1)
j

) (
xi − μ̂

(m+1)
j

)T
(2.27)

2.5.4 Normal mixture model covariance matrix constraints

As mentioned above, problems can occur when one or more of the component covariance
matrices is singular or near-singular. Such singularities prevent calculation of the wij within
the E-step and would also prevent calculation of the discriminant rule [Equation (2.22)], since
these both require the covariance matrices to be inverted. This problem is more likely to occur
when the number of components is large relative to the number of training data vectors, when
the dimensionality of the data is large, or when the mixture components are not well separated
(the latter being hard to tell until the procedure is started). A more principled solution to
this problem than the addition of a multiple of the identity matrix to near singular covariance
matrices, is to impose constraints on the covariance matrix structure. Common constraints are:

� diagonal covariance matrices;

� spherical covariance matrices;

� a common covariance matrix across mixture components.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

52 DENSITY ESTIMATION – PARAMETRIC

In these cases, the EM update equation for the covariance matrix [Equation (2.27)] is modified,
but the rest of the EM procedure remains unchanged.

Diagonal covariance matrices
These ignore the cross-correlation terms in the covariance matrices, so that only the variances
are being considered. The covariance matrices take the form � j = Diag(σ 2

j,1, . . . , σ
2
j,d), where

d is the dimensionality of the data, and Diag(a1, . . . , ad) indicates a d × d diagonal matrix
with lth diagonal element al. The EM covariance matrix update equation for the diagonal
terms is

σ̂
2 (m+1)

j,l = 1

nπ̂
(m+1)
j

n∑
i=1

wij

(
xi,l − μ̂

(m+1)

j,l

)2

where j = 1, . . . , g indexes the mixture component, and l = 1, . . . , d the dimension.

Spherical covariance matrices
The spherical covariance matrix constraint models the covariances as multiples of the identity
matrix, i.e. using a single variance σ 2

j per mixture component, so that � j = σ 2
j Id,d , with

Id,d the d × d identity matrix. The EM single variance update equation for the jth mixture
component is

σ̂
2 (m+1)
j = 1

ndπ̂
(m+1)
j

n∑
i=1

wij

(
xi − μ̂

(m+1)
j

)T (
xi − μ̂

(m+1)
j

)

Common covariance matrix
The third case of using a common covariance matrix across all mixture components gives rise
to the following EM covariance matrix update equation

�̂
(m+1) = 1

n

g∑
j=1

n∑
i=1

wij

(
xi − μ̂

(m+1)
j

) (
xi − μ̂

(m+1)
j

)T

Further covariance matrix constraints
Other constraints on the covariance matrix structure may be considered. Celeux and Govaert
(1995) propose a parametrisation of the covariance matrix that covers several different con-
ditions, ranging from equal spherical clusters (covariance matrices equal and proportional to
the identity matrix) to different covariance matrices for each cluster.

Hastie and Tibshirani (1996) consider the use of mixture models for classification. They
allow each component within a class to have its own mean vector, but set a common covariance
matrix across all mixture components and across all classes. This is a further way of restricting
the number of parameters to be estimated.

2.5.5 How many components?

Choosing the number of components in a mixture model is not a trivial problem and depends
on many factors including the actual distribution of the data being modelled, the shape of
clusters, and the amount of available training data.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 53

In a discrimination context, we can train a number of different mixture model classifiers,
each using a different number of mixture components, and apply each to a separate test
set. The model order can then be selected as that giving rise to the best discrimination
performance on this test set. Note that the test set is being used as part of the training procedure
(more properly termed a validation set) and error rates quoted using these data will be
optimistically biased.

An alternative approach is to apply model selection criteria separately to each class-
conditional mixture model (i.e. consider the fit of each class-conditional distribution, rather
than the overall discrimination performance). A number of different model selection cri-
teria have been proposed. Comparative studies of model selection criteria in the literature
include that by Bozdogan (1993), who compared several information-theoretic criteria on
simulated data consisting of overlapping and nonoverlapping clusters of different shape
and compactness.

A popular criterion is the Akaike Information Criterion (AIC) (Akaike, 1974) given by

AIC = −2 log(L(�)) + 2kd

where L(�) is the model likelihood evaluated on the data [Equation (2.23) for normal mixture
models, calculated for the estimated parameters], and kd is the number of parameters in the
model. When selecting between multiple models, the model with the smallest AIC is selected.
The AIC penalises over-fitting using large models (which result in larger log-likelihood values)
through the kd term. However, it is often found to overestimate the number of components (as
noted in McLachlan and Peel, 2000).

Another common criterion is the Bayesian Information Criterion (BIC), proposed by
Schwarz (1978) and given by

BIC = −2 log(L(�)) + kdlog(n)

L(�) and kd are as for the AIC, and n is the number of independent data vectors used to
calculate the model likelihood. The model with the smallest BIC is selected. For n ≥ 8 the
model order penalty term in the BIC is larger than that in the AIC, and therefore the BIC is
less likely to overestimate the number of components. The BIC is considered to have better
theoretical motivations than the AIC for mixture models (McLachlan and Peel, 2000).

Celeux and Soromenho (1996) propose an entropy criterion, evaluated as a by-product
of the EM algorithm, and compare its performance with several other criteria. Their model
selection criterion involves minimising

C(g) = E(g)

log(L(g)) − log(L(1))
, g > 1

where g > 1 is the number of mixture components, L(k) (k ≥ 1) is the likelihood for a model
with k components, and E(g) is an entropy term

E(g) =
g∑

j=1

n∑
i=1

wij log(wij)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

54 DENSITY ESTIMATION – PARAMETRIC

where

wij = π j p(xi|θ j)∑g
k=1 πk p(xi|θk)

calculated in the E-step of the EM algorithm [Equation (2.24)]. The criterion attempts to
combine quality of fit (evidenced by large likelihoods), with selection of a mixture model
whose components are well separated (i.e. clustering) giving rise to small values for the
entropy term. It is therefore not suited to mixture models containing components that have
similar mean vectors, but varying covariance matrices. A rule of thumb (McLachlan and Peel,
2000) is to define C(1) = 1.

Wolfe (1971) proposes a modified likelihood ratio test for testing between two mixture
models with different numbers of components, in which the null hypothesis g = g0 is tested
against the alternative hypothesis that g = g1. The quantity

−2

n

(
n − 1 − d − g1

2

)
log(λ)

where λ is the likelihood ratio [λ = L(�0)/L(�1), with L(�0) the likelihood under the null
hypothesis, and L(�1) the likelihood under the alternative hypothesis], is tested as a chi-square
random variable with the degrees of freedom, χ , being twice the difference in the number
of parameters in the two hypotheses (Everitt et al., 2001), excluding mixing proportions. For
components of a normal mixture with arbitrary covariance matrices,

χ = 2(g1 − g0)
d(d + 3)

2

and with common covariance matrices (the case that was studied by Wolfe, 1971), χ = 2(g1 −
g0)d. The modification over a standard likelihood ratio test is needed, because the regularity
conditions needed for the standard likelihood ratio test [i.e. for −2 log(λ) to asymptotically
have a chi-square distribution with degrees of freedom equal to the difference in the number
of parameters] do not hold when comparing mixture models with a different number of
components [see McLachlan and Peel (2000) for details and an example].

Wolfe’s test has been investigated by Everitt (1981) and Anderson (1985). For the common
covariance structure, Everitt finds that, for testing g = 1 against g = 2 in a two-component
mixture, the test is appropriate if the number of observations is at least 10 times the number of
variables. McLachlan and Basford (1988) recommend that Wolfe’s modified likelihood ratio
test be used as a guide to structure rather than rigidly interpreted.

Bayesian approaches to learning mixture model parameters can incorporate the model
order as an unknown variable to be learnt. The underlying modelling techniques are discussed
in Chapter 3. A seminal paper by Richardson and Green (1997)5 developed a reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm for joint model selection and pa-
rameter estimation in univariate normal mixture models. The work has been extended to
low-dimensionality multivariate distributions (Marrs, 1998), but currently is still considered
inappropriate for application to high-dimensional data. Other fully Bayesian approaches, such

5 The associated correction is in Richardson and Green (1998).

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 55

as the Markov birth–death process approach in Stephens (2000) (see also Stephens, 1997),
have been proposed, but again are more suitable to low-dimensional data modelling (e.g.
univariate and bivariate vectors).

2.5.6 Maximum likelihood estimation via EM

2.5.6.1 Introduction

We now return to the general problem of estimating the parameters of a mixture model. There
are three sets of parameters to estimate: the value of g (i.e. the number of components), the
values of π j, and the parameters θ j defining the component densities. Selection of the number
of mixture components has been discussed in Section 2.5.5, so in this section we focus on
estimation of the the mixture model parameters for a fixed model order g.

Given a set of n independent observations {x} = {x1, . . . , xn}, the likelihood function for
the mixture distribution p(x) = ∑g

j=1 π j p(x; θ j) is

L(�) =
n∏

i=1

⎧⎨
⎩

g∑
j=1

π j p(xi|θ j)

⎫⎬
⎭ (2.28)

where � denotes the set of parameters {π1, . . . , πg; θ1, . . . , θg} and we now denote the
dependence of the component densities on their parameters as p(x|θ j). In general, it is not
possible to maximise the likelihood function through solving ∂L/∂� = 0 explicitly for the
parameters of the model. Instead, iterative schemes must be employed. The most popular
approach for maximising the likelihood L(�) is to use a general class of iterative procedures
known as EM algorithms, introduced in the context of missing data estimation by Dempster
et al. (1977), though it had appeared in many forms previously.

2.5.6.2 Formulation as incomplete data problem

We suppose that we have a set of ‘incomplete’ data vectors {x} = {x1, . . . , xn}, and that
we wish to maximise the likelihood function L(�) = p({x}|�). Let {y} denote a typical
‘complete’ version of {x}, that is, each vector xi is augmented by the ‘missing’ values zi

so that yT
i = (xT

i , zT
i). In the finite mixture model case, the augmentation is naturally the

component labels for the data vectors. In the use of the EM procedure for more general
missing data problems there may be many possible vectors yi in which we can embed xi.

Let the likelihood of {y} be p({y}|�) whose form we know explicitly. The likelihood
p({x}|�) is obtained from p({y}|�) by integrating over all possible {z} alongside which the
set {x} is embedded

L(�) = p({x}|�) =
∫

p({x}, {z}|�)dz

=
∫ n∏

i=1

p(xi, zi|�)dz1 . . . dzn

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

56 DENSITY ESTIMATION – PARAMETRIC

For the finite mixture model case, the complete data vector y is the observation augmented
by a component label; that is, yT = (xT , zT), where z is an indicator vector of length g with
a 1 in the kth position if x is in group (i.e. component) k and zeros elsewhere. The likelihood
of y is

p(y|�) = p(x, z|�) = p(x|z, �)p(z|�) = p(x|θk)πk

which may be written as

p(y|�) =
g∏

j=1

[
p(x|θ j)π j

]z j (2.29)

since zj is zero except for j = k, for which it is one. The likelihood of x is

p(x|�) =
∑

all possible z values

p(y|�) =
g∑

j=1

π j p(x|θ j)

which is a mixture distribution. Thus, we may interpret mixture data as incomplete data where
the missing values are the component labels.

2.5.6.3 EM procedure

The EM procedure generates a sequence of estimates of �, {�(m)}, from an initial estimate
�(0) and consists of two steps:

1. E-step: Evaluate:

Q(�,�(m))
�= E

[
log(p({y}|�))|{x},�(m)

]

i.e. the expectation of the complete data log-likelihood, conditional on the observed
data, {x}, and the current value of the parameters, �(m). We have

Q(�, �(m)) = E

[
log

(∏
i

p(xi, zi|�)

) ∣∣{x}, �(m)

]

= E

[∑
i

log(p(xi, zi|�))
∣∣{x}, �(m)

]

=
∫ ∑

i

log(p(xi, zi|�))p({z}|{x},�(m))dz1 . . . dzn

2. M-step: Find � = �(m+1) that maximises Q(�,�(m)). Often the solution for the
M-step may be obtained in closed form. Otherwise, numerical optimisation proce-
dures can be used (Press et al., 1992).

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 57

When iterated from an initial set of parameter estimates �(0), the above procedure is such that
the likelihoods of interest satisfy

L{�(m+1)} ≥ L{�(m)} (2.30)

so that they are monotonically increasing (i.e. adopting the procedure leads to estimates with
better likelihood values).

2.5.6.4 Why the EM procedure works

To see that the likelihoods arising from the iterative EM procedure are monotonically increas-
ing we first define

H
(
�,�(m)

) = E
[
log (p({z} |{x},�)) |{x},�(m)

]

=
∫ ∑

i

log (p(zi|{x},�)) p
(
zi|{x},�(m)

)
dzi

so that Q(�, �(m)) differs from the log-likelihood at � by H(�, �(m)), i.e.

log(L(�)) = Q(�,�(m)) − H(�,�(m)) (2.31)

The validity of (2.31) can be seen by first noting that p({x}|�)) does not depend on {z}, and
is therefore unchanged by taking its expectation with respect to {z}

log(p({x}|�)) = E[log(p({x}|�))|{x}, �(m)]

Then making use of the formula for conditional probabilities

p({y}|�) = p({x}, {z}|�) = p({z}|{x},�)p({x}|�)

we have

log(p({x}|�)) = E

[
log

(
p({y}|�)

p({z}|{x}, �)

) ∣∣{x},�(m)

]

= E[log(p({y}|�))|{x}, �(m)] − E[log (p({z}|{x}, �)) |{x}, �(m)]

= Q(�,�(m)) − H(�, �(m))

which is the relationship in Equation (2.31).
Examining the decomposition of the log-likelihood in Equation (2.31) we can see that a

sufficient condition for the relationship (2.30) to hold is

Q(�(m+1),�(m)) ≥ Q(�(m), �(m)) (2.32)

H(�(m+1),�(m)) ≤ H(�(m), �(m)) (2.33)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

58 DENSITY ESTIMATION – PARAMETRIC

Now the M-step of the EM procedure ensures that (2.32) holds. Hence it remains to show
the relationship (2.33). In fact, the more general relationship H(�,�(m)) ≤ H(�(m), �(m))

holds. Writing

ϒ(�,�(m)) = H(�, �(m)) − H(�(m), �(m))

= E

[
log

(
p({z}|{x}, �)

p({z}|{x}, �(m))

) ∣∣{x},�(m)

]

we can make use of Jensen’s inequality applied to the logarithmic function

E[log(T)] ≤ log(E[T])

to obtain

ϒ(�, �(m)) ≤ log

(
E

[(
p({z}|{x}, �)

p({z}|{x},�(m))

) ∣∣{x},�(m)

])

= log

(∫
z

(
p({z}|{x}, �)

p({z}|{x}, �(m))

)
p({z}|{x},�(m))dz

)

= log

(∫
z

p({z}|{x},�)dz
)

= log(1) = 0

proving the desired inequality [Equation (2.33)], and hence the monotonically increas-
ing nature of the likelihoods obtained from the parameter estimates provided by the EM
procedure.

2.5.6.5 Application of the EM algorithm to mixture models

Let us now consider the steps of the EM algorithm applied to mixture models (previously
stated without justification for normal mixture models in Section 2.5.3). Extending (2.29) to
multiple independent vectors we have

p({y}|�) = p(y1, . . . yn|�) =
n∏

i=1

g∏
j=1

[p(xi|θ j)π j]
zji

where zji are the indicator variables, zji = 1 if pattern xi is in group j, zero otherwise.
Hence

log(p(y1, . . . yn|�)) =
n∑

i=1

g∑
j=1

zjilog(p(xi|θ j)π j)

=
n∑

i=1

zT
i l +

n∑
i=1

zT
i ui(θ)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 59

where:

� the vector l has jth component log(π j);

� ui(θ) has jth component log(p(xi|θ j));

� zi has components zji, j = 1, . . . , g,

The likelihood of (x1, . . . , xn) is L(�) given by Equation (2.28). The steps in the basic EM
iteration are:

1. E-step: Form Q given by

Q(�,�(m)) = E
[
log(p(y1, . . . , yn|�))|{x},�(m)

]

=
n∑

i=1

wT
i l +

n∑
i=1

wT
i ui(θ)

where

wi = E
[
zi|xi,�

(m)
]

with jth component the probability that xi belongs to component j given the current
parameter estimates, �(m):

wij =
π

(m)
j p

(
xi|θ(m)

j

)

∑
k π

(m)

k p
(

xi|θ(m)

k

) (2.34)

2. M-step: This consists of maximising Q with respect to �. Consider the parameters π j,
θ j in turn. Maximising Q with respect to π j (subject to the constraint that

∑g
i=1π i =

1) leads to the equation

n∑
i=1

wij
1

π j
− λ = 0

obtained by differentiating Q − λ(
∑g

j=1π j − 1) with respect to π j, where λ is a
Lagrange multiplier. The constraint

∑g
j=1π j = 1 gives λ = ∑g

j=1

∑n
i=1wij = n and we

have the estimate of π j as

π̂ j = 1

n

n∑
i=1

wij (2.35)

For normal mixture models, θ j = (μ j,� j) and we have

Q(�,�(m)) =
n∑

i=1

wT
i l +

g∑
j=1

n∑
i=1

wijlog(N(xi;μ j, � j)) (2.36)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

60 DENSITY ESTIMATION – PARAMETRIC

Differentiating Q with respect to μ j and equating to zero gives

n∑
i=1

wij(xi − μ j) = 0

which gives the new estimate for μ j as

μ̂ j =
∑n

i=1 wijxi∑n
i=1 wij

= 1

nπ̂ j

n∑
i=1

wijxi (2.37)

Differentiating Q with respect to �−1
j and equating to zero gives

�̂ j =
∑n

i=1 wij
(
xi − μ̂ j

) (
xi − μ̂ j

)T

∑n
i=1 wij

= 1

nπ̂ j

n∑
i=1

wij
(
xi − μ̂ j

) (
xi − μ̂ j

)T
(2.38)

Equations (2.35), (2.37) and (2.38) are as the earlier stated normal mixture model update
formulae of Section 2.5.3 [Equations (2.25), (2.26) and (2.27)].

2.5.7 Example application study

The problem
The practical application concerns the automatic recognition of ships using high-resolution
radar measurements of the radar cross-section of targets (Webb, 2000).

Summary
This is a straightforward mixture model approach to discrimination, with maximum likeli-
hood estimates of the parameters obtained via the EM algorithm. The mixture component
distributions are taken to be gamma distributions.

The data
The data consist of radar range profiles (RRPs) of ships of seven class types. An RRP describes
the magnitude of the radar reflections of the ship as a function of distance from the radar. The
profiles are sampled at 3 m spacing and each RRP comprises 130 measurements. RRPs are
recorded from all aspects of a ship as the ship turns through 360◦. There are 19 data files and
each data file comprises between 1700 and 8800 training patterns. The data files are divided
into train and test sets. Several classes have more than one rotation available for training
and testing.

The model
The density of each class is modelled using a mixture model. Thus, we have

p(x) =
g∑

j=1

π j p(x|θ j)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

FINITE MIXTURE MODELS 61

where θ j represents the set of parameters of mixture component j. An independence model6

is assumed for each mixture component, p(x|θ j), therefore

p(x|θ j) =
130∏
s=1

p(xs|θjs)

and the univariate factor, p(xs|θ js), is modelled as a gamma distribution7 with parameters
θ js = (mjs, μjs)

p(xs|θjs) = mjs

(mjs − 1)!μjs

(
mjsxs

μjs

)mjs−1

exp

(
−mjsxs

μjs

)

where mjs is the order parameter for variable xs of mixture component j and μjs is the mean.
Thus for each mixture component, there are two parameters associated with each dimension.
We denote by θ j the set {θ js, s = 1, . . . , 130}, the parameters of component j. The gamma
distribution is chosen from physical considerations – it has special cases of Rayleigh scattering
and a nonfluctuating target. Also, empirical measurements have been found to be gamma-
distributed.

Training procedure
Given a set of n assumed independent observations (in a given class), the likelihood
function is

L(�) =
n∏

i=1

g∑
j=1

π j p(xi|θ j) (2.39)

where � represents all the parameters of the model, � = {θ j, π j, j = 1, . . . , g}.
An EM approach to maximum likelihood is taken. If {θ(m)

k , π
(m)

k } denotes the estimate of
the parameters of the kth component at the mth stage of the iteration, then the E-step estimates
wij, the probability that xi belongs to component j given the current estimates of the parameters
as in Equation (2.34)

wij = π
(m)
j p(xi|θ(m)

j)
∑

k π
(m)

k p(xi|θ(m)

k)

The M-step leads to the estimate of the mixture weights, π j as in Equation (2.35)

π̂ j = 1

n

n∑
i=1

wij

6 Note that this is independence of the elements of the data vector, conditional on the mixture component, and is
unrelated to the independence of data vectors.

7 There are several parametrisations of a gamma distribution. We present the one used in the study.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

62 DENSITY ESTIMATION – PARAMETRIC

The equation for the mean can be obtained as

μ̂ j =
∑n

i=1 wijxi∑n
i=1 wij

= 1

nπ̂ j

n∑
i=1

wijxi

but the equation for the gamma-order parameters, mjs, cannot be solved in closed form.
We have

ν(mjs) = −
∑n

i=1 wij log(xis/μjs)∑n
i=1 wij

where ν(m) = log (m) − ψ(m) and ψ(m) is the digamma function, i.e. the derivative of
the logarithm of the gamma function [ψ(m) = d

dm log(�(m)), �(m) = (m − 1)! for m ≥ 1
an integer].

Thus, for the gamma mixture problem, an EM approach may be taken, but a numerical root-
finding routine must be used within the EM loop for the gamma distribution order parameters.

The number of mixture components per class was varied between 5 and 110 and the model
for each ship determined by minimising a penalised likelihood criterion (the AIC, which is
the likelihood penalised by a complexity term – see Section 2.5.5). This resulted in between
50 and 100 mixture components per ship. The density function for each class was constructed
using (2.39). The class priors were taken to be equal. The model was then applied to a separate
test set and the error rate estimated.

2.5.8 Further developments

Other procedures for maximising the mixture model likelihood function include Newton–
Raphson iterative schemes (Hasselblad, 1966) and simulated annealing (Ingrassia, 1992).

Jamshidian and Jennrich (1993) propose an approach for accelerating the EM algo-
rithm based on a generalised conjugate gradients numerical optimisation scheme (see also
Jamshidian and Jennrich, 1997). Other competing numerical schemes for normal mixtures
are described by Everitt and Hand (1981) and Titterington et al. (1985). Lindsay and Basak
(1993) describe a method of moments approach to multivariate normal mixtures that may be
used to initialise an EM algorithm.

Further extensions to the EM algorithm are given by Meng and Rubin (1992, 1993).
The SEM (supplemented EM) algorithm is a procedure for computing the asymptotic
variance–covariance matrix. The ECM (expectation/conditional maximisation) algorithm is
a procedure for implementing the M-step when a closed-form solution is not available (i.e.
for component distributions that are not Gaussian), replacing each M-step by a sequence
of conditional maximisation steps. An alternative gradient algorithm for approximating the
M-step is presented by Lange (1995) and the algorithm is further generalised to the ECME
(ECM Either) algorithm by Liu and Rubin (1994).

Developments to data containing groups of observations with longer than normal tails are
described by Peel and McLachlan (2000), who develop a mixture of t distributions model,
with parameters determined using the ECM algorithm.

One of the main issues with likelihood optimisation in mixture models is that there is a
multitude of ‘useless’ global maxima (Titterington et al., 1985). In particular, if the mean

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

APPLICATION STUDIES 63

of one of the mixture components is specified to be one of the training data points, then the
likelihood tends to infinity as the variance of the component centred on that data point tends to
zero. Similarly, if sample points are close together, then there will be high local maxima of the
likelihood function and it appears that the maximum likelihood procedure fails for this class of
mixture models. However, provided that we do not allow the variances to tend to zero, perhaps
by imposing an equality constraint on the covariance matrices, then the maximum likelihood
method is still viable (Everitt and Hand, 1981). Equality of covariance matrices may be a rather
restrictive assumption in many applications. Convergence to parameter values associated with
singularities is more likely to occur with small sample sizes and when components are not
well separated.

Another problem with a mixture model approach is that there may be many local minima
of the likelihood function and several initial configurations may have to be tried before a sat-
isfactory estimate is produced. It is worthwhile trying several initialisations, since agreement
between the resulting estimates lends more weight to the chosen solution. Celeux and Govaert
(1992) describe approaches for developing the basic EM algorithm to overcome the problem
of local optima.

Bayesian estimation procedures are available, most commonly utilising Markov chain
Monte Carlo (MCMC) algorithms (Section 3.4), see e.g. Gilks et al. (1996) and Roeder and
Wasserman (1997). Fully Bayesian approaches, estimating both the number of components
and the component parameters have also been proposed, as highlighted in Section 2.5.5.

2.5.9 Summary

Modelling using normal mixtures is a simple and powerful way of developing the normal
model to nonlinear discriminant functions. Even the restrictive assumption of a common
covariance matrix for mixture components enables nonlinear decision boundaries to be found.
The EM algorithm provides an appealing scheme for parameter estimation, and there have
been various extensions accelerating the technique. The EM algorithm is not limited to normal
mixtures, and can be utilised for learning the parameters of mixture components with a wide
range of densities. A mixture model may also be used to partition a given dataset by modelling
the dataset using a mixture, and assigning data samples to the group for which the probability
of membership is the greatest. The use of mixture models in this (clustering) context is
discussed further in Chapter 11.

2.6 Application studies

The application of the normal-based linear and quadratic discriminant rules covers a wide
range of problems. These include the areas of:

� Medical research. Aitchison et al. (1977) compare predictive and estimative approaches
to discrimination. Harkins et al. (1994) use a quadratic rule for the classification of
red cell disorders. Hand (1992) reviews statistical methodology in medical research,
including discriminant analysis (see also Jain and Jain, 1994). Stevenson (1993) dis-
cusses the role of discriminant analysis in psychiatric research. Borini and Guimarães
(2003) use a quadratic rule for noninvasive classification of liver disease based upon
patient responses and blood measurements. Bouveyron et al. (2009) consider the use

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

64 DENSITY ESTIMATION – PARAMETRIC

of linear and quadratic discriminant functions, and also mixture models, for detecting
cervical cancer.

� Machine vision. Magee et al. (1993) use a Gaussian classifier to discriminate bottles
based on five features derived from images of the bottle tops.

� Target recognition. Kreithen et al. (1993) develop a target and clutter discrimination
algorithm based on multivariate normal assumptions for the class distributions. Liu
et al. (2008) use RDA to distinguish airports from surroundings in forward-looking
infrared (FLIR) images.

� Spectroscopic data. Krzanowski et al. (1995) consider ways of estimating linear dis-
criminant functions when covariance matrices are singular and analyse data consisting
of infrared reflectance measurements.

� Radar. Haykin et al. (1991) evaluate a Gaussian classifier on a clutter classification
problem. Lee et al. (1994) develop a classifier for polarimetric synthetic aperture radar
(SAR) imagery based on the Wishart distribution. Solberg et al. (1999) use normal
distributions within a procedure for detecting oil spills in SAR imagery.

� As part of a study by Aeberhard et al. (1994), RDA was one of eight discrimination
techniques (including linear and quadratic discriminant analysis) applied to nine real
datasets. An example is the wine dataset – the results of a chemical analysis of wines
grown in the same region of Italy, but derived from different varieties. On all the real
datasets, RDA performed best overall.

� Biometric recognition. Thomaz et al. (2004) consider linear, quadratic and regularised
discriminant analysis for face recognition, face-expression recognition and fingerprint
classification. They also propose a scheme for combining covariance matrices, based
upon maximising entropy. Lee et al. (2010) utilise RDA within an approach for recog-
nising facial expressions (e.g. happiness and disgust). RDA is used as the classifier
within a boosting procedure (boosting, described in Chapter 8, is a sequential proce-
dure that can improve classification performance by combining multiple instances of
a classifier). The RDA parameters are optimised using particle swarm optimisation,
a population-based search heuristic motivated by observance of birds flocking to a
promising position (Kennedy and Eberhart, 1995).

� Conservation. Bavoux et al. (2006) use a Gaussian classifier to determine the sex of
raptors based upon six measurements (body mass, bill length, wing chord length, tarsus
length and width, and tail length).

� Microarray data analysis. Guo et al. (2007) develop a regularised version of a normal-
distribution classifier, and apply it to microarray data analysis.

Comparative studies of normal-based models with other discriminant methods can be found
in the papers by Curram and Mingers (1994), Bedworth et al. (1989) (on a speech recognition
problem) and Aeberhard et al. (1994).

Applications of mixture models include:

� Speech recognition. Rabiner et al. (1985), and Juang and Rabiner (1985) describe a
hidden Markov model approach to isolated digit recognition in which the probability

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

APPLICATION STUDIES 65

density function associated with each state of the Markov process is a normal mixture
model.

� Speech verification. Reynolds et al. (2000) use normal mixture models for speaker
verification within conversational telephone speech.

� Face detection and tracking. In a study of face recognition (McKenna et al., 1998), data
characterising each subject’s face (20 and 40 dimensional feature vectors) are modelled
as a normal mixture, with component parameters estimated using the EM procedure.
Classification is performed by using these density estimates in Bayes’ rule.

� Intrusion detection in computer networks. Bahrololum and Khaleghi (2008) use nor-
mal mixture models to detect network attacks based on features derived from TCP
dump data.

� Computer security. Hosseinzadeh and Krishnan (2008) consider how computer users
can be recognised via keystroke patterns (e.g. the latency between key presses).
Keystroke features extracted for a user are modelled by a normal mixture model.

� Handwritten character recognition. Revow et al. (1996) use a development of con-
ventional mixture models (in which the means are constrained to lie on a spline) for
handwritten digit recognition. Chen et al. (2011) use normal mixture models for recog-
nising handwritten digits. Transformations are applied to the class-conditional mixture
densities, and a gradient ascent method used to optimise an objective function, rather
than standard EM maximum likelihood parameter estimation.

� Audio fingerprinting. Ramalingam and Krishnan (2006) use normal mixture models
to model short-time Fourier transform features of audio clips. The models are used to
match collected audio clips against a database of audio clips.

� Segmentation of vasculature in retinal images, with relevance to monitoring of diabetics.
Soares et al. (2006) use normal mixture models to classify each pixel of a retinal image
as vessel or nonvessel. Features for each pixel are obtained using the two-dimensional
Gabor wavelet transform.

� Breast cancer prognosis. Falk et al. (2006) use a normal mixture model to model the
joint distribution of cell nuclei features and cancer recurrence times. By conditioning on
the cell nuclei features they predict breast cancer recurrence time. The normal mixture
model approach outperformed decision tree approaches (see Chapter 7).

� Disease mapping. Rattanasiri et al. (2004) use a Poisson distribution mixture model to
model incidence ratios of malaria. The resulting components are then used as classes,
and the provinces of Thailand assigned to these classes using Bayes’ theorem. A
space–time mixture model was developed to model the dynamic nature of disease
occurrences.

� Texture classification. Kim and Kang (2007) use normal mixture models within a
scheme for texture classification and segmentation. The features modelled are obtained
by applying wavelet transforms to the imagery.

� Modelling and synthesis of pedestrian trajectories. Johnson and Hogg (2002) use normal
mixture models to model the joint distribution of latest location change and location
history in pedestrian trajectories.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

66 DENSITY ESTIMATION – PARAMETRIC

� Driver identification. Miyajima et al. (2007) use normal mixture models to identify
drivers based on spectral features of pedal operation signals. The technology has rele-
vance to customising intelligent driver assistance systems for individual drivers.

� Modelling of network data. Newman and Leicht (2007) model social network connec-
tions using a mixture distribution. Complex networks are considered in Chapter 12.

2.7 Summary and discussion

The approaches developed in this chapter towards discrimination have been based on estima-
tion of the class-conditional density functions using parametric techniques (although mixture
modelling is often referred to as semiparametric). It is certainly true that we cannot design
a classifier that performs better than the actual Bayes’ discriminant rule. No matter how
sophisticated a classifier is, or how appealing it may be in terms of reflecting a model of
human decision processes, it cannot achieve a lower error rate than the Bayes’ classifier.
Therefore a natural step is to estimate the components of the Bayes’ rule from the data,
namely the class-conditional probability density functions and the class priors.

In Sections 2.3 and 2.4 we considered discrimination based on normal models (i.e. mod-
elling the measurements from each class as normal distributions). These linear and quadratic
discriminants (or equivalently Gaussian classifiers) are widely used methods of supervised
classification and are supported by many statistical packages. Their ease of specification and
use is such that they are worth considering when tackling a classification problem. Prob-
lems occur when the class covariance matrices are close to singular. RDA is a regularisation
scheme that includes a combination of covariance matrices and the addition of a penalty term
to reduce problems with singularities in covariance matrices. RDA can improve classification
performance when the sample size is too small for quadratic discriminant analysis to be viable.
Non-normality of the data measurements can greatly reduce the performance of linear and
quadratic discriminant functions. Transformation of variables to approximate normality prior
to applying the discriminant functions can help.

In Section 2.5 we considered mixture models, and in particular the normal (Gaussian)
mixture model. Modelling using normal mixtures is a simple and powerful way of developing
the normal model to nonlinear discriminant functions. The parameters of the mixture model
can be estimated using the iterative EM algorithm. Mixture models can be used for general
distribution modelling, discrimination, and clustering (see Chapter 11).

2.8 Recommendations

An approach based on density estimation is not without its dangers of course. If incorrect as-
sumptions are made about the form of the distribution in the parametric approach (and in many
cases we will not have a physical model of the data generation process to use) or data points
are sparse leading to poor estimates, then we cannot hope to achieve optimal performance.

However, the linear and quadratic (normal-based) rules are widely used, simple to imple-
ment and have been used with success in many applications. Therefore, it is worth applying
such techniques to provide at least a baseline performance on which to build. It may prove to
be sufficient.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

EXERCISES 67

Normal mixture models, optimised using the EM algorithm, provide an attractive and
relatively easy procedure for general density modelling. We recommend their use, especially
in situations where normal distributions are not believed to be appropriate (e.g. in the case of
multiple modes, or long tails). Selection of the number of mixture components is the most
difficult problem when using mixture models. However, for discrimination problems, a simple
procedure like BIC minimisation, or validation set monitoring of classification rate, may
be sufficient.

2.9 Notes and references

A comparison of the estimative and predictive (covered in Chapter 3) approaches is found in
the articles by Aitchison et al. (1977) and Moran and Murphy (1979). McLachlan (1992a)
gives a very thorough account of normal-based discriminant rules and is an excellent source
of reference material. Simple procedures for correcting the bias of the discriminant rule are
also given. Mkhadri et al. (1997) provide a review of regularisation in discriminant analysis.

Mixture distributions, and in particular the normal mixture model, are discussed in a num-
ber of texts. The book by Everitt and Hand (1981) provides a good introduction and a more
detailed treatment is given by Titterington et al. (1985) (see also McLachlan and Basford,
1988). A thorough treatment, with recent methodological and computational developments,
applications and software description is presented by McLachlan and Peel (2000). A review
of mixture densities and the EM algorithm is given by Redner and Walker (1984). A thorough
description of the EM algorithm and its extensions is provided in the book by McLachlan
and Krishnan (1996). See also the review by Meng and van Dyk (1997), where the emphasis
is on strategies for faster convergence. Software for the fitting of mixture models is pub-
licly available, e.g. the NETLAB MATLABTM routines documented in the book by Nabney
(2002), and the PRTools MATLABTM routines, documented in the book by van der Heiden
et al. (2004).

Exercises

1. In the example application study of Section 2.3.3, is it appropriate to use a Gaussian
classifier for the head injury data? Justify your answer.

2. Verify that the simple one-pass algorithm:

(a) Initialise S = 0, m = 0.

(b) For r = 1 to n do

i. dr = xr − m

ii. S = S +
(

1 − 1

r

)
drd

T
r

iii. m = m + dr

r

results in m as the sample mean and S as n times the sample covariance matrix.

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

68 DENSITY ESTIMATION – PARAMETRIC

3. Suppose that B = A + uuT , where A is a nonsingular (d × d) matrix and u is a vector. Show
that B−1 = A−1 − kA−1uuT A−1, where k = 1/(1 + uT A−1u) (Krzanowski and Marriott,
1996). Note how this can be used alongside the one-pass algorithm in Exercise 2, to update
the estimate of an inverse covariance matrix when a new data vector is added to the data
sample.

4. Show that the estimate of the covariance matrix given by

�̂ = 1

n − 1

n∑
i=1

(xi − m)(xi − m)T

where m is the sample mean, is unbiased.

5. For the Gaussian classifier using a common class covariance matrix (i.e. the normal-based
linear discriminant) show that the maximum likelihood estimate for the common covariance
matrix is the pooled within-class sample covariance matrix, SW = ∑C

j=1
n j

n �̂ j, where nj

is the number of training data vectors for class ωj, and �̂ j is the maximum likelihood
estimate of the covariance matrix using data from class ωj only.

6. Suppose that the d-element vector x is normally distributed N(μ, � j) in population
j (j = 1, 2), where � j = σ 2

j [(1 − ρ j)I + ρ j11T] and 1 denotes the d-vector all of whose
elements are 1. Show that the optimal (i.e. Bayes) discriminant function is given, apart
from an additive constant, by

−1

2
(c11 − c12)Q1 + 1

2
(c21 − c22)Q2

where Q1 = (x − μ)(x − μ)T , Q2 = (1T (x − μ))2, c1j = [σ 2
j (1 − ρ j)]−1, and c2j =

ρj[σ 2
j (1 − ρj){1 + (d − 1)ρj}]−1 (Krzanowski and Marriott, 1996).

7. Starting from Equation (2.36), verify the normal mixture model EM update formulae for
the mean vectors and covariances matrices [i.e. Equations (2.37) and (2.38)].

8. Consider a gamma distribution of the form

p(x|μ, m) = m

�(m)μ

(
mx

μ

)m−1

exp

(
−mx

μ

)

for mean μ and order parameter m. Derive the EM update equations for the π j, μj and mj

for the gamma mixture (see Section 2.5.7)

p(x) =
g∑

j=1

π j p(x|μ j, mj)

P1: OTA/XYZ P2: ABC
JWST102-c02 JWST102-Webb August 26, 2011 15:55 Printer Name: Yet to Come

EXERCISES 69

9. Generate three datasets (train, validation and test sets) for the three-class, 21 variable,
waveform data (Breiman et al., 1984)

xi = uh1(i) + (1 − u)h2(i) + εi (class 1)

xi = uh1(i) + (1 − u)h3(i) + εi (class 2)

xi = uh2(i) + (1 − u)h3(i) + εi (class 3)

where i = 1, . . . , 21; u is uniformly distributed on [0, 1]; εi are normally distributed
with zero mean and unit variance; and the hi are shifted triangular waveforms: h1(i) =
max(6−|i − 11|, 0), h2(i) = h1(i − 4), h3(i) = h1(i + 4). Assume equal class priors.
Construct a three-component mixture model for each class using a common covariance
matrix across components and classes (Section 2.5.4). Investigate starting values for the
means and covariance matrix and choose a model based on the validation set error rate.
For this model, evaluate the classification error on the test set.

Compare the results with a linear discriminant classifier and a quadratic discriminant
classifier constructed using the training set and evaluated on the test set.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

3

Density estimation – Bayesian

Class-conditional density functions can be estimated with the aid of training data samples from
the classes. These class-conditional density functions can be used within Bayes’ rule to produce
a discrimination rule. Bayesian approaches to parametric density estimation can be used to take
into account parameter uncertainty due to the training data sampling. In this chapter, analytic,
sampling and variational procedures for Bayesian estimation are all considered.

3.1 Introduction

In Chapter 2 we considered how parametric density estimates can be used within a Bayes’
rule classifier. Classification decisions were based upon the probability of class membership
p(ω j|x), expressed as

p(ω j|x) = p(ω j)
p(x|θ̂ j)

p(x)

where p(x|θ̂ j) is the estimate of the parametric class-conditional density for class ωj, p(ωj)
is the prior class probability and p(x) can be considered a normalisation constant. For each
class, ωj, the parameters θ̂ j were estimated using a sample of observations D j = {x j

1, . . . , x j
n j }

(x j
i ∈ R

d) from class ωj. Maximum likelihood estimation was used to obtain these parameter

estimates. Potential variations in the estimates θ̂ j due to sampling variability of the training
data were not taken into account.

As was noted in Chapter 2, a predictive or Bayesian approach can be used to take
into account the sampling variability in the estimate of θ j. Like the estimative approach, the
dependence of the density at x on D j is through the parameters, θ j, used within the model
assumed for the density. However, the Bayesian approach admits that we do not know the
true value of these parameters θ j. It does this by treating θ j as an unknown random variable,

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

INTRODUCTION 71

represented by a posterior distribution taking into account prior information on the parameter,
alongside the information contained in the data samples.

We replace our single estimate p(x|θ̂ j) of the class-conditional probability density,
p(x|ω j), with the predictive Bayesian estimate given by

p(x|ω j) =
∫

p(x, θ j|D j)dθ j

=
∫

p(x|θ j,D j)p(θ j|D j)dθ j

=
∫

p(x|θ j)p(θ j|D j)dθ j (3.1)

where p(θ j|D j) is the Bayesian posterior density function for θ j. The second line of (3.1)
follows from the first via the definition of conditional probability densities, and the third line
follows from the second by noting that conditioning on D j provides no extra information on
the density function p(x|θ j).

By Bayes’ theorem the posterior density of θ j may be expressed as

p(θ j|D j) = p(D j|θ j)p(θ j)

p(D j)

= p(D j|θ j)p(θ j)∫
p(D j|θ′

j)p(θ′
j)dθ′

j

(3.2)

where

� p(θ j) is the prior density for the parameters θ j.

� p(D j|θ j) is the likelihood function, which is the probability density of the data sample
D j conditional on the value of the parameters θ j.

In this chapter we introduce some of the Bayesian procedures (both analytic and numeric)
that can be called upon in order to evaluate expressions of the form (3.1) and (3.2). Section
3.2 considers analytic approaches to Bayesian inference. Section 3.3 introduces sampling
approaches to Bayesian inference, with Section 3.4 going on to consider Markov chain Monte
Carlo (MCMC) sampling algorithms. Section 3.5 provides a worked discrimination exam-
ple. Section 3.6 introduces the advanced topic of Sequential Monte Carlo (SMC) Samplers,
another sampling approach to Bayesian inference. Section 3.7 considers Variational Bayes
approximations, which provide an alternative means of approximating full Bayesian infer-
ence than sampling methods. Section 3.8 introduces Approximate Bayesian Computation, a
recent development for use in problems where the likelihood function cannot be evaluated
analytically.

For simplicity, unless specifically needed to distinguish between multiple classes, the
index for the class ωj is dropped in subsequent parts of this chapter. In keeping with many
Bayesian texts, we adopt a relaxed approach to notation, often referring to a probability density
function as a probability distribution. The reader should interpret this as being the probability
distribution defined by the probability density function.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

72 DENSITY ESTIMATION – BAYESIAN

3.1.1 Basics

Essentially, Bayesian statistics concerns the updating of our prior beliefs on an unknown
parameter in the light of observed data that has a relationship to that parameter. Our prior
beliefs are represented by a prior distribution for the parameter. The distribution for the
observed data given a value for the parameter is the likelihood distribution. The updated
beliefs on the parameter are represented by its posterior distribution, which is related to the
prior and likelihood distributions via Bayes’ theorem.

Suppose that we have data, D (perhaps a set of noisy measurement vectors D =
{x1, . . . , xn}), whose probability density function p(D|θ), depends on the parameter vec-
tor θ. This density function is termed the likelihood function (when considered as a function
of θ). In traditional statistics θ is a fixed, but unknown, parameter and we want to determine
a single estimate of θ (or more pertinently make decisions depending on the value of this
estimate). The Bayesian approach regards θ as a realisation of a random variable, which has
a prior probability density function p(θ) which represents our prior knowledge of θ. Our
updated beliefs on θ having observed the data D are represented by the posterior density of θ.
This is given by Bayes’ theorem as

p(θ|D) = p(D|θ)p(θ)∫
θ

′ p(D|θ′)p(θ′)dθ′ (3.3)

or in the discrete case1

p(θ|D) = p(D|θ)p(θ)∑
θ

′ p(D|θ′)p(θ′)

The posterior density of θ represents our revised views on the distribution of θ, given the
information obtained from the observed data D. This posterior distribution tells us all that
we need to know about θ and can be used to calculate summary statistics. Commonly, we
calculate the posterior expectation of a function h(θ)

E[h(θ)|D] =
∫

h(θ)p(D|θ)p(θ)dθ∫
p(D|θ)p(θ)dθ

(3.4)

3.1.2 Recursive calculation

The posterior density can be calculated in a recursive manner. Suppose that the dataD consists
of n measurement vectors, so that D = {x1, . . . , xn}. If the measurements, xi, are obtained
successively and are conditionally independent, we may write (3.3) as

p(θ|x1, . . . , xn) = p(xn|θ)p(θ|x1, . . . , xn−1)∫
p(xn|θ′)p(θ′|x1, . . . , xn−1)dθ′ (3.5)

1 We do not make this distinction in future discussions. When considering discrete distributions the reader should
replace integration by summation, and probability density function by probability mass function.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 73

This expresses the posterior distribution of θ given n measurements in terms of the posterior
distribution given n − 1 measurements. Starting with p(θ), we may perform the operation
(3.5) n times to obtain the posterior.

3.1.3 Proportionality

The denominator in the posterior density (3.3) is a normalising constant, independent of θ.
We can therefore write

p(θ|D) ∝ p(D|θ)p(θ)

∝ likelihood × prior (3.6)

where the proportionality is unambiguous due to the normalisation constraint of a probability
density function

∫
p(θ|D)dθ = 1

The proportionality is often further utilised by rearranging the terms in (3.6) so that

p(D|θ)p(θ) = g(θ,D)ψ(D)

where ψ(D) is a function that depends on the data D only [i.e. a function that does not
vary with θ], and g(θ,D) is a function that depends on both θ and D. By separating out the
multiplicative factors involving θ we can then express the posterior density function as

p(θ|D) ∝ g(θ,D)

since the ψ(D) factor can be incorporated into the normalisation constant

p(θ|D) = g(θ,D)∫
g(θ′,D)dθ′

Using such proportionality we can often simplify the process of developing Bayesian solutions,
by ignoring irrelevant aspects until they are necessary. The concept is illustrated in the analytic
solutions in the next section.

3.2 Analytic solutions

3.2.1 Conjugate priors

Bayes’ theorem allows us to combine any prior, p(θ), with any likelihood, p(D|θ), to give the
posterior. However, it is convenient for particular likelihood functions to be combined with
special forms of the prior that lead to simple, or at least tractable, solutions for the posterior.
For a given likelihood, p(x|θ), the family of prior distributions for which the posterior density,

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

74 DENSITY ESTIMATION – BAYESIAN

p(θ|D), is of the same functional form as the prior is called conjugate with respect to p(x|θ).
Some of the more common forms of conjugate priors are given by Bernardo and Smith (1994).

3.2.1.1 Poisson distribution example

As a simple example, suppose that we have n independent samples {x1, . . . , xn} from the
Poisson distribution with unknown rate parameter λ > 0.

Poisson distribution

The probability mass function for the Poisson distribution with rate parameter λ > 0 is

p(x|λ) = λx exp(−λ)

x!

where x ≥ 0 is an integer. The mean and variance of this distribution are both λ.

The likelihood distribution is given by

p(x1, . . . , xn|λ) =
n∏

i=1

p(xi|λ) = λ
∑n

i=1 xi exp(−λn)∏n
i=1 xi!

Now take as prior distribution for λ the gamma distribution with shape parameter α and
inverse-scale parameter β.

Gamma distribution

The gamma distribution with shape parameter α > 0 and inverse-scale parameter β > 0
has probability density function

p(γ |α, β) = βα

�(α)
γ α−1 exp(−βγ)

The support of the distribution is γ > 0, the mean of the distribution is α/β and the
variance is α/β2.

The posterior density function for λ can be written

p(λ|x1, . . . , xn) = p(x1, . . . , xn|λ)p(λ)∫
λ′ p(x1, . . . , xn|λ′)p(λ′)dλ′

∝ p(x1, . . . , xn|λ)p(λ)

∝ βα

�(α)
∏n

i=1 xi!
λα+∑n

i=1 xi−1 exp(−(β + n)λ)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 75

Following Section 3.1.3 this can be simplified to

p(λ|x1, . . . , xn) ∝ λα+∑n
i=1 xi−1 exp(−(β + n)λ) (3.7)

The key to expressing (3.7) as a distribution is to note that the probability density function
of a gamma distribution with shape parameter α′ = α +∑n

i=1 xi and inverse scale parameter
β ′ = β + n can be expressed up to a normalisation constant as

p(γ) ∝ γ α′−1 exp(−β ′γ)

Hence, the posterior distribution of λ is a gamma distribution with parameters (α′, β ′),
and therefore the gamma distribution is a conjugate prior for the parameter of a Poisson
distribution. Arranging the relevant terms in a posterior density function until one ‘spots’ the
underlying distribution is a key aspect of Bayesian analysis.

3.2.2 Estimating the mean of a normal distribution
with known variance

Over the next two subsections we describe the analytic Bayesian learning approach for the
problems of estimating the mean of a univariate normal distribution with known variance, and
estimating unknown mean and covariance in a multivariate normal distribution, both using
conjugate priors. Further details on estimating the parameters of normal models are given in
the books by Fukunaga (1990) and Fu (1968).

3.2.2.1 Specification

Let the model for the density of a data measurement be normal with unknown mean μ and
known variance σ 2. The likelihood, denoted p(x|μ), is then

p(x|μ) = N(x;μ, σ 2) = 1√
2πσ

exp

{
−1

2

(
x − μ

σ

)2
}

We take a prior density for the mean μ, which is normal with mean μ0 and variance σ 2
0

(μ0 and σ 2
0 are termed hyper-parameters)

p(μ) = N
(
μ;μ0, σ

2
0

) = 1√
2πσ0

exp

{
−1

2

(
μ − μ0

σ0

)2
}

3.2.2.2 Posterior distribution

As will be shown later in this section, for independent measurements {x1, . . . , xn} our speci-
fication of prior and likelihood distributions gives rise to the posterior distribution

p(μ|x1, . . . , xn) = N
(
μ;μn, σ

2
n

) = 1√
2πσn

exp

{
−1

2

(
μ − μn

σn

)2
}

(3.8)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

76 DENSITY ESTIMATION – BAYESIAN

n = 1

n = 5

n = 15

n = 25

1.0.00

p(μ|x1, . . . , xn)

μ

prior

Figure 3.1 Bayesian learning of the mean of a normal distribution of known variance.

where

1

σ 2
n

= 1

σ 2
0

+ n

σ 2

μn = σ 2
n

(
μ0

σ 2
0

+
∑

i xi

σ 2

)
(3.9)

Hence, the conjugate prior for the the mean of a normal distribution with known variance, is
itself a normal distribution.

As n → ∞, μn → the sample mean, m =∑ixi/n, and the posterior variance of μ, namely
σ 2

n , tends to zero as 1/n. Thus, as more samples are used to obtain the distribution (3.8), the
contribution of the initial guesses σ 0 and μ0 becomes smaller. This is illustrated in Figure 3.1.
Samples, xi, from a normal distribution with unit mean and unit variance have been generated.
A normal model is assumed with mean μ and unit variance. Figure 3.1 plots [using (3.8)]
the posterior density of the mean, μ, given different numbers of data samples and a prior
distribution of the mean that is normal with μ0 = 0 and σ 2

0 = 1. As the number of samples
increases, the posterior density narrows about the true mean.

3.2.2.3 Predictive density

As will be shown at the end of this section, substituting the posterior density into (3.1) gives
the predictive density

p(x|x1, . . . , xn) = 1√
σ 2 + σ 2

n

√
2π

exp

{
−1

2

(x − μn)
2

σ 2 + σ 2
n

}
(3.10)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 77

which is normal with mean μn and variance σ 2 + σ 2
n . This can be used as the class-conditional

density estimate in the Bayesian classifier.

3.2.2.4 Derivation of the posterior distribution

To derive the posterior distribution we note that we have

p(x1, . . . , xn|μ)p(μ) = p(μ)

n∏
i=1

p(xi|μ)

= 1√
2πσ0

exp

{
−1

2

(
μ − μ0

σ0

)2
}

n∏
i=1

[
1√

2πσ
exp

{
−1

2

(
xi − μ

σ

)2
}]

which can be rearranged into the form

p(x1, . . . , xn|μ)p(μ) = 1

σ nσ0

1

(2π)(n+1)/2
exp

{
−1

2

(
μ − μn

σn

)2
}

exp

{
−kn

2

}
(3.11)

where σ n and μn are as in (3.9) and

kn = μ2
0

σ 2
0

− μ2
n

σ 2
n

+
∑

x2
i

σ 2

Now

∫
p(x1, . . . , xn|μ)p(μ)dμ = 1

σ nσ0

1

(2π)(n+1)/2
exp

{
−kn

2

}√
2πσn (3.12)

since

∫
exp

{
−1

2

(
μ − μn

σn

)2
}

dμ =
√

2πσn

∫
N
(
μ;μn, σ

2
n

)
dμ =

√
2πσn

from the fact that the probability density function of the normal distribution N(μ; μn, σ 2
n)

integrates to unity over μ.
Evaluating (3.3) with the expressions in Equations (3.11) and (3.12) gives the posterior

distribution as

p(μ|x1, . . . , xn) = p(x1, . . . , xn|μ)p(μ)∫
p(x1, . . . , xn|μ′)p(μ′)dμ′

= 1√
2πσn

exp

{
−1

2

(
μ − μn

σn

)2
}

which is the normal distribution with mean μn and variance σ 2
n .

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

78 DENSITY ESTIMATION – BAYESIAN

3.2.2.5 Calculation utilising proportionality

A useful shortcut when deriving the posterior distribution arises from calculating the density
function only up to proportionalities, as advocated in Section 3.1.3. Specifically, ignoring any
multiplicative factors in the posterior density function that do not vary with μ, we write

p(μ|x1, . . . , xn) ∝ p(x1, . . . , xn|μ)p(μ)

∝ exp

{
−1

2

[(
μ − μ0

σ0

)2

+
n∑

i=1

(
xi − μ

σ

)2
]}

Completing the square for μ in the exponent, and ignoring additive terms in the exponent
that do not vary with μ (since these terms can be incorporated into the normalisation factor),
we have

p(μ|x1, . . . , xn) ∝ exp

{
−1

2

(
μ − μn

σn

)2
}

(3.13)

where σ n and μn are given in (3.9). By comparing (3.13) with the probability density function
of a normal distribution, we can deduce that the missing normalisation constant must be

1√
2πσn

, and that the posterior distribution of μ is therefore N(μn, σ n). As noted earlier,
deducing distributions in such a manner is a useful tool when conducting Bayesian inference.

3.2.2.6 Derivation of the predictive density

The predictive density is given by

p(x|x1, . . . , xn) =
∫

p(x|μ)p(μ|x1, . . . , xn)dμ

=
∫

1√
2πσ

exp

{
−1

2

(
x − μ

σ

)2
}

1√
2πσn

exp

{
−1

2

(
μ − μn

σn

)2
}

dμ

Completing the square for μ in the exponent we have

p(x|x1, . . . , xn) =
∫

1

2πσσn
exp

{
−σ 2 + σ 2

n

2σ 2σ 2
n

(
μ − xσ 2

n + μnσ
2

σ 2 + σ 2
n

)2

− 1

2

(x − μn)
2

σ 2 + σ 2
n

}
dμ

Then, we note from the properties of normal probability density functions that

∫
exp

{
−σ 2 + σ 2

n

2σ 2σ 2
n

(
μ − xσ 2

n + μnσ
2

σ 2σ 2
n

)2
}

dμ =
√

2πσ 2σ 2
n

σ 2 + σ 2
n

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 79

and hence

p(x|x1, . . . , xn) = 1

2πσσn

√
2πσ 2σ 2

n

σ 2 + σ 2
n

exp

{
−1

2

(x − μn)
2

σ 2 + σ 2
n

}

which simplifies to (3.10).

3.2.3 Estimating the mean and the covariance matrix
of a multivariate normal distribution

3.2.3.1 Specification

We now consider the multivariate problem in which the mean and the covariance matrix of
a normal distribution are unknown. Let the model for the data be multivariate normal with
mean μ and covariance matrix �

p(x|μ,�) = N(x; μ, �) = 1

(2π)d/2|�| 1
2

exp

{
−1

2
(x − μ)T �−1(x − μ)

}

We wish to estimate the posterior distribution of μ and � given independent measurements
x1, . . . , xn ∼ N(μ, �).

When the mean μ and the covariance matrix � of a normal distribution are to be estimated,
the conjugate-prior choice of prior distribution is the Gauss-Wishart (also known as normal-
Wishart) probability distribution in which:

� the mean is distributed according to a normal distribution with mean μ0 and covariance
matrix K−1/λ;

� K (the inverse of the covariance matrix �) is distributed according to a Wishart distri-
bution with parameters α and β.

The Wishart distribution

The probability density function for a d × d-dimensional Wishart distribution with param-
eters α and β is given by

p(W;α,β) = Wid(W;α, β)

= c(d, α) |β|α |W |(α−(d+1)/2)exp {−Tr(βW)} (3.14)

where Tr(A) =∑d
i=1 Aii is the trace of the d × d matrix A, 2α > d − 1, β is a symmetric

non-singular d × d matrix, and

c(d, α) =
[
πd(d−1)/4

d∏
i=1

�

(
2α + 1 − i

2

)]−1

(3.15)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

80 DENSITY ESTIMATION – BAYESIAN

The support of the Wishart distribution is symmetric positive definite matrices. The mean
of the Wishart distribution parametrised above is E(W) = αβ−1, and the mean of the
inverse matrix is E(W−1) = (α − (d + 1)/2)−1β.

We note that despite its rather complicated probability density function, it is easy
to draw samples from the Wishart distribution. Specifically, consider column vectors
x1, . . . , x2α , xi ∈ R

d , drawn independently from the d-variate normal distribution with
zero mean and covariance matrix 1

2β−1. Then if 2α > d − 1,
∑2α

i=1 xixT
i has the Wishart

distribution with parameters α and β, i.e.
∑2α

i=1 xixT
i ∼ Wid(W;α,β).

In the univariate case, the Wishart distribution is the gamma distribution with shape
parameter α > 0 and inverse-scale parameter β > 0.

Using the notation Nd(μ|m, A) for a d-variate normal distribution with mean m and
inverse covariance matrix A (i.e. covariance matrix A−1) we have the following conjugate-
prior distribution

p(μ, K) = Nd(μ;μ0, λK)Wid(K;α,β)

= |λK|1/2

(2π)d/2
exp

{
−1

2
λ(μ − μ0)

T K(μ − μ0)

}
(3.16)

× c(d, α) |β|α |K|(α−(d+1)/2)exp {−Tr(βK)}

where c(d, α) is as defined in (3.15).
The term λ weights the confidence in μ0 as the initial value of the mean, and α weights

the initial confidence in the covariance matrix.

3.2.3.2 Posterior distribution

As will be shown later in this section, with the given choice of prior distribution for the
parameters μ and K, the posterior distribution

p(μ, K|x1, . . . , xn) = p(x1, . . . , xn|μ, K)p(μ, K)∫
p(x1, . . . , xn|μ′, K′)p(μ′, K′)dμ′dK′ (3.17)

is also Gauss-Wishart with the parameters μ0, β, λ and α replaced by (Fu, 1968):

λn = λ + n

αn = α + n/2

μn = (λμ0 + nm)/λn

2βn = 2β + (n − 1)S + nλ

λn
(μ0 − m)(μ0 − m)T (3.18)

where m is the sample mean and S is the unbiased estimate of the sample covariance matrix

S = 1

n − 1

n∑
i=1

(xi − m)(xi − m)T

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 81

That is

p(μ, K|x1, . . . , xn) = Nd(μ;μn, λnK)Wid(K;αn, βn) (3.19)

The posterior marginal for K (obtained by integrating with respect to μ) is Wishart
Wid(K|αn,βn), and the posterior conditional distribution of μ given K is normal Nd(μn, λnK).
Hence we can see that the Gauss-Wishart distribution is a conjugate prior for the mean
and inverse covariance matrix (i.e. precision matrix) parameters of the multivariate normal
distribution.

The posterior marginal for μ (obtained by integrating with respect to K) is (see exercises
at the end of the chapter)

p(μ|x1, . . . , xn) = Std

(
μ;μn,

(
αn − d − 1

2

)
λnβ

−1
n , 2αn − (d − 1)

)

which is the d-dimensional generalisation of the univariate Student distribution.

The multivariate Student distribution

The d-dimensional generalisation of the univariate Student’s t-distribution has the follow-
ing probability density function

p(x;μ, λ, α) = Std(x;μ,λ, α)

= �(1
2 (α + d))

�(α
2)(απ)d/2

|λ| 1
2

[
1 + 1

α
(x − μ)T λ(x − μ)

]−(α+d)/2

(3.20)

were α > 0 and λ is a d × d symmetric positive definite matrix. The support of the
distribution is R

d , and the mean and variance are E[x] = μ and Var[x] = λ−1(α − 2)−1α,
respectively.

3.2.3.3 Predictive density and the resulting Bayes’ decision rule

Substituting the posterior density into (3.1) gives the predictive density for the case of the
normal distribution with unknown mean and covariance matrix

p(x|x1, . . . , xn) = Std

(
x; μn,

(2αn − (d − 1))λn

2(λn + 1)
β−1

n , 2αn − (d − 1)

)
(3.21)

which like the posterior marginal distribution of μ is a Student distribution. The calculations
behind this result are provided later in this section.

In the contexts of discrimination, the parameters αn, λn, μn and βn may be calculated
separately for each class using the training data for the class and the definitions in (3.18). The
resulting conditional densities (3.21) may then be used as a basis for discrimination: assign x
to class ωi for which gi > gj, j = 1, . . . , C, j
= i, where

gi = p(x|x1, . . . , xni ∈ ωi)p(ωi)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

82 DENSITY ESTIMATION – BAYESIAN

3.2.3.4 Derivation of the posterior distribution

The posterior distribution is derived using a similar procedure to that used when deriving the
posterior distribution for the mean of the univariate normal distribution with known variance.
Specifically:

1. Express the posterior density function only up to a constant factor (i.e. ignoring multi-
plicative factors that do not vary with μ and K).

2. Collect together terms based upon the forms of the distributions (e.g. completing the
square within the exponents).

3. Deduce the results and any integrations by comparison of the densities with known
forms.

We have

p(μ, K|x1, . . . , xn) ∝ p(x1, . . . , xn|μ, K)p(μ, K)

∝ |K|n/2exp

{
−1

2

n∑
i=1

(xi − μ)T K(xi − μ)

}

× |K|1/2exp

{
−1

2
λ(μ − μ0)

T K(μ − μ0)

}

× |K|(α−(d+1)/2)exp {−Tr(βK)}

Completing the square for μ in the exponents, and rearranging the terms gives

p(μ, K|x1, . . . , xn) ∝ |K|1/2exp

{
−1

2
λn(μ − μn)

T K(μ − μn)

}

× |K|αn−(d+1)/2exp {− f (K) − Tr(βK)} (3.22)

where

f (K) = 1

2

(
nλ

λn
(μ0 − m)T K(μ0 − m) +

n∑
i=1

(xi − m)T K(xi − m)

)
(3.23)

and μn, αn and λn are as defined in (3.18).
The first simplification is to note that the expression on the top line of (3.22) is proportional

to a multivariate normal probability density function, so that

p(μ, K|x1, . . . , xn) ∝ Nd(μ;μn, λnK)|K|αn−(d+1)/2exp {− f (K) − Tr(βK)} (3.24)

To proceed further we note that all terms making up (3.23) are of the form uT Ku (where u
varies with the term under consideration, and is in each case a d-dimensional column vector).
Since uT Ku is a scalar, it can be considered the trace of a 1 × 1 matrix uT Ku. Then, noting

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 83

that Tr(AB) = Tr(BA) for an r × s matrix A and an s × r matrix B, we have

uT Ku = Tr(uT Ku) = Tr(uuT K) (3.25)

Hence using the linear nature of the Trace operator

k1Tr(C) + k2Tr(D) = Tr(k1C + k2D)

for two matrices C and D of the same size, we have

f (K) = 1

2
Tr

(
nλ

λn
(μ0 − m)(μ0 − m)T K +

n∑
i=1

(xi − m)(xi − m)T K

)

= 1

2
Tr

((
nλ

λn
(μ0 − m)(μ0 − m)T + (n − 1)S

)
K
)

Hence using the linear nature of the Trace operator again we can write (3.24) as

p(μ, K|x1, . . . , xn) ∝ Nd(μ;μn, λnK)|K|αn−(d+1)/2exp
{−Tr(βnK)

}
(3.26)

where βn is as defined in (3.18).
By comparison with (3.16), and noting that any multiplicative factors that do not depend

on μ and K will be replaced by the unspecified normalising constant in (3.26), we deduce the
desired Gauss-Wishart posterior distribution

p(μ, K|x1, . . . , xn) = Nd(μ;μn, λnK)Wid(K;αn, βn)

3.2.3.5 Derivation of the predictive density

The predictive density is given by

p(x|x1, . . . , xn) =
∫

p(x|μ, K)p(μ, K|x1, . . . , xn)dμdK (3.27)

To derive the form quoted in (3.21), we note that because we have a conjugate-prior distri-
bution, the expression being integrated in (3.27) is similar to that in the numerator of the
posterior density function [see Equation (3.17)], the differences being that the Gauss-Wishart
prior distribution with parameters {λ, α,μ0,β0} is replaced by the Gauss-Wishart posterior
distribution with parameters {λn, αn, μn,βn}, and that a single measurement x is being con-
sidered in the likelihood term, rather than the training data {x1, . . . , xn}. We can therefore
simplify the expression by following the procedure for deriving the joint posterior distribution
for μ and �. Specifically, noting that no multiplicative factors involving xi have been ignored
in the calculations that led to (3.26), we can write immediately

p(x|μ, K)p(μ, K|x1, . . . , xn) ∝ Nd(μ;μ′
n, (λn + 1)K)

× |K|αn+1/2−(d+1)/2exp
{−Tr(β′

nK)
}

(3.28)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

84 DENSITY ESTIMATION – BAYESIAN

where

μ′
n = (λnμn + x)/(λn + 1)

β′
n = βn + λn

2(λn + 1)
(μn − x)(μn − x)T (3.29)

The forms in (3.28) and (3.29) being derived by evaluating the expressions in (3.18) for a
single data vector x.

The integration with respect to μ can then be conducted analytically (since μ only occurs
within the multivariate normal density term, which integrates to unity with respect to μ).
Hence

p(x|x1, . . . , xn) ∝
∫

|K|αn+1/2−(d+1)/2exp
{−Tr(β′

nK)
}

d K (3.30)

Noting the form of the Wishart Wid(αn + 1/2,β′
n) probability density function [see Equation

(3.14) for details of the Wishart distribution], and that β′
n varies with x but αn [and therefore

c(d, αn)] does not, we can write (3.30) as

p(x|x1, . . . , xn) ∝ |β′
n|−(αn+1/2)

∫
Wid(K;αn + 1/2, β′

n)dK

Hence since all probability density functions integrate to unity, we obtain

p(x|x1, . . . , xn) ∝ |β′
n|−(αn+1/2)

Since |AB| = |A||B| for two d × d matrices A and B (the determinant of the product is
the product of the determinants) we can use (3.29) to write

|β′
n| = |βn|

∣∣∣∣Ip d + λn

2(λn + 1)
β−1

n (μn − x)(μn − x)T

∣∣∣∣

To proceed we make use of Sylvester’s determinant theorem, which states that for a d × s
matrix A and an s × d matrix B

|Id + AB| = |Is + BA| (3.31)

and hence for two d-dimensional column vectors u and v we have

|Id + uvT | = |I1 + vT u|
= 1 + vT u

Hence

|β′
n| = |βn|

(
1 + λn

2(λn + 1)
(μn − x)T β−1

n (μn − x)

)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

ANALYTIC SOLUTIONS 85

Then defining

a = 2αn − (d − 1)

we can write

p(x|x1, . . . , xn) ∝
(

1 + 1

a
(μn − x)T aλn

2(λn + 1)
β−1

n (μn − x)

)−(a+d)/2

where the |βn|−(a+d)/2 term has been incorporated into the as yet unspecified normalisation
constant. By comparison with the probability density function of the multivariate student
distribution [see Equation (3.20)] we obtain the desired result

p(x|x1, . . . , xn) = Std

(
x;μn,

(2αn − (d − 1))λn

2(λn + 1)
β−1

n , 2αn − (d − 1)

)

3.2.4 Unknown prior class probabilities

To date in this section, we have considered estimation of the parameters of the class-conditional
probability density functions. Recall that the predictive Bayesian classifier assigns x to class
ωi for which gi > gj, j = 1, . . . , C, j
= i, where

gi = p(x|x1, . . . , xni ∈ ωi)p(ωi) (3.32)

with p(x|x1, . . . , xni ∈ ωi) the predictive density for class ωi, and p(ωi) the prior probability
for class ωi. It may happen that the prior class probabilities, p(ωi), are unknown. In this case,
we may treat them as parameters of the model that may be updated using the data.

Using π = (π1, . . . , πC) to represent the prior class probabilities, we write

p(ωi|x,D) =
∫

p(ωi,π|x,D)dπ (3.33)

(i.e. we marginalise over π in the joint distribution of {ωi,π} conditional on the test sample x
and the training data D). Using Bayes’ theorem

p(ωi,π|x,D) ∝ p(x|ωi,π,D)p(ωi, π|D) (3.34)

Since we are conditioning on the class ωi we have

p(x|ωi, π,D) = p(x|ωi,D) (3.35)

Furthermore, the second term in (3.34) can (using the definition of conditional densities) be
written

p(ωi, π|D) = p(π|D)p(ωi|π, D)

= p(π|D)πi (3.36)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

86 DENSITY ESTIMATION – BAYESIAN

A suitable prior for π i = p(ωi) is a Dirichlet distribution, with parameters
a0 = (a01, . . . , a0C), ai0 > 0, i = 1, . . . , C.

The Dirichlet distribution

The probability density function of the Dirichlet distribution with parameters a0 =
(a01, . . . , a0C), a0i > 0 for i = 1, . . . , C, is

p(π1, . . . , πC) =
�
(∑C

i a0i

)

∏C
i �(a0i)

C∏
j=1

π
a0 j−1
j

where �(u) is the gamma function. The support of the distribution is such that 0 < π i < 1,
i = 1, . . . , C, and

∑
c
i=1 π i = 1. It is therefore ideally suited to modelling the probabilities

of categorical distributions. The component means of the Dirichlet distribution are given
by E[πi] = ai∑C

j=1 aj
. Notationally we write the distribution as π ∼ DiC(π; a0) for π =

(π1, . . . , πC)T .

The aspects of the training data measurements D that influence the distribution of the
class probabilities, π, are the numbers of patterns in each class, ni, i = 1, . . . , C. Modelling
the distribution of the data (the ni) given the prior class probabilities as being multinomial

p(D|π) = n!∏C
l=1 nl!

C∏
l=1

π
nl
l

then the posterior distribution

p(π|D) ∝ p(D|π)p(π)

is also distributed as DiC(π; a), where a = a0 + n and n = (n1, . . . , nC)T , the vector of the
numbers of patterns in each class.

Substituting the Dirichlet distribution for p(π|D) into (3.36), and using (3.34) and (3.35),
we can express (3.33) as

p(ωi|x,D) ∝ p(x|ωi,D)

∫
πiDiC(π; a)dπ

which replaces π i in (3.32) by its expected value, ai/
∑

jaj. Thus, the posterior probability of
class membership now becomes

p(ωi|x,D) = (ni + a0i)p(x|ωi,D)∑
j(nj + a0 j)p(x|ω j,D)

(3.37)

There is, however, an important caveat. This treatment has assumed that the π i, i = 1, . . . ,
C are unknown but can be estimated from the training data alongside prior information.
The validity of these estimates depends on the sampling scheme used to gather the data.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

BAYESIAN SAMPLING SCHEMES 87

Specifically, the procedure is relevant if the training data is obtained using random sampling
from the true population. There are various modifications to (3.37) depending on the assumed
knowledge concerning the π i (Geisser, 1964).

3.2.5 Summary

The Bayesian approach described in this section involves two stages. The first stage is
concerned with learning about the parameters of the distribution, θ, through the recur-
sive calculation of the posterior density p(θ|x1, . . . , xn) for a specified prior. The recursive
calculation is

p(θ|x1, . . . , xn) ∝ p(xn|θ)p(θ|x1, . . . , xn−1)

For a suitable class-conditional density and choice of prior distribution, the posterior distri-
bution for θ is of the same form as the prior. This is called conjugacy. The second stage is the
integration over θ to obtain the predictive density p(x|x1, . . . , xn) which may be viewed as
making allowance for the variability in the estimate due to sampling. Although it is relatively
straightforward to perform the integrations for the cases that have been considered here (i.e.
when using normal distributions), it may be necessary to perform two multivariate numerical
integrations for more complicated probability density functions. Typically, Bayesian sampling
schemes, such as those to be introduced in Sections 3.3 and 3.4 are used for this. This is the
case for the normal mixture model for which there exists no reproducing (conjugate) densities.

3.3 Bayesian sampling schemes

3.3.1 Introduction

In Section 3.2 we considered the Bayesian approach to density estimation in situations where
the required integrals can be evaluated analytically. Over the next few sections we consider
some of the computational machinery for practical implementation of Bayesian methods to
problems for which the normalising integral cannot be evaluated analytically and numerical
integration over possibly high-dimensional spaces is infeasible. The computational techniques
described aim to draw samples from the posterior distribution. All inferences can then be made
through consideration of these samples.

3.3.2 Summarisation

Suppose that we have drawn samples {θ1, . . . , θNs} from the posterior distribution p(θ|D).
Then we can approximate posterior expectations of functions h(θ) using sample averages
as follows

E[h(θ)|D] ≈ 1

Ns

Ns∑
t=1

h
(
θ t) (3.38)

without calculating the integrals in the numerator and denominator of (3.4).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

88 DENSITY ESTIMATION – BAYESIAN

Many quantities of interest can be expressed in terms of the posterior expectation of a
function, including probability values. Suppose that θ has posterior density function p(θ|D).
Let h(θ) = I(θ ∈ A), for some region A, where I is the indicator function (equal to 1 if the
condition is true and zero otherwise). Then

E[I(θ ∈ A)|D] =
∫
θ

I(θ ∈ A)p(θ|D)dθ

=
∫
θ∈A

p(θ|D)dθ

i.e. E[I(θ ∈ A)|D] is the posterior probability of θ being within the region A. Our sampling
approximation to this probability would be

E[I(θ ∈ A)|D] ≈ 1

Ns

Ns∑
t=1

I(θ t ∈ A)

Other summaries could include plots of the marginal densities, obtained by using the
samples within nonparametric methods of density estimation, such as kernel methods (see
Chapter 4). The kernel density estimate of θ i given samples {θ t

i , t = 1, . . . , Ns} is

p(θi) = 1

Ns

Ns∑
t=1

K
(
θi, θ

t
i

)

where the kernel function K(θ , θ∗) is centred at θ∗. Choices for kernels and their parameters
are discussed in Chapter 4.

3.3.2.1 Rao-Blackwellisation

An alternative estimator for the marginal densities, due to Gelfand and Smith (1990) and
termed the Rao-Blackwellised estimator, makes use of the conditional densities, p(θi|θ t

(i)).
The estimates are given by

p(θi) = 1

Ns

Ns∑
t=1

p
(
θi|θ t

(i)

)

where θ(i) is the set of parameters with the ith parameter removed; that is, θ(i) =
{θ1, . . . , θi−1,θ i + 1, . . . , θd}. The Rao-Blackwellised estimators estimate the tails of the dis-
tribution better than more general methods of density estimation (O’Hagan, 1994).

The Rao-Blackwellised estimator of E[h(θ i)] is then

E[h(θi)] ≈ 1

Ns

Ns∑
t=1

E
[
h(θi)|θ t

(i)

]
(3.39)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

BAYESIAN SAMPLING SCHEMES 89

The difference between (3.39) and (3.38) is that (3.39) requires an analytic expression for the
conditional expectation so that it may be evaluated at each sample. For reasonably long runs,
the improvement in using (3.39) over (3.38) is small.

Further discussion on Rao-Blackwellisation of sampling schemes is provided in Casella
and Robert (1996), and in the context of Gibbs samplers (see Section 3.4.2) in J.S. Liu et al.
(1994).

3.3.3 Sampling version of the Bayesian classifier

The class-conditional predictive density of (3.1) is given by

p(x|ω j,D j) =
∫

p(x|θ j)p(θ j|D j)dθ j

= Eθ j |D j [p(x|θ j)]

where the subscript θ j|D j has been used to emphasise that the expectation is with respect to
the posterior distribution for θ j.

Suppose that {θ1
j , . . . θ

Ns
j } are samples from the posterior distribution p(θ j|D j). Then in

line with (3.38) we can approximate the class-conditional density by

p(x|ω j,D j) ≈ 1

Ns

Ns∑
t=1

p
(
x|θ t

j

)
(3.40)

The Bayesian classifier is then: assign x to class ωi for which gi > gj, j = 1, . . . , C, j
= i,
where

gi =
(

Ns∑
t=1

p
(
x|θ t

i

))
p(ωi)

3.3.4 Rejection sampling

A simple, although often inefficient, sampling scheme for general distributions is rejection
sampling.

Let f (θ) = g(θ)/
∫

g(θ′)dθ′ be the density from which we wish to sample. Rejection
sampling uses a density s(θ) from which we can conveniently sample (cheaply) and requires
that g(θ)/s(θ) is bounded. The rejection sampling procedure is detailed in Algorithm 3.1.
The probability density function of the accepted sample is f (θ) (see exercises), and multiple
independent samples can be obtained by repeating the algorithm.

Depending on the choice of s(θ), many samples could be rejected before one is accepted,
which can make the procedure inefficient. If s(θ) is close to the shape of g(θ), so that
g(θ)/s(θ) ∼ A for all θ, then the acceptance condition is almost always accepted.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

90 DENSITY ESTIMATION – BAYESIAN

Algorithm 3.1 Rejection sampling algorithm.

1. Specify a density s(θ) with the same support as f (θ) = g(θ)/
∫
g(θ′) dθ′ and for which

g(θ)/s(θ) is bounded.

2. Set A to be an upper bound of g(θ)/s(θ).

3. Repeat the following until one θ is accepted:

� Sample a point θ from the known distribution s(θ).

� Sample u from the uniform distribution on [0, 1].

� If Au ≤ g(θ)/s(θ) then accept θ.

3.3.5 Ratio of uniforms

The ratio of uniforms method (Kinderman and Monahan, 1977) can be used to obtain samples
from univariate distributions.

Suppose that we require samples from the distribution with probability density function
f (θ) = g(θ)/

∫
g(θ ′)dθ ′. Let D denote the region in R

2 such that

D = {(u, v); 0 ≤ u ≤
√

g(v/u)}.

Then sampling a point uniformly from D and taking θ = v/u gives a sample from the density
proportional to g(θ), i.e. from f (θ).

To make use of this procedure we need to be able to draw samples from the region D. This
can often be done by first bounding the region D by a rectangle R, as shown in Figure 3.2.

u

v

0

D

R

u+

v−

v+

Figure 3.2 Envelope rectangle, R, for the region D defined by D = {(u, v); 0 ≤ u ≤√
g(v/u)}.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

BAYESIAN SAMPLING SCHEMES 91

A sample from D can then be drawn by a simple application of rejection sampling: sample
uniformly from the rectangle, R, bounding D and if (u, v) is in D then accept.

For f (θ) defined on θ ∈ R, the rectangle R can be specified by [0, u+] × [v−, v+] where

u+ =
√

max
θ

g(θ)

v− = −
√

max
θ≤0

(θ2g(θ))

v+ =
√

max
θ≥0

(θ2g(θ))

providing that all the quantities exist. The validity of the bound for u is clear, since 0 ≤
u ≤ √

g(v/u) = √
g(θ) ⇒ 0 ≤ u ≤ u+. To see the validity of the bound for v, note that v ∈

D implies that there is a u for which 0 ≤ u ≤ √
g(θ), and therefore for which u2 ≤ g(θ).

Since u = v/θ , the latter bound becomes v2 ≤ θ2g(θ). An immediate bound for v is therefore
−
√

max
θ

(θ2g(θ)) ≤ v ≤
√

max
θ

(θ2g(θ)). However, since u ≥ 0, and v = uθ , we know that θ

and v must have the same sign. Hence, the tighter bound v− ≤ v ≤ v+ holds.

3.3.5.1 Proof of the validity of the ratio of uniforms method

To show the validity of the ratio of uniforms method, we need to make use of a result for the
probability density function arising from a transformation of variables.

That result concerns the transformation of variables from (X1, . . . , Xd) to (Y1, . . . , Yd),
given by

Y = g(X)

where g(X) = (g1(X), g2(X), . . . , gd(X))T . Under such a transformation the probability
density functions of X and Y are related by

pY (y) = pX (x)

|J|

where |J| is the absolute value of the Jacobian determinant

J(x1, . . . , xd) =

∣∣∣∣∣∣∣

∂g1

∂x1
. . .

∂g1

∂xd

...
. . .

...
∂gd

∂x1
. . .

∂gd

∂xd

∣∣∣∣∣∣∣

We now apply the procedure to determine the joint probability density function of the
transformed variables (u, θ), where θ = v/u. The joint probability density function of (u, v)
is given by

p(u, v) ∝ I((u, v) ∈ D)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

92 DENSITY ESTIMATION – BAYESIAN

where I(A) is the indicator function, equal to 1 if condition A holds, and zero otherwise. The
condition (u, v) ∈ D becomes 0 ≤ u ≤ √

g(θ), the Jacobian determinant is J = 1/u, and the
probability density function of (u, θ) is therefore given by

p(u, θ) ∝ I(0 ≤ u ≤
√

g(θ))u

The normalising constant is

∫
θ

∫
u

I(0 ≤ u ≤
√

g(θ))ududθ =
∫

θ

∫ √
g(θ)

u=0
udu = 1

2

∫
θ

g(θ)dθ

The marginal distribution of θ is then given by

p(θ) =
∫

u
p(u, θ)du = 1

1
2

∫
θ ′ g(θ ′)dθ ′

∫ √
g(θ)

u=0
udu = g(θ)∫

g(θ ′)dθ ′

3.3.6 Importance sampling

Suppose that we have a set of Ns independent samples {θ1, . . . , θ Ns} from a distribution with
probability density function proportional to q(θ). Importance sampling (Geweke, 1989; Smith
and Gelfand, 1992) provides a means for using these samples to make inference on a second
distribution with density function proportional to f (θ).

If the support of the two distributions is the same, the importance sampling result is that the
expectation of a function h(θ) when θ is distributed according to f (θ) can be approximated by

E f [h(θ)] ≈ 1∑Ns
t=1 wt

Ns∑
t=1

wth
(
θ t) (3.41)

where we have defined a set of unnormalised importance weights

ws = f (θs)/q(θs), s = 1, . . . , Ns (3.42)

The distribution q(θ) is termed the importance sampling proposal distribution.
The power of the procedure arises if it is easy to draw samples form the distribution

defined by q(θ), but not easy to draw samples directly from the distribution defined by f (θ).
The closer q(θ) is to f (θ) the better the accuracy of the estimates, for a given sample size.
An indicator that the estimates might be unreliable is when the importance sampling weights
have a large variation. Degeneracy problems can arise if the weights vary too widely, since
essentially this leads to the estimate being based on only the samples with the largest weights.

3.3.6.1 Posterior samples via the prior distribution

Consider the special case where the distribution defined by f (θ) is the posterior distribution
arising from a likelihood function p(x|θ) and prior distribution p(θ), and the distribution

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

BAYESIAN SAMPLING SCHEMES 93

defined by q(θ) is the prior distribution p(θ). Then the importance weights defined in (3.42)
become

wt = p(x|θ t)p
(
θ t)

p
(
θ t) = p(x|θ t).

Thus, we have a mechanism for making inference on a posterior distribution by sampling
from the prior, and weighting the samples by the likelihood function.

3.3.6.2 Particle filters

The approach described above forms the basis of particle filters (Gordon et al., 1993) for
sequential Bayesian parameter estimation. These are considered in detail in the book by
Doucet et al. (2001), and also in the tutorial paper by Arulampalam et al. (2002). Particle
filters provide a very powerful approach to problems where observations arrive sequentially
and one is interested in performing inference online, e.g. tracking of manoeuvring objects
such as aircraft from radar returns, and people in video imagery.

3.3.6.3 Use within a Bayesian classifier

As noted in Section 3.3.3, when considering classification problems, we have the following
expression for the predictive density for class ωj

p(x|ω j,D j) = Eθ j |D j

[
p(x|θ j)

]

Under the importance sampling approximation, if f j(θ j) is proportional to the posterior
density function p(θ j|D j), and {θ1

j, . . . , θ
Ns
j } are samples from the probability distribution

with probability density function proportional to qj(θ j), then

p(x|ω j,D j) ≈ 1∑Ns
t=1 wt

j

Ns∑
t=1

wt
j p
(
x|θ t

j

)

where the weights wt
j are as defined in (3.42)

wt
j = f j

(
θ t

j

)

qj
(
θ t

j

)

A suitable choice for f j(θ j) is the product of the likelihood function and the prior density
function

f j(θ j) = p(D j|θ j)p(θ j)

which has proportionality to p(θ t
j|D j) via Bayes’ theorem. This gives rise to the following

weights

wt
j = p

(
D j|θ t

j

)
p
(
θ t

j

)

qj
(
θ t

j

)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

94 DENSITY ESTIMATION – BAYESIAN

The Bayesian classifier is then: assign x to class ωi for which gi > gj, j = 1, . . . , C, j
= i,
where

gi =
(

1∑Ns
t=1 wt

i

Ns∑
t=1

wt
i p
(
x|θ t

i

))
p(ωi)

3.3.6.4 Derivation of the importance sampling approximations

We now prove the validity of the importance sampling approximations. Let the normalisation
constant for the probability density function proportional to f (θ) be kf [so that the probability
density function is given by k f f (θ)], and that for the proposal distribution defined by q(θ)

be kq. Then we can express the expectation of a function h(θ) with respect to the distribution
defined by f (θ) as follows

E f [h(θ)] =
∫
θ

k f f (θ)h(θ)dθ

=
∫
θ

k f f (θ)h(θ)
kqq(θ)

kqq(θ)
dθ = k f

kq

∫
θ

kqq(θ)
f (θ)h(θ)

q(θ)
dθ

= k f

kq
Eq

[
f (θ)h(θ)

q(θ)

]
(3.43)

Now suppose that we define h(θ) = 1, for all θ. Then E f [h(θ)] = 1 by definition, and
(3.43) therefore gives

1 = k f

kq
Eq

[
f (θ)

q(θ)

]
(3.44)

Returning to a general function h(θ) within (3.43), we can use the expression for kf/kq in
(3.44) to obtain

E f [h(θ)] =
Eq

[
f (θ)h(θ)

q(θ)

]

Eq

[
f (θ)

q(θ)

] (3.45)

Now let {θ1, . . . , θ Ns} be samples from the distribution defined by q(θ). We then have

Eq

[
f (θ)h(θ)

q(θ)

]
≈ 1

Ns

Ns∑
t=1

f
(
θ t) h

(
θ t)

q
(
θ t) = 1

Ns

Ns∑
t=1

wth
(
θ t)

and

Eq

[
f (θ)

q(θ)

]
≈ 1

Ns

Ns∑
t=1

f
(
θ t)

q
(
θ t) = 1

Ns

Ns∑
t=1

wt

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 95

where the weights wt are as defined in (3.42). Replacing the top and bottom expectations in
(3.45) by these approximations we obtain the importance sampling result of (3.41). The bias
introduced by this ratio of estimates decreases as the number of samples increases.

3.4 Markov chain Monte Carlo methods

3.4.1 Introduction

A group of methods known as Markov chain Monte Carlo (MCMC) methods has proven to be
effective at generating samples asymptotically from the posterior distribution without knowing
the normalising constant. Inference about model parameters can then may be made by forming
sample averages, as in previous discussions. MCMC methodology may be used to analyse
complex problems, no longer requiring users to force the problem into an oversimplified
framework for which analytic treatment is possible.

3.4.2 The Gibbs sampler

We begin with a description of the Gibbs sampler, one of the most popular MCMC methods,
and discuss some of the issues that must be addressed for practical implementation. Both
the Gibbs sampler and a more general algorithm, the Metropolis–Hastings algorithm (see
Section 3.4.3), have formed the basis for many variants. Good reviews of the Gibbs sampler
and its origins are provided by Gelfand (2000) and Casella and George (1992).

Let f (θ) denote the posterior density function from which we wish to draw samples; θ

is a d-dimensional parameter vector, (θ1, . . . , θd)T . We may not know f (θ) exactly, but we
know a function g(θ), where f (θ) = g(θ)/

∫
g(θ′)dθ′. For example, f (θ) could be the posterior

density function arising from a likelihood function p(D|θ) and a prior density p(θ), and the
normalisation constant p(D) = ∫p(D|θ)p(θ) might not be known analytically. In such cases
we consider the function g(θ) = p(D|θ)p(θ).

Let θ(i) be the set of parameters with the ith parameter removed; that is, θ(i) =
{θ1, . . . , θi−1,θ i + 1, . . . , θd}. We assume that we are able to draw samples from the one-
dimensional conditional distributions, f (θi|θ(i)). These conditional distributions can be de-
rived from the normalisation of g(θi|θ(i)), the function g regarded as a function of θ i alone,
all other parameters being fixed (this concept is discussed in more detail later in this section).

Gibbs sampling is a simple algorithm that consists of drawing samples from these distribu-
tions in a cyclical way as described in Algorithm 3.2. Figure 3.3 illustrates the Gibbs sampler
for a bivariate distribution. The θ1 and θ2 components are updated alternately, producing
moves in the horizontal and vertical directions.

In the Gibbs sampling algorithm, the distribution of θ t given all previous values
θ0, θ1, . . . , θ t−1 depends only on θ t−1. This is the Markov property and the sequence generated
is termed a Markov chain.

3.4.2.1 Requirements

For the distribution of θ t to converge to a stationary distribution (a distribution that does not
depend on θ0 or t), the Markov chain must be aperiodic, irreducible and positive recurrent.
A Markov chain is aperiodic if it does not oscillate between different subsets in a regular

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

96 DENSITY ESTIMATION – BAYESIAN

Algorithm 3.2 Gibbs sampling algorithm.

� Choose an arbitrary starting value for θ, θ0 = (θ0
1 , . . . , θ0

d)T from the support of the
prior/posterior distribution.

� At stage t + 1 of the iterative algorithm:

– draw a sample, θ t
1

+ 1 from f (θ1|θ t
2, . . . , θ t

d);

– draw a sample, θ t
2

+ 1 from f (θ2|θ t
1

+ 1, θ t
3, . . . , θ t

d);

– draw a sample, θ t
3

+ 1 from f (θ3|θ t
1

+ 1, θ t
2

+ 1, θ t
4, . . . , θ t

d);

– and continue through the variables, finally drawing a sample, θ t
d

+ 1 from f (θd| θ t
1

+ 1, . . . ,
θ t+1

d−1);

– set θt+1 = (θ t+1
1 , . . . , θ t+1

d)T .

� After a large number of iterations, provided that a number of requirements (detailed in the
main text) are met, the vectors θ t behave like a random draw from the joint density f (θ).

periodic way. Recurrence is the property that all sets of θ values will be reached infinitely
often at least from almost all starting points. A Markov chain is irreducible if it can reach all
possible θ values from any starting point.

Figure 3.4 illustrates a distribution that is uniform on ([0, 1] × [0, 1])
⋃

([1, 2] × [1, 2]),
the union of two nonoverlapping unit squares. Consider the Gibbs sampler that uses the coor-
dinate directions as sampling directions. For a point, θ1 ∈ [0, 1], the conditional distribution
of θ2 given θ1 is uniform over [0, 1]. Similarly, for a point, θ2 ∈ [0, 1], the conditional
distribution of θ1 given θ2 is uniform over [0, 1]. We can see that if the starting point for θ1

is in [0, 1], then the Gibbs sampler will generate a point θ2, also in [0, 1]. The next step of
the algorithm will generate a value for θ1, also in [0, 1], and so on. Therefore, successive

θ2

θ1

θ0

θ1

θ2

θ3

Figure 3.3 Gibbs sampler.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 97

θ1

θ2

θ0

θ1

θ2

θ3

Figure 3.4 Illustration of a reducible (and therefore invalid) Gibbs sampler.

values of θ t will be uniformly distributed on the square ([0, 1] × [0, 1]). The square ([1, 2] ×
[1, 2]) will not be visited. Conversely, a starting point in ([1, 2] × [1, 2]) will yield a limiting
distribution uniform on ([1, 2] × [1, 2]). Thus the limiting distribution depends on the starting
value and therefore is not irreducible.

3.4.2.2 Detailed balance

By designing a transition kernel K(θ, θ′) (the probability of moving from θ to θ′) that satisfies
detailed balance (time-reversibility)

f (θ)K(θ, θ′) = f (θ′)K(θ′, θ) (3.46)

for all pairs of states (θ, θ′) in the support of f , then the stationary distribution is the target
distribution of interest, f (θ).

For the Gibbs sampler the transition kernel can be written as a product of component-wise
transition kernels that are the conditional probability densities

K(θ, θ′) =
d∏

i=1

f (θ ′
i |θ ′

1, . . . , θ
′
i−1, θi+1, . . . , θd)

The detailed balanced condition for the Gibbs sampler is met separately for each component-
wise transition kernel. As an example, for the first component-wise update we have

f (θ1, . . . , θd) f (θ ′
1|θ2, . . . , θd) = f (θ1|θ2, . . . , θd) f (θ2, . . . , θd) f (θ ′

1|θ2, . . . , θd)

= f (θ ′
1, θ2, . . . , θd) f (θ1|θ2, . . . , θd)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

98 DENSITY ESTIMATION – BAYESIAN

where both the first and second equalities follow from the definition of conditional probability
densities. Thus the first component-wise update satisfies the detailed balance equation, as do
subsequent updates.

3.4.2.3 Convergence

After a sufficiently large number of iterations (termed the burn-in period), the samples {θ t}
will be dependent samples from the posterior distribution f (θ). These samples may be used
to obtain estimators of expectations using ergodic averages as in Section 3.3.2. Evaluation of
the expectation of a function, h(θ), of interest is achieved by the approximation

E[h(θ)] ≈ 1

N − M

N∑
t=M+1

h
(
θ t)

where N is the number of iterations of the Gibbs sampler and M is the number of initial
samples discarded (the burn-in period).

In an implementation of Gibbs sampling, there are a number of practical considerations
to be addressed. These include the length of the burn-in period, M; the length of the sequence,
N; and any spacing between samples taken from the final sequence of iterations (the final
sequence may be subsampled in an attempt to produce approximately independent samples
and to reduce the amount of storage required).

The length of the chain should be long enough for it to ‘forget’ its starting value and
such that all regions of the parameter space have been traversed by the chain. The limiting
distribution should not depend on its starting value, θ0, but the length of the sequence will
depend on the correlation between the variables. Correlation between the θ is will tend to slow
convergence.

It can be difficult to know when the Gibbs sampler has converged as the Gibbs sampler can
spend long periods in a relatively small region, thus giving the impression of convergence. The
most commonly used method for determining the burn-in period is through visual inspection
of plots of the output values, θ t , and making a subjective judgement. More formal tools,
convergence diagnostics, exist and we refer to Raftery and Lewis (1996), Gelman (1996),
Cowles and Carlin (1996) and Mengersen et al. (1998) for further details of the most popular
methods. However, convergence diagnostics do not tell when a chain has converged, but tell
when it has not converged – sometimes.

There are various approaches for reducing correlation (and hence speeding up conver-
gence), including reparametrisation and grouping variables.

Reparametrisation transforms the set θ using a linear transformation to a new set φ

with zero correlation between the variables. The linear transformation is calculated using
an estimate of the covariance matrix calculated using a short initial sequence (in pattern
recognition, the process of deriving a set of uncorrelated variables that is a linear combination
of the original variables is principal components analysis, which we describe in Chapter 10).
The Gibbs sampler then proceeds using the variables φ, provided that it is straightforward to
sample from the new conditionals f (φi|φ(i)). The process may be repeated until the correlation
in the final sequence is small, hopefully leading to more rapid convergence.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 99

Grouping variables means that at each step of the iteration a sample from a multivari-
ate distribution f (θi|θ(i)) is generated, where θi is a subvector of θ and θ(i) is the set of
remaining variables. Provided correlations between variables are caused primarily by correla-
tions between components of the subvectors, with low correlations between subvectors, we can
hope for more rapid convergence. A method for sampling from the multivariate distribution,
f (θi|θ(i)), (which may be complex) is required.

3.4.2.4 Starting point

The starting point is any point you do not mind having in the sequence. Preliminary runs,
started where the last one ended, will give you some feel for suitable starting values. There
is some argument to say that since the starting point is a legitimate point from the sequence
(although perhaps in the tail of the distribution), it would be visited anyway by the Markov
chain, at some stage; hence there is no need for burn-in. However, using a burn-in period and
removing initial samples will make estimators approximately unbiased.

3.4.2.5 Parallel runs

Instead of running one chain until convergence, it is possible to run multiple chains (with
different starting values) as an approach to monitoring convergence, although more formal
methods exist (Raftery and Lewis, 1996; Roberts, 1996), and for obtaining independent
observations from f (θ). This is a somewhat controversial issue since independent samples
are not required in many cases, and certainly not for ergodic averaging [Equation (3.38)].
Comparing several chains may help in identifying convergence. For example, are estimates of
quantities of interest consistent between runs? In such cases, it is desirable to choose different
starting values, θ0, for each run, widely dispersed.

In practice, you will probably do several runs if computational resources permit, either
to compare related probability models or to gain information about a chosen model such as
burn-in length. Then, you would perform a long run in order to obtain samples for computing
statistics.

3.4.2.6 Sampling from conditional distributions

The Gibbs sampler requires ways of sampling from the conditional distributions f (θi|θ(i)). If
f (θi|θ(i)) is a standard distribution, then it is likely that algorithms exist for drawing samples
from it. For algorithms for sampling from some of the more common distributions, see, for
example, Devroye (1986) and Ripley (1987). If a conditional distribution is not recognised
to be of a standard form for which a bespoke sampling algorithm exists, then other sampling
schemes must be employed for drawing samples from the distribution. As we shall see in Sec-
tion 3.4.3, a general purpose procedure known as Metropolis–Hastings sampling can be used
given the probability density functions (up to a normalising constant) of the conditional prob-
ability distributions. Alternatively, use can be made of the sampling techniques described in
Section 3.3.

We can obtain the probability density functions of the conditional distributions easily from
the full distribution f (θ), or a function g(θ) such that f (θ) = g(θ)/

∫
g(θ′)dθ′. Initially, the

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

100 DENSITY ESTIMATION – BAYESIAN

conditional distribution f (θi|θ(i)) can be written

f
(
θi|θ(i)

) = f (θ)

f (θ(i))
(3.47)

where f (θ(i)) is the marginal distribution of θ(i) given by

f
(
θ(i)
) =

∫
θi

f (θ)dθi

Following the discussion in Section 3.1.3 we can write (3.47) as

f
(
θi|θ(i)

) ∝ f (θ) ∝ g(θ) ∝ gi(θi, θ(i))

where we have decomposed g(θ) into two factors as follows

g(θ) = gi
(
θi, θ(i)

)
g(i)(θ(i))

[note that such a factorisation for g(θ) always exists, since we have the default case of
gi(θi, θ(i)) = g(θ) and g(i)(θ(i)) = 1]. Knowing the simplest form of a conditional proba-
bility density function is useful for determining whether it belongs to a known family (by
spotting that it has a known form), and if not is useful in sampling algorithms (such as the
Metropolis–Hastings method in Section 3.4.3).

As an example we show how conditional distributions can be derived in such a manner
for the components of a multivariate normal distribution. Suppose that X is a d-dimensional
vector from the multivariate normal distribution N(X|μ, �), and that we wish to determine
the conditional distribution X1|X2 where X1 is the vector made from the first d1 components
of X and X2 is the vector made from the last (d − d1) components of X .

We partition the mean vector and the covariance matrix as follows

μ =
(

μ1
μ2

)
, � =

(
�1,1 �1,2

�2,1 �2,2

)

where μ1 is a d1-dimensional vector, μ2 is a (d − d1)-dimensional vector, �1,1 is a d1 ×
d1-dimensional matrix, �1,2 is a d1 × (d − d1)-dimensional matrix, �2,1 = �T

1,2, and �2,2 is
a (d − d1) × (d − d1)-dimensional matrix.

A result for inverting a matrix divided into blocks is

�−1 =
(

�1,1 �1,2

�2,1 �2,2

)−1

=
(

�−1
c,1 −�−1

1,1�1,2�
−1
c,2

−�−1
2,2�2,1�

−1
c,1 �−1

c,2

)

where

�c,1 = �1,1 − �1,2�
−1
2,2�2,1

�c,2 = �2,2 − �2,1�
−1
1,1�1,2

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 101

Now for a symmetric matrix �, we can simplify the expression further to

�−1 =
(

�−1
c,1 −�−1

c,1�1,2�
−1
2,2

−(�−1
c,1�1,2�

−1
2,2)

T �−1
c,2

)

since the inverse of a symmetric matrix is also symmetric.
Using the above results we have

p(x1|x2) ∝ p(x1, x2)

∝ exp
[−0.5(x1 − μ1)

T �−1
c,1(x1 − μ1) − 0.5(x2 − μ2)

T �−1
c,2(x2 − μ2)

− (x1 − μ1)
T �−1

c,1�1,2�
−1
2,2(x2 − μ2)

]

Ignoring terms that can be dealt with in the normalisation constant (i.e. ignoring multiplicative
factors that do not vary with x1) we have

p(x1|x2) ∝ exp
[−0.5xT

1 �−1
c,1x1 − xT

1 �−1
c,1

(
μ1 + �1,2�

−1
2,2(x2 − μ2)

)]

∝ exp
[−0.5(x1 − μc,1)

T �−1
c,1(x1 − μc,1)

]

∝ N(x1;μc,1,�c,1)

where

μc,1 = μ1 + �1,2�
−1
2,2(x2 − μ2)

Hence the conditional distribution X1|(X2 = x2) is also normal with mean vector μc,1 and
covariance matrix �c,1.

3.4.2.7 Gibbs sampler example

To illustrate the Gibbs sampler we consider the univariate equivalent of the estimation problem
considered in Section 3.2.3 (i.e. estimation of the mean and variance of a normal distribution).
The data are normally distributed with mean μ and variance σ 2. The prior distribution for μ

is N(μ0, σ 2/λ0) and the prior distribution for τ = 1/σ 2 is the gamma distribution with shape
parameter α0 and inverse-scale parameter β0 (σ 2 therefore has an inverse-gamma distribution
with shape parameter α0 and scale parameter β0).

A Gibbs sampling approach is used for generating samples from the joint posterior density
of μ and σ 2 given independent measurements x1, . . . , xn from N(μ, σ 2). The steps are:

1. Initialise σ 2. In this example, a sample is taken from the prior distribution. Note,
however, that this would not necessarily be the best approach for a diffuse prior, since
one might end up deep in the tails, requiring a long burn-in period.

2. Sample μ given the sample for σ 2.

3. Then for a given μ, sample σ 2, and return to step 2 to generate the next pair of samples.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

102 DENSITY ESTIMATION – BAYESIAN

The Gibbs sampler requires the conditional distributions. For ease of notation we work with
the precision τ = 1/σ 2, rather than the variance σ 2. We have the following joint probability
density function

p(μ, τ |x1, . . . , xn) ∝ p(μ|τ)p(τ)p(x1, . . . , xn|μ, τ)

∝ τ 1/2 exp

(
−τλ0(μ − μ0)

2

2

)
τα0−1 exp[−β0τ]

× τ n/2 exp

(
−τ
∑n

i=1(xi − μ)2

2

)
(3.48)

The probability density function of τ = 1/σ 2 given the mean μ is

p(τ |μ, x1, . . . , xn) ∝ p(μ, τ |x1, . . . , xn)

∝ τα0+n/2+1/2−1 exp

[
−τ

(
β0 +

∑n
i=1(xi − μ)2 + λ0(μ − μ0)

2

2

)]

∝ ταn+1/2−1 exp[−τ (βn + λn(μ − μn)
2/2)]

∝ Ga(τ ;αn + 1/2, βn + λn(μ − μn)
2/2)

where

λn = λ0 + n

μn = (λ0μ0 + nx̄)/λn

αn = α0 + n/2

βn = β0 + 1

2

n∑
i=1

(xi − x̄)2 + nλ0

2λn
(μ0 − x̄)2

with x̄ the mean of {x1, . . . , xn}. Hence, given the mean, 1/σ 2 has a gamma distribution with
shape parameter αn + 1/2 and inverse-scale parameter βn + λn(μ − μn)2/2.

In a similar manner we find that given τ = 1/σ 2, μ is normally distributed with mean μn

(the prior updated by the data samples) and variance σ 2/λn.
To assess performance of the Gibbs sampler, we note that the required posterior distribu-

tions can be calculated analytically. From the univariate equivalent of (3.19) we know that the
posterior distribution is given by

p(μ, τ |x1, . . . , xn) = N1(μ;μn, (τλn)
−1)Ga(τ ;αn, βn)

The true marginal posteriors of μ and σ 2 can therefore be calculated analytically; μ has
a (Student) t-distribution with mean μn, degrees of freedom 2αn and scaling parameter
parameter λnαn/βn, such that

p(μ|x1, . . . , xn) ∝
(

1 + λnαn

βn

1

2αn
(μ − μn)

2

)−(2αn+1)/2

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 103

Table 3.1 Summary statistics for μ and σ 2. The true values are
calculated from the known marginal posterior distributions. The short
run values are calculated from a Gibbs sampler run of 1000 samples less
a burn-in period of 500 samples. The long run values are calculated after
a run of 10000 samples, less a burn-in period of 500 samples.

True Short run Long run

Mean μ 0.063 0.082 0.063
Var. μ 0.039 0.042 0.039
Mean σ 2 0.83 0.83 0.82
Var. σ 2 0.081 0.085 0.079

and the inverse of σ 2 has a gamma distribution with shape parameter αn and inverse-scale
parameter βn.

In our example, the data x1, . . . , xn, comprise 20 points from a normal distribution of zero
mean and unit variance. The parameters of the prior distribution of μ and τ = 1/σ 2 are taken to
be λ0 = 1, μ0 = 1, α0 = 1/2, β0 = 1/2. As shown in Table 3.1, taking the first 500 samples as
burn-in, and using the remaining 500 samples to calculate summary statistics, gives values for
the mean and variance of μ and σ 2 that are reasonably close to the true values (calculated ana-
lytically), although there is some error in the mean of μ. A longer sequence gives values very
close to the truth. Figure 3.5 shows the first 1000 samples in a sequence of μ and σ 2 samples.

Despite the good performance of the Gibbs sampler, one should note that since the analytic
solution is available, one would never choose to use a Gibbs sampler for this problem.

3.4.3 Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm is a widely used technique for sampling from distribu-
tions which are not amenable to direct sampling. This includes distributions for which the
probability density function is only known up to proportionality (e.g. the normalising con-
stant of a posterior distribution may be unknown). It uses a proposal distribution, from which

0 200 400 600 800 1000
−0.5

0

0.5

1

iteration

(a) (b)

μ

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

iteration

σ2

Figure 3.5 One thousand iterations from Gibbs sampler for a normal-inverse gamma pos-
terior density. (a) Samples of μ; (b) samples of σ 2.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

104 DENSITY ESTIMATION – BAYESIAN

Algorithm 3.3 Metropolis–Hastings algorithm.

� Choose an arbitrary starting value for θ, θ0 from the support of the prior/posterior
distribution.

� At stage t + 1 of the iterative algorithm, do the following:

1. Draw a sample θ from the proposal distribution q(θ|θ t).

2. Draw a sample u from the uniform distribution on [0, 1].

3. Evaluate:

a(θ t, θ) = min

(
1,

g(θ)q(θ t |θ)

g
(
θ t) q(θ|θ t)

)
(3.49)

4. If u ≤ a(θ t, θ) then accept θ and set θ t+1 = θ, else reject θ and set θ t+1 = θ t .

� After a large number of iterations, the resulting samples θ t behave like a random draw from
the density f (θ).

sampling is easy, and accepts a sample with a probability that depends on the proposal density
and the (unnormalised) density from which we wish to sample.

Let f (θ) denote the posterior density function of the posterior distribution from which we
wish to draw samples. As for previously discussed sampling techniques, we may not know
f (θ) exactly, but we know a function g(θ), where f (θ) = g(θ)/

∫
g(θ′)dθ′. As an example,

g(θ) could be the product of a prior density function and a likelihood function, so that f (θ) is
a posterior density function.

Let θ t be the current sample. In the Metropolis–Hastings algorithm, a proposal distribu-
tion, that may depend on θ t , is specified. We denote this q(θ|θ t). The Metropolis–Hastings
algorithm is given in Algorithm 3.3. At each iteration, the sample drawn from the proposal
distribution q(θ|θ t) is accepted with probability a(θ t, θ) [given in Equation (3.49)], otherwise
the previous sample is not changed.

The Metropolis–Hastings procedure produces a different Markov chain to Gibbs sampling,
but with the same limiting distribution, g(θ)/

∫
g(θ′)dθ′. The proposal distribution can take any

sensible form and the stationary distribution will still be g(θ)/
∫
g(θ′)dθ′. For example, q(X|Y)

may be a multivariate normal distribution with mean Y and fixed covariance matrix, �.
However, the scale of � will need to be chosen carefully. If it is too small, then there will be
a high acceptance rate, but poor mixing; that is, the chain may not move rapidly throughout
the support of the target distribution and will have to be run for longer than necessary to
obtain good ergodic average estimates. If the scale of � is too large, then there will be a poor
acceptance rate, and so the chain may stay at the same value for some time, again leading to
poor mixing.

The same considerations as for the Gibbs sampler of Section 3.4.2 apply with regards
to a burn-in period, starting points, parallel runs and convergence diagnostics, and are not
repeated here.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 105

For symmetric proposal distributions, q(X|Y) = q(Y |X), and the acceptance probability
reduces to

min

(
1,

g(θ)

g
(
θ t)
)

For the symmetric proposal, q(X|Y) = q(|X − Y |), so that q is a function of the difference
between X and Y only. The algorithm is the random-walk Metropolis algorithm.

It is permissible to have the proposal distribution independent of the current location,
q(X|Y) = q(X). This is referred to as an independence chain (Tierney, 1994). It is important
that such a proposal distribution has the same support as the desired target distribution (i.e. it
has non-zero density at the same locations), and that the tails of the proposal density dominate
those of the target density.

3.4.3.1 Detailed balance

The Markov-chain created by the Metropolis–Hastings sampler satisfies the detailed balance
condition [Equation (3.46)] required for the stationary distribution to be the desired target
distribution.

The Metropolis–Hastings kernel for continuous variables is given by

K(θ, θ′) =
{

q(θ′|θ)a(θ, θ′) if θ′
= θ

1 − ∫θ ′′ q(θ′′|θ)a(θ, θ′′)dθ′′ if θ′ = θ

where the θ′ = θ expression reflects the fact that the Metropolis–Hastings sampler can reject
proposed moves. Clearly, detailed balance is met for the rejected portion of the move, so it
remains to show it for θ′
= θ. We have

g(θ)q(θ′|θ)a(θ, θ′) = g(θ)q(θ′|θ)min

(
1,

g(θ′)q(θ|θ′)
g(θ)q(θ′|θ)

)

= min(g(θ)q(θ′|θ), g(θ′)q(θ|θ′))

= g(θ′)q(θ|θ′)min

(
g(θ)q(θ′|θ)

g(θ′)q(θ|θ′)
, 1

)

= g(θ′)q(θ|θ′)a(θ′, θ)

thus showing that detailed balance is met and that the stationary distribution is therefore the
desired target distribution.

3.4.3.2 Single-component Metropolis–Hastings

The Metropolis–Hastings algorithm given above updates all components of the parameter
vector, θ, in one step. An alternative approach is to update a single component at a time.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

106 DENSITY ESTIMATION – BAYESIAN

Algorithm 3.4 Single-component Metropolis–Hastings algorithm (Metropolis-within-
Gibbs).

At stage t of the iterative algorithm, do the following:

� Draw a sample, Y from the proposal distribution q1(θ1|θ t
1, . . . , θ t

d).

� Accept the sample with probability:

α = min

(
1,

g
(
Y |θ t

2, . . . , θ
t
d

)
q1
(
θ t

1|Y, θ t
2, . . . , θ

t
d

)

g
(
θ t

1|θ t
2, . . . , θ

t
d

)
q1
(
Y |θ t

1, θ
t
2, . . . , θ

t
d

)
)

– If Y is accepted, then set θ t
1

+ 1 = Y , else set θ t
1

+ 1 = θ t
1.

� Continue through the variables as in the Gibbs sampler (Algorithm 3.2), finally drawing a
sample, Y from the proposal distribution qd(θd|θ t

1
+ 1, . . . , θ t+1

d−1, θ t
d):

– Accept the sample with probability:

α = min

(
1,

g
(
Y |θ t+1

1 , . . . , θ t+1
d−1

)
q
(
θ t

d |θ t+1
1 , . . . , θ t+1

d−1,Y
)

g
(
θ t

d|θ t+1
1 , . . . , θ t+1

d−1

)
q
(
Y |θ t+1

1 , . . . , θ t+1
d−1, θ

t
d

)
)

– If Y is accepted, then set θ t+1
d = Y , else set θ t+1

d = θd
t.

This requires specification of functions g(θi|θ(i)) (where θ(i) is the set of parameters with the
ith parameter removed), proportional to the posterior conditional probability density function
f (θi|θ(i)) for θ i. The iterative procedure is presented in Algorithm 3.4.

In this single-component update case, for proposal distributions that are the conditionals of
the multivariate distribution that we wish to sample, i.e. q(θi|θ(i))= f (θi|θ(i)), then the sample
is always accepted. The algorithm is then identical to Gibbs sampling. The single-component
update Metropolis–Hastings classifier is therefore often referred to as Metropolis-within-
Gibbs.

3.4.3.3 Mixture and cycle kernels

The single-component Metropolis–Hastings algorithm above is a special case of the cycle
strategy, in which a set of proposal distributions q1(θ

′|θ), . . . , qk(θ
′|θ) is specified, and we

cycle through each proposal in turn from one iteration to the next. Another powerful ap-
proach is to use mixtures of kernels. Here, selection probabilities π1, . . . , π k (satisfying
π j ≥ 0, j = 1, . . . , k and

∑k
j=1 π j = 1) are assigned alongside the proposal distributions

q1(θ
′|θ), . . . , qk(θ

′|θ), and at each iteration we select one of the proposal distributions ac-
cording to its selection probability. As noted in Andrieu et al. (2003) the power of mixtures
of kernels is that one global proposal can explore large regions of the state space, whilst
another local proposal (such as a random walk) can explore local areas. This enables the
Metropolis–Hastings algorithm to explore multimodal densities.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 107

3.4.3.4 Choice of proposal distribution in Metropolis–Hastings

If the distribution that we wish to approximate, f , is unimodal, and is not heavy-tailed
(loosely, heavy-tailed means that it tends to zero slower than the exponential distribution,
but also the term is used to describe distributions with infinite variance), then an appropriate
choice for the proposal distribution might be normal, with parameters chosen to be a best
fit of log (q) to log (g) (f = g/

∫
g). For more complex distributions, the proposal could be

a multivariate normal, or mixtures of multivariate normal, but for distributions with heavy
tails, t-distributions might be used. For computational efficiency, q should be chosen so that
it can be easily sampled and evaluated. Often a random walk algorithm is used (symmetric
proposal distribution), and can give surprisingly good results. Chib and Greenberg (1995)
discuss choice of the scale of a random walk proposal density (e.g. the standard deviation of a
normal proposal centred on the current point). They note that the scale should be such that the
acceptance rate of moves is approximately 0.45 in univariate cases and approximately 0.23
as the number of dimensions approaches infinity.

3.4.4 Data augmentation

Introducing auxiliary variables can often lead to more simple and efficient MCMC sampling
methods, with improved mixing. If we require samples from a posterior p(θ|D), then the basic
idea is to notice that it may be easier to sample from p(θ,φ|D), where φ is a set of auxiliary
variables. In some applications, the choice of φ may be obvious, in others some experience
is necessary to recognise suitable choices. The distribution p(θ|D) is then simply a marginal
of the augmented distribution, p(θ, φ|D), and the method of sampling is termed the data
augmentation method. Statistics concerning the distribution of p(θ|D) can be obtained by
using the θ components of the samples of the augmented parameter vector (θ, φ) and ignoring
the φ components.

One type of problem where data augmentation is used is that involving missing data.
Suppose that we have a dataset D and some ‘missing values’, φ. In a classification problem,
where there are some unlabelled data available for training the classifier, φ represents the class
labels of these data (see Section 3.5). Alternatively, there may be incomplete pattern vectors;
that is, for some patterns, measurements on some of the variables may be absent.

The posterior distribution of parameters θ is given by

p(θ|D) ∝
∫

p(D,φ|θ)dφp(θ)

However, it may be difficult to marginalise the joint density p(D,φ|θ) and it is often simpler
to obtain samples of the augmented vector (θ, φ). In this case:

p(θ|D, φ) is the posterior based on the complete data, which is easy to sample, either
directly or by use of MCMC methods (for example Metropolis–Hastings).

p(φ|θ,D) is the sampling distribution for the missing data; again, typically easy to
sample.

The Metropolis-within-Gibbs procedure is to draw samples from these two distributions
alternately.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

108 DENSITY ESTIMATION – BAYESIAN

3.4.5 Reversible jump Markov chain Monte Carlo

MCMC methods can be extended to cases where the model order is unknown through the
use of reversible jump Markov chain Monte Carlo (RJMCMC) procedures, first developed
by Green (1995). As well as updating the parameters at a constant model dimension, as in
standard MCMC techniques, RJMCMC allows changes in the model dimension, by proposing
new parameters, or removing existing parameters.

We briefly outline the mechanics behind birth (adding a new parameter) and death (re-
moving an existing parameter) dimension-changing moves. Birth and death moves are defined
as a pair, and are proposed and then accepted or rejected according to a mechanism which
ensures dimension-matching and detailed balance.

Suppose that we propose a move from model Mk, with state space of dimension k, to
model Mk′ , with state space of dimension k′, where k′ = k + d, for some integer d ≥ 1.
This dimension-changing proposal is made by drawing a d-dimensional vector of continuous
random variables, ud , independently of the current state θk, and then defining the new state
θk′ using a bijection, θk′ = θ ′(θk, ud). Since dim(θk) + dim(ud) = dim(θk′), such a proposal
satisfies the dimension-matching condition. Detailed balance is satisfied by specifying the
acceptance probability for the move as

a(θk, θk′) = min

(
1,

p(θk′ |D)qk′,k

p(θk|D)qk,k′ p(ud)

∣∣∣∣
∂θk′

∂(θk, ud)

∣∣∣∣
)

where p(θ|D) denotes the posterior distribution of the parameters θ given our data D; qk,k′

and qk′,k are the probabilities of choosing a move from model Mk to Mk′ , and from Mk′ to Mk,
respectively; p(ud) denotes the probability density function of the random variables ud ; and

∂θk′
∂(θk,ud)

is a Jacobian, arising from the change of variable from (θk, ud) to θk′ . In the event of

any discrete random variables being generated as part of the birth move their probability mass
is incorporated into the move selection probability, qk,k′ . Similarly, the probability mass of
discrete random variables involved in the corresponding death move are incorporated into the
death move selection probability qk′,k. An example in the death move case might be selecting
a parameter at random to remove.

The acceptance probability can be written in a more interpretable manner as

a(θk, θk′) = min(1, r(θk, θk′))

where

r(θk, θk′) = (posterior ratio) × (proposal ratio) × (Jacobian)

The paired death move reducing the dimension of the state space, defined via the inverse of
the bijection θ ′, has acceptance probability a(θk′, θk) = min(1, r(θk, θk′)−1).

Further details of the RJMCMC methodology are available in the paper by Green (1995),
and a number of papers developing RJMCMC samplers for specific problems. An RJMCMC
methodology for univariate normal mixture models that jointly models the number of
components and the mixture component parameters is presented by Richardson and Green

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 109

(1997).2 Work of Andrieu and Doucet (1999) develops an RJMCMC algorithm for joint
Bayesian model selection and parameter estimation for sinusoids in white Gaussian noise.
The fixed-dimension aspects of their approach are considered in Section 3.4.7.

3.4.6 Slice sampling

The premise behind slice sampling (Neal, 2003) is that samples from a distribution can
be obtained by sampling uniformly from the region under a plot of its probability den-
sity function (or more generally a plot of a function proportional to its probability density
function). Slice sampling is a special case of the Gibbs sampler using data augmentation
(Section 3.4.4).

Suppose that we wish to draw samples from a univariate random variable, θ ∈ R, whose
probability density function, f (θ), is known up to a proportionality, f (θ) = g(θ)/(

∫
g(θ ′)dθ ′).

The slice sampler introduces an auxiliary variable, u ∈ R, and defines the joint distribution of
(θ , u) to be uniform within the region under the curve u = g(θ). The joint probability density
function of (θ , u) is therefore

f (θ, u) = 1∫
g(θ ′)dθ ′ I(0 ≤ u ≤ g(θ))

The marginal density of θ under the above joint distribution is

f (θ) =
∫

u
f (θ, u)du =

∫ g(θ)

u=0

1∫
g(θ ′)dθ ′ du = g(θ)∫

g(θ ′)dθ ′

Hence the marginal distribution for θ is the desired distribution. Therefore, if we have samples
{(θ (s), u(s)), s = 1, . . . , N} from f (θ , u) (i.e. drawn uniformly within the area under the curve
u = g(θ)), we can obtain samples {θ (s), s = 1, . . . , N} from the distribution defined by f (θ)
by discarding the samples for u.

A Gibbs sampling approach is adopted for obtaining samples from f (θ , u)

� Initialise the algorithm with a sample θ0 from the support of f (θ).

� At step t of the iterative algorithm:

– Draw a sample, ut from the distribution f (u|θ t − 1), which by construction is the
uniform distribution on [0, g(θ t − 1)]. This is the vertical slice of the algorithm.

– Draw a sample, θ t from the distribution f (θ |ut), which by construction is the uniform
distribution over the set S, where S = {θ ; ut ≤ g(θ)}. This is the horizontal slice of
the algorithm.

As with the standard Gibbs sampler, after an initial burn-in period, the samples will be (de-
pendent) samples from the posterior distribution f (θ , u). Approximately independent samples
can be obtained by subsampling the full set of samples.

2 The associated correction is in Richardson and Green (1998).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

110 DENSITY ESTIMATION – BAYESIAN

θt−1

g(θt−1)

ut

vertical slice

horizontal
slice

S

θt−1

g(θt−1)

ut

vertical slice

S S S

(a) (b)

Figure 3.6 Single-variable slice sampling. In (a) the horizontal slice consists of a single
interval S, whilst in (b) the horizontal slice consists of three disjoint intervals.

The core stage of the algorithm is illustrated in Figure 3.6. Whilst the sampling associated
with the vertical slice is trivial, the horizontal slice can prove difficult, since the set S might be
hard to determine. Specifically, as shown in Figure 3.6(b), the set S might consist of a number
of disjoint intervals. Even if the set S is a single interval, determining the end-points might
require numerical root-finding procedures (e.g. one of those in Press et al., 1992).

Neal (2003) advocates replacing the sampling associated with the horizontal slice with
a scheme that does not sample uniformly from the set S, but that does leave the desired
distribution invariant. Suppose that we have drawn ut in the uniform sampling associated
with the vertical slice from [0, g(θ t − 1)]. Then, by construction, the point θ t − 1 lies within
the region S = {θ ; ut ≤ g(θ)}. An initial interval of width w is specified to contain the point
θ t − 1. The positioning of this interval is random, i.e. the lower limit, L1, of the initial interval
is drawn from a uniform distribution on [θ t − 1 − w, θ t − 1]. The upper limit of the interval is
R1 = L1 + w. This initial interval is then expanded via a stepping out procedure [an alternative
doubling procedure is also presented by Neal (2003)].

A maximum expanded interval width of mw is pre-specified, where m ≥ 1 is an integer
(and can be infinite if desired). At each horizontal slice, a sample, JL, is generated uniformly
from the set {0, . . . , m − 1}, and is such that the subsequent stepping out interval growth
procedure does not allow the lower interval limit to be below L1 − JLw, or the upper interval
limit to be above L1 + (m − JL)w. This constraint, along with the random positioning of
the initial interval, is required for the distribution to be left invariant under the new update
scheme.

The stepping out procedure to create an interval I = [L, R] is:

� Set L = L1 − iLw, where iL is the smallest integer in the range 0 ≤ i ≤ JL for which
ut > g(L1 − iw), i.e. is the first integer for which the lower limit of the expanding
interval falls outside the set S, or is JL if such a value does not exist.

� Set R = R1 + iRw, where iR is the smallest integer in the range 0 ≤ i ≤ m − JL − 1 for
which ut > g(R1 + iw), i.e. is the first integer for which the upper limit of the expanding
interval falls outside the set S, or is m − JL − 1 if such a value does not exist.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 111

Having specified a new interval I = [L, R] at a given horizontal slice, the horizontal slice is
completed by sampling from S ∩ I. One of the following procedures can be used:

1. Sample uniformly from the interval I = [L, R] until a sample θ is obtained within the
set S, i.e. until ut ≤ g(θ). Then set θ t = θ .

2. Sample θ uniformly from the interval I = [L, R]. If θ lies within the set S, then set θ t =
θ . If θ does not lie within the set S, shrink the interval I to I = [θ , R] if θ < θ t − 1 and
I = [L, θ] if θ > θ t − 1. Repeat the procedure until a sample is accepted (which will
occur eventually since θ t − 1 ∈ S).

The second procedure will be more efficient than the first if S ∩ I is only a small portion of
the initial interval I.

The proof that the above scheme results in valid samples from the desired distribution
is given by Neal (2003) and involves showing that the updates leave the desired distribution
invariant. This is done by showing detailed balance. It is noted that caution is need if modifying
the above procedure, because many ‘seemingly reasonable’ modifications result in the proof
being invalidated.

Slice sampling can be used to obtain samples from multivariate distributions by applying
the univariate procedure to each variable in turn, in the same manner as the Gibbs sampler
algorithm (i.e. replacing each conditional sampling stage of the Gibbs sampler with a sample
generated using an iteration of the univariate slice sampler, with target distribution the uni-
variate conditional distribution). Neal (2003) also discusses more sophisticated versions of
the multivariate slice sampler.

3.4.7 MCMC example – estimation of noisy sinusoids

In this example, we seek to model a time series as a sum of k sinusoids of unknown amplitude,
frequency and phase. The approach and example is extracted from that of Andrieu and
Doucet (1999). They treat the number of sinusoids as an unknown variable to be estimated,
but for simplicity in this discussion we consider a fixed number. Denoting the amplitudes by
ψ = (ψ1, . . . , ψk), the frequencies by ω = (ω1, . . . , ωk) and the phases by φ = (φ1, . . . , φk),
we model the data as

y = h(x; ξ) + ε =
k∑

j=1

ψ j cos(ω jx + φ j) + ε (3.50)

where ε ∼ N(0, σ 2) and ξ = {(ψ j, ω j, φ j), j = 1, . . . , k}. Thus

p(y|x; θ) = 1√
2πσ 2

exp

{−(y − h(x; ξ))2

2σ 2

}

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

112 DENSITY ESTIMATION – BAYESIAN

where the parameters of the density are θ = (ξ, σ 2). The training data, D = {yi, i = 1, . . . , n},
comprise n measurements of y at regular intervals, xi = i; i = 0, 1, . . . , n − 1. Assuming
independent noise, we have

p(D|θ) ∝
n∏

i=1

1

σ
exp

{−(yi − h(xi; ξ))2

2σ 2

}

The task is to ascertain information about the sinusoids given the training data and to
provide predictions on y given a new sample x. A Bayesian approach is followed, with a prior
distribution specified for the parameters θ, represented by the probability density function
p(θ). Then using Bayes’ theorem, we have the following posterior distribution

p(θ|D) ∝ p(D|θ)P(θ)

The approach is to use an MCMC algorithm to draw samples from the posterior distribution.
The resulting samples θ t, t = M, . . . , N, where M is the burn-in period and N is the length of
the MCMC sequence, then describe the parameters of interest. For predicting a new sample,
we take

p(y|xn) ≈ 1

N − M

N∑
t=M+1

p(y|xn; θ t)

It is convenient to reparametrise the model as

yi =
k∑

j=1

(gj cos(ω jxi) + hj sin(ω jxi)) + εi

where gj = ψ j cos (φj) and hj = −ψ j sin (φj) represent the new amplitudes of the problem,
which lie in the range (−∞, ∞). This may be written as

y = Da + ε

where yT = (y1, . . . , yn); aT = (g1, h1, . . . , gk, hk) is the 2k-dimensional vector of ampli-
tudes, and D is an n × 2k matrix, defined by

Di, j =
{

cos(ω jxi) j odd;
sin(ω jxi) j even.

Data
Data are generated according to the model given in (3.50), with k = 3, n = 64, ω =
2π(0.2, 0.2 + 1/n, 0.2 + 2/n), ψ = (

√
20,

√
2π,

√
20), σ = 2.239 and φ = (0, π/4, π/3).

The time series is shown in Figure 3.7.

Prior
The prior distribution for the random variables, (ω, σ 2, a), is written as

p(ω, σ 2, a) = p(ω)p(σ 2)p(a|ω, σ 2)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 113

(a) (b)

Figure 3.7 Data for sinusoids estimation problem (a); with reconstruction, based on the
200th set of MCMC samples [dashed line, (b)].

where

p(ω) = 1

π k
I[ω ∈ [0, π]k]

p(a|ω, σ 2) = N(a; 0, σ 2�), where �−1 = δ−2DT D

p(σ 2) = Ig(σ 2; ν0/2, γ0/2)

Here Ig(σ 2; ν, γ) is the probability density function for σ 2 distributed according to the inverse-
gamma distribution with shape parameter ν and scale parameter γ . This distribution is such
that 1/σ 2 has a gamma distribution with shape parameter ν and inverse-scale parameter γ .
Hyperparameter values of δ2 = 50, ν0 = 0.01 and γ 0 = 0.01 have been used in the illustrated
example.

Posterior
The posterior distribution can be re-arranged to

p
(
a,ω, σ 2|D) ∝ 1

σ
2
(

n+ν0
2 +k+1

) exp

[
− (γ0 + yT Py

)

2σ 2

]
I
[
ω ∈ [0, π]k

]

×|�|−1/2 exp

[− (a − m)T M−1 (a − m)

2σ 2

]
(3.51)

where

M−1 = DT D + �−1, m = MDT y, and P = In − DMDT

The amplitude, a, and variance, σ 2, can be integrated out analytically, leaving the following
marginal posterior density for ω

p(ω|D) ∝ (γ0 + yT Py)−
n+ν0

2

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

114 DENSITY ESTIMATION – BAYESIAN

This cannot be dealt with analytically so samples are drawn. A Metropolis-within-Gibbs
procedure is used, whereby samples are drawn from the conditional distributions of the
individual components, ωj, using Metropolis–Hastings sampling. The conditional probability
density functions are given by

p
(
ω j|ω(j),D

) ∝ p(ω|D)

where ω(j) is the set of variables with the jth one omitted.

Metropolis–Hastings proposal distributions
We use a mixture Metropolis–Hastings kernel at each update step. Specifically, we choose
randomly between two possible proposal distributions. The first, chosen with probability 0.2,
is given by

qj(ω
′
j|ω) ∝

n−1∑
l=0

plI

[
lπ

n
< ω′

j <
(l + 1)π

n

]

where pl is the squared modulus of the Fourier transform of the data at frequency l π/n. This
proposal allows regions of interest of the posterior distribution to be reached quickly and also
helps prevent the Markov chain getting stuck with one solution for ωj. The second proposal
distribution is the normally distributed random walk (mean zero, and standard deviation π/

(2n)). This second proposal ensures irreducibility of the Markov chain. The algorithm is
initialised with a sample from the prior for ω.

Sampling the remaining parameters
Having drawn samples for ω, the amplitudes can be sampled using

a|(ω, σ 2,D) ∼ N(m, σ 2M)

which comes from (3.51). The noise variance can be sampled using

σ 2|ω,D ∼ Ig

(
n + ν0

2
,
γ0 + yT Py

2

)

which comes from (3.51) after analytical integration of a.

Results
Convergence for the illustrated example was very quick, with a burn-in of less than 100
iterations required.

Figure 3.8 gives plots of samples of the parameter of the noise, σ (true value, 2.239), and
frequencies, ω. Figure 3.7 shows the reconstruction of the data using the 200th set of MCMC
samples.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

MARKOV CHAIN MONTE CARLO METHODS 115

Figure 3.8 Ten thousand iterations from the MCMC algorithm: (a) samples of the noise
standard deviation; (b) samples of the frequencies.

3.4.8 Summary

MCMC methods can provide effective approaches to inference problems in situations where
analytic evaluation of posterior distributions is not feasible. Their main strength is in their
flexibility. They enable Bayesian approaches to be used within real-world problems without
having to make unnecessarily restrictive assumptions regarding prior distributions, or simpli-
fications to the likelihoods, in order to may make the mathematics tractable. Originating in
the statistical physics literature, the development in Bayesian statistics has been driven by the
difficulty in performing numerical integration. The main disadvantages concern uncertainty
over convergence, and hence over the accuracy of the estimates computed from the samples,
and the computational expense of some procedures.

In many respects, the implementation of these methods is still something of an art, with
several trial runs being performed in order to explore models and parameter values. Recent
research has looked at adaptive MCMC procedures, whereby the parameters of the MCMC
algorithm are adjusted to optimise the algorithm performance (Andrieu and Thoms, 2008).
Techniques are required for reducing the amount of computation per iteration. Run times can
be long, caused by poor mixing.

The main features of the MCMC method are as follows:

1. It performs iterative sampling from a proposal distribution. The samples may be uni-
variate, multivariate or a subvector of the parameter vector. A special case is Gibbs
sampling when samples from conditional probability distributions are drawn.

2. The samples provide a summary of the posterior probability distribution. They may
be used to calculate summary statistics either by averaging functions of the samples
[Equation (3.38)] or by averaging conditional expectations [Rao-Blackwellisation,
Equation (3.39)].

3. Correlated variables lead to longer convergence.

4. The parameters of the method are N, the sequence length; M, the burn-in period; and
q(.|.), the proposal distribution.

5. Burn-in refers to the early part of the chain that is removed before function estimation
to reduce bias.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

116 DENSITY ESTIMATION – BAYESIAN

6. In practice, you would run several chains to estimate parameter values and then one
long chain to calculate statistics.

7. Subsampling of the final chain may be performed to reduce the amount of storage
required to represent the distribution.

8. Sampling from standard distributions is readily performed using algorithms in the
books by Devroye (1986) and Ripley (1987), for example. For nonstandard distribu-
tions, the rejection methods and ratio of uniforms methods may be used as well as
Metropolis–Hastings, but there are other possibilities (Gilks et al., 1996).

3.4.9 Notes and references

There are many excellent textbooks describing the theory, use and applications of MCMC
methods, including those by Gilks et al. (1996), M.–H. Chen et al. (2000), Robert and Casella
(2004) and Gamerman and Lopes (2006).

Texts by Robert and Casella (2009), and Albert (2009) discuss the use of MCMC methods
within the R programming language, while the text by Ntzoufras (2009) covers the use
of the WinBUGS (Windows Bayesian Inference using Gibbs Sampling) MCMC software.
WinBUGS is a software package that enables MCMC models to be rapidly programmed and
assessed. A discussion on the software is available in the paper by Lunn et al. (2000). In recent
years the OpenBUGS project at the University of Helsinki, Finland, has been developing an
open-source version of the WinBUGS software.

Good reference papers on MCMC methods include those by Brooks (1998), Kass et al.
(1998), Besag (2000) and Andrieu et al. (2003). A detailed account of the theory behind
Monte Carlo techniques for obtaining characteristics of posterior distributions is provided by
Tierney (1994).

3.5 Bayesian approaches to discrimination

In this section we apply the Bayesian learning methods discussed so far in this chapter to
the discrimination problem, making use of analytic solutions where we can, but using the
numerical techniques where that is not possible.

3.5.1 Labelled training data

Let D denote the dataset used to train the classifier. In the first instance, let it comprise a set of
labelled patterns {(xi, zi), i = 1, . . . , n}, where zi = j implies that the pattern xi is from class
ωj. Given pattern x from an unknown class, we would like to predict its class membership;
that is, we require

p(z = j|D, x) j = 1, . . . ,C

where z is the class indicator variable corresponding to x. The Bayes’ decision rule for
minimum error is to assign x to the class for which p(z = j|D, x) is the greatest. The above

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

BAYESIAN APPROACHES TO DISCRIMINATION 117

may be written

p(z = j|D, x) ∝ p(x|D, z = j)p(z = j|D) (3.52)

where the constant of proportionality does not depend on class.
The first term in (3.52), p(x|D, z = j), is the class-conditional probability density function

for measurements x from class ωj. If we assume a model for the density, with parameters � j,
then this may be written [see Equation (3.1)]

p(x|D, z = j) =
∫

p(x|� j)p(� j|D, z = j)d� j

For certain special cases of the density model, p(x|� j), we may evaluate this analytically.
For example, as we have seen in Section 3.2.3, a normal model with parameters μ and �

with Gauss-Wishart priors leads to a posterior distribution of the parameters that is also
Gauss-Wishart and a multivariate Student t-distribution for the density p(x|D, z = j).

If we are unable to obtain an analytic solution, then a numerical approach will be required.
For example, if we use one of the MCMC methods of Section 3.4 to draw samples from the
posterior density of the parameters, p(� j|D), we may approximate p(x|D, z = j) by

p(x|D, z = j) ≈ 1

N − M

N∑
t=M+1

p
(
x|�t

j

)

where �t
j are samples generated from the MCMC process and M and N are the burn-in period

and run length, respectively.
The second term in (3.52) is the probability of class ωj given the dataset, D. Thus, it is the

prior probability updated by the data. We saw in Section 3.2.4 that if we assume a Dirichlet
prior for π, the vector of prior class probabilities, i.e.

p(π) = DiC(π; a0)

then

p(z = j|D) = E[π j|D] = a0 j + n j∑C
j=1(a0 j + nj)

(3.53)

where nj is the number of training examples for class ωj in D.

3.5.2 Unlabelled training data

The case of classifier design using a normal model when the training data comprise both
labelled and unlabelled patterns is considered by Lavine and West (1992). It provides an
example of Gibbs sampling that uses some of the analytic results of Section 3.2.3. We
summarise the approach here.

Let the dataset D = {(xi, zi), i = 1, . . . , n; xu
i , i = 1, . . . , nu}, where xu

i are the unlabelled
patterns. Let μ = {μi, i = 1, . . . ,C} and � = {�i, i = 1, . . . ,C} be the set of class means
and covariance matrices and π the class priors. Denote by zu = {zu

i , i = 1, . . . , nu}, the set of
unknown class labels.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

118 DENSITY ESTIMATION – BAYESIAN

The parameters of the model are θ = {μ,�, π, zu}. Taking a Gibbs sampling approach,
we successively draw samples from three conditional distributions:

1. Sample from p(μ,�|π, zu,D). This density may be written

p(μ,�|π, zu,D) =
C∏

i=1

p(μi,�i|zu,D)

the product of C independent Gauss-Wishart distributions given by (3.19). Note that
since we are conditioning on zu all the training data is labelled.

2. Sample from p(π|μ, �, zu,D). This is a Dirichlet distribution, DiC(π; a), independent
of μ and �. The parameters a are given by a = a0 + n, with n = (n1, . . . , nC), where
nj is the number of patterns in class ωj as determined by D and zu.

3. Sample from p(zu|μ, �,π,D). Since the samples zu
i are conditionally independent,

using Bayes’ theorem we require samples from

p
(
zu

i = j|μ, �, π,D
) ∝ p

(
zu

i = j|π) p
(
xu

i |μ j,� j, zu
i = j

)

∝ π j p
(
xu

i |μ j,� j, zu
i = j

)
(3.54)

the product of the prior and the normal density of class ωj at xu
i . The constant of

proportionality is chosen so that the sum over classes is unity. Sampling a value for zu
i

is then trivial.

The Gibbs sampling procedure produces a set of samples {μt, �t, πt, (zu)t , t = 1, . . . , N},
which may be used to classify the unlabelled patterns and future observations. We ignore an
initial burn-in period of M samples.

To classify the unlabelled patterns in the training set, we use

p
(
zu

i = j|D) = 1

N − M

N∑
t=M+1

p
(
zu

i = j|μt
j, �t

j, π
t
j,D
)

where the terms in the summation are, by (3.54), products of the prior and class-conditional
density, evaluated and normalised for each set of samples from the MCMC iterations. This
is a Rao-Blackwellised estimate (see Section 3.3.2), where we estimate the quantity via
conditional expectations rather than directly from the samples (zu)t.

To classify a new pattern x, we require p(z = j|x,D), given by

p(z = j|x,D) ∝ p(z = j|D)p(x|D, z = j) (3.55)

The first term in the product, p(z = j|D), is

p(z = j|D) = E[π j|D] = 1

N − M

N∑
t=M+1

E[π j|D, (zu)t]

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

SEQUENTIAL MONTE CARLO SAMPLERS 119

The expectation in the summation can be evaluated using (3.53), since the conditioning
on (zu)t means that all the training data are now labelled. This is again an example of
Rao-Blackwellisation (see Section 3.3.2) in that we estimate the quantity via conditional
expectations rather than directly from the samples πt . The second term in (3.55) can be
written as

p(x|D, z = j) ≈ 1

N − M

N∑
t=M+1

p(x|D, (zu)t, z = j)

the sum of multivariate Student probability density functions [each density function in the
summation has the same form as (3.21) of Section 3.2.3, since the conditioning on (zu)t means
that all the training data is now labelled].

3.5.2.1 Illustration

The illustration given here is based on that of Lavine and West (1992). Two-dimensional data
from three classes are generated from equally weighted non-normal distributions. Defining
matrices

C1 =
(

5 1
3 5

)
,C2 =

(
0 1
1 5

)
,C3 =

(
5 0
3 1

)

then an observation xi from class ωj is generated according to

xi = C j

(
ui

1 − ui

)
+ εi

where ui is uniform over [0, 1] and εi is normally-distributed with zero mean and diagonal
covariance matrix, I/2.

The labelled training data are shown in Figure 3.9.
Using a normal model, with diagonal covariance matrix, for the density of each class, an

MCMC approach using Gibbs sampling is taken. The training set consists of 1200 labelled and
300 unlabelled patterns. The priors for the mean and variances are normal and inverse gamma,
respectively. The parameter values are initialised as samples from the prior. Figure 3.10
shows components of the mean and covariance matrix that are produced from the chain.
The WinBUGS software package (Lunn et al. 2000) has been used to complete the MCMC
sampling.

3.6 Sequential Monte Carlo samplers

3.6.1 Introduction

In Section 3.3.6 we introduced importance sampling and noted that it forms the basis of particle
filters for sequential Bayesian parameter estimation. Sequential Monte Carlo (SMC) samplers
(Del Moral et al., 2006) are the next generation of particle filters, which allow the power of
the particle filter methodology to be applied to general parameter estimation problems. They

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

120 DENSITY ESTIMATION – BAYESIAN

–1 1

6

5

3

4

1

2

2 3 4 5 6

Figure 3.9 Three-class (triangles, class 1; squares, class 2; and diamonds, class 3), two-
dimensional training data.

work by specifying an artificial sequence of distributions defined on the same fixed state space,
with the sequence finishing at the distribution of interest. The motivation is that rather than
attempting to sample from the desired distribution immediately, we instead draw samples from
the distribution via a sequence of samples from intermediate distributions, which gradually
approach the distribution of interest. SMC samplers can be used for generating samples from
complicated probability distributions, and hence for estimating probability densities for use
in Bayesian classifiers.

10850 10900
iteration

3.2
mu[1,1]

sigma[1,1] sigma[2,2]

3.1
3.0
2.9
2.8
2.7

1.4

1.3

1.2

1.1

1.5
1.4
1.3
1.2
1.1

10950 10850 10900
iteration

3.3
mu[2,2]

(a)

(c) (d)

(b)

3.2
3.1
3.0
2.9
2.8

10950

10850 10900
iteration

10950 10850 10900
iteration

10950

Figure 3.10 MCMC samples of μ and �. (a) μ1 component of class 1; (b) μ2 component
of class 2; (c) �1, 1 component of class 1; (d) �2, 2 component of class 2.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

SEQUENTIAL MONTE CARLO SAMPLERS 121

This development of the particle filtering methodology to general parameter estimation
problems uses an innovation of adding auxiliary variables to the state space under consid-
eration. In the sequential parameter estimation problem addressed by particle filters, each
time step brings a new variable (the latest state of the parameter under consideration), and
therefore the dimension of the state space grows with time. As an example, suppose that we
are tracking the location, x, of a target at discrete time steps. At time step t − 1 the state
space is (x1, . . . , xt−1), i.e. the time history of locations up to and including time state t −
1. Moving to time state t, we increment the state space by the latest location xt , giving an
enlarged state space (x1, . . . , xt). This expanding state space is critical to efficient applica-
tion of particle filters. Indeed, the lack of an expanding state space prevents straightforward
application of the technology to estimation of static parameters. SMC samplers remove this
difficulty through the addition of auxiliary variables, that cause the state space to grow
with time.

3.6.2 Basic methodology

We present a brief overview of the SMC sampler methodology. For detailed discussions and
justifications the reader is referred to Del Moral et al. (2006) and Peters (2005).

Suppose that we wish to draw samples from the distribution π(θ) on the parameter space
θ ∈ R

n. The first step in defining an SMC sampler for sampling from this distribution is to
define a sequence of target distributions π1(θ), . . . , πT (θ), all on the same parameter space
θ ∈ R

n, with the following properties:

� πT (θ) = π(θ), the desired distribution (i.e. the final distribution in the sequence is the
desired distribution);

� π1(θ) is a distribution from which it is easy to sample;

� the difference between distributions πt (θ) and πt+1(θ), t = 1, . . . , T − 1, is not too
large.

The basic premise behind the SMC sampler is to draw samples from π(θ) by sampling first
from the easy to sample from initial distribution π1(θ), and then moving to the distribution
π(θ), via a sequence of T − 1 easy steps (the intermediate distributions).

3.6.2.1 Example sequences of target distributions

Suppose that π(θ) is the posterior distribution arising from a prior distribution p(θ), a likeli-
hood function p(x|θ), and a dataset D = {x1, . . . , xn}. Two potential sequences of SMC target
distributions are then:

� πt (θ) = p(θ|x1, . . . , xt), t = 1, . . . , n, i.e. data tempering in which the tth target distri-
bution is the posterior distribution based upon the first t data samples.

� πt (θ) ∝ h(θ)1−αt π(θ)αt , where 0 = α1 < α2 < . . . < αT = 1, and h(θ) is a distribution
that is relatively easy to sample from. Often, h(θ) can be the prior distribution p(θ).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

122 DENSITY ESTIMATION – BAYESIAN

For determining the most likely parameters (i.e. the maximum a posteriori parameters that
maximise the posterior distribution), a simulated annealing approach can be used. Here we
set πt (θ) ∝ π(θ)αt , for αt ≥ 0 an increasing sequence, tending to infinity as t → ∞.

3.6.2.2 Underlying SMC sampler procedure

The underlying SMC sampler procedure is as follows:

� Step 1: Draw N samples {θ(1)

1 , . . . , θ
(N)

1 } from the initial distribution π1(θ).

� Steps t = 2, . . . , T . Adjust the samples {θ(1)

t−1, . . . , θ
(N)

t−1} from the distribution πt−1(θ)

to become samples {θ(1)
t , . . . , θ(N)

t } from the distribution πt (θ).

Trying to apply standard importance sampling (Section 3.3.6) to adjust the samples in steps
t = 2, . . . , T would typically require the evaluation of intractable integrals when calculating
the importance weights (Del Moral et al., 2006). This is what prevents the basic particle filter
from being used for this problem.

SMC samplers use a trick of augmenting the state space with auxiliary variables to
circumvent this problem. The auxiliary variables are the previous estimates of the state. From
one distribution to the next, the state space therefore increases by R

d (the dimensionality of θ),
such that at step t of the algorithm the state space is of size R

td , and is given by (θ1, . . . , θt).
The target distribution at step t is augmented to take in the larger state space as follows

π̃t (θ1, . . . , θt) = πt (θt)

t−1∏
i=1

Li(θi+1, θi)

where the Li(θi+1, θi) are backwards transition kernels, termed L-kernels in the SMC sampler
literature. The original target distributions, πt (θt), can be obtained by marginalisation of the
augmented distributions

∫
π̃t (θ1, . . . , θt)dθ1 . . . dθt−1 = πt (θt)

∫ t−1∏
i=1

Li(θi+1, θi)dθ1 . . . dθt−1

= πt (θt)

t−1∏
i=1

(∫
Li(θi+1, θi)dθi

)

= πt (θt)

The significance of these augmentations is that particle filtering ideas can be used to
draw samples from the distributions π̃t (θ1, . . . , θt), t = 1, . . . , T , in sequence, starting from
π̃1(θ1) = π1(θ1) and ending at the distribution π̃T (θ1, . . . , θT). Samples from π(θ) can then
be obtained by marginalisation of the samples from the final distribution, i.e. extracting the
samples {θT

(s), s = 1, . . . , N} from the final set of samples {(θ1
(s), . . . , θT

(s)), s = 1, . . . , N}.
These samples can then be used in the manner described in Section 3.3.2 (and Section 3.3.3
if used within a Bayesian classifier).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

SEQUENTIAL MONTE CARLO SAMPLERS 123

Algorithm 3.5 Outline of an SMC sampler.

� Use importance sampling (Section 3.3.6) to draw samples {θ(s)
1 , s = 1, . . . , N} from the

distribution π1(θ1). The resulting samples have importance sampling weights {w(s)
1 , s =

1, . . . , N}.

� For t = 2, . . . , T:

– Use a forward transition kernel Kt (θt−1, θt) to move the samples {θ(1)

t−1, . . . , θ
(N)

t−1} created
in step t − 1 to {θ(1)

t , . . . , θ(N)
t }.

– Reweight each sample according to (3.56), obtaining new weights {w(s)
t , s = 1, . . . , N}.

– Normalise the weights as follows:

w̃(s)
t = w(s)

t∑N
m=1 w(m)

t

, s = 1, . . . , N

– Conduct a resampling step (see Algorithm 3.6).

� Use the final set of resampled samples {θ(1)
T , . . . , θ

(N)
T } as weighted samples (with weights

specified in the resampling step) from the desired distribution π(θ).

3.6.2.3 SMC sampler algorithm

An outline of an SMC sampler is provided in Algorithm 3.5, and is now discussed in more
detail.

At the start of step t > 1, we have a set of samples {(θ(s)
1 , . . . , θ

(s)
t−1), s = 1, . . . , N}

with weights {w(s)
t−1, s = 1, . . . , N}. These approximate the (t − 1)th target distribu-

tion π̃t−1(θ1, . . . , θt−1). A forward transition kernel Kt (θt−1, θt) is used to move the
samples {θ(1)

t−1, . . . , θ
(N)

t−1} created in step t − 1 to {θ(1)
t , . . . , θ(N)

t }, giving updated samples

{(θ(s)
1 , . . . , θ(s)

t), s = 1, . . . , N}. Specifically, sample θ(s)
t is obtained by sampling from the

kernel Kt (θ
(s)
t−1, θt). As an example, the kernel could be a Metropolis–Hastings update step

(see Section 3.4.3). With such an update step we first propose a sample θ∗
t from a proposal

distribution qt (θt |θ(s)
t−1). Then, with probability

a
(
θ

(s)
t−1, θ∗

t

)
= min

⎛
⎝1,

πt
(
θ∗

t

)
q
(
θ

(s)
t−1|θ∗

t

)

πt

(
θ

(s)
t−1

)
q
(
θ∗

t |θ(s)
t−1

)
⎞
⎠

we accept the proposed sample, and set θ(s)
t = θ∗

t . Otherwise we set θ(s)
t = θ

(s)
t−1. The range of

potential proposal distributions is as considered in Section 3.4.3, and could include random
walks centred around the current point. It then remains to update the weights for these
samples.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

124 DENSITY ESTIMATION – BAYESIAN

Using a sequential importance sample argument, weights w(s)
t at step t are obtained from

the weights w(s)
t−1 at step t − 1 as follows

w(s)
t = w(s)

t−1

π̃t

(
θ

(s)
1 , . . . , θ(s)

t

)

π̃t−1

(
θ

(s)
1 , . . . , θ

(s)
t−1

)
Kt

(
θ

(s)
t−1, θ

(s)
t

)

= w(s)
t−1

πt

(
θ(s)

t

)∏t−1
i=1 Li

(
θ

(s)
i+1, θ

(s)
i

)

πt−1

(
θ

(s)
t−1

) (∏t−2
i=1 Li

(
θ

(s)
i+1, θ

(s)
i

))
Kt

(
θ

(s)
t−1, θ(s)

t

)

= w(s)
t−1

πt
(
θ(s)

t

)
Lt−1

(
θ(s)

t , θ
(s)
t−1

)

πt−1

(
θ

(s)
t−1

)
Kt

(
θ

(s)
t−1, θ

(s)
t

) (3.56)

Specification of the L-kernel, Lt−1(θ
(s)
t , θ

(s)
t−1), is discussed next.

3.6.2.4 L-kernels

The L-kernels, which are not present in the MCMC approaches of Section 3.4, affect the
performance of the sampler, and require further discussion. Del Moral et al. (2006) and
Peters (2005) discuss the choice of optimal and suboptimal L-kernels. A common subopti-
mal choice for use alongside MCMC forward transition kernels [e.g. when Kt (θt−1, θt) is a
Metropolis–Hastings kernel] is to choose the L-kernel so that is satisfies the detailed balanced
equation [see Equation (3.46)]

πt (θt)Lt−1(θt, θt−1) = πt (θt−1)Kt (θt−1, θt)

Then the weights in (3.56) become

w(s)
t = w(s)

t−1

πt
(
θ(s)

t

) (πt

(
θ

(s)
t−1

)
Kt

(
θ

(s)
t−1,θ

(s)
t

)

πt

(
θ

(s)

t

)

)

πt−1

(
θ

(s)
t−1

)
Kt

(
θ

(s)
t−1, θ

(s)
t

)

= w(s)
t−1

πt

(
θ

(s)
t−1

)

πt−1

(
θ

(s)
t−1

) (3.57)

which do not actually depend on the parameters drawn at step t of the algorithm. The
performance (in terms of efficiency) of a sampler using such an L-kernel is better when
the difference between successive distributions in the sequence is small, i.e. when πt (θ) ≈
πt−1(θ). The weights provided in (3.57) are the same as those in Annealed Importance
Sampling (Neal, 2001).

3.6.2.5 Resampling

A major problem with the procedure as described in the text is that the SMC sampler will
suffer from degeneracy, in that after a few iterations, nearly all samples will have negligible

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

SEQUENTIAL MONTE CARLO SAMPLERS 125

Algorithm 3.6 Resampling step within an SMC sampler.

Starting from a set of samples with normalised weights {w̃(s)
t , s = 1, . . . , N}:

� Calculate the effective sample size (ESS)

ESSt = 1
∑N

s=1

(
w̃(s)

t

)2
(3.58)

� If ESSt < N/2 conduct the following resampling step:

– Sample N times from the current set of samples (with replacement), with the probability
of selecting the ith sample at any stage being equal to the normalised weight w̃(i)

t for that
sample.

– Specify equal weights w(s)
t = 1/N, s = 1, . . . , N for the new samples.

� Otherwise set w(s)
t = w̃(s)

t , s = 1, . . . , N, and use the original samples.

weight, with possibly just one sample dominating. Untreated, this would have a severe impact
on the performance of any technique relying on the samples, since the resulting sample
estimates of the desired distribution would be unreliable. The solution is to use a resampling
stage, as in the standard particle filter literature (Doucet et al., 2001; Arulampalam et al.,
2002). Resampling results in samples being replicated or discarded in a way that preserves
the underlying distribution.

The simplest form of resampling is multinomial resampling, in which the samples are
resampled according to a multinomial distribution (with replacement). Specifically, we sample
N times from the current set of samples, with the probability of selecting the ith sample at any
stage being equal to the normalised weight w̃(i)

t for that sample. Improvements are possible (e.g.
residual sampling and stratified sampling), and are discussed in the aforementioned particle
filtering literature. After resampling, each new sample is set to have a weight of w(m)

t = 1/N.
Over time, degeneracy is inevitable without the use of resampling, since the variance

of the importance sampling weights increases over time. Hence resampling is necessary.
However, since the resampling stage results in a further approximation, it is good practice
to only conduct a resampling stage when the samples are showing signs of degeneracy. A
simple procedure is described in Algorithm 3.6. The approach is based upon monitoring the
effective sample size (ESS) calculated using the normalised weights [Equation (3.58)]. The
ESS takes values between 1 (degenerate, with just a single sample having all the weight) and
N (nondegenerate, with all samples having equal weight). A small effective sample size is
therefore indicative of degeneracy, and resampling should take place if ESSt falls below a
pre-specified threshold.

3.6.3 Summary

SMC samplers are an advanced sampling methodology that can be used for generating samples
from complicated probability distributions. They combine ideas from particle filters, a popular
technique in the target tracking community, with MCMC methods.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

126 DENSITY ESTIMATION – BAYESIAN

Key factors that affect the performance of SMC samplers are:

� the form of the L-kernels, Li(θi+1, θi);

� the form of the forward transition kernels, Kt (θt−1, θt);

� the sequence of target distributions, π1(θ), . . . , πT (θ).

Although relatively easy to code up, the advanced nature of the topic is such that SMC
samplers are not recommended for readers without experience of implementing MCMC and
particle filter methods.

The combination of particle filters with MCMC methods for general purpose Bayesian
inference is a fast moving research topic, with many interesting recent papers (Andrieu
et al., 2010).

3.7 Variational Bayes

3.7.1 Introduction

Variational Bayes methods provide an alternative means of approximating nontrivial Bayesian
posterior distributions to Bayesian sampling schemes such as MCMC algorithms. Since the
late 1990s they have been popular in the machine learning literature. They approximate the
posterior distribution by a simpler variational distribution. This variational distribution is
then used in lieu of the actual posterior distribution in subsequent calculations, such as when
determining predictive densities using (3.1) for use in a Bayes’ rule classifier.

In this section we provide a description and simple example for the use of Variational
Bayes methods for Bayesian inference. Good accounts of Variational Bayes methods are
provided in the text by Bishop (2007), and the PhD theses of Beal (2003) and Winn (2004).
Tutorial papers are provided by Jaakkola (2000) and Tzikas et al. (2008).

3.7.2 Description

Suppose that we have set of measurements (observed data) D, and a set of parameters θ. As in
standard Bayesian methods, inference is conducted with regards to the posterior distribution
represented by the probability density function p(θ|D). Variational Bayes methods seek to
approximate p(θ|D) by the probability density function q(θ), known as the variational ap-
proximation. The Kullback–Leibler (KL) divergence (also referred to as the Kullback–Leibler
cross-entropy measure) is used as the measure of closeness between q(θ) and p(θ|D)

KL(q(θ)|p(θ|D)) =
∫

q(θ)log

(
q(θ)

p(θ|D)

)
dθ

where the integrals are replaced by summations if the parameters θ are discrete-valued rather
than continuous. The KL divergence satisfies KL(q(θ)|p(θ|D)) ≥ 0 with equality if and only
if q(θ) = p(θ|D). Variational Bayes methods seek to minimise KL(q(θ)|p(θ|D)) subject to
a constrained form for q(θ). A common constraint is a factorisation of q(θ) into a product of

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

VARIATIONAL BAYES 127

marginal densities for components of θ, e.g.

q(θ) =
k∏

i=1

qi(θi) (3.59)

where θ = θ1 ∪ θ2 ∪ . . . ∪ θk and θi ∩ θ j = ∅, for i
= j (i.e. the sets are disjoint and cover θ).
Such a factorisation is sometimes referred to as a mean field approximation, due to relations
to similar procedures in statistical physics.

Rather than attempting to minimise the KL divergence directly we first define

L(q(θ)) =
∫

q(θ)log

(
p(D, θ)

q(θ)

)
dθ (3.60)

and note that

log(p(D)) = L(q(θ)) + KL(q(θ)|p(θ|D)) (3.61)

where p(D) is the marginal density of the data, and log(p(D)) is often referred to as the log-
evidence for the model. Then, since p(D) is independent of the choice for q(θ), minimising
KL(q(θ)|p(θ|D)) is equivalent to maximising L(q(θ)). Hence the Variational Bayes procedure
seeks to maximise L(q(θ)) subject to the constrained form for q(θ).

A common alternative derivation for Variational Bayes methods comes from noting that
L(q(θ)) is a lower bound on the logarithm of the marginal density p(D). Variational Bayes
methods are then motivated as attempting to maximise the lower bound on the marginal
density. Such derivations are often made without directly considering the KL divergence,
since we can write

log(p(D)) = log

(∫
p(D, θ)dθ

)

= log

(∫
q(θ)

p(D, θ)

q(θ)
dθ

)

≥
∫

q(θ)log

(
p(D, θ)

q(θ)

)
dθ = L(q(θ))

where the equality on the middle line applies for any distribution q(θ) defined over the
same domain as p(D, θ), and the inequality on the bottom line arises from a use of Jensen’s
inequality applied to the logarithmic function

E[log(T)] ≤ log(E[T])

The term variational within the expression Variational Bayes relates to the form of the
underlying optimisation procedure. A functional mapping has been defined that takes both
the desired probability density function and the variational approximation and returns as
output a real value (the KL divergence between the two). Subject to a number of constraints
(typically factorisations), Variational Bayes seeks to determine the variational approximation

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

128 DENSITY ESTIMATION – BAYESIAN

that minimises the output value. Thus it seeks an input function that minimises a functional
mapping. This general problem lies with the field of mathematics known as calculus of
variations.

3.7.2.1 The KL divergence

At this point we note that the the KL divergence is not symmetric, since for general distributions

KL(q(θ)|p(θ|D))
= KL(p(θ|D)|q(θ))

As is noted by Winn (2004), the Variational Bayes minimisation of KL(q(θ)|p(θ|D)), rather
than the reverse option of minimising KL(q(θ)|p(θ|D)), can significantly affect the properties
of the resultant approximating distribution. Minimising KL(q(θ)|p(θ|D)) favours approxi-
mations q(θ) whose probability mass lies entirely within high probability regions of p(θ|D),
without requiring that all high probability regions of p(θ|D) are covered. In contrast, min-
imising KL(p(θ|D)|q(θ)) favours approximations q(θ) whose probability mass covers all
the high probability regions of p(θ|D), even if this results in regions where q(θ) is high but
p(θ|D) is low.

Figure 3.11 illustrates this with a simple example in which the posterior distribution
p(x) is a two-component normal mixture distribution, but the approximating distribution q(x)
is only a univariate normal distribution [and therefore cannot faithfully approximate p(x)].
The solid line shows the target probability density function p(x). The dashed line shows

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

p(
x)

p(x)
q(x) chosen to minimise KL(q|p)
q(x) chosen to minimise KL(p|q)

Figure 3.11 An illustration of the distributions favoured by the alternative forms of the
Kullback–Leibler divergence, when the target density p(x) is bimodal, but the approximation
q(x) is unimodal.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

VARIATIONAL BAYES 129

the (empirically determined) normal probability density function q(x) that minimises the
KL divergence KL(q(x)|p(x)) (the empirical determination relates to searching over a grid
of values for the mean and standard deviation of the approximating normal distribution).
This distribution has almost all its probability mass within a mode of p(x). The dotted line
shows the (empirically determined) normal probability density function q(x) that minimises
KL(p(x)|q(x)). This distribution covers all the high probability regions of p(x), even though
this results in assignment of high mass to areas of low probability of p(x) (i.e. the area between
the two modes).

If the effect of potentially missing high probability regions of p(θ|D) is considered serious
in a given application, then alternative approaches to Variational Bayes methods should be
used, such as the sampling approaches considered earlier in this chapter.

3.7.3 Factorised variational approximation

Suppose that the factorised approximation given in (3.59) is used for the variational distribu-
tion. Then L(q(θ)) defined in (3.60) is given by

L(q(θ)) =
∫ (k∏

i=1

qi(θi)

)
log

(
p(D, θ)∏k
r=1 qr(θr)

)
dθ

=
∫ (k∏

i=1

qi(θi)

)
log(p(D, θ))dθ −

∫ (k∏
i=1

qi(θi)

)(
k∑

r=1

log(qr(θr))

)
dθ

=
∫ (k∏

i=1

qi(θi)

)
log(p(D, θ))dθ −

k∑
i=1

∫
qi(θi) log(qi(θi))dθi (3.62)

where the last equality arises from noting that

∫ (k∏
i=1

qi(θi)

)
log(qr(θr))dθ =

∫
qr(θr) log(qr(θr))dθr

Variational calculus can be used to provide equations for the forms of the qi(θi) at local
minima of L(q(θ)). However, a more accessible derivation of the equations is provided by
Winn (2004), and is described here. By defining

E(j)[log(p(D, θ))] =
∫

log(p(D, θ))

⎛
⎝∏

i
= j

qi(θi)dθi

⎞
⎠

which is the expectation of log(p(D, θ)) with respect to all variational distribution factors
apart from qj(θ j), the dependence of (3.62) on a specific factor qj(θ j) can be emphasised

L(q(θ)) =
∫

qj(θ j)E(j)[log(p(D, θ))]dθ j −
k∑

i=1

∫
qi(θi) log(qi(θi))dθi (3.63)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

130 DENSITY ESTIMATION – BAYESIAN

We then define a new marginal distribution

Q j(θ j) = 1

Z j
exp
(
E(j)[log(p(D, θ))]

)

where Zj is the normalisation factor that makes Qj(θ j) a probability density

Z j =
∫

exp
(
E(j)[log(p(D, θ))]

)
dθ j

This enables (3.63) to be rewritten as

L(q(θ)) =
∫

q j(θ j)log(Qj(θ j))dθ j + log(Zj) −
k∑

i=1

∫
qi(θi) log(qi(θi))dθi

Now

KL(q j(θ j)|Q j(θ j)) =
∫

qj(θ j)log

(
qj(θ j)

Qj(θ j)

)
dθ j

so

L(q(θ)) = −KL(q j(θ j)|Q j(θ j)) + log(Z j) −
∑
i
= j

∫
qi(θi) log(qi(θi))dθi

where only the first term depends on qj(θ j). Hence to maximise L(q(θ)) with respect to the
factor q j(θ j) we need only minimise the KL divergence KL(q j(θ j)|Q j(θ j)). This is done by
setting

qj(θ j) = Qj(θ j) = 1

Zj
exp
(
E(j)[log(p(D, θ))]

)

This can be expressed in terms of logarithms as

log(qj(θ j)) = E(j)[log(p(D, θ))] + constant (3.64)

where the constant is that required to normalise the distribution.
Evaluation of (3.64) requires the variational distribution factors qi(θi), i
= j. Hence

repeating the approach for each factor qi(θi) results in k coupled equations. A solution is
found by adopting an iterative estimation procedure:

� Initialise the factors q j(θ j), j = 2, . . . , k. The precise form of initialisation will vary
depending on the problem under consideration. As we will see in the example of Section
3.7.4, this initialisation does not necessarily require specification of full distributions –
summary statistics are often sufficient.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

VARIATIONAL BAYES 131

� Update each qj(θ j) in turn, for j = 1, . . . , k, each time calculating (3.64) using the most
recent estimates for qi(θi), i
= j.

� Repeat the above step until convergence.

Since each update is carried out in turn, the above procedure increases (or keeps the same) the
value of the lower bound L(θ) at each step. Convergence of the procedure can be monitored
by calculating the values of L(θ) after each iteration. However, it is important to note that
convergence may be only to a local maximum. Any reordering of the factors can be used
within the updates.

3.7.4 Simple example

To illustrate the Variational Bayes procedure we consider the same univariate normal distri-
bution problem as used to illustrate the Gibbs sampler in Section 3.4.2. The data are normally
distributed with mean μ and variance σ 2. The prior distribution for μ is N(μ0, σ 2/λ0) and the
prior distribution for τ = 1/σ 2 is the gamma distribution with shape parameter α0 and inverse-
scale parameter β0 (σ 2 therefore has an inverse-gamma distribution with shape parameter α0

and scale parameter β0).
We develop a Variational Bayes approximation to the posterior distribution of μ

and σ 2 given independent measurements x1, . . . , xn from N(μ, σ 2). The variational distri-
bution q(μ, τ) is factorised into a product of marginal distributions

q(μ, τ) = qμ(μ)qτ (τ) (3.65)

3.7.4.1 The qμ(μ) factor

Using (3.64) we have the following expression for qμ(μ)

log(qμ(μ)) =
∫

τ

q(τ)log(p(x1, . . . , xn, μ, τ))dτ + constant (3.66)

Now from (3.48) of Section 3.4.2, ignoring additive terms independent of μ and τ , we can
express log(p(x1, . . . , xn, μ, τ)) as

log(p(x1, . . . , xn, μ, τ)) = −τ

(
β0 +

∑n
i=1(xi − μ)2 + λ0(μ − μ0)

2

2

)

+
(

α0 + n + 1

2
− 1

)
log(τ) + constant (3.67)

Completing the square for μ, and noting that any additive terms independent of μ can be
absorbed into the normalisation constant within Equation (3.66) we have

log(qμ(μ)) = −1

2

(∫
τ

τq(τ)dτ

)
λn(μ − μn)

2 + constant

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

132 DENSITY ESTIMATION – BAYESIAN

where

λn = λ0 + n

μn = (λ0μ0 + nx̄)/λn (3.68)

with x̄ the mean of {x1, . . . , xn}. Hence

qμ(μ) ∝ exp

(−1

2
λnEqτ

[τ](μ − μn)
2

)
(3.69)

where Eqτ
[τ] is the expected value of τ under the variational distribution qτ (τ). By comparison

of (3.69) with the probability density function of the normal distribution, we deduce that

qμ(μ) = N
(
μ;μn, (λnEqτ

[τ])−1
)

(3.70)

i.e. qμ(μ) has a normal probability density function with mean μn and variance (λnEqτ
[τ])−1.

Conveniently, the only dependence on qτ (τ) is through Eqτ
[τ], the mean value for τ under the

qτ (τ) factor of the variational distribution. Note that the normal distribution arises entirely
from the specification in (3.64) and has not been assumed during algorithm design.

3.7.4.2 The qτ(τ) factor

For qτ (τ) we have

log(qτ (τ)) =
∫

μ

q(μ)log(p(x1, . . . , xn, μ, τ))dμ + constant

Starting from (3.67), log(p(x1, . . . , xn, μ, τ)) can be expanded and reorganised to

log(p(x1, . . . , xn, μ, τ)) = −τ
(
β0 + λn

(
μ2/2 − μnμ

)+ γn
)

+(αn − 1)log(τ) + constant

where

αn = α0 + (n + 1)/2

γn = 1

2

(
λ0μ

2
0 +

n∑
i=1

x2
i

)

Hence

log(qτ (τ)) = (αn − 1)log(τ) − τβ{Eμ[μ],Eμ[μ2]} + constant

where

β{Eμ[μ],Eμ[μ2]} = β0 + λn(Eμ[μ2]/2 − μnEμ[μ]) + γn (3.71)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

VARIATIONAL BAYES 133

This gives the following gamma distribution for the variational factor for τ

qτ (τ) = Ga(τ ;αn, βn(Eμ[μ], Eμ[μ2])) (3.72)

The only dependence on qμ(μ) is through Eqμ
[μ] and Eqμ

[μ2], the first two moments of the
variational distribution for μ. As with the qμ(μ) factor, note that the form of qτ (τ) (in the
case a gamma distribution) arises entirely from the specification in (3.64) and has not been
assumed during algorithm design.

3.7.4.3 The optimisation process

The variational modelling procedure for this example is therefore:

� Initialise the mean of the variational distribution for τ , Eqτ
[τ].

� Set Eqμ
[μ] = μn, where μn is calculated according to (3.68). This value does not change

throughout the procedure.

� Repeat the following steps until convergence:

– Set Eqμ
[μ2] = (λnEqτ

[τ])−1 + μn
2, the second moment of the normal distribution

with mean μn and variance (λnEqτ
[τ])−1, using the most recent estimate of Eqτ

[τ].

– Calculate β{Eμ[μ],Eμ[μ2]} according to (3.71) using the most recent estimate of Eqμ
[μ2],

and the constant value for Eqμ
[μ].

– Set Eqτ
[τ] = αn/β{Eμ[μ],Eμ[μ2]}, the mean of the gamma distribution with shape pa-

rameter αn and inverse-scale parameter β{Eμ[μ],Eμ[μ2]}.

Convergence of the procedure can be identified when the changes in the calculated statistics
Eqτ

[τ] and Eqμ
[μ2] are small. Alternatively the lower bound L(q(μ, τ)), defined in (3.62) can be

calculated and monitored. Given the gamma and normal distributions, this is straightforward
to calculate in this example.

On convergence of the procedure, the variational distribution factors are then as specified
in (3.70) and (3.72), using the converged statistics. This variational distribution can then be
used in lieu of the posterior distribution in all other calculations, e.g. when estimating predic-
tive densities (Equation (3.1)) for use within a classifier based upon Bayes rule. However, at
this point, it is important to note that the analytic solution is available for this problem (see
Section 3.4.2), and therefore one does not need to use the described Variational Bayes pro-
cedure. The example is included because the steps taken are similar to those that would be
adopted in more complicated problems, for which the analytic solution may not be available.

3.7.4.4 Example results

In our example, the data xi, comprise 20 points from a normal distribution of zero mean and
unit variance. The parameters of the prior distribution of μ and τ = 1/σ 2 are taken to be λ0 =
1, μ0 = 1, α0 = 1/2, β0 = 1/2.

The Variational Bayes probability density function, evaluated over a grid, is displayed
in Figure 3.12(a), alongside the actual probability density function Figure 3.12(b). A plot of
the actual error between the two [i.e. p (μ, τ |x1, . . . , x20) − q(μ, τ), so that negative values

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

134 DENSITY ESTIMATION – BAYESIAN

(a) (b) Analytic posterior density function

τ

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

μ

τ

Variational posterior density function

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

μ

Figure 3.12 Variational Bayes estimate of the probability density function (a) and the actual
probability density function (b).

indicate the variational density being larger than the actual density] is provided in Figure 3.13.
The figure highlights that the mode of the variational distribution is more compact than that
of the actual posterior distribution. A table of summary statistics for μ and σ 2 is provided
in Table 3.2, which also shows the values for the MCMC example of Section 3.4.2, which
used the same data. The variational values are close to the true values, with only the variance
estimates showing larger errors than the MCMC values.

μ

τ

Error

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 3.13 Error between the actual probability density function and the variational pos-
terior density function, i.e. p(μ, τ |x1, . . . , x20) − q(μ, τ).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

VARIATIONAL BAYES 135

Table 3.2 Summary statistics for μ and σ 2. The true values are calculated from the known
marginal posterior densities. The MCMC runs are as presented in Table 3.1. The variational
values are calculated analytically from the variational distribution.

True MCMC short run MCMC long run Variational

Mean μ 0.063 0.082 0.063 0.063
Var. μ 0.039 0.042 0.039 0.035
Mean σ 2 0.83 0.83 0.82 0.82
Var. σ 2 0.081 0.085 0.079 0.075

3.7.5 Use of the procedure for model selection

Suppose that we are interested in performing model selection between different models (e.g.
determining the most appropriate number of components in a mixture model), based upon the
observed data D. The posterior distribution over models can be written

p(m|D) = p(m)p(D|m)

p(D)

where p(m) is the prior probability of the mth model structure, and p(D|m) is the marginal
density of the data under the mth model structure. The most likely model is the one that
maximises p(m|D).3

Since

p(D|m) =
∫

p(D, θm|m)dθm =
∫

p(D|θm, m)p(θm|m)dθm

there is a penalisation of overly large model structures, through a more diffuse prior p(θm|m)

for models with a large number of degrees of freedom than models with a small number
of degrees of freedom. This effect, referred to as Occam’s razor, can reduce overfitting of
models. In addition, large models can be penalised through the model prior probabilities p(m).

Variational Bayes methods can be used for model selection, through determination of
the Variational Bayes approximation separately for each model structure. For the mth model
structure, Lm(q(θ)) is optimised with respect to the model parameters θ for that structure.
As can be seen from an extension to (3.61), each Lm(q(θ)) provides a lower bound on the
logarithm of the marginal density p(D|m). Hence the posterior model order probabilities can
be approximated as

p(m|D) ≈ p(m)exp(Lm(q(θ)))∑
m′ p(m′)exp(Lm′ (q(θ)))

Attias (2000) uses such an approach for mixture models.

3 Note that a full Bayesian treatment would integrate over all model structures. However, this may not be practical
computationally, and therefore a single model structure is generally selected.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

136 DENSITY ESTIMATION – BAYESIAN

An alternative approach for mixture models is proposed by Corduneanu and Bishop (2001).
They show that by optimising the mixture component probabilities to maximise the marginal
density of the data conditional on the mixture component probabilities [i.e.p(D|π) where π is
the mixture component probability vector], unnecessary components are suppressed. Hence,
provided that the initial number of components modelled is sufficiently large, the model
order can be ascertained without running experiments at many different model orders. A two-
step iterative procedure is adopted. Variational procedures are used to obtain lower bounds
on p(D|π). These variational procedures are alternated with an optimisation step which
maximises the lower bound with respect to π. It is found that the component probabilities for
unnecessary mixture components converge to zero.

3.7.6 Further developments and applications

Much work on Variational Bayes methods has considered problems in which there are hidden
or latent variables in addition to the model parameters. In mixture models these hidden
variables are the missing component labels zi associated with each data measurement xi (see
Chapter 2). Beal (2003) derives the Variational Bayes equations whilst explicitly separating
hidden variables from the model parameters. In this manner similarities between Variational
Bayes methods and the EM algorithm (Chapter 2) are highlighted. Specifically, the EM
algorithm is rederived using a variational approach in which there are no constraints on
the form of the variational distributions. An approximated version of the EM algorithm can
be obtained for problems in which the EM calculations are intractable, by constraining the
variational distributions, e.g. through factorisations or by using parametrised families for
the variational distributions, such as normal distributions.

In the simple example of Section 3.7.4 only the factorisation in (3.65) needed to be
specified in order to provide the Variational Bayes solution. In more complicated problems it
may not be possible to calculate the required expressions of (3.64) analytically. In such cases,
as noted by Beal (2003), one needs to assume parametric forms for some of the variational
distributions, e.g. normal distributions. Optimisation of L(q(θ)) is then with respect to the
parameters of these distributions.

Bishop (1999) develops a Bayesian version of principal components analysis (PCA) (see
Chapter 10). The approach chooses the number of principal components to retain through
a procedure known as automatic relevance determination. The procedure uses a hyperpa-
rameter (hyperparameters are parameters on the prior distributions) for each weight vector
defining a principal component, which can ‘turn off’ the effect of the weight vector, thereby
effectively reducing the number of retained principal components (initially the maximum
possible number of components is considered). A variational approach is used to determine
the posterior distributions, with additional factorisations arising automatically, on top of the
initial variational factorisation of variables.

Tzikas et al. (2008) demonstrate the application of Variational Bayes techniques to prob-
lems of linear regression and mixture models. An early introduction to variational methods,
and their use in graphical models such as hidden Markov models is provided by Jordan
(1999). McGrory and Titterington (2009) develop Variational Bayes methods for hidden
Markov models where the number of hidden states is an unknown.

Attias (2000) applies Variational Bayes methods to blind source separation, in which one
attempts to separate out linearly mixed signals. Here additional parametric constraints are

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

APPROXIMATE BAYESIAN COMPUTATION 137

placed on one of the factorised variational distributions, since for the considered problem
calculation of (3.64) without such constraints is not tractable.

Winn and Bishop (2005) (see also Winn, 2004) develop a Variational Message Passing al-
gorithm for applying variational inference to Bayesian networks. The approach is a variational
version of the belief propagation algorithms used in Bayesian networks (Pearl, 1988), and
applies to conjugate-exponential models. Conjugate-exponential models are models where
the conditional and prior distributions are all conjugate and belong to the exponential family
of distributions (Bernardo and Smith, 1994). A software package, termed VIBES (Varia-
tional Inference in Bayesian Networks), has been developed for the algorithm, with a view to
simplifying use of Variational Bayes techniques.

Ghahramani and Beal (1999) calculate a variational distribution for use as the importance
sampling proposal distribution within an importance sampler (see Section 3.3.6). The resulting
weighted samples are then a more truthful representation of the actual posterior distribution
than the variational distribution alone. The advantage of using the variational procedure is that
it provides an intelligent proposal distribution that improves the efficiency of the importance
sampler compared with using a naive proposal distribution.

3.7.7 Summary

Variational Bayes provides an alternative means of approximating full Bayesian inference
than approaches based on drawing samples from the posterior distribution (such as MCMC
sampling, see Section 3.4). The advantage over Bayesian sampling approaches is reduced
computational cost. In its commonest form, Variational Bayes uses a factorised approxi-
mation to the posterior distribution, with the forms of the factors selected to minimise the
KL divergence to the actual posterior distribution. The approach can be used for model se-
lection, and practitioners have developed and applied it successfully to a number of real
problems.

The simplifications (e.g. factorisations) made to the Variational Bayes distributions, may
have unforeseen effects on the quality of the approximation of the variational Bayes distri-
bution to the true posterior distribution. This may degrade performance when the variational
distributions are then used with a classifier, compared with a full Bayesian sampling approach.
Furthermore, the procedures often converge only to local optima. However, for some problems,
this potential reduction in performance may be acceptable given the reduced computational
cost of the procedure compared with Bayesian sampling schemes.

As was noted in the discussion on the use of the KL divergence, the procedure might not be
appropriate if the true posterior distribution is expected to have multiple modes. This is because
variational approximations often tend to represent only one of the modes. The selected mode
may vary depending on the initialisation of the variational procedures, the order of updates in
the iterative optimisation procedure, and the relative posterior probabilities of the modes.

3.8 Approximate Bayesian Computation

3.8.1 Introduction

At the heart of the use of Bayesian inference within statistical pattern recognition problems is
the likelihood function p(D|θ), i.e. the probability density function of the data measurements

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

138 DENSITY ESTIMATION – BAYESIAN

(or features) D given the (unknown) model parameters θ. The posterior distribution of the
model parameters is calculated using the likelihood function p(D|θ) and the prior distribution
p(θ) via Bayes’ theorem

p(θ|D) ∝ p(D|θ)p(θ)

In all cases considered so far the functional form of the likelihood p(D|θ) is known, and may
be evaluated. However, in some complex scenarios (e.g. problems in statistical genetics and
environmental studies) the likelihood will be analytically or computationally intractable (e.g.
it might involve summing probabilities over lots of potential hidden states). This prevents
the use of analytic Bayesian inference, and also use of the Bayesian sampling schemes
and Variational Bayes techniques considered earlier in this chapter. This is because these
techniques all require knowledge of, or evaluation of, the likelihood function.

Arising initially from the field of statistical genetics (Tavaré et al., 1997; Pritchard et al.,
1999; Beaumont et al., 2002) Approximate Bayesian Computation (ABC) techniques provide
a means for drawing samples from a posterior distribution without evaluating the likelihood
function. This is achieved through the use of computer simulation models, which simulate
the measurements that could be received for a given set of parameters. Rather than evaluating
the likelihood function, one draws samples from the likelihood distribution. As in standard
Bayesian sampling algorithms, potential samples from the posterior distribution are proposed.
However, when accepting, rejecting and weighting these samples, rather than calculating the
likelihood function, the algorithms compare simulated data with the actual measured data.

Over the next few sections we introduce three of the most common forms of ABC samplers,
namely ABC Rejection Sampling, ABC MCMC Sampling, and ABC Population Monte
Carlo Sampling. Unlike the outputs of previously considered Bayesian sampling schemes, the
resulting ABC samples cannot be used within a Bayesian classifier in the manner described
in Section 3.3.3. This is because the classification rule requires evaluation of the likelihood
function for each class [Equation (3.40)], which is the very thing that ABC sampling algorithms
have been designed to avoid. One possibility is to build the classification decision into an
ABC sampling algorithm. Some model selection ABC algorithms are therefore discussed
in Section 3.8.5. Model selection in ABC algorithms is very much an active research area
(Didelot et al., 2011).

3.8.2 ABC Rejection Sampling

Suppose that we wish to draw samples from a posterior distribution p(θ|D), arising from a
prior distribution p(θ) and a likelihood distribution p(D|θ), where the measurement data D
is discrete. A rejection sampling procedure (see Section 3.3.4) for drawing samples from the
posterior distribution is:

1. Sample a point θ from p(θ).

2. Accept θ with probability p(D|θ).

This is continued until a sufficient number of samples have been accepted. To see that this is
rejection sampling, note that in the notation of Section 3.3.4

g(θ) = p(θ)p(D|θ), s(θ) = p(θ), g(θ)/s(θ) = p(D|θ).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

APPROXIMATE BAYESIAN COMPUTATION 139

Therefore, since the data D are discrete, the upper bound A for g(θ)/s(θ) is 1. Hence we
accept the sample if the point drawn from the uniform distribution on [0, 1] is less than or
equal to p(D|θ), i.e. with probability p(D|θ).

Now suppose that we cannot calculate the likelihood function p(D|θ), but can simulate
measurements from it (e.g. via a computational model). In such circumstances the rejection
sampling procedure for discrete measurement data can be replaced by the following likelihood-
free procedure:

1. Sample a point θ from p(θ).

2. Simulate D′ from the measurement model using the sampled parameters θ.

3. Accept θ if D′ = D.

That the above procedure is equivalent to the rejection sampling algorithm is clear, since
the probability of generating a discrete data sample D′ equal to D is p(D|θ), as required.
However, the approach is not applicable if we have continuous data measurements, because
the simulated data must be equal to the measured data for a sample to be accepted, which
occurs with zero probability in the continuous case. In such cases an approximate procedure
is needed, which leads to the following version of ABC Rejection Sampling (applicable to
both discrete and continuous measurements):

1. Sample a point θ from p(θ).

2. Simulate D′ from the measurement model using the sampled parameters θ.

3. Accept θ if ρ(D,D′) ≤ ε.

Here ρ(D,D′) is a distance metric between the actual measurements D and the simulated
measurements D′ (e.g. the Euclidean distance), and ε > 0 is the ABC distance tolerance.
The samples drawn from Rejection ABC Sampling are then approximate samples from the
posterior distribution, with the quality of the approximation increasing as ε > 0 decreases.
The choice of ε is a trade-off between accuracy of the approximation, and the computational
effort. Clearly, using a very small value of ε with continuous data is likely lead to a large
number of samples being rejected, making the procedure computationally expensive. If ε =
0 we recover the original procedure for discrete measurement data.

To reduce the computational expense of the procedure for medium-to-high dimensional
data D it is common to consider lower-dimensional summary statistics of the data, rather than
the full data. Suppose that we calculate summary statistics S(D) for the dataset D. The ABC
Rejection Sampling procedure becomes:

1. Sample a point θ from p(θ).

2. Simulate D′ from the measurement model using the sampled parameters θ.

3. Calculate summary statistics S(D′) from the simulated data D′.

4. Accept θ if ρS(S(D), S(D′)) ≤ ε.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

140 DENSITY ESTIMATION – BAYESIAN

Here the distance metric ρS(S, S′) operates on the summary statistics. If the summary statistics
are sufficient statistics4 for θ then this approach introduces no further approximation over the
previous version based upon the full measurements. If the summary statistics are not sufficient,
then it represents a further approximation, the quality of which will vary depending on how
close they are to being sufficient.

Whilst the ABC rejection algorithm is easy to implement, it suffers from all the disad-
vantages of standard rejection sampling, in particular a high rejection rate if the prior and
posterior distributions are not similar. This problem is exacerbated by the extra approxima-
tions introduced by the ABC sampling procedure. When the computational cost of generating
samples from the measurement distribution is high, this can encourage practitioners to
increase the acceptance threshold ε, with a consequent degradation in the quality of the
sample approximations.

3.8.3 ABC MCMC Sampling

The computational inefficiency of ABC Rejection Sampling motivates the development of
ABC versions of more sophisticated Bayesian sampling schemes. One such algorithm is a
likelihood-free version of Metropolis–Hastings MCMC sampling (see Section 3.4.3), first
proposed by Marjoram et al. (2003).

As with the preceding discussion on ABC Rejection Sampling, suppose that we are
seeking to draw samples from a posterior distribution p(θ|D), where the measurement data D
are continuous or discrete, the prior distribution is given by p(θ), and the likelihood function
p(D|θ) cannot be calculated analytically, but can have measurements simulated from it. We
suppose that we can calculate summary statistics S(D) from the data D.

We consider the Metropolis–Hastings algorithm, where θ t is our current sample from the
posterior, and our proposal distribution is given by q(θ|θ t). The next iteration of the ABC
MCMC (Metropolis–Hastings) algorithm is as follows:

1. Draw a sample θ from the proposal distribution q(θ|θ t).

2. Simulate D′ from the measurement model using the sampled parameters θ.

3. Calculate summary statistics S(D′) from the simulated data D′.

4. If ρS(S(D), S(D′)) ≤ ε then proceed to step 5, otherwise set θ t+1 = θ t and jump to
step 6.

5. Set θ t+1 = θ with probability a(θ t, θ) where

a(θ t, θ) = min

(
1,

p(θ)q(θ t |θ)

p
(
θ t) q(θ|θ t)

)

Otherwise set θ t+1 = θ t .

6. If more samples are required repeat the process starting from θ t+1.

4 Sufficient statistics are summary statistics of a dataset which are such that the distribution of the data is
independent of the parameters of the underlying distribution when conditioned on the statistic (Bernardo and Smith,
1994).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

APPROXIMATE BAYESIAN COMPUTATION 141

Note that as in ABC Rejection Sampling we have used a distance metric ρS(S, S′) operating
on the summary statistics, and an ABC distance tolerance ε > 0.

For discrete data D, the validity of a nonapproximated version of the above sampler can
be proved by showing detailed balance [Equation (3.46)]. In the nonapproximated version,
ρS(S(D), S(D′)) = ||D′ − D|| and ε = 0 (i.e. to accept a sample we require D′ = D as in
the first likelihood-free rejection sampling algorithm). The transition kernel from θ to θ′ for a
non-trivial move (i.e. an accepted move, θ′
= θ) is therefore given by

K(θ, θ′) = q(θ′|θ)p(D|θ′)a(θ, θ′)

and therefore

p(θ|D)K(θ, θ′) = = p(D|θ)p(θ)

p(D)
q(θ′|θ)p(D|θ′)a(θ, θ′)

= p(D|θ′)p(θ′)
p(D)

p(θ)

p(θ′)
q(θ′|θ)

q(θ|θ′)
q(θ|θ′)p(D|θ)a(θ, θ′)

= p(θ′|D)q(θ|θ′)p(D|θ)
q(θ′|θ)p(θ)

q(θ|θ′)p(θ′)
min

(
1,

q(θ|θ′)p(θ′)
q(θ′|θ)p(θ)

)

= p(θ′|D)q(θ|θ′)p(D|θ)a(θ′, θ)

= p(θ′|D)K(θ′, θ)

i.e. we have detailed balance.
A practical difficulty with the ABC MCMC Sampling scheme is that it can become stuck

in the tails of the distribution for long periods of time, with the result that the algorithm needs
to be run for long periods to obtain good mixing. The problem arises because in the tails the
simulated data are likely to be a poor match to the measured data (which are likely to have
been generated from parameters that are not in the tails of the distribution) and therefore the
moves will be rejected.

3.8.4 ABC Population Monte Carlo Sampling

Some of the difficulties with ABC algorithms can be avoided if we gradually move to the
distribution of interest, via a sequence of target distributions, as in SMC samplers (Section
3.6). The sequence of target distributions is the sequence of ABC approximations of the
posterior distributions with different distance tolerances, ε. Specifically, the tth distribution
in the sequence uses an ABC distance tolerance of εt, where the εt, t = 1, . . . , T are a strictly
decreasing sequence, ε1 > ε2 > · · · > εT > 0. εT is the final tolerance, set sufficiently small
that the ABC posterior approximation defined by it should be a good approximation to the
actual posterior distribution. The motivation behind such a tempered sequence of tolerances
is that for larger tolerances the samples will move around more, because the simulated data

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

142 DENSITY ESTIMATION – BAYESIAN

are more likely to be accepted. This helps initial mixing. As the distance tolerance decreases
the samples then focus in on the actual posterior distribution.

An example of such an approach is the ABC Population Monte Carlo (PMC) algorithm
(Beaumont et al., 2009; Toni et al., 2009). Using the same notation as earlier in this section,
the ABC PMC algorithm is as follows:

� Initialisation: Perform ABC Rejection Sampling with (fairly large) ABC tolerances, ε1.
Continue until N samples {θ(1)

1 , . . . , θ
(N)

1 } have been accepted (remembering that this
will take more than N steps, since many proposed samples will be rejected). Assign
equal weights, w(s)

1 = 1/N, s = 1, . . . , N, to the samples.

� For iterations t = 2, . . . , T:

– For i = 1, . . . , N:

1. Select θ′ from the previous population {θ(1)

t−1, . . . , θ
(N)

t−1} according to the probabil-

ities {w(1)

t−1, . . . , w(n)

t−1}, i.e. set θ′ = θ
(j)
t−1 with probability w(j)

t−1.

2. Perturb the sample according to the perturbation kernel ψ(θ′, θ), giving an updated
sample θ′′. An example perturbation kernel is a multivariate normal distribution,
centred on the point θ′.

3. Simulate D′ from the measurement model using the sampled parameters θ′′.

4. Calculate summary statistics S(D′) from the simulated data D′.

5. If ρS(S(D), S(D′)) ≤ εt then proceed to step 6, otherwise return to step 1.

6. Set θ(i)
t = θ′′.

7. Using a sequential importance sampling argument set:

W (i)
t = p(θ(i)

t)∑N
s=1 w(s)

t−1ψ(θ
(s)
t−1, θ(i)

t)

where ψ(θ
(s)
t−1, θ

(s)
t) is the probability density function of the perturbation kernel,

e.g. ψ(θ
(s)
t−1, θ(s)

t) = N(θ(s)
t ; θ

(s)
t−1,�) for a multivariate normal perturbation with

covariance matrix �.

– Normalise the weights as w(i)
t = W (i)

t /(
∑

n
s=1 W (s)

t), i = 1, . . . , N.

3.8.5 Model selection

The samples output by ABC samplers can be used to estimate summary statistics on the
parameters of interest. However, as has been noted in the initial discussion, they cannot
be used within a Bayesian classifier as described in Section 3.3.3, since these classifiers
require evaluation of the likelihood function for each class [Equation (3.40)]. Such an
evaluation of the likelihood function is the very thing that ABC algorithms have been designed
to avoid.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

APPROXIMATE BAYESIAN COMPUTATION 143

However, in some circumstances it is possible to use a model selection algorithm to
determine the class (i.e. model) to which an object belongs. An ABC rejection model selection
algorithm has been proposed by Grelaud et al. (2009), and is as follows:

� For s = 1, . . . , N

1. Sample a candidate model m′ according to the prior model probabilities, {π1, . . . ,
πM}, where M is the number of models.

2. Sample a point θ from p(θ|m′), the prior distribution for the parameters of model
m′.

3. Simulate D′ from the measurement model for the m′th model using the sampled
parameters θ.

4. Calculate summary statistics S(D′) from the simulated data D′.

5. If ρS(S(D), S(D′)) ≤ ε accept the sample and set m(s) = m′, θ(s) = θ. Otherwise
reject and return to step 1.

Once N points have been accepted, the marginal model probabilities can be approximated as
follows

P(m = m′|D) ≈ 1

N

N∑
s=1

I(m(s) = m′)

The object can then be assigned to the class with the maximum marginal model probability.
The above approach is designed for situations where the class measurement distributions

have different parametric models, rather than different parameter values of the same underlying
parametric model. However, in a general discrimination problem, the approach could still be
used if the prior parameter distributions, p(θ|m), are infact posterior parameter distributions,
p(θ|D(m), m), estimated using separate training datasets,D(m), for each model type. Estimation
of the posterior parameter distributions will need to have been through earlier ABC sampling
procedures.

Model selection versions of the ABC PMC algorithm have been proposed by Toni et al.
(2009) and Toni and Stumpf (2010). However, Didelot et al. (2011) add a note of caution, in
that there is bias when ABC is used to approximate the Bayes Factor5 between two models,
with this bias arising from the use of sufficient statistics within the ABC procedures (Robert
et al., 2011).

3.8.6 Summary

ABC algorithms are a fast moving field of Bayesian statistics, developed for use in situations
where the likelihood function is analytically or computationally intractable, but where it is
possible to simulate data measurements from it. ABC sampling algorithms propose sam-
ples using similar procedures to standard Bayesian sampling, but accept, reject and weight

5 The Bayes Factor is the posterior to prior odds ratio for two competing models, and can be used for model
comparison (Bernardo and Smith, 1994).

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

144 DENSITY ESTIMATION – BAYESIAN

those samples by comparing simulated data measurements with the actual measured data,
rather than evaluating likelihood functions. The comparisons are typically based on summary
statistics of the data, which may introduce unacceptable errors if they are far from sufficient
statistics. Use of ABC for model selection, and therefore classification, is an active research
area, and many improvements to the outlined ABC rejection model selection algorithm can
be expected.

3.9 Example application study

The problem
This application concerns automatic restoration of damaged and contaminated images (Everitt
and Glendinning, 2009).

Summary
The approach uses a semi-parametric model to recover an underlying image from damaged
and contaminated data. A Bayesian approach is adopted with an MCMC sampling algorithm
used to estimate both parametric-components describing known physical characteristics of
the image (such as lighting effects) and also weights associated with a more flexible semi-
parametric component describing the underlying image.

The data
The approach is used to restore a corruption of the standard Lena image (an image used com-
monly for demonstrating performance of image processing algorithms), with the corruption
consisting of random missing pulses (ranging from 50 to 95% missing) and a global nonlinear
lighting effect. The approach is also used to detect eye blink artifacts in electroencephalo-
graphic (EEG) imagery.

Model
The approach describes the value of an image Y(x, z) at location (x, z) by

Y (x, z) = f (β, x, z) + h(x, z) + Z(x, z)

where Z(x, z) represents independent identically distributed white noise, f (β, x, z) is the
parametric component, and h(x, z) is a locally smooth component, describing the underlying
image.

For the Lena image, a nonlinear lighting effect is modelled by the parametric component.
For the EEG application, the effect of eye blink artifacts is incorporated via consideration
of two alternative models for the parametric component, one containing an eye-blink effect,
and the other a no-blink model. For each EEG image, the posterior model probability is
used to select the best fit, and therefore to determine whether an eye blink artifact has
occurred.

Algorithm
The nonparametric component is modelled using basis function expansions. Prior distribu-
tions are specified for the basis function weights, and for the parameters of the parametric

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

APPLICATION STUDIES 145

components. A Metropolis-within-Gibbs MCMC procedure (see Section 3.4.3) is used to draw
samples from the posterior distribution. Point estimates for the semi-parametric model, and
therefore the underlying image, are obtained from the posterior sample means. An additional
importance sampling step is used to estimate the posterior model probabilities in the EEG
application.

Results
The approach recovers the underlying Lena image, with substantial distortions only appearing
at extreme levels of missing pixels. Applied to EEG data, the approach consistently assigns
the largest posterior model probability to the correct instance of with or without eye blink
artifacts.

3.10 Application studies

A compilation of examples of applications of Bayesian methodology is given in the book
by French and Smith (1997). This includes applications in clinical medicine, flood damage
analysis, nuclear plant reliability and asset management. Lock and Gelman (2010) use ana-
lytic Bayesian inference to integrate previous election results and pre-election polls to make
predictions on the 2008 US election.

As computational power continues to increase, use of Bayesian sampling techniques in
real applications has increased dramatically:

� Copsey and Webb (2000) use an MCMC treatment of normal mixture models to classify
mobile ground targets in inverse synthetic aperture radar (ISAR) images.

� Davy et al. (2002) use MCMC methods to classify chirp signals, with application to
radar target identification, and knock detection in car engines.

� Bentow (1999) develops an MCMC algorithm to assess the stability of ecological
ordinations. These are orderings of environmental species (or sites), such that similar
species are placed close to one another, and dissimilar species are kept further apart.
Ecological ordination is used by ecologists to study the effects of environmental factors
on communities.

� Lyons et al. (2008) use Bayesian inference with an MCMC sampler to estimate posterior
distributions for chloroform concentrations in tap water and ambient household air,
given biomonitoring data collected at a later time.

� Everitt and Glendinning (2009) develop an MCMC algorithm for automatic restoration
of damaged and contaminated images, and use the approach to identify blinking artifacts
in EEG images.

� Lane (2010) considers a Bayesian approach to super-resolution. Both analytic and
MCMC schemes are developed. The work has application to automatic target detection
and recognition using radar imagery.

� Maskell (2008) considers the use of Bayesian models for information fusion, includ-
ing an example of classification of objects from sequences of images using particle
filters.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

146 DENSITY ESTIMATION – BAYESIAN

� Numerous applications of the particle filtering methodology for sequential
parameter estimation are discussed in the book by Doucet et al. (2001). These appli-
cations include tracking of manoeuvring objects, monitoring of semiconductor growth
using spectroscopic ellipsometry, and tracking of human motion with relevance to
gesture recognition.

� Montemerlo et al. (2003) use a particle filter within their FastSLAM algorithms for
simultaneous localisation and mapping (SLAM). SLAM is a means of navigation,
in which an autonomous vehicle travelling through an unknown environment builds
a map of the environment, while simultaneously estimating its own position within
the map. Low accuracy motion estimates provided by inertial navigation systems are
supplemented by relative measurements taken of a number of landmarks of oppor-
tunity, and the map of the environment is built up by estimating the positions of
the landmarks.

� SMC samplers have been used for financial modelling. Jasra et al. (2011) discuss
modelling of stochastic volatility in stock market data. Jasra and Del Moral (2011)
discuss how SMC methods can be used for option pricing.

� Lane et al. (2009), develop an ABC version of an SMC sampler for the problem
of source term estimation (STE) for chemical, biological, radiological and nuclear
(CBRN) defence. STE relates to using sensor measurements to infer the locations,
times, amounts and types of material in multiple CBRN releases.

� Toni and Stumpf (2010) use a model selection ABC PMC algorithm to ascertain whether
different strains of the influenza virus share the same spread dynamics.

3.11 Summary and discussion

The approaches developed in this chapter towards discrimination have been based on
estimation of the class-conditional density functions using Bayesian techniques. Unlike the
maximum likelihood approaches of Chapter 2, these approaches take into account param-
eter variability due to data sampling. The procedures are more complicated than those in
Chapter 2, since a Bayesian approach to density estimation can only be treated analytically
for simple distributions. For problems in which the normalising integral in the denominator of
the expression for a posterior density cannot be evaluated analytically, either Bayesian sam-
pling approaches must be employed or approximations (such a variational approximations)
must be used.

Bayesian sampling methods, including the Gibbs sampler, can be applied routinely
allowing efficient practical application of Bayesian methods, at least for some problems.
They work by drawing samples from the posterior distribution. There are many developments
of the basic methodology that has been presented, particularly with respect to computa-
tional implementation of the Bayesian approach. These include strategies for improving
MCMC; monitoring convergence; and adaptive MCMC methods. A good starting point is
the book by Gilks et al. (1996), and other texts mentioned within this chapter. Develop-
ments of the MCMC methodology to problems when observations arrive sequentially and
one is interested in performing inference online are described by Doucet et al. (2001). A key
difficulty with developing MCMC solutions is that it can be hard to spot mistakes made

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

NOTES AND REFERENCES 147

when coding the algorithms, since these bugs can easily be confused with sampling variabil-
ity and convergence difficulties. The WinBUGS software (Lunn et al., 2000) addresses this
issue by removing the need for the developer to explicitly calculate and code the posterior
distributions.

Variational Bayes methods have proved popular in the machine learning community since
the late 1990s, and provide an alternative approach to sampling methods for approximating
Bayesian posterior distributions. A disadvantage with variational approaches is that it can be
hard to ascertain the significance of the variational approximations.

A field known as Approximate Bayesian Computation addresses Bayesian inference in
problems where the measurement likelihood is analytically or computationally intractable,
but can be sampled from. The practical utility of such technology for discrimination problems
is still an area requiring further research.

Approaches to discrimination can make use of unlabelled test samples to refine models.
The procedure described in Section 3.5 implements an iterative procedure to classify test data.
Although the procedure is attractive in that it uses the test data to refine knowledge about
the parameters, its iterative nature may prevent its application in problems with real-time
requirements.

3.12 Recommendations

As with the estimative approach to density estimation considered in Chapter 2, an approach
based on Bayesian estimates of class-conditional densities is not without its dangers. If
incorrect assumptions are made about the forms of the distributions in the Bayesian approach
(in particular the likelihood distributions) then we cannot hope to achieve optimal performance,
no matter how sophisticated the scheme for estimating the posterior distribution. Indeed,
often pattern recognition and machine learning practitioners wrongly criticise the Bayesian
methodology as being inadequate for a given problem, when it is in fact the underlying
measurement model that is wrong. Bayesian models may considerably out-perform estimative
approaches if the amount of training data is small, and are therefore to be recommended in such
situations. Bayesian sampling schemes are recommended for dealing with complex posterior
distributions.

3.13 Notes and references

Bayesian learning is discussed in many of the standard pattern recognition texts including
Fu (1968), Fukunaga (1990), Young and Calvert (1974) and Hand (1981a). Geisser (1964)
presents methods for Bayesian learning of means and covariance matrices under various
assumptions on the parameters. Bayesian methods for discrimination are described by Lavine
and West (1992) and West (1992).

More detailed treatments of Bayesian inference than provided in this text are given by
O’Hagan (1994) and Bernardo and Smith (1994); see also Robert (2001), Lee (2004) and
Gelman et al. (2004).

MCMC methods and sampling techniques are described in books by Gilks et al. (1996),
M.-H. Chen et al. (2000), Robert and Casella (2004) and Gamerman and Lopes (2006). Bishop
(2007) considers Variational Bayes methods in some detail.

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

148 DENSITY ESTIMATION – BAYESIAN

Exercises

1. Consider the Gauss-Wishart posterior distribution of Section 3.2.3

p(μ, K|x1, . . . , xn) = Nd(μ|μn, λnK)Wid(K|αn,βn)

Show that the marginal posterior distribution for μ is

p(μ|x1, . . . , xn) = Std

(
μ;μn,

(
αn − d − 1

2

)
λnβ

−1
n , 2αn − (d − 1)

)

where Std is the d-dimensional generalisation of the univariate Student distribution [see
Equation (3.20) for the definition]. Hints: First express the desired distribution as the
integral with respect to K of the full posterior distribution. Make use of (3.25) to enable the
integral to be calculated via comparison with the probability density function of a Wishart
distribution. Then, following a similar procedure to the derivation of the predictive density
in Section 3.2.3, make use of Sylvester’s determinant theorem [Equation (3.31)] to derive
the required result.

2. Show that if γ has the gamma distribution with shape parameter α and inverse-scale
parameter β, i.e. a probability density function of

p(γ) = βα

�(α)
γ α−1 exp(−βγ), γ > 0

then θ = 1/γ has an inverse-gamma distribution with shape parameter α and scale param-
eter β, i.e. a probability density function of

p(θ) = βα

�(α)
θ−α−1 exp

(−β

θ

)
, θ > 0

3. Show that rejection sampling (see Section 3.3.4) gives rise to exact samples from the
required distribution. Hint: evaluate the cumulative distribution function P(x ≤ x0) as
P(x ≤ x0|x is accepted), which can be expressed as P(x ≤ x0, x is accepted)/
P(x is accepted).

4. Consider the block decomposition of the d × d non-singular matrix A

A =
(

A1,1 A1,2

A2,1 A2,2

)

where A1,1 is a d1 × d1-dimensional matrix, A1,2 is a d1 × (d − d1)-dimensional matrix,
A2,1 is a (d − d1) × d1-dimensional matrix, and A2,2 is a (d − d1) × (d − d1)-dimensional
matrix. Show that the inverse of such a matrix is

A−1 =
(

A−1
c,1 −A−1

1,1A1,2A−1
c,2

−A−1
2,2A2,1A−1

c,1 A−1
c,2

)

P1: QTA/XYZ P2: ABC

JWST102-c03 JWST102-Webb September 6, 2011 15:33 Printer Name: Yet to Come

EXERCISES 149

where:

Ac,1 = A1,1 − A1,2A−1
2,2A2,1

Ac,2 = A2,2 − A2,1A−1
1,1A1,2

5. The transition kernel in MCMC algorithms should be such that the stationary (limiting)
distribution of the Markov chain is the target distribution. For continuous variables, we
require

f (θ′) =
∫
θ

f (θ)K(θ, θ′)dθ (3.73)

Show that if a transition kernel K(θ, θ′) satisfies detailed balance with respect to f (θ)

f (θ)K(θ, θ′) = f (θ′)K(θ′, θ)

then (3.73) is met. Show further that the Gibbs sampler with transition kernel

K(θ, θ′) =
d∏

i=1

f (θ ′
i |θ ′

1, . . . , θ
′
i−1, θi+1, . . . , θd)

satisfies (3.73).

6. For the distribution illustrated by Figure 3.4, show that a suitable linear transformation of
the coordinate system, to new variables φ1 and φ2, will lead to an irreducible chain.

7. For the Variational Bayes example of Section 3.7.4, determine an exact expression for the
upper bound L(q(μ, τ)), defined in (3.62). Implement the Variational Bayes optimisation
procedure and monitor the convergence of L(q(μ, τ)).

8. Implement ABC Rejection Sampling and ABC MCMC algorithms for the univariate
normal distribution example considered in Sections 3.4.2 and 3.7.4. Comment on the
relative efficiencies of the approaches.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

4

Density estimation –
nonparametric

Nonparametric methods of density estimation can provide class conditional density estimates
for use in Bayes’ rule. k-nearest neighbour methods, histogram approaches, Bayesian networks,
kernel methods of density estimation and copulas are introduced in this chapter. Methods for
reducing the computational cost of k-nearest-neighbour classifiers are discussed in detail.

4.1 Introduction

Many of the classification methods discussed in this book require knowledge of the class-
conditional probability density functions. Given these functions, we can apply Bayes rule or
the likelihood ratio test (see Chapter 1) and make a decision as to which class a pattern x should
be assigned to. In some cases we may be able to make simplifying assumptions regarding
the form of the density function; for example, that it is normal or it is a normal mixture (see
Chapter 2). In these cases we are left with the problem of estimating the parameters that
describe the densities from available data samples.

In many cases, however, we cannot assume that the density is characterised by a set of
parameters and we must resort to nonparametric methods of density estimation; that is, there
is no formal structure for the density prescribed. There are many methods that have been
used for nonparametric density estimation and in the following sections we shall consider five
of them, namely k-nearest-neighbour, the histogram approach with generalisation to include
Bayesian networks, kernel-based methods, expansion by basis functions and copulas.

4.1.1 Basic properties of density estimators

First, we shall consider some basic properties of density estimators, that will be referred to at
various points in the text.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

INTRODUCTION 151

4.1.1.1 Unbiasedness

If X1, . . . , Xn are independent and identically distributed d-dimensional random variables
with continuous density p(x)

p(x) ≥ 0
∫

Rd

p(x)dx = 1 (4.1)

the problem is to estimate p(x) given measurements on these variables.
If the estimator p̂(x) also satisfies (4.1), then it is biased (Rosenblatt, 1956). That is, if we

impose the condition that our estimator is itself a density [in that it satisfies (4.1)], it is biased

E[p̂(x)] �= p(x)

where

E[p̂(x)] =
∫

p̂(x|x1 . . . xn)p(x1) . . . p(xn)dx1 . . . dxn

the expectation over the random variables X1, . . . , Xn. Although estimators can be derived
that are asymptotically unbiased, E[p̂(x)] → p(x) as n → ∞, in practice we are limited by
the number of samples that we have.

4.1.1.2 Consistency

There are other measures of discrepancy between the density and its estimate. The (pointwise)
mean squared error (MSE) is defined by

MSEx(p̂) = E[(p̂(x) − p(x))2]

where the subscript x is used to denote that MSE is a function of x. The above equation may
be written

MSEx(p̂) = var(p̂(x)) + {bias(p̂(x))}2

where

var(p̂(x)) = E[(p̂(x) − E[p̂(x)])2]

bias(p̂(x)) = E[p̂(x)] − p(x)

If MSEx → 0 for all x ∈ R
d , then p̂ is a pointwise consistent estimator of p in the quadratic

mean.
Global measures of accuracy are the integrated squared error (ISE)

ISE =
∫

[p̂(x) − p(x)]2dx

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

152 DENSITY ESTIMATION – NONPARAMETRIC

and the mean integrated square error (MISE)

MISE = E

[∫
[p̂(x) − p(x)]2dx

]

with the MISE representing an average over all possible datasets. Since the order of the
expectation and the integral may be reversed, the MISE is equivalent to the integral of the
MSE, i.e. the sum of the integrated variance and the integrated squared bias

MISE =
∫

var(p̂(x))dx +
∫

{bias(p̂(x))}2dx

4.1.1.3 Density estimates

Although one might naı̈vely expect that density estimates have to satisfy the property (4.1),
this need not be the case. We shall want them to be pointwise consistent, so that we can get
arbitrarily close to the true density given enough samples. Consideration has been given to
density estimates that may be negative in parts in order to improve the convergence properties.
Also, as we shall see in a later section, the integral constraint may be relaxed. The k-nearest-
neighbour density estimate has an infinite integral.

4.2 k-nearest-neighbour method

4.2.1 k-nearest-neighbour classifier

The k-nearest-neighbour classifier is a popular classification technique. This popularity is
primarily due to its simple, and intuitively appealing, specification. The k-nearest neighbour
procedure for classifying a measurement x to one of C classes is as follows:

� Determine the k nearest training data vectors to the measurement x, using an appropriate
distance metric (see Section 4.2.3).

� Assign x to the class with the most representatives (votes) within the set of k nearest
vectors.

The only aspects requiring pre-specification are the number of neighbours, k, the distance
metric, and the training dataset.

4.2.1.1 k-nearest-neighbour decision rule

Suppose that our training dataset consists of pairs (xi, zi), i = 1, . . . , n, where xi is the
ith training data vector, and zi is the corresponding class indicator (such that zi = j if the
ith training data vector is an example from class ωj). Let the distance metric between two
measurements x and y be denoted d(x, y). An example would be the Euclidean distance
metric, d(x, y) = |x − y|, with other metrics discussed in Section 4.2.3. The Euclidean metric
is only appropriate if the features (components or coordinates) making up a data vector have
similar scales. If this is not the case, then the features that make up the data vectors can

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 153

be rescaled (e.g. by a linear scaling so that each feature has unit standard deviation when
considered across all available training vectors irrespective of class).

The basic implementation of the k-nearest-neighbour classifier applied to a test sample
x first calculates δi = d(xi, x), for i = 1, . . . , n. We then determine the indices {a1, . . . , ak}
of the k smallest values of δi (such that δai ≤ δ j for all j �∈ {a1, . . . , ak}, i = 1, . . . , k, and
δa1 ≤ · · · ≤ δak). We define kj to be the number of patterns (data vectors) within the nearest
set of k whose class is ωj

k j =
k∑

i=1

I(zai = j) (4.2)

where I(a = b) is the indicator function, equal to one if a = b and 0 otherwise. The k-nearest-
neighbour decision rule is then to assign x to ωm if

km ≥ k j for all j (4.3)

Such a rule could produce more than one winning class, i.e. if max
j=1,...,C

k j = k′, there could be

multiple j ∈ {1, . . . , C} for which kj = k′. There are several ways of breaking such ties:

� Ties may be broken arbitrarily.

� x may be assigned to the class of the nearest neighbour.

� x may be assigned to the class, out of the classes with tying values of k′, that has nearest
mean vector to x (with the mean vector calculated over the k′ samples).

� x may be assigned to the most compact class of the tying classes, i.e. to the one for
which the distance to the k′th member is the smallest. This does not require any extra
computation.

Dudani (1976) proposes a distance-weighted rule in which weights are assigned to the k nearest
neighbours, with closest neighbours being weighted more heavily. A pattern is assigned to the
class for which the weights of the representatives among the k neighbours sum to the greatest
value. Here we replace (4.2) with

k′
j =

k∑
i=1

wai I(zai = j)

and use these weighted values within the decision rule (4.3). A specification for the weights is

wa j =
⎧⎨
⎩

δak − δa j

δak − δa1

if δak �= δa1

1 if δak = δa1

in which the weight varies from a minimum of zero for the most distant (i.e. kth neighbour)
to a maximum of one for the nearest neighbour. Alternatively, the reciprocals of the distance
between the test pattern and its k neighbours can be used

waj = 1

δaj

if δa j �= 0

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

154 DENSITY ESTIMATION – NONPARAMETRIC

For this second case, we would assign to the nearest neighbour if we have δa1 = 0 (i.e. an
exact match).

When assessing the k-nearest-neighbour classifier on a pattern recognition problem, it is
important to have a realistic split between training and test data. If there is overlap between the
training and test data, the resulting performance estimates may be severely over-optimistic.
Indeed, if the test sample is actually in the training data, then the nearest neighbour will be
the test sample sample being classified, which is clearly undesirable.

4.2.1.2 Choice of k

The number of neighbours k is selected as a trade-off between choosing a value large enough
to reduce the sensitivity to noise, and choosing a value small enough that the neighbourhood
does not extend to the domain of other classes. Typically a procedure such as cross-validation
(see Chapter 13) is used to optimise the choice of k.

4.2.1.3 Nearest-neighbour classifier

If k = 1 we have the nearest-neighbour classifier, which assigns a test sample to the class of its
nearest neighbour in the training data. Such a classifier is commonly used. At the very least,
it is recommended as a baseline classifier, to which the performance of more complicated
classifiers should be compared.

If the Euclidean distance metric is used

d(xi, x)2 = |xi − x|2 = xT x − 2xT xi + xT
i xi

and therefore the nearest-neighbour rule is to assign the test sample to the class of the training
data vector xm satisfying

xT xm − 1

2
xt

mxm > xT xi − 1

2
xt

ixi for all i �= m

Thus the rule has the form of a piecewise linear discriminant function, as considered in
Section 1.6.3.

4.2.2 Derivation

4.2.2.1 Density estimates

The k-nearest-neighbour rule is in fact equivalent to applying Bayes’ rule to class conditional
densities estimated using a simple nonparametric method of density estimation.

The probability that a point x′ falls within a volume V centred at a point x is given by

θ =
∫

V (x)

p(x)dx

where the integral is over the volume V. For a small volume

θ ∼ p(x)V (4.4)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 155

The probability, θ , may be approximated by the proportion of samples falling within V . If k
is the number of samples, out of a total of n, falling within V (k is a function of x) then

θ ∼ k

n
(4.5)

Equations (4.4) and (4.5) combine to give an approximation for the density

p̂(x) = k

nV
(4.6)

The k-nearest-neighbour approach to density estimation is to fix the probability, k/n (or,
equivalently, for a given number of samples n, to fix k) and to determine the volume V which
contains k samples centred on the point x. For example, if xk is the kth-nearest-neighbour
point to x, then V may be taken to be a sphere, centred at x of radius |x − xk| [the volume of a
sphere of radius r in n dimensions is 2rnπ

n
2 /(n�(n/2)), where �(x) is the gamma function].

The ratio of the probability to this volume gives the density estimate. As will be seen later, this
is in contrast to the basic histogram approach which is to fix the cell size and then determine
the number of points lying within it.

One of the parameters to choose is the value of k. If it is too large, then the estimate will be
smoothed and fine detail averaged out. If it is too small, then the probability density estimate
is likely to be spiky. This is illustrated in Figures 4.1 (peaks truncated) and 4.2, where 13
samples are plotted on the x-axis, and the k-nearest-neighbour density estimate shown for
k = 1 and 2.

One thing to note about the density estimate is that it is not in fact a density. The integral
under the curve is infinite. This is because for large enough |x|, the estimate varies as 1/|x|.
However, it can be shown that the density estimator is asymptotically unbiased and consistent if

lim
n→∞ k(n) = ∞

lim
n→∞

k(n)

n
= 0

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6
� � � � � � �� �� � � �

Figure 4.1 Nearest-neighbour density estimates for k = 1.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

156 DENSITY ESTIMATION – NONPARAMETRIC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6
� � � � � � �� �� � � �

Figure 4.2 Nearest-neighbour density estimates for k = 2.

4.2.2.2 k-nearest-neighbour decision rule

Having obtained an expression for a density estimate, we can now use this in a decision rule.
Suppose that in the first k samples there are km in class ωm (so that

∑C
m=1km = k). Let the

total number of samples in class ωm be nm (so that
∑C

m=1nm = n). Then we may estimate the
class-conditional density, p(x|ωm), as

p̂(x|ωm) = km

nmV
(4.7)

and the prior probability, p(ωm), as

p̂(ωm) = nm

n

The decision rule is to assign x to ωm if

p̂(ωm|x) ≥ p̂(ω j|x) for all j

which using Bayes’ theorem is

km

nmV

nm

n
≥ k j

n jV

n j

n
for all j

i.e. assign x to ωm if

km ≥ k j for all j

Thus, the decision rule is as defined in (4.3), i.e. to assign x to the class that receives the
largest vote amongst the k-nearest-neighbours.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 157

4.2.3 Choice of distance metric

The most commonly used metric in measuring the distance of a new sample from a
training data vector is Euclidean distance. Therefore, since all variables are treated equally,
the input variables must be scaled to ensure that the k-nearest-neighbour rule is independent
of measurement units. Without such a scaling, if one input variable varies over a range of say
100–1000, and another in the range 1–10 (due perhaps to choice of measurement units), then
the variable with the range 100–1000 will dominate the Euclidean distance calculations, and
therefore the classification rule. This is undesirable, since the dominating variable may not
be the variable containing the most discriminating information. Scaling may be as simple as
applying a separate affine transformation to each variable, such that the mean and standard
deviation of that variable over all the training data (pooled across classes) are zero and one
respectively. Let x1, . . . , xn be the training data vectors combined across all classes. Then we
can calculate

μ j = 1

n

n∑
i=1

xij

σ j =
√√√√ 1

n − 1

n∑
i=1

(xij − μ j)2

and normalise any training data vector or test sample y as follows

y′
j = y j − μ j

σ j

The generalisation of Euclidean distance with input variable scaling is

d(x, y) = {
(x − y)T A(x − y)

} 1
2 (4.8)

for a matrix A. Choices for A have been discussed by Fukunaga and Flick (1984).
Todeschini (1989) assesses six global metrics (Table 4.1) on 10 datasets after four ways of

standardising the data (Table 4.2). The maximum scaling standardisation procedure performed
well, and was found to be robust to the choice of distance metric.

Another development of the Euclidean rule is proposed by van der Heiden and Groen
(1997)

dp(x, y) = {
(x(p) − y(p))T (x(p) − y(p))

} 1
2

where x(p) is a transformation of the vector x defined for each component, xi, of the vector x by

x(p)

i =
{ (

xp
i − 1

)
/p if 0 < p ≤ 1

log(xi) if p = 0

In experiments on radar range profiles of aircraft, van der Heiden and Groen (1997) evaluate
the classification error as a function of p.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

158 DENSITY ESTIMATION – NONPARAMETRIC

Table 4.1 Distance metrics assessed by Todeschini.

Cosine metric d(x, y) = x.y
|x||y| =

∑d
i=1 xiyi√∑d

i=1 x2
i

√∑d
i=1 y2

i

Canberra metric d(x, y) = 1
d

∑d
i=1

|xi−yi|
xi+yi

Euclidean metric d(x, y) = |x − y| =
√∑d

i=1(xi − yi)2

Lagrange metric d(x, y) = max
i=1,...,d

|xi − yi|

Lance–Williams metric d(x, y) =
∑d

i=1 |xi−yi|∑d
i=1(xi+yi)

Manhattan metric d(x, y) = ∑d
i=1 |xi − yi|

Friedman (1994) considers basic extensions to the k-nearest-neighbour method and
presents a hybrid between a k-nearest-neighbour rule and a recursive partitioning method
(see Chapter 7) in which the metric depends on position in the data space. In some clas-
sification problems (those in which there is unequal influence of the input variables on the
classification performance), this can offer improved performance. Myles and Hand (1990)
assess local metrics where the distance between x and y depends on local estimates of the
posterior probability.

In the discriminant adaptive nearest-neighbour approach (Hastie and Tibshirani, 1996),
a local metric is defined in which, loosely, the nearest-neighbour region is parallel to the
decision boundary. It is in the region of the decision boundary where most misclassifica-
tions occur. As an illustration, consider Figure 4.3. The nearest neighbour to the point x
is that labelled 1 and x is classified as �. However, if we measure in a coordinate system
orthogonal to the decision boundary, then the distance between two points is the difference
between their distances from the decision boundary, and the point labelled 2 is the near-
est neighbour. In this case, x is classified as +. The procedure of Hastie and Tibshirani
uses a local definition of the matrix A in (4.8), based on local estimates of the within and

Table 4.2 Standardisation approaches assessed by
Todeschini. μj and σ j are the training data estimates of the
mean and standard deviation of the jth variable. Uj and Lj

are the upper and lower bounds of the jth variable. yi, j is the
jth variable of the ith training data example.

Autoscaling x′
j = x j−μ j

σ j

Maximum scaling x′
j = x j

Uj

Range scaling x′
j = x j−Lj

Uj−Lj

Profiles x′
j = x j√∑n

i=1

(
y2

i, j

)√∑d
j=1

(
x2

j

)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 159

1
x

2

♦

♦
♦

♦

♦
♦♦

♦
♦

♦
♦

♦
♦

+

+
+

+

+
+

+
+

+

++

+

•

Figure 4.3 Discriminant adaptive nearest-neighbour illustration.

between-class scatter matrices. This procedure can offer substantial improvements in
some problems.

4.2.4 Properties of the nearest-neighbour rule

The asymptotic misclassification rate of the nearest-neighbour rule, e, satisfies the condition
(Cover and Hart, 1967)

e∗ ≤ e ≤ e∗
(

2 − Ce∗

C − 1

)

where e∗ is the Bayes probability of error and C is the number of classes. Thus in the large
sample limit, the nearest-neighbour error rate is bounded above by twice the Bayes’ error rate.
The inequality may be inverted to give

C − 1

C
−
√

C − 1

C

√
C − 1

C
− e ≤ e∗ ≤ e

The left-most quantity is a lower bound on the Bayes’ error rate. Therefore, any classifier
must have an error rate greater than this value.

4.2.5 Linear approximating and eliminating search algorithm

Identifying the nearest neighbour of a given observation vector from among a set of training
vectors is conceptually straightforward with n distance calculations to be performed. However,
as the number n in the training set becomes large, this computational overhead may become
excessive.

Many algorithms for reducing the nearest-neighbour search time involve significant com-
putational overhead of preprocessing the prototype dataset (i.e. the set of training vectors)
in order to form a distance matrix [see Dasarathy (1991) for a summary]. There is also the
overhead of storing n(n − 1)/2 distances. There are many approaches to this problem, of
which the linear approximating and eliminating search algorithm (LAESA) is one.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

160 DENSITY ESTIMATION – NONPARAMETRIC

LAESA is a development by Micó et al. (1994) of the AESA algorithm of Vidal (1986,
1994). The algorithm uses the metric properties of the data space, in the form of the triangle
inequality.

4.2.5.1 Preprocessing

LAESA has a preprocessing stage that computes a number of base prototypes that are in some
sense maximally separated from among the set of training vectors. This preprocessing stage
can be achieved in linear preprocessing time, but is not guaranteed to provide the best possible
set of base prototypes (in the sense that the sum of all pairwise distances between members
of the set of base prototypes is a maximum). The LAESA algorithm requires the storage of a
distance array of size n by nb, the number of base prototypes. This will place an upper bound
on the permitted number of base prototypes. Figure 4.4 illustrates a set of 21 training samples
in two dimensions and four base prototypes chosen by the base prototype algorithm of Micó
et al. (1994).

The preprocessing stage begins by first selecting a base prototype, b1, arbitrarily from the
set of training data vectors (referred to as prototypes). The distance of b1 to every member of
the remaining prototypes is calculated and stored in an array A. The second base prototype, b2,
is the prototype that is furthest from b1 (i.e. the prototype corresponding to the largest value
of A). The distance of this second base prototype to every remaining prototype is calculated.
These distance values are added to those stored in the array A (i.e. the distance between base
prototype b2 and the prototype x is added to that between base prototype b1 and x, if x is not
one of the first two base prototypes). Thus, A represents the accumulated distances of nonbase
prototypes to base prototypes. The third base prototype is the one for which the accumulated
distance is the greatest. This process of selecting a base prototype, calculating distances and
accumulating the distances continues until the required number of base prototypes has been
selected. As the selection process proceeds, the distances between base prototypes and the
training set vectors are stored in an n by nb array, D. The array, A, after addition of m prototypes
is then the sum of the first m columns of D.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

♦

♦

♦

♦

b1

b2

b3

b4

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

Figure 4.4 Selection of base prototypes (�) from the dataset (+).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 161

4.2.5.2 Searching algorithm

The LAESA searching algorithm uses the set of base prototypes and the interpoint distances
between these vectors and those in the training set (i.e. the distances stored in the array D)
as follows. Let x be the test sample (whose nearest neighbour from the set of prototypes
we seek), n be the current nearest neighbour (i.e. the nearest neighbour within a subset of
prototypes considered to date) at a distance d(x, n), and q be a base prototype whose distance
to x has been computed at an earlier stage of the algorithm (Figure 4.5).

The condition for a prototype (training data vector) p to be rejected as a nearest-neighbour
candidate is

d(x, p) ≥ d(x, n)

This requires the calculation of the distance d(x, p). However, using the triangle inequality, a
lower bound on the distance d(x, p) is given by

d(x, p) ≥ |d(p, q) − d(x, q)|

which can be computed without calculating any additional distances, since d(p, q) can be
read from the array D, and d(x, q) has been computed at an earlier stage. If this lower
bound exceeds the current nearest-neighbour distance then clearly we may reject p, without
computing d(x, p). We may go further by stating

d(x, p) ≥ G(p)
= max

q
|d(p, q) − d(x, q)| (4.9)

where the maximum is over all base prototypes considered so far in the iterative process.
Therefore if G(p) ≥ d(x, n), we may reject p without computing d(x, p).

To commence the procedure for a given x, the algorithm selects a base prototype as an
initial candidate s for a nearest neighbour and removes this from the set of prototypes. The
distance d(x, s) is calculated, and stored as d(x, n), the current nearest-neighbour distance.
The algorithm then searches through the remaining set of prototypes, and rejects all prototypes
whose lower bound on the distance to x, calculated using (4.9), exceeds the distance d(x, n).
At this initial stage, each prototype’s lower bound (4.9) is based on the selected base prototype,
s, only. A record of this lower bound is stored in an array, G.

The rejection procedure may lead to base prototypes being rejected. There is therefore an
option to only eliminate base prototypes if an initial number of iterations has taken place. In

x

p
d(x, p)

d(p, q)
d(x, n)

d(x, q)

Figure 4.5 Nearest-neighbour selection using LAESA.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

162 DENSITY ESTIMATION – NONPARAMETRIC

the EC∞ version of LAESA no such option is used, and all base prototypes failing the lower
bound test are rejected.

Out of the remaining prototypes, the algorithm selects as the next candidate s′ for the
nearest neighbour the base prototype for which the lower bound (stored in G) is a minimum
(assuming the base prototypes have not been eliminated, otherwise a nonbase prototype sample
is chosen). The distance d(x, s′) is calculated. The candidate vector s′ need not necessarily be
nearer than the previous choice, though if it is the nearest neighbour is updated. If s′ is a base
prototype the lower bounds stored in the array G are updated according to (4.9). The dataset is
searched through again, rejecting prototypes (training vectors) whose lower bound distance is
greater than the current nearest-neighbour distance (of course, if s′ is neither a base prototype,
nor a new nearest-neighbour candidate, then there is no need to run these comparisons again,
because nothing will have changed).

This process is repeated and is summarised in the five following steps:

1. Distance computing – calculate the distance of x to the candidate s for a nearest
neighbour.

2. Update the prototype (training data vector) nearest to x if necessary.

3. Update the lower bounds, G(p) if s is a base prototype.

4. Eliminating – eliminate the prototypes with lower bounds greater than the current
nearest-neighbour distance.

5. Approximating1 – select the candidates for the next nearest neighbour.

Termination of the procedure occurs when all possible candidates for the nearest neighbour
have been either eliminated, or selected as a candidate. At termination, the current nearest
neighbour is the final nearest neighbour. Maximum-depth stopping rules can be applied,
whereby after running the procedure for a pre-specified number of iterations, full distance
calculations are performed for all remaining prototypes.

Further details are given by Micó et al. (1994). Figure 4.6 gives an illustration of the
LAESA procedure (using the EC∞ condition) for the dataset of Figure 4.4. The test sample
x is at the origin (0, 0) and the first two choices for s are shown. The remaining samples are
those left after two passes through the dataset (two distance calculations).

4.2.5.3 Discussion

There are two factors governing the choice of the number of base prototypes, nb. One is the
amount of storage available. An array of size n × nb must be stored. This could become pro-
hibitive if n and nb are large. At the other extreme, too small a value of nb will result in a large
number of distance calculations if n is large. We suggest that you choose a value as large as
possible without placing constraints on memory, since the number of distance calculations de-
creases monotonically (approximately) with nb for the EC∞ model of Micó et al. (1994) given

1 The term ‘approximating’ reflects the fact that the procedure for selecting the next candidate for the nearest
neighbour can be derived as an approximation to an optimal solution. The final solution for the nearest neighbour is
exact.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 163

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

s1

x

s2

•

♦

♦

+

++

+
+

+

++

+

+

+ +

Figure 4.6 Nearest-neighbour selection using LAESA; s1 and s2 are the first two candidates
for nearest neighbour.

above. However, it should be noted that if the distance calculations are computationally cheap,
the additional overhead introduced by the procedure may remove its computational benefits.

As noted by Moreno-Seco et al. (2002), the LAESA procedure can be extended to de-
termine k nearest neighbours, rather than just the nearest neighbour. The updated search
procedure selects k initial base prototypes, to provide an initial estimate of the kth-nearest-
neighbour distance. It then proceeds as standard LAESA, with alterations that prototypes
are only eliminated if their lower bound distance is larger than the distance to the current
kth nearest neighbour, and that the kth nearest neighbour rather than nearest neighbour is
maintained.

4.2.6 Branch and bound search algorithms: kd-trees

4.2.6.1 Introduction

Branch and bound search algorithms (Lawler and Wood, 1966; see also Chapter 10) can be
used to compute the k nearest neighbours of a test pattern more efficiently than a naı̈ve linear
search over all the training data vectors. Two popular, and related, branch and bound search
algorithms are kd-trees (Friedman et al., 1977) and ball-trees (Fukunaga and Narendra, 1975).

In both cases the approach is to:

1. Create a tree structure at the training stage, that assigns hierarchically the training
vectors to subsets, each of which is a well-controlled geometrical region/structure.

2. Search for the k nearest neighbours of a test pattern, via a branch and bound method
applied to the tree.

The k-dimensional tree (kd-tree) is a binary-tree partition of a k-dimensional data space into
nonoverlapping hyperrectangles, aligned to the coordinate axes. Note here that k refers to the
dimensionality of the input data (previously referred to as d), and not the number of nearest

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

164 DENSITY ESTIMATION – NONPARAMETRIC

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4

5

7 8

11 12

14

16 17

Figure 4.7 Rectangles partitioning the data space. Only the leaf (also known as terminal)
node rectangles are displayed, labelled by node number. Each training vector is marked by
a cross.

training vectors in the k-nearest-neighbour classifier. The use of kd-trees for improving the
efficiency of k-nearest-neighbour search was proposed by Friedman et al. (1977).

The tree structures and procedures are similar to those in the classification trees that are
discussed in Chapter 7. A two-dimensional example of a kd-tree partition of a data space is
provided in Figure 4.7, with the tree structure illustrated in Figure 4.8.

The kd-tree structure can be understood by examining the intermediate levels of the
tree in Figures 4.9 and 4.10. The first hyperrectangle [Figure 4.9(a)] corresponds to node 1

Figure 4.8 Example kd-tree. Leaf nodes are marked by squares, and non-leaf nodes by
circles.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 165

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

1

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

2 9

(a) (b)

Figure 4.9 First two layers of rectangles partitioning the data space. Each training vector is
marked by a cross, and the rectangles labelled by node number.

(the root node) and contains all the training data vectors. This top-level hyperrectangle is
split into the hyperrectangles of nodes 2 and 9. These child hyperrectangles are shown in
Figure 4.9(b). The split is along one coordinate axis of the parent hyperrectangle. Examining
Figure 4.10 we can see that the child hyperrectangles are split successively as one moves
down the tree. Each time, the parent hyperrectangle split is along one of the coordinate axes,
and creates two nonoverlapping child hyperrectangles. This splitting process is such that each
child hyperrectangle is a sub-portion of its parent hyperrectangle and the union of the child
hyperrectangles is equal to the parent hyperrectangle.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

3

6

10

13

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4

5

7 8

11 12

14

15

(b)(a)

Figure 4.10 Layers three (a) and four (b) of the kd-tree, partitioning the data space. Each
training vector is marked by a cross, and the rectangles labelled by node number.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

166 DENSITY ESTIMATION – NONPARAMETRIC

Associated with each non-leaf node (i.e. the root node and the internal nodes) of the
kd-tree are:

� The hyperrectangle corresponding to the node.

� The component index (i.e. coordinate index or feature element) m used to split this
parent hyperrectangle into two child hyperrectangles, along with the value ψ at which
the split should occur.

� The left-hand child kd-tree (i.e. the left branch).

� The right-hand child kd-tree (i.e. the right branch).

Associated with a leaf (also known as a terminal) node are:

� The hyperrectangle corresponding to the leaf node.

� The training data vectors that belong to the leaf node.

Training data vectors are assigned to leaf nodes according to which leaf node hyperrectangle
they lie within. Rather than searching over all leaf nodes, we can determine an assignment
by passing the data vector down through the tree. Suppose that we are at a node with split
component index m, and split value ψ . The routing rule through the tree is to move to the
left child if xm < ψ and the right child if xm ≥ ψ , where xm is the value of the mth component
(feature) of the data vector being passed down the tree. Such a procedure starts at the root
node, and continues until we reach a leaf node.

Associated with any leaf node is therefore a hierarchy of hyperrectangles, one from each
level, and each of which encloses the training samples at the leaf node. For example, the
training data vector at coordinate (4.5, 2.1) belongs to leaf node 4, within the hierarchy of
nodes {1, 2, 3, 4}. The key to using kd-trees for efficient k-nearest-neighbour search, is to
note that if we can determine easily that none of the k nearest neighbours can lie within a
hyperrectangle at a node high up the tree, then we do not need to search over the training
vectors associated with the leaf nodes that lie beneath that node. This is the branch and bound
part of the procedure.

4.2.6.2 Tree construction

A recursive procedure is used to construct a kd-tree. At each non-leaf node the procedure
creates two child nodes by splitting the hyperrectangle into two parts. Each child node is
then a branch of the tree. As detailed above, the split is defined by a vector component (i.e.
coordinate or feature) and value.

Suppose that the training data associated with a node at level s is the set {x1, . . . , xn}.
At the top level (the root node at level 1) this would be all the training data. One possibility
for specifying the component to use for the split is to first calculate the variance along each
component

σ 2
m = var({x1m, . . . , xnm}), m = 1, . . . , d

where xim is the mth component value for the ith member of the training set for the node. The
component to be used for the split is the the one with the largest variance, i.e. m for which
σ 2

m ≥ σ m′ , for m′ = 1, . . . , d. An alternative to using the variance is to choose the component

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 167

with the largest range. Constraints can be added if desired, so that we do not use the same
component to split a child as was used to split the parent to create that child, or so that we
cycle through all components as one progresses down the tree.

Having chosen the component (feature) to split, it is common to choose the split value ψ

according to one of the following rules:

� ψ = median({x1m, . . . , xnm}), the median component value.

� ψ = mean({x1m, . . . , xnm}), the mean component value.

The median option should be used if one desires a perfectly balanced tree. However, if the
data are not uniformly distributed, the combination of the median option with variance-based
component selection is more prone than the mean option to creating narrow hyperrectangles.
This is undesirable, since near hypercubic hyperrectangles have better theoretical properties.

The hyperrectangles for the two child nodes differ from the hyperrectangle for their
parent node only in the ranges for the selected split component m. Specifically, if the parent
hyperrectangle range for the split component is [hm1, hm2], then

h(L)

m1 = hm1, h(L)

m2 = ψ, h(R)

m1 = ψ, h(R)

m2 = hm2

where the superscripts L and R are used to denote left and right child nodes, respectively.
The training data {x1, . . . , xn} is split into a left-child set {xi, i ∈ L} and a right-child set

{xi, i ∈ R}, by applying the split rule to component m at value ψ .
Termination of the recursions occurs either at a maximum depth to the tree, or when

the amount of training data associated with a node is sufficiently small (in the extreme case
perhaps just a single training data example).

The computation required to build a tree is O(dnlog(n)) where d is the dimensionality of
the data, and n the number of training samples (Friedman et al., 1977).

4.2.6.3 Determination of nearest neighbours

We now describe the procedure for determining the nearest neighbour2 of a test sample x:

1. Descend the tree to find the leaf node whose hyperrectangle contains the test sample.
The descent procedure is simple. Starting at the top node, we compare the test sample
to the splitting value of the node, and then proceed down the winning branch to the
appropriate child node, continuing in this manner until we reach the appropriate leaf
node.

2. Determine an initial candidate for the nearest neighbour by searching over the training
data vectors covered by the leaf node. The chosen training data vector, n, is the current
approximation to the nearest neighbour, with distance d(x, n) = |x − n|.

3. Construct a bounding hypersphere, centred at the test sample x, and with radius equal
to the current nearest-neighbour distance, d(x, n).

2 Extension to k nearest neighbours requires a bit of extra work at the initialisation stage, but otherwise is
straightforward.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

168 DENSITY ESTIMATION – NONPARAMETRIC

4. Proceed up and down the tree, removing (termed pruning) branches where possible
according to the procedure outlined in the next few paragraphs, and if not descending
to leaf nodes. Once a branch has been pruned for a given test sample, we do not need to
consider nodes that lie within that branch of the tree, and in particular do not need to
search over the training vectors that belong to the leaf nodes of that branch.

5. Whenever a leaf node is reached, search over all training data vectors covered by it
(i.e. calculate the distances to them from the test sample). If a lower distance than that
of the current nearest neighbour is found, update the current nearest neighbour n to
this new data vector, and the bounding hypersphere radius to the distance to this new
nearest neighbour.

6. Continue with steps 4 and 5 until all leaf nodes have either been removed as part of
the pruning procedure (hopefully at a high-level in the tree), or searched directly for
nearest neighbours. The current nearest neighbour at this stage is the overall nearest
neighbour.

We now consider the pruning process. From step 2, we have a current best estimate, n, for
the nearest neighbour of test sample x. This gives a lower bound on the nearest neighbour
distance of d(x, n). We construct a bounding hypersphere, centred at the test sample x, and
with radius equal to d(x, n). This is illustrated in Figure 4.11.

By construction, any closer training vector to the test sample than the current nearest
neighbour must lie within this bounding hypersphere. Furthermore, if any training vector
lies within the hypersphere, the hypersphere must intersect with each hyperrectangle in the

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4

5

7 8

11 12

14

16 17

Figure 4.11 Bounding hypersphere around the test sample (dashed circle), with radius equal
to the distance to the current estimate of the nearest neighbour. The test sample is marked
by an asterisk, and the training vectors are marked by crosses. The initial nearest neighbour
estimate belongs to the leaf node 5 within which the test sample lies. Training vectors within
this leaf node are the only ones searched over to date (hence the different shading). Note that
this initial nearest-neighbour estimate is not the overall nearest neighbour, which actually lies
in leaf node 8.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 169

hierarchy of hyperrectangles corresponding to that training vector. Therefore, if we find a
node of the tree with a branch whose hyperrectangle does not intersect the hypersphere, we
know that none of the training samples under that branch can be the nearest neighbour, and
can therefore prune that branch of the tree.

The key test is therefore whether the hypersphere intersects with a hyperrectangle. A
hypersphere and a hyperrectangle will intersect if and only if the distance from the closest
point, y, in the hyperrectangle to the centre, x, of the hypersphere, is less than or equal to the
radius r = d(x, n). Determining the closest point y of a hyperrectangle to the point x can be
done on a component-by-component (coordinate-by-coordinate) basis

yi =
⎧⎨
⎩

hi1 if xi < hi1

xi if xi ∈ [hi1, hi2]
hi2 if xi > hi2

where [hi1, hi2] is the range for the ith component of the hyperrectangle.
Now suppose that we consider a node of the tree with a branch whose top hyperrectangle

does intersect with the bounding hypersphere. In that case we cannot prune that branch,
and instead need to descend it. The descent involves pruning sub-branches where possible
(if a hyperrectangle does not intersect the hypersphere), and if not proceeding to the leaf
nodes. Whenever a leaf node is reached we search over all training data vectors covered by it
(possibly using procedures analogous to the LAESA algorithm of Section 4.2.5). If a closer
nearest neighbour is found then we update the current nearest neighbour. It is therefore more
efficient to organise the descent through the tree in such a manner that if both branches at a
node intersect with the bounding hypersphere, we proceed down the branch associated with
the child node that is closest to the test sample first. This is because this branch is more likely
to result in a new nearest neighbour than the other branch, and if the current nearest neighbour
is updated, we are more likely to reject the sibling node than if we had used the original
nearest-neighbour estimate.

We now outline this procedure for our test sample in Figure 4.11, making use of the tree
and node specifications in Figures 4.8–4.10. After determining the nearest neighbour within
the enclosing leaf node 5 (see Figure 4.11), we have leaf nodes {4, 7, 8, 11, 12, 14, 16, 17}
still to consider. Following Figure 4.8 we move up the tree from leaf node 5, to its parent,
node 3, and then consider whether the hyperrectangle of node 5’s sibling, node 4, intersects the
bounding hypersphere. By inspection of Figure 4.11, the calculation will show that it does not
intersect, and we can therefore reject leaf node 4, without searching over its training vectors.
We then proceed up the tree to node 2 (Figure 4.8), and examine its other child, node 6. This
hyperrectangle is that of nodes 7 and 8 combined, and does intersect with the hypersphere. So
we proceed down the tree from node 6 and examine its children, nodes 7 and 8. Node 7 does
not intersect the bounding hypersphere, and therefore by elimination node 8 must (since if it
did not, we would not have had the intersection at its parent node 6). Node 8 is a leaf node so
we search over its training vectors for candidate nearest neighbours. One is found, leading to
the updated bounding hypersphere illustrated in Figure 4.12.

Having updated the hypersphere we note that all leaf nodes beneath node 2 have been
considered, and therefore proceed up the tree to node 1. Here we need to consider whether the
hyperrectangle of node 9 intersects with the bounding hypersphere. This hyperrectangle is the
amalgam of the white hyperrectangles in Figure 4.12, and does not intersect with the bounding
hypersphere. The entire branch can therefore be eliminated, and the algorithm completes, with

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

170 DENSITY ESTIMATION – NONPARAMETRIC

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

4

5

7 8

11 12

14

16 17

Figure 4.12 Bounding hypersphere around the test sample (dashed circle), with radius equal
to the distance to the updated estimate of the nearest neighbour. The test sample is marked
by an asterisk, and the training vectors are marked by crosses. Searched leaf nodes are light
grey, eliminated leaf nodes dark grey, and leaf nodes yet to be searched or to be eliminated
are white.

the nearest neighbour estimated correctly. Note that the hyperrectangle associated with node
9 does intersect with the original hypersphere of Figure 4.11. Its elimination here indicates
the benefits of a structured search through the tree.

In this example there were 25 training vectors, of which six were searched over as
candidates for the nearest neighbour (three within leaf node 5, and three within leaf node 8).
In addition, as part of the pruning process, four distance calculations were made concerning
the closest points of the hyperrectangles of nodes 4, 6, 7 and 9 to the bounding hypersphere.
Proceeding down the tree to find the initial containing leaf node involved comparisons of
one component at each of nodes 1, 2 and 3. Therefore the number of complete distance
calculations is less than half that required for a linear search over all 25 training vectors.

The average computational cost of a search is O(log(n)) where n is the number of training
data samples (Friedman et al., 1977). Friedman’s analysis for this is based on an ideal case
of the hyperrectangles being approximately hypercubical, each containing almost the same
number of training samples. In worst case scenarios, the complexity may be similar to a
linear search.

Unfortunately, it is noted (Moore, 1991) that the computational cost scales poorly with
the dimensionality of the data. Indeed, for more than 10 dimensions, the benefits of kd-tree
search over a linear search are often removed.

4.2.7 Branch and bound search algorithms: ball-trees

The use of ball-trees for k-nearest-neighbour search is similar in concept to the use of kd-trees,
and was proposed by Fukunaga and Narendra (1975) (see also Uhlmann, 1991).

Ball-trees differ from kd-trees, in that rather than creating a hierarchy of hyperrectangles,
a hierarchy of hyperspheres (i.e. balls) is created. This is advantageous, because the balls
can be made to be tighter around the training data vectors than the hyperrectangles used in

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 171

−5 0 5 10 15
−2

0

2

4

6

8

10

12

4

5

7
8

11 12

14

16
17

Figure 4.13 Ball-trees partitioning the data space. Only the leaf node balls are displayed,
labelled by node number. Each training vector is marked by a cross.

kd-trees. This results in pruning being more commonplace in ball-tree searches than in kd-tree
searches, with resultant improvements in computational efficiency.

A two-dimensional example of a ball-tree is provided in Figure 4.13. The tree structure
of the nodes is the same as that for the kd-tree in Figure 4.8. Illustrations of the balls at the
second and third layers of the network are provided in Figure 4.14.

Associated with each non-leaf node of the ball-tree are:

� The ball (hypersphere) corresponding to the node, characterised by its centre c and
radius r.

� The left-hand and right-hand child balls (branches).

� The training data vectors associated with the ball (i.e. the training data vectors that lie
inside the ball).

−4 −2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

2

9

−5 0 5 10 15
−2

0

2

4

6

8

10

12

3

6

10

13

(a) (b)

Figure 4.14 Layers two (a) and three (b) of the example ball-tree. Each training vector is
marked by a cross, and the balls labelled by node number.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

172 DENSITY ESTIMATION – NONPARAMETRIC

A leaf node differs from a non-leaf node in that the leaf node does not have any children.
The radius r of any ball is the minimum radius possible such that the ball contains all the

training vectors associated with it. Hence if the training vectors are {x1, . . . , xn}, and the ball
centre is c, we have

r = max
i=1,...,n

|xi − c|

We do not consider here optimisation of c so that r takes the smallest possible value given the
set of training vectors (the minimum covering sphere problem; Elzinga and Hearn, 1972).

As can be seen from the plots in Figures 4.13 and 4.14, the balls do not have to partition
the entire data space. However, each time a ball is split as one descends the tree, the union of
the resulting child balls must contain all the training data samples that belonged to the parent
ball. Unlike the hyperrectangles in kd-trees, the balls are allowed to overlap in data space.
However, training samples in overlapping regions are assigned to one ball only. If S0 is the set
of training data vectors assigned to a parent ball, and S1 and S2 are the sets of training vectors
for the the child balls, the requirements can be summarised in terms of the following rules:

S1 ∪ S2 = S0, S1 ∩ S2 = φ

Ideally, the centres of the child balls, c1 and c2, are selected in a manner so that

x ∈ S1 ⇒ ‖x − c1‖ ≤ ‖x − c2‖
x ∈ S2 ⇒ ‖x − c2‖ ≤ ‖x − c1‖ (4.10)

However, the k-nearest-neighbour search procedure does not rely on the above property.
The routing rule through the tree is to start at the root node and then at each level proceed

to the child node with the closest centre to the test vector under consideration. Note that if
the ball-tree construction is such that (4.10) is not satisfied for a node, applying the routing
procedure to the training data will not result in the correct assignment of training data to leaf
nodes. In such an event, we keep the assignments used in tree construction.

4.2.7.1 Tree construction

A recursive procedure is used to construct a ball-tree, in a similar manner to the procedure for
kd-trees (Section 4.2.6). A number of different construction rules can be used, as outlined in
Omohundro (1989). The merits of each depend on the properties of the data, as well as any
constraints on the construction time.

Ideally, we seek to minimise the total volume of balls within the tree, since under a
uniform data distribution this is equivalent to minimising the number of balls which contain a
given data sample. Omohundro (1989) proposes a bottom-up construction heuristic. Starting
with an initial set of balls, each containing a single training vector, he repeatedly selects
pairs of balls to merge, based upon the resulting bounding ball having the smallest volume
amongst all potential pairs. Each time a merge occurs, the original balls are made siblings and
removed from consideration, whilst the resulting merged parent ball is added to the set for
consideration. Eventually, a single ball enclosing all the data is reached. Such ball-trees often
have good behaviour, but the construction time may be prohibitive for some applications.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 173

Analogous procedures to the top-down approach of kd-trees can also be considered. These
start at a single ball covering all the data points and then recursively split the balls into two.
Splitting rules can be similar to those for kd-trees. Specifically, choosing a component to split
based upon maximum variance (or maximum range) and then choosing the median value
as the value to split at. Training vectors with component values less than the split value are
assigned to the left child ball, with the remainder being assigned to the right child ball.

Witten and Frank (2005) advocate the following rule for splitting the training data of a
parent ball into two child sets:

� choose the training vector furthest from the centre of the parent ball;

� choose a second training vector that is furthest from the first selected vector;

� assign each remaining training vector to either the first set or the second set, depending
on whether it is closer to the first or second selected vector.

Once the training vectors belonging to a child ball are specified, an enclosing ball is deter-
mined. Ideally, the minimum covering sphere (Elzinga and Hearn, 1972) would be calculated.
However, in practice, approximations can be used, e.g. balls centred about the mean of the
training vectors, or about the midpoint of the minimum bounding rectangle of the training
vectors. Given the centre point, the radius is uniquely determined as the minimum possible to
enclose all points.

4.2.7.2 Determination of nearest neighbours

The nearest-neighbour search process differs from that of the kd-tree (described in Sec-
tion 4.2.6) only in the tests for pruning a branch (and trivially also the rule for descending
the tree).

The rule for pruning branches when searching for the nearest neighbour to a test sample
x can be developed in an analogous manner to that in kd-trees (in terms of intersecting
balls), or can utilise the triangle inequality (as utilised in the LAESA search algorithm,
see Section 4.2.5). Let x be the test sample, n be the current best estimate for the nearest
neighbour, c be the centre of the ball under consideration, and r be the radius of the ball under
consideration. Now consider a training vector xi within the ball. The set-up is illustrated in
Figure 4.15. Using the triangle inequality we have that

d(x, xi) ≥ d(x, c) − d(c, xi)

Now since xi lies inside a ball centred at c and of radius r, we know that d(c, xi) ≤ r, and
hence

d(x, xi) ≥ d(x, c) − r

This gives a lower bound on the distance from the test sample to any training vector within
the ball. Hence if

d(x, c) − r ≥ d(x, n)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

174 DENSITY ESTIMATION – NONPARAMETRIC

c

xi

x

n
d(x, xi)

d(x, c)

d(c, xi)

r

d(x, n)

Figure 4.15 The ball-tree pruning rule. x is the test sample, n the current best estimate for
the nearest neighbour, c the centre of the ball under consideration, r the radius of the ball,
and xi is any training vector within the ball. The triangle inequality is used to provide a lower
bound on d(x, xi), the distance between the test sample and a training vector within the ball.

we know that the ball cannot contain a closer neighbour than the current estimate, and can
therefore prune the ball (and all children of the ball).

An additional pruning test is advocated by Kamgar-Parsi and Kanal (1985). They also
prune the ball if

d(x, n) + d(x, c) < rmin

where rmin is the minimum distance from the centre of the ball to a training sample contained
within the ball.

As with the kd-tree, training vectors at leaf nodes can either be searched exhaustively
as potential nearest-neighbour candidates, or further bounds can be utilised, as advocated in
Fukunaga and Narendra (1975).

4.2.8 Editing techniques

One of the disadvantages of the k-nearest-neighbour rule is that it requires the storage of all n
data samples. If n is large, then this may mean an excessive amount of storage. Furthermore,
a major disadvantage may be the computation time for obtaining the k nearest neighbours.
The search algorithms of Sections 4.2.5, 4.2.6 and 4.2.7 address this latter disadvantage. As
alternatives, there have been several studies aimed at reducing the number of class prototypes
with the joint aims of increasing computational efficiency and increasing the generalisation
error rate.

We shall consider algorithms for two procedures for reducing the number of prototypes
(training vectors). The first of these belongs to the family of editing techniques. These
techniques process the training set with the aim of removing prototypes that contribute to the
misclassification rate. This is illustrated in Figure 4.16 for a two-class problem. Figure 4.16
plots samples from two overlapping distributions, together with the Bayes decision boundary.
Each region, to the left and right of the boundary, contains prototypes that are misclassified
by a Bayes classifier. Removing these to form Figure 4.17 gives two homogeneous sets

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 175

�

�
�

�

�
��

�
�

�
�

�
�

� �
�

•
••

•
•

•

•
•

•
•

•

••

•

Figure 4.16 Editing illustration – samples and Bayes decision boundary.

of prototypes with a nearest-neighbour decision boundary that approximates the Bayes
decision boundary.

The second technique that we consider is that of condensing. This aims to reduce the
number of prototypes per class without changing the nearest-neighbour approximation to the
Bayes decision boundary substantially.

4.2.8.1 Editing procedure

The basic editing procedure is as follows. Given a training set R (of known classification),
together with a classification rule η, let S be the set of samples misclassified by the classification
rule η. Remove these from the training set to form R = R − S and repeat the procedure until
a stopping criterion is met. Thus, on completion of the procedure, we have a set of samples
correctly classified by the rule.

One implementation of applying this scheme to the k-nearest-neighbour rule is provided
in Algorithm 4.1.

If M = 1, then we have a modified holdout method of error estimation and taking k = 1
gives the multiedit algorithm of Devijver and Kittler (1982). Taking M = N − 1 (so that all
remaining sets are used) gives an N-fold cross-validation error estimate. If N is equal to the
number of samples in the training set (and M = N − 1), then we have the leave-one-out error
estimate which is Wilson’s method of editing (Wilson, 1972). Note that after the first iteration,

�

�
�

�

�
��

�
�

�
�

�
�

•
••

•

•
•

•
•

•

••

•

Figure 4.17 Editing illustration – edited dataset.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

176 DENSITY ESTIMATION – NONPARAMETRIC

Algorithm 4.1 k-nearest-neighbour editing procedure.

1. Make a random partition of the dataset, R, into N groups R1, . . . , RN.

2. Classify the samples in the set Ri using the k-nearest-neighbour decision rule with the
union of the ‘next’ M sets R(i + 1)modN∪. . .∪R(i + M − 1)modN as the training set, for i = 1, . . . ,
N where 1 ≤ M ≤ N − 1. Let S be the set of misclassified samples.

3. Remove all misclassified samples from the dataset to form a new dataset, R = R − S.

4. If the last I iterations have resulted in no samples being removed from the dataset, then
terminate the algorithm, otherwise go back to step 1.

the number of training samples has reduced and the number of partitions cannot exceed the
number of samples. For small datasets, an editing procedure using a cross-validation method
of error estimation is preferred to multiedit (Ferri and Vidal, 1992a; Ferri et al., 1999).

4.2.8.2 Condensing procedure

The editing algorithm above creates homogeneous sets of clusters of samples. The basic idea
behind condensing is to remove those samples deeply embedded within each cluster that
do not contribute significantly to the nearest-neighbour approximation to the Bayes decision
region. The procedure that we describe is due to Hart (1968). We begin with two areas of store,
labelled A and B. One sample is placed in A and the remaining samples in B. Each sample
point in B is classified using the nearest-neighbour rule with the contents of A (initially a
single vector) as prototypes. If a sample is classified correctly, it is returned to B, otherwise
it is added to A. The procedure terminates when a complete pass through the set B fails to
transfer any points.

The final contents of A constitute the condensed subset to be used with the nearest-
neighbour rule.

The result of applying a condensing procedure to the data considered in Figure 4.16 is
shown in Figure 4.18. There can be considerable reduction in the number of training samples.

�

�

�

�

•

•

•

•

Figure 4.18 Condensing illustration. The solid line represents the Bayes decision boundary;
the dotted line represents the approximation based on condensing.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 177

Table 4.3 Results for multiedit–condensing for image segmentation (after Ferri and Vidal,
1992b).

I = 6 I = 10

Original Multiedit Condense Multiedit Condense

Size 1513 1145 22 1139 28
Average errors over four

test images
18.26 10.55 10.10 10.58 8.95

4.2.8.3 Application study

Ferri and Vidal (1992b) apply both editing and condensing techniques to image data gathered
for a robotic harvesting application. The problem consists of detecting the location of pieces
of fruit within a scene. The data comprise six images, captured into arrays of 128 × 128
pixels; two used for training, four for test. From the training images, a training set of 1513 10-
dimensional feature vectors (each corresponding to a different pixel location) spanning three
classes (fruit, leaves, sky) is constructed. The feature vectors are obtained from the colour
information of the central pixel and that of its four surrounding neighbours. The chrominance
(UV) components of the YUV colour space values are used (easily obtained from RGB
values), giving 10 features per pixel location.

The editing algorithm is run with a value of N (the number of partitions of the dataset)
chosen randomly from {3, 4, 5} at each iteration of the editing process. Results are reported
for values of I (the number of iterations in the editing procedure with no samples removed
from the training set) of 6 and 10, and are summarised in Table 4.3. The condensing procedure
is applied once to the outputs of the I = 6 editing procedure, and twice to the outputs of the
I = 10 editing procedure (using different random initialisation of the procedure).

Condensing reduces the size of the dataset considerably. Editing reduces the error rate,
with a further smaller reduction after condensing.

4.2.9 Example application study

The problem
This application is to develop credit scoring techniques for assessing the creditworthiness of
consumer loan applicants (Henley and Hand, 1996).

Summary
The approach developed is one based on a k-nearest-neighbour method, with an adjusted
version of the Euclidean distance metric that attempts to incorporate knowledge of class
separation contained in the data.

The data
The data comprised measurements on 16 nominal or ordinal variables (resulting from a
variable selection procedure), for a set of credit applicants, split into training and test sets
of sizes 15054 and 4132, respectively. Making use of the categorical form of the variables,
the data were preprocessed into a ratio form, so that the jth allowable value on the ith

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

178 DENSITY ESTIMATION – NONPARAMETRIC

feature/variable was replaced by log(pij/qij), where pij is the proportion of those classified
good in value (attribute) j of feature (variable) i and qij is the proportion characterised as bad
in value j of feature i.

The model
A k-nearest-neighbour classifier is used. The quadratic metric (4.8) is used, where the positive
definite symmetric matrix, A, is given by

A = (I + DwwT)

Here D is a distance parameter and w is in the direction of the equiprobability contours of
p(g|x), the posterior probability of class g; that is, w is a vector parallel to the decision
boundary. This is similar to the discriminant adaptive nearest-neighbour classifier mentioned
in Section 4.2.3. w was estimated using a regression procedure.

Training procedure
The value of D was chosen to minimise the bad risk rate, the proportion of bad risk applicants
accepted for a pre-specified proportion accepted, based on the training set. The value of k was
also based on the training set. The performance assessment criterion used in this study is not
the usual one of error rate used in most studies involving k-nearest-neighbour classifiers. In
this investigation, the proportion to be accepted is pre-specified and the aim is to minimise
the number of bad-risk applicants accepted.

Results
The main conclusion of the study was that the k-nearest-neighbour approach was fairly
insensitive to the choice of parameters and it is a practical classification rule for credit
scoring.

4.2.10 Further developments

There are many varieties of the k-nearest-neighbour method. The probability density estimator
on which the k-nearest-neighbour decision rule is based has been studied by Buturović (1993),
who proposes modifications to (4.7) for reducing the bias and the variance of the estimator.

There are other preprocessing schemes to reduce nearest-neighbour search time.
Approximation–elimination algorithms for fast nearest-neighbour search are given by
Vidal (1994) and reviewed and compared by Ramasubramanian and Paliwal (2000).

Variants of the branch and bound approaches used in kd-trees and ball-trees, are proposed
by Niemann and Goppert (1988) and Jiang and Zhang (1993). An extension of kd-trees to
consider decompositions into hyperrectangles that are not parallel to the coordinate axes is
considered by Sproull (1991). Liu et al. (2006) show how improvements to ball-tree algorithms
can be made in binary classification problems, by asking the question ‘Are at least t of the k
nearest neighbours from the first class?’, rather than ‘What are the k nearest neighbours of the
test sample?’. The answer to the former question being the information required to classify
the data according to the k-nearest neighbour classification rule.

Increased speed of finding neighbours is usually bought at increased preprocessing or
storage (Djouadi and Bouktache, 1997). Dasarathy (1994a) proposes an algorithm for reducing
the number of prototypes in nearest-neighbour classification using a scheme based on the

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

k-NEAREST-NEIGHBOUR METHOD 179

concept of an optimal subset selection. This ‘minimal consistent set’ is derived using an
iterative procedure and on the datasets tested gives improved performance over condensed
nearest neighbour.

A review of the literature on computational procedures is given by Dasarathy (1991).
More recently, a survey of some of the advantages and disadvantages of a range of different
nearest-neighbour techniques is provided by Bhatia and Vandana (2010). Bajramovic et al.
(2006) compare the performance of a range of nearest-neighbour procedures on an object
recognition task.

Hamamoto et al. (1997) propose generating bootstrap samples by linearly combining local
training samples. This increases the training set, rather than reducing it, but gives improved
performance over conventional k nearest neighbour, particularly in high dimensions.

There are theoretical bounds on the Bayes’ error rate for the k-nearest-neighbour method.
We have given those for the nearest-neighbour rule. For small samples, the true error rate
may be very different from the Bayes’ error rate. The effects on the error rates of k-nearest-
neighbour rules of finite sample size have been investigated by Fukunaga and Hummels
(1987a, b) who demonstrate that the bias in the nearest-neighbour error decreases slowly
with sample size, particularly when the dimensionality of the data is high. This indicates that
increasing the sample size is not an effective means of reducing bias when dimensionality is
high. However, a means of compensating for the bias is to obtain an expression for the rate of
convergence of the error rate and to predict the asymptotic limit by evaluating the error rate
on training sets of different sample size. This has been explored further by Psaltis et al. (1994)
who characterise the error rate as an asymptotic series expansion. Leave-one-out procedures
for error rate estimation are presented by Fukunaga and Hummels (1987b, 1989), who find
that sensitivity of error rate to the choice of k (in a two-class problem) can be reduced by
appropriate selection of a threshold for the likelihood function considered in the derivation of
the k-nearest-neighbour decision rule (see Section 4.2.2).

4.2.11 Summary

Nearest-neighbour methods have received considerable attention over the years. The simplicity
of the approach has made the nearest-neighbour method very popular with researchers and
practitioners. It is perhaps conceptually the simplest of the classification rules that we present
and the decision rule has been summed up as ‘judge a person by the company he keeps’
(Dasarathy, 1991). The approach requires a set of labelled prototypes that are used to classify
a set of test patterns. The simple-minded implementation of the k-nearest-neighbour rule
(calculating the distance of a test pattern from every member of the training set and retaining
the class of the k nearest patterns for a decision) is likely to be computationally expensive for
a large dataset, but for many applications it may well prove acceptable. If you get the answer
in minutes, rather than seconds, you may probably not be too worried. The LAESA algorithm
trades off storage requirements against computation. LAESA relies on the selection of base
prototypes and computes distances of the stored prototypes from these base prototypes. Ball-
trees and kd-trees arrange the prototypes into the form of a binary tree, so that branch and
bound procedures can be used to determine the k nearest neighbours.

Additional means of reducing the search time for classifying a pattern using a nearest-
neighbour method (and increasing generalisation) are given by the editing and condensing
procedures. Both reduce the number of prototypes; editing with the purpose of increasing
generalisation performance and condensing with the aim of reducing the number of prototypes

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

180 DENSITY ESTIMATION – NONPARAMETRIC

without significant degradation of the performance. Experimental studies have been performed
by Hand and Batchelor (1978).

Improvements may be obtained through the use of alternative distance metrics, either local
metrics that use local measures of within-class and between-class distance or non-Euclidean
distance.

One question that we have not addressed in detail is the choice of k. The larger the value
of k, the more robust is the procedure. Yet k must be much smaller than the minimum of
ni, the number of samples in class i, otherwise the neighbourhood is no longer the local
neighbourhood of the sample (Dasarathy, 1991). In a limited study, Enas and Choi (1986)
give a rule k ≈ N2/8 or k ≈ N3/8, where N is the population size. The approach described by
Dasarathy is to use a cross-validation procedure to classify each sample in the training set,
using the remaining samples, for various values of k and to determine overall performance.
Take the optimum value of k as the one giving the smallest error rate, though the lower the
value of k the better from a computational point of view. Keep this value fixed in subsequent
editing and condensing procedures if used.

4.3 Histogram method

The histogram method is perhaps the oldest method of density estimation. It is the classical
method by which a probability density is constructed from a set of samples.

In one dimension, the real line is partitioned into a number of equal-sized cells (Figure 4.19)
and the estimate of the density at a point x is taken to be

p̂(x) = nj∑N
j n jdx

where nj is the number of samples in the cell of width dx that straddles the point x, N is the
number of cells and dx is the size of the cell. This generalises to

p̂(x) = n j∑
j n jdV

for a multidimensional observation space, where dV is the volume of bin j.

x
dx

Figure 4.19 Histogram.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 181

Although this is a very simple concept and easy to implement, and it has the advantage of
not needing to retain the sample points, there are several problems with the basic histogram
approach. First of all, it is seldom practical in high-dimensional spaces. In one dimension,
there are N cells; in two dimensions, there are N2 cells (assuming that each variable is
partitioned into N cells). For data samples x ∈ R

d (d-dimensional vector x) there are Nd cells.
This exponential growth in the number of cells means that in high dimensions a very large
amount of data is required to estimate the density. For example, where the data samples are
six-dimensional, then dividing each variable range into 10 cells (a not unreasonable figure)
gives a million cells. In order to prevent the estimate being zero over a large region, many
observations will be required. This is known as the curse of dimensionality. A second problem
with the histogram approach is that the density estimate is discontinuous and falls abruptly to
zero at the boundaries of the region. We shall now consider some approaches for overcoming
these difficulties.

4.3.1 Data adaptive histograms

One approach to the problem of constructing approximations to probability density functions
from a limited number of samples using d-dimensional histograms is to allow the histogram
descriptors – location, shape and size – to adapt to the data. This is illustrated in Figure 4.20.

An early approach was by Sebestyen and Edie (1966) who described a sequential method
to multivariate density estimation using cells that are hyperellipsoidal in shape.

4.3.2 Independence assumption (naı̈ve Bayes)

Another approach for reducing the number of cells in high-dimensional problems is to make
some simplifying assumptions regarding the form of the probability density function. One
such simplification is to assume that the variables are independent so that p(x) may be written
in the form

p(x) =
d∏

i=1

p(xi)

x

Figure 4.20 Variable cell size histogram.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

182 DENSITY ESTIMATION – NONPARAMETRIC

where p(xi) are the individual (one-dimensional) densities of the components (features,
elements, variables) of x. Various names have been used to describe such a model including
naı̈ve Bayes, idiot’s Bayes and independence Bayes. A histogram approach may be used for
each density individually, giving Nd cells (assuming an equal number of cells, N, per variable),
rather than Nd.

A particular implementation of the independence model is (Titterington et al., 1981)

p(x) ∼
{

d∏
r=1

n(xr) + 1
Cr

N(r) + 1

}B

(4.11)

where xr is the rth variable (component) of x, n(xr) is the number of samples with value xr

on variable r (i.e. the number of samples in the cell which covers xr on variable r), N(r)
is the number of observations on variable r (this may vary due to missing data), Cr is the
number of cells in variable r and B is an ‘association factor’ representing the ‘proportion of
nonredundant information’ in the variables.

Note that the above expression takes account of missing data (which may be a problem
in some categorical data problems). It has a non constant number of cells per variable.
Furthermore, the 1

Cr
offsets to the sample counts prevent a test sample density from being

zero if for some reason no training data samples existed for the observed value of a given
variable (in which case n(xr) = 0). This is important, because if one component density is
zero, the overall density will be zero, even if all the other components give large density
values. Without such offsets, it would be possible for all the class conditional densities in a
Bayes rule classifier to have zero weight.

Naı̈ve Bayes models are popular due to their simplicity of implementation. The inde-
pendence assumption is often used in parametric density estimates via normal distributions
with diagonal covariance matrices (i.e. a product of univariate normal density functions), as
considered in Section 2.4.

4.3.3 Lancaster models

Lancaster models are a means of representing the joint density function in terms of the
marginal densities assuming all interactions higher than a certain order vanish. For example,
if we assume that all interactions higher than order s = 1 vanish, then a Lancaster model is
equivalent to the independence assumption. If we take s = 2, then the probability density
function is expressed in terms of the marginals p(xi) and the joint densities p(xi, xj), i �= j
(Zentgraf, 1975) as

p(x) =
⎧⎨
⎩
∑

i, j,i< j

p(xi, x j)

p(xi)p(x j)
−
[(

d
2

)
− 1

]⎫⎬
⎭ pindep(x)

where pindep(x) is the density function obtained by the independence assumption

pindep(x) =
d∏

k=1

p(xk)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 183

Lancaster models permit a range of models from the independence assumption to the full
multinomial, but do have the disadvantage that some of the probability density estimates may
be negative. Titterington et al. (1981) take the two-dimensional marginal estimates as

p(xi, x j) = n(xi, x j) + 1/(CiCj)

N(i, j) + 1

where the definitions of n(xi, xj) and N(i, j) are analogous to the definitions of n(xi) and N(i)
given previously for the independence model, and

p(xi) =
(

n(xi) + 1/Ci

N(i) + 1

)B

Titterington et al. (1981) adopt the independence model whenever the estimate of the joint
probability density is negative.

4.3.4 Maximum weight dependence trees

Lancaster models are one way to capture dependencies between variables without making
the sometimes unrealistic assumption of total independence on one hand, yet having a model
that does not require an unrealistic amount of storage or number of observations. Chow and
Liu (1968) propose a tree-dependent model in which the probability density function p(x) is
modelled as a tree-dependent distribution pt (x) that can be written as the product of (d − 1)
pairwise conditional probability density functions:

pt (x) =
d∏

i=1

p(xi|x j(i)) (4.12)

where xj(i) is the variable designated as the parent of xi, with the root x1 chosen arbitrarily and
characterised by the prior probability p(x1|x0) = p(x1).

For example, the density

pt (x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2)p(x5|x4)p(x6|x4)p(x7|x4)p(x8|x7) (4.13)

has the tree depicted in Figure 4.21(a), with root x1. An alternative tree representation of the
same density is Figure 4.21(b), with root x4, since (4.13) may be rearranged using Bayes’
theorem as

pt (x) = p(x4)p(x1|x2)p(x3|x2)p(x2|x4)p(x5|x4)p(x6|x4)p(x7|x4)p(x8|x7)

Indeed, any node may be taken as the root node. Applying the approach to discrete
distributions (or discretised continuous distributions), if each variable can take N values, then
the density (4.12) has N(N − 1) parameters for each of the conditional densities (recall that
each conditional density must sum to one over the dependent variable) and (N − 1) parameters
for the prior probability, giving a total of N(N − 1)(d − 1) + N − 1 parameters to estimate.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

184 DENSITY ESTIMATION – NONPARAMETRIC

x1

x2

x3 x4

x5 x6 x7

x8

x4

x2 x5 x6 x7

x1 x3 x8

Figure 4.21 Tree representations.

The approach of Chow and Liu (1968) is to seek the tree-dependent distribution, pt (x)

that best approximates the distribution p(x). The KL divergence (also referred to as the
Kullback–Leibler cross-entropy measure) is used as the measure of closeness in approximating
p(x) by pt (x)

KL(p(x)|pt (x)) =
∫

p(x)log

(
p(x)

pt (x)

)
dx

or for discrete variables

KL(p(x)|pt (x)) =
∑
x

p(x)log

(
p(x)

pt (x)

)

where the sum is over all values that the variable x can take. They seek the tree-dependent
distribution pτ (x) such that KL(p(x)|pτ (x)) ≤ KL(p(x)|pt (x)) over all t in the set of possible
first-order dependence trees.

Using the mutual information between variables

I(Xi, Xj) =
∑
xi,x j

p(xi, x j)log

(
p(xi, x j)

p(xi)p(x j)

)

to assign weights to every branch of the dependence tree, Chow and Liu (1968) show that
(see the exercises at the end of the chapter) the tree-dependent distribution pt (x) that best
approximates p(x) is the one with maximum weight defined by

W =
d∑

i=1

I(Xi, Xj(i))

This is termed a maximum weight dependence tree (MWDT) or a maximum weight spanning
tree. The steps in the algorithm to find an MWDT are provided in Algorithm 4.2.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 185

Algorithm 4.2 Determination of a maximum weight dependence tree.

1. Compute the branch weights for all d(d − 1)/2 variable pairs [i.e. I(Xi, Xj) for all pairs
i < j] and order them in decreasing magnitude.

2. Find the two branches with the largest weights, and take them as the first two branches of
the tree.

3. Consider the next largest branch weight and add the corresponding branch to the tree if it
does not form a cycle with the branches selected to date, otherwise discard it.

4. Repeat step 3 until d − 1 branches have been selected in total (by construction these
branches will cover all the variables).

5. The probability distribution may be computed by selecting an arbitrary root node and using
the branch pairings in the tree to compute (4.12).

For discrete (or discretised continuous) data, the branch weights can be estimated from
the marginal and pair sample frequencies within a training dataset. We approximate a branch
weight I(Xi, Xj) by

Î(Xi, Xj) =
∑
u,v

f(xi,x j)(u, v)log

(
f(xi,x j)(u, v)

fxi (u) fx j (v)

)

where f(xi,x j)(u, v) is the proportion of training data examples for which xi = u and xj = v,
and fxi (u) is the proportion of training data examples for which xi = u.

The first stage in applying maximum weight dependence trees to a classification problem
is to apply the algorithm to the dataset for each class individually to give C trees. These
trees can then be used to specify the class conditional probability densities used in a Bayes’
rule classifier.

There are several features that make maximum weight dependence trees attractive. The
algorithm requires only second-order distributions but, unlike the second-order Lancaster
model, it need store only d − 1 of these. The tree is computed in O(d2) steps (though
additional computation is required in order to obtain the mutual information) and if p(x) is
indeed tree dependent then the approximation pt (x) is a consistent estimate in the sense that

max
x

|pt(n)
n (x) − p(x)| → 0 with probability 1 as n → ∞

where pt(n)
n is the tree-dependent distribution estimated from n independent samples of the

distribution p(x).

Example application
Applying the MWDT creation procedure to the six-dimensional head injury data of
Titterington et al. (1981) produces (for class 1) the tree illustrated in Figure 4.22. The labels
for the variables are described in Section 2.3.3 (x1 – Age; x2 – EMV; x3 – MRP; x4 – Change;
x5 – Eye Indicant; x6 – Pupils).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

186 DENSITY ESTIMATION – NONPARAMETRIC

x1

x2

x5

x3

x4

x6

Figure 4.22 MWDT applied to head injury patient data (class 1).

To determine the tree-dependent distribution, select a root node (say node 1) and write the
density using the figure as

pt (x) = p(x1)p(x2|x1)p(x3|x2)p(x5|x2)p(x4|x3)p(x6|x5)

4.3.4.1 Further developments

The MWDT approximation can also be derived by minimising an upper bound on the Bayes’
error rate under certain circumstances (Wong and Poon, 1989). Computational improvements
in the procedure have been proposed by Valiveti and Oommen (1992, 1993), who suggest a
chi-square metric in place of the expected mutual information measure.

A further development is to impose a common tree structure across all classes. The mutual
information between variables is then written as

I(Xi, Xj) =
∑

xi,x j,ω

p(xi, x j, ω)log

(
p(xi, x j|ω)

p(xi|ω)p(x j|ω)

)

It is termed a tree-augmented naı̈ve Bayesian network by Friedman et al. (1997), who provide
a thorough evaluation of the model on 23 datasets from the UCI repository (Murphy and
Aha, 1995) and two artificial datasets. Continuous attributes are discretised and patterns with
missing values omitted from the analysis. Performance is measured in terms of classification
accuracy with the holdout method used to estimate error rates (see Chapter 9). The model
was compared with one in which separate trees were constructed for each class and the naı̈ve
Bayes model. Both tree models performed well in practice.

4.3.5 Bayesian networks

In Section 4.3.4 a development of the naı̈ve Bayes model (which assumes independence
between variables) was described. This was the MWDT model, which allows pairwise depen-
dence between variables and is a compromise between approaches that specify all relationships
between variables and the rather restrictive independence assumption. Bayesian networks also
provide an intermediate model between these two extremes and have the tree-based models
as a special case.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 187

We introduce Bayesian networks by considering a graphical representation of a
multivariate density. The chain rule allows a joint density, p(x1, . . . , xd), to be expressed in
the form

p(x1, . . . , xd) = p(xd |x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2) . . . p(x2|x1)p(x1) (4.14)

The chain rule above is obtained by repeated applications of the product rule (i.e. the equation
for conditional probabilities)

p(x1, . . . , xi) = p(xi|x1, . . . , xi−1)p(x1, . . . , xi−1)

for i = 1, . . . , d.
We may depict the representation of the density in (4.14) graphically. This is illustrated

in Figure 4.23 for d = 6 variables.
Each node in the graph represents a variable and the directed links denote the dependencies

of a given variable. The parents of a given variable are those variables with directed links
towards it. For example, the parents of x5 are x1, x2, x3 and x4. The root node is the node
without parents (the node corresponding to variable x1). The probability density that such a
figure depicts is the product of conditional densities

p(x1, . . . , xd) =
d∏

i=1

p(xi|πi) (4.15)

where πi is the set of parents of xi [cf. Equation (4.12), which is the same but with the
constraint that each variable has at most one parent]. If πi is empty, p(xi|πi) is set to p(xi).

Figure 4.23 is the graphical part of the Bayesian network and Equation (4.15) is the
density associated with the graphical representation. However, there is little to be gained in
representing a full multivariate density p(x1, . . . , x6) as a product using the chain rule with
the corresponding graph (Figure 4.23), unless we can make some simplifying assumptions
concerning the dependence of variables. For example, suppose that

p(x6|x1, . . . , x5) = p(x6|x4, x5)

that is, x6 is independent of x1, x2, x3 given x4, x5. Furthermore, suppose that

p(x5|x1, . . . , x4) = p(x5|x3)

p(x4|x1, x2, x3) = p(x4|x1, x3)

p(x3|x1, x2) = p(x3)

x1 x2

x5 x6

x4x3

Figure 4.23 Graphical representation of the multivariate density p(x1, . . . , x6).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

188 DENSITY ESTIMATION – NONPARAMETRIC

x1 x2

x5 x6

x4x3

x1 x3

x5x2 x4

x6

(a) (b)

Figure 4.24 Graphical representations of the multivariate density p(x1, . . . , x6) = p(x6|x4,
x5)p(x5|x3)p(x4|x1, x3)p(x3)p(x2|x1)p(x1).

Then the multivariate density may be expressed as the product

p(x1, . . . , x6) = p(x6|x4, x5)p(x5|x3)p(x4|x1, x3)p(x3)p(x2|x1)p(x1) (4.16)

This is depicted graphically in Figure 4.24; Figure 4.24(a) is obtained by removing links in
Figure 4.23 and Figure 4.24(b) is an equivalent graph to make the ‘parentage’ more apparent.
This figure, with the general probability interpretation (4.15), gives (4.16). Note that there are
two root nodes.

The graphical representation of Bayesian networks is convenient for visualising depen-
dencies. The factorisation of a multivariate density into a product of densities defined on
perhaps only a few variables allows better nonparametric density estimates. For example, the
product (4.16) requires densities defined on at most three variables.

4.3.5.1 Definitions

The following definitions are used in the literature on Bayesian networks and related tech-
niques (see Chapters 11 and 12 for further discussions of graph theory, within the context of
spectral clustering and analysis of complex networks).

� A graph is a pair (V , E), where V is a set of vertices and E a set of edges (connections
between vertices).

� A directed graph is a graph in which all edges are directed: the edges are ordered pairs;
if (α, β) ∈ E, for vertices α and β, then (β, α) �∈ E.

� A directed acyclic graph (DAG) is a directed graph in which there are no cycles: there
is no path α1 → α2 →· · · → α1, for any vertex α1.

� A Bayesian network is a DAG where the vertices correspond to variables and associated
with a variable X with parents Y1, . . . , Yp is a conditional probability density function,
p(X|Y1, . . . , Yp).

� The Bayesian network, together with the conditional densities, specify a joint proba-
bility density function by (4.15).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 189

4.3.5.2 Classification

As with the MWDT, we may construct a different Bayesian network to model the probability
density function of each class p(x|ωi) separately. These densities may be substituted into
Bayes’ rule to obtain estimates of the posterior probabilities of class membership. Alterna-
tively, we may construct a Bayesian network to model the joint density p(x, ω), where ω is a
class label. Again, we may evaluate this for each of the classes and use Bayes’ rule to obtain
p(ω|x). Separate networks for each class allow a more flexible model. Such a set of networks
has been termed a Bayesian multinet (Friedman et al., 1997).

4.3.5.3 Specifying the network

Specifying the structure of a Bayesian network consists of two parts: specifying the network
topology and estimating the parameters of the conditional probability density functions. The
topology may be specified by someone with an expert knowledge of the problem domain and
who is able to make some statements about dependencies of variables. Hence, an alternative
name for Bayesian networks is probabilistic expert systems: an expert system because the
network encodes expert knowledge of a problem in its structure and probabilistic because
the dependencies between variables are probabilistic. Acquiring expert knowledge can be a
lengthy process. An alternative approach is to learn the graph from data if they are available,
perhaps in a similar manner to the MWDT algorithm. In some applications, sufficient data
may not be available.

In learning structure from data, the aim is to find the Bayesian network that best char-
acterises the dependencies in the data. There are many approaches. Buntine (1996) reviews
the literature on learning networks. Ideally, we would want to combine expert knowledge
where available and statistical data. Heckerman et al. (1995; see also Cooper and Herskovits,
1992) discuss Bayesian approaches to network learning. Friedman and Koller (2003) consider
an MCMC approach for estimating the posterior distributions of different network structures
given a dataset. Their approach has two aspects; calculation of the marginal density of the data
for networks with a known ordering of the features (an ordering of the features is such that if
xi precedes xj in the ordering, then xj cannot be a parent of xi); and MCMC sampling over the
space of possible feature orders. The book by Neapolitan (2003) provides a detailed treatment
of learning of Bayesian networks from data, include both structure and parameter learning.

For nonparametric density estimation, the probability distributions are usually specified
as a conditional probability table, with continuous variables discretised, perhaps as part of the
structure learning process. For continuous density estimation, it is not essential to discretise
the dependent variables and some nonparametric density estimates, perhaps based on product
kernels (see Section 4.4), could be used for each set of discretised parent variables. More
generally, the conditional densities can be prescribed parametric models, allowing some of
the estimation procedures of Chapters 2 and 3 to be used.

4.3.5.4 Discussion

Bayesian networks provide a graphical representation of the variables in a problem and the
relationship between them. This representation needs to be specified or learned from data.
This structure, together with the conditional density functions, allows the multivariate density

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

190 DENSITY ESTIMATION – NONPARAMETRIC

function to be specified through the chain rule (4.15). In a classification problem, a density
may be estimated for each class and Bayes’ rule used to obtain the posterior probabilities of
class membership.

Bayesian networks have been used to model many complex problems, other than ones in
classification, with the structure being used to calculate the conditional density of a variable
given measurements made on some (or all) of the remaining variables. For example, sup-
pose that we model the joint density p(y, x1, . . . , xd) as a Bayesian network, and that we are
interested in the quantity p(y|e), where e comprises measurements made on a subset of the
variables, x1, . . . , xd. Then, using Bayes’ theorem, we may write

p(y|e) = p(y, e)

p(e)
=

∫
p(y, e, ẽ)dẽ∫ ∫
p(y, e, ẽ)dẽdy

where ẽ is the set of variables x1, . . . , xd not instantiated. Efficient algorithms that make use
of the graphical structure have been developed for computing p(y|e) in the case of discrete
variables (Lauritzen and Spiegelhalter, 1988).

4.3.5.5 Further reading

Bayesian networks have become very popular over the past two decades, and are known by
many other names such as belief networks, directed acyclic graphical models, probabilistic
expert systems and probabilistic graphical models. A number of good textbooks are available
for those interested in using Bayesian networks within statistical pattern recognition studies.
These include texts by Pearl (1988), Jensen (1997, 2002), Jordan (1998), Neapolitan (2003),
Darwiche (2009), Koller and Friedman (2009), Koski and Noble (2009), and Kjaerulff and
Madsen (2010). A recent book edited by Pourret et al. (2008) considers a range of real-life
applications of Bayesian networks, including medical diagnosis, crime risk evaluation and
terrorism risk management. The book by Bishop (2007) is not a specific Bayesian network
text but covers procedures for inference in Bayesian networks.

4.3.6 Example application study – naı̈ve Bayes text classification

The problem
Rennie et al. (2003) consider the use of naı̈ve Bayes classifiers in text classification. In text
classification, one seeks to label a text document by the topic to which it refers, based on an
analysis of the content of the document.

Summary
The authors discuss how naı̈ve Bayes models have provided a popular approach to text
classification over the years, primarily due to fast and easy means of implementation. However,
they note that increasingly they have been performing poorly compared with other text
classifiers in performance comparison experiments. To mitigate this they provide five heuristic
alterations to the naı̈ve Bayes classifier that increase its performance in such comparisons.
These range from simple transformations of the features, to more radical approaches that
remove the interpretation of the model as a Bayesian classifier.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 191

The data
The authors consider three publicly available benchmark datasets in their experiments. The
first, referred to as the 20 Newsgroups dataset, contains approximately 20 000 newsgroup
documents, partitioned evenly across 20 different topics. The second is the Industry Sector
dataset, made up of 9649 company web pages classified into 105 different industries. The
third is the Reuters-21578 dataset containing documents from the Reuters newswire in 1987.
The Reuters-21578 dataset has data classified to 90 topics. However, each document can be
categorised into more than one topic (i.e. the data has multiple labels).

The naı̈ve Bayes model
The ‘bag of words’ naı̈ve Bayes model (McCallum and Nigam, 1998) is used as the baseline
model in the experiments. A vocabulary of words is built for each dataset. The feature vector
for a given document is then made up from the counts of the number of times each word in
the vocabulary occurs in the document. Suppose that the vocabulary contains |V| words. Then
the feature vector associated with a document is the |V|-dimensional vector, f , such that fi
is the number of times that the ith word in the vocabulary occurs within the document. The
class-conditional probability density (formally probability mass function) used for class ωj in
the classifier based on Bayes’ rule is

p(f |ω j) =
(|V |∑

i=1

fi

)
!

|V |∏
i=1

(θji)
fi

fi!

where θ ji is the independent probability that any given word in a document from class ωj

is the ith word in the vocabulary. This distribution is actually derived as a multinomial
model for word frequency, and therefore represents a parametric rather than nonparametric
density estimate.

The terms θ ji are estimated from frequency counts in training data documents, along with
offsets arising from incorporating prior information. The authors set

θ̂ji = Nji + αi

Nj +∑|V |
m=1 αm

(4.17)

where Nji is the number of occurrences of word i in training documents belonging to class ωj,
Nj is the total number of words in training documents belonging to class ωj, and the αi are
constants relating to the prior distribution of Bayesian estimates for θ ji. The authors set αi =
1, i = 1, . . . , V.

Rennie et al. (2003) note that the form of the model is such that the decision rule is assign
f to ωi if gi > gj, for all j �= i, where

g j = log(p(ω j)) +
|V |∑
i=1

fi log(θ̂ji)

= log(p(ω j)) +
|V |∑
i=1

fiwji

with wji = log(θ̂ji). This is a linear discriminant function.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

192 DENSITY ESTIMATION – NONPARAMETRIC

Heuristic improvements
The following heuristic improvements are made to the classifier by the authors:

� Noting that empirical distributions of word counts within documents tend to have longer
tails than would be suggested by the multinomial model, they replace the multinomial
model of word counts by a power law distribution. This is implemented by transforming
the word count features as follows

f ′
i = log(fi + κ)

where κ should be optimised to fit the data, but is set to κ = 1 in experiments.

� Noting that common words can adversely affect classification performance through
random variations in occurrence across classes, they use an inverse document frequency
transformation to reduce the effect of common words. The transformation is

f ′
i = fi log

(
n

ni

)

where n is the number of training documents, and ni is the number of training documents
which contain word i.

� Noting that the longer a document is, the more likely the naı̈ve Bayes modelling
assumption is to be violated through interdependencies between words, they apply the
following transformation to reduce the influence of long documents:

f ′
i = fi√∑|V |

j=1(f j)2

The above transformations are chained together in the order given.
Two more radical alterations to the naı̈ve Bayes classifier are also advocated by the authors,

which remove its interpretability as a Bayesian classifier. The first alteration is designed to
improve the performance of the classifier when the amounts of available training data differ
considerably from class to class (i.e. when the dataset is skewed). The approach is to replace
estimation of the θ ji occurrence probabilities for each word within class ωj, with estimation of
θ j̃i, the probability of the word for all classes except class ωj (i.e. for the complement class).
Equation (4.17) is replaced by

θ̂ j̃i = Nj̃i + αi

N j̃ +∑|V |
m=1 αm

where Nj̃i is the number of occurrences of word i in documents that do not belong to class ωj,
and Nj̃ is the total number of words in documents that do not belong to class ωj. The adapted
classification rule is then to assign f to ωi if g′

i > g′
j for all j �= i, where

g′
j = log(p(ω j)) −

|V |∑
i=1

fi log(θ̂ j̃i)

= log(p(ω j)) −
|V |∑
i=1

fiw j̃i

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

HISTOGRAM METHOD 193

with wj̃i = log(θ̂ j̃i). A negative sign in front of the weights reflects the fact that documents
that are a poor match to the complement class for ωj should be assigned to class ωj. It is
argued by the authors that such an approach evens out the amount of training data used to
estimate the discriminant function for each class, and therefore should reduce the bias in the
estimates, and hence improve classification performance.

The final heuristic is to normalise the magnitudes of the weight vectors in the linear
discriminant form of the classification rule. Specifically the weights wji are replaced by

ŵ′
ji = log(θ̂ji)∑|V |

k=1 | log(θ̂ji)|

It is argued by the authors that this can improve performance when there are correlations
between word occurrences (which violates the assumption underlying the naı̈ve Bayes model).

Results
On the datasets considered the authors find that their heuristic alterations lead to better
performance than the original naı̈ve Bayes model. The resulting classifier gave comparable
performance with a support vector machine (SVM) classifier.3

4.3.7 Summary

In the development of the basic histogram approach described in this section, we have con-
centrated on methods for reducing the number of cells for high-dimensional data. The ap-
proaches described are most suited to data that are categorical with integer-labelled categories,
though the categories themselves may or may not be ordered. The simplest models are the
independence models, and on the head-injury data of Titterington et al. (1981) they gave con-
sistently good performance over a range of values for B, the association factor (0.8 to 1.0) in
Equation (4.11).

The independence assumption (naı̈ve Bayes model) results in a very severe factorisation of
the probability density function – clearly one that is unrealistic for many practical problems.
Yet, as discussed by Hand and Yu (2001), it is a model that has had a long and successful history
(see also, Domingos and Pazzani, 1997). Practical studies, particularly in medical areas, have
shown it to perform surprisingly well. Hand (1992) provides some reasons why this may
be so: its intrinsic simplicity means low variance in its estimates; although its probability
density estimates are biased, this may not matter in supervised classification so long as
p̂(ω1|x) > p̂(ω2|x) when p(ω1|x) > p(ω2|x); in many cases, variables have undergone a
selection process to reduce dependencies. Naı̈ve Bayes models have proven very popular in
the field of text classification, with many variants of the basic model being proposed over the
years (Lewis, 1998; Rennie et al., 2003; Kim et al., 2006; Chen et al., 2009).

More complex interactions between variables may be represented using Lancaster models
and MWDTs. Introduced by Chow and Liu (1968), MWDTs provide an efficient means of
representing probability density functions using only second-order statistics.

3 Support vector machines are discussed in Chapter 6, and are considered to be a state-of-the-art approach to text
categorisation (Joachims, 1998).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

194 DENSITY ESTIMATION – NONPARAMETRIC

Dependence trees are a special case of Bayesian networks which model a multivariate
density as a product of conditional densities defined on a fewer number of variables. These
networks may be specified by an expert, or learned from data. Bayesian networks are a pow-
erful means of density estimation, used successfully in a wide range of real world problems.
Many good dedicated text books exist which describe the procedures for learning and using
Bayesian networks.

4.4 Kernel methods

One of the problems with the histogram approach, as discussed in the previous section, is
that for a fixed cell dimension, the number of cells increases exponentially with dimension
of the data vectors. This problem can be overcome somewhat by having a variable cell size.
The k-nearest-neighbour method (in its simplest form) overcomes the problem by estimating
the density using a cell in which the number of training samples is fixed and finds the cell
volume that contains the nearest k. The kernel method (also known as the Parzen method of
density estimation, after Parzen, 1962) fixes the cell volume and finds the number of samples
within the cell and uses this to estimate the density.

Let us consider a one-dimensional example and let {x1, . . . , xn} be the set of observations
or data samples that we shall use to estimate the density. We may easily write down an estimate
of the cumulative distribution function as

P̂(x) = number of observations ≤ x

n

The density function, p(x), is the derivative of the distribution, but the distribution is
discontinuous (at observation values; Figure 4.25) and its derivative results in a set of spikes
at the sample points, xi, and a value zero elsewhere. However, we may define an estimate of
the density as

p̂(x) = P̂(x + h) − P̂(x − h)

2h
(4.18)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
� � � � � � � � �

Figure 4.25 Cumulative distribution.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

KERNEL METHODS 195

where h is a positive number. This is the proportion of observations falling within the interval
(x − h, x + h) divided by 2h. This may be written as

p̂(x) = 1

hn

n∑
i=1

K

(
x − xi

h

)
(4.19)

where K(z) is a rectangular (also referred to as top hat) kernel

K(z) =
{

0 |z| > 1
1
2 |z| ≤ 1

(4.20)

Equations (4.19) and (4.20) give rise to (4.18), because for sample points, xi, within h of x,
the kernel function in (4.19) takes the value 1/2, and therefore the summation gives a value
of 1

2 × (the number of observations within the interval). Figure 4.26 gives an estimate of the
density using Equations (4.19) and (4.20) for the data used to form the cumulative distribution
in Figure 4.25.

Figure 4.26 shows us that the density estimate is itself discontinuous. This arises from the
fact that points within a distance h of x contribute a value 1

2hn to the density and points further
away a value of zero. It is this jump from 1

2hn to zero that gives rise to the discontinuities. We
can remove this, and generalise the estimator, by using a smoother weighting function than
that given by (4.20). For example, we could have a weighting function K1(z) (also with the
property that the integral over the real line is unity) that decreases as |z| increases. Figure 4.27
plots the density estimate for a weighting given by the normal kernel

K1(z) = 1√
2π

exp

{
− z2

2

}

and a value of h of 0.2. This gives a smoother density estimate. Of course, it does not mean
that this estimate is necessarily more ‘correct’ than that of Figure 4.26, but we might suppose
that the underlying density is a smooth function and want a smooth estimate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4
� � � � � � � � �

Figure 4.26 Probability density estimate with top hat kernel, h = 0.2.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

196 DENSITY ESTIMATION – NONPARAMETRIC

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4
� � � � � � � � �

Figure 4.27 Probability density figure with Gaussian kernel and h = 0.2.

The above derivation, together with Figures 4.25–4.27, provide a motivation for the kernel
method of density estimation, which we formulate as follows. Given a set of observations
{x1, . . . , xn}, an estimate of a density function, in one dimension, is taken to be

p̂(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
(4.21)

where K(z) is termed the kernel function and h is the spread or smoothing parameter (some-
times termed the bandwidth). Examples of popular univariate kernel functions are given
in Table 4.4.

Smoothing parameter
The effect of changing the smoothing parameter is shown in Figure 4.28. For a large value of
h, the density is smoothed and detail is obscured. As h becomes smaller, the density estimate
shows more structure and becomes spiky as h approaches zero.

Table 4.4 Commonly used kernel functions for univariate data.

Kernel function Analytic form, K(x)

Rectangular (or top hat) 1
2 for |x| < 1, 0 otherwise

Triangular 1 − |x| for |x| < 1, 0 otherwise

Biweight (or Quartic) 15
16 (1 − x2)2 for |x| < 1, 0 otherwise

Normal (or Gaussian) 1√
2π

exp(−x2/2)

Bartlett–Epanechnikov 3
4 (1 − x2/5)/

√
5 for |x| <

√
5, 0 otherwise

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

KERNEL METHODS 197

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4
� � � � � � � � �

Figure 4.28 Probability density with different levels of smoothing (h = 0.2 and h = 0.5).

4.4.1 Biasedness

If we impose the conditions that the kernel K(z) ≥ 0 and
∫

K(z)dz = 1, then the density
estimate p̂(x) given by (4.21) also satisfies the necessary conditions for a probability density
function, p(x) ≥ 0 and

∫
p(x)dx = 1.

A theorem due to Rosenblatt (1956) implies that for positive kernels the density estimate
will be biased for any finite sample size (see Section 4.1). That is, the estimate of the density
averaged over an ensemble of datasets is a biased estimate of the true probability density
function. In order to obtain an unbiased estimate, we would be required to relax the condition
of positivity of the kernels. Thus the estimate of the density function would not necessarily
be a density function itself since it may have negative values. To some people, that would not
matter. After all, why should the properties of the estimate be the same as the true density?
On the other hand, there are some who could not live with an estimate of a probability that
had negative values, and so would readily accept a bias. They would also point out that
asymptotically the estimate is unbiased (it is unbiased as the number of samples used in the
estimate tends to infinity) and asymptotically consistent if certain conditions on the smoothing
parameter and the kernel hold. These conditions on the kernel are

∫
|K(z)|dz < ∞
∫

K(z)dz = 1

sup
z

|K(z)| < ∞, K(z) is finite everywhere

lim
z→∞ |zK(z)| = 0

and the conditions on the smoothing parameter (see Section 4.4.3) are

lim
n→∞ h(n) = 0 for an asymptotic unbiased estimate

lim
n→∞ nh(n) = ∞ for an asymptotic consistent estimate

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

198 DENSITY ESTIMATION – NONPARAMETRIC

4.4.2 Multivariate extension

The extension to multivariate data is straightforward, with the multivariate kernel density
estimate defined as

p̂(x) = 1

nhd

n∑
i=1

K

(
1

h
(x − xi)

)

where K(x) is a multivariate kernel defined for d-dimensional x

∫
Rd

K(x)dx = 1

and h is the window width.
Multivariate kernels (d variables) are usually radially symmetric unimodal densities such

as the Gaussian kernel

K(x) = (2π)−d/2exp(−xT x/2)

and the Bartlett–Epanechnikov kernel

K(x) = (1 − xT x)(d + 2)/(2cd) for |x| < 1 (0 otherwise)

where cd = πd/2/ �((d/2) + 1) is the volume of the d-dimensional unit sphere.
Another form of the probability density function estimate commonly used is a sum of

product kernels (note that this does not imply independence of the variables)

p̂(x) = 1

n

1

h1 . . . hd

n∑
i=1

d∏
j=1

Kj

(
[x − xi] j

h j

)

where there is a different smoothing parameter associated with each variable. The Kj can take
any of the univariate forms in Table 4.4. Usually, the Kj are taken to be the same form.

More generally, we may take

p̂(x) = p̂(x; H) = 1

n

n∑
i=1

|H|−1/2K(H−1/2(x − xi)) (4.22)

where K is a d-variate spherically symmetric density function and H is a symmetric positive
definite matrix. In a classification context, H is commonly taken to be h2

k�̂k for class ωk, where
hk is a scaling for class ωk and �̂k is the sample covariance matrix. Various approximations to
the covariance are evaluated by Hamamoto et al. (1996) in situations where the sample size
is small and the dimensionality is high.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

KERNEL METHODS 199

4.4.3 Choice of smoothing parameter

One of the problems with this ‘nonparametric’ method is the choice of the smoothing
parameter, h. If h is too small, the density estimator is a collection of n sharp peaks,
positioned at the sample points. If h is too large, the density estimate is smoothed and
structure in the probability density estimate is lost. The optimal choice of h depends on
several factors. First, it depends on the data: the number of data points and their distribution.
It also depends on the choice of the kernel function and on the optimality criterion used for
its estimation. The maximum likelihood estimation of h that maximises the likelihood

p(x1, . . . , xn|h)

is given by h = 0 – an estimate that consists of a spike at each data point and zero elsewhere.
Therefore, some other technique must be used for estimating h. There are many possible
methods. Surveys are given in the articles by Jones et al. (1996) and Marron (1988).

1. Find the average distance between samples to their kth nearest neighbour and use this
for h. A value of k = 10 has been suggested (Hand, 1981a).

2. Find the value of h that minimises the mean integrated square error (MISE) between
the density and its approximation. Since the actual density is unknown, an asymptotic
expression is required for the MISE, calculated via a number of approximations (e.g.
derivatives of the unknown density being approximated by the derivatives of a normal
density). For a radially symmetric normal kernel, Silverman (1986) suggests

h = σ

(
4

d + 2

) 1
d+4

n− 1
d+4 (4.23)

where a choice for σ is

σ 2 = 1

d

d∑
i=1

sii

and sii are the diagonal elements of a sample covariance matrix, possibly a robust
estimate (see Chapter 13). The above estimate will work well if the data come from
a population that is normally distributed, but may over-smooth the density if the
population is multimodal. A slightly smaller value may be appropriate. You could try
several values and assess misclassification rate.

3. There are more sophisticated ways of choosing kernel widths based on least squares
cross-validation (again requiring approximations since the actual density is unknown)
or maximum likelihood cross-validation. In likelihood cross-validation the value of h
is chosen to maximise (Duin, 1976)

n∏
i=1

p̂i(xi)

where p̂i(xi) is the density estimate based on n − 1 samples (all samples but the
ith). The use of cross-validation estimates (i.e. specifying each kernel density without

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

200 DENSITY ESTIMATION – NONPARAMETRIC

using the sample that the density will be evaluated at) removes the problem of the
maximum likelihood estimate being given by h = 0 (i.e. by spikes at each data point).
However, a major problem with this method is its reported poor performance in the
heavy-tailed case.

4. Many bandwidth estimators have been considered for the univariate case. The basic
idea behind the ‘plug-in’ estimate is to plug an estimate for the unknown curvature,
S

= ∫
(p′′(x))2dx (the integral of the square of the second derivative of the density),

into the expression for h that minimises the asymptotic MISE

h =
[c

D2Sn

]1/5

where c = ∫
K2(t)dt and D = ∫

t2K(t)dt. Jones and Sheather (1991) propose a kernel
estimate for the curvature, but this, in turn, requires an estimate of the bandwidth,
which will be different from that used to estimate the density. Cao et al. (1994), in
simulations, use

S = n−2g−5
∑
i, j

Kiv

(
xi − x j

g

)

where Kiv is the fourth derivative of K and the smoothing parameter g is given by

g =
(

2Kiv(0)

D

)1/7

T̂ −1/7n−1/7

where T̂ is a parametric estimator of
∫

(p′′′(t))2dt. Development of the ‘plug-in’ ideas
to bandwidth selectors for multivariate data have been considered by Wand and Jones
(1994).

Cao et al. (1994) perform comparative studies on a range of smoothing methods for univariate
densities. Although there is no uniformly best estimator, they find that the plug-in estimator
of Sheather and Jones (1991) shows satisfactory performance over a range of problems.

The previous discussion has assumed that h is a fixed value over the whole of the space
of data samples. The ‘optimal’ value of h may in fact be location dependent, giving a large
value in regions where the data samples are sparse and a small value where the data samples
are densely packed. There are two main approaches:

1. h = h(x); that is, h depends on the location of the sample in the data space. Such
approaches are often based on nearest-neighbour ideas.

2. h = h(xi); that is, h is fixed for each kernel and depends on the local density. These are
termed variable kernel methods.

One particular choice for h is (Breiman et al., 1977)

hj = αkd jk (4.24)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

KERNEL METHODS 201

where αk is a constant multiplier and djk is the distance from x j to its kth nearest neighbour in
the training/design set. However, we still have the problem of parameter estimation – namely
that of estimating αk and k.

Breiman et al. (1977) find that good fits can be obtained over a wide range of k provided
αk satisfies

βk
= αkdk

2

σ (dk)
= constant

where dk is the mean of the kth-nearest-neighbour distances (1
n

∑n
j=1 djk) and σ (dk) is their

standard deviation. In their simulations, this constant was three to four times larger than the
best value of h obtained for the fixed kernel estimator.

Other approaches that have a different bandwidth for the kernel associated with each data
point employ a ‘pilot’ density estimate (i.e. an initial fixed kernel estimate of the density) to
set the bandwidth. Abramson (1982) has proposed a bandwidth inversely proportional to the
square root of the density, hp−1/2(x), which may lead to O(h4) bias under certain conditions
on the density (Terrell and Scott, 1992; Hall et al. 1995). Although a pilot estimate of p(x) is
required, the method is insensitive to the fine detail of the pilot (Silverman, 1986).

There have been several papers comparing the variable kernel approach with the fixed
kernel method. Breiman et al. (1977) find superior performance compared with the fixed
kernel approach. It seems that a variable kernel method is potentially advantageous when the
underlying density is heavily skewed or long-tailed (Remme et al., 1980; Bowman, 1985).
Terrell and Scott (1992) report good performance of the Breiman et al. model for small-to-
moderate sample sizes, but performance deteriorates as sample size grows compared with the
fixed kernel approach.

Further investigations into variable kernel approaches include those of Krzyzak (1983)
(who examines classification rules) and Terrell and Scott (1992). Terrell and Scott conclude
that it is ‘surprisingly difficult to do significantly better than the original fixed kernel scheme’.
An alternative to the variable bandwidth kernel is the variable location kernel (Jones et al.,
1994), in which the location of the kernel is perturbed to reduce bias.

4.4.4 Choice of kernel

Another choice which we have to make in the form of our density estimate is the kernel
function. Examples of different kernel functions were provided in Table 4.4. In practice, the
most widely used kernel is the normal (Gaussian) form

K
(x

h

)
= 1

h
√

2π
exp

{
− x2

2h2

}

with product kernels being used for multivariate density estimation. Alternatively, radially
symmetric unimodal probability density functions such as the multivariate normal density
function are used. There is evidence that the form is relatively unimportant, though the
product form may not be ideal for the multivariate case. There are some arguments in favour
of kernels that are not themselves densities and admit negative values (Silverman, 1986).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

202 DENSITY ESTIMATION – NONPARAMETRIC

4.4.5 Example application study

The problem
Our practical problem is that addressed by Kraaijveld (1996). It relates to a problem in the oil
industry: prediction of the type of subsurface (for example, sand, shale, coal – the lithofacies
class) from physical properties such as electron density, velocity of sound and electrical
resistivity obtained from a logging instrument lowered into a well.

Summary
The classifier is applied to data from wells which differ from those used to train the classifier.
This is an example of a practical problem where the probability density function of data may
vary with time (termed population drift; Hand, 1997). Thus, the test conditions differ from
those used to define the training data. Kraaijveld (1996) showed how unlabelled test data can
be used to improve the performance of a kernel approach to discriminant analysis where the
training data are only approximately representative of the test conditions. This is done by
adjusting the width of the kernel estimator using the observed (but unlabelled) test data. Such
a use of the test set as part of the training procedure is feasible if the classification declarations
are not needed online at the immediate time of measurement. This is because we can then
collect together the test samples for batch processing at a later date.

The data
Twelve standard datasets were generated from data gathered from two fields and 18 different
well sites. The datasets comprised different-sized feature sets (4–24 features) and 2, 3 and 4
classes.

The model
A Gaussian kernel is used, with the width estimated by maximising a modified likelihood
function (solved using a numerical root-finding procedure and giving a width, s1). An ap-
proximation, based on the assumption that the density at a point is determined by the nearest
kernel only, is given by

s2 =
√√√√ 1

dn

n∑
i=1

∣∣x∗
i − xi

∣∣2

for a d-dimensional dataset {xi, i = 1, . . . , n}, where x∗
i is the nearest sample to xi.

A robust estimate of kernel width is also derived using a test dataset, again using a modified
likelihood criterion, to give s3. The nearest-neighbour approximation is

s4 =
√√√√ 1

dnt

nt∑
i=1

∣∣x∗
i − xt

i

∣∣2

where the test set is {xt
i, i = 1, . . . , nt}, and x∗

i is now the nearest sample in the training set to
xt

i . This provides a modification to the kernel width using the test set distribution (but not the
test set labels). Thus, the test set is used as part of the training procedure.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

KERNEL METHODS 203

Training procedure
Twelve experiments were defined by using different combinations of datasets as train and test.
Five classifiers were assessed; namely Bayes’ rule classifiers using kernel density estimates
with bandwidth estimators s1 to s4, and also a baseline nearest-neighbour classifier.

Results
The robust methods led to an increase in performance (measured in terms of error rate) in all
but one of the 12 experiments. The nearest-neighbour approximation to the bandwidth tended
to underestimate the bandwidth by about 20%.

4.4.6 Further developments

For multivariate data, procedures for approximating the kernel density using a reduced number
of kernels are described by Fukunaga and Hayes (1989a) and Babich and Camps (1996).
Fukunaga and Hayes select a set from the given dataset by minimising an entropy expression.
Babich and Camps use an agglomerative clustering procedure to find a set of prototypes and
weight the kernels appropriately (cf. mixture modelling in Chapter 2). Jeon and Landgrebe
(1994) use a clustering procedure, together with a branch and bound method, to eliminate
data samples from the density calculation.

Zhang et al. (2006) consider the use of MCMC algorithms (see Chapter 3) to obtain
optimal estimates of the bandwidth matrix used in the multivariate kernel defined in (4.22).

There are several approaches to density estimation that combine parametric and nonpara-
metric approaches (semiparametric density estimators). Hjort and Glad (1995) describe an
approach that multiplies an initial parametric start with a nonparametric kernel-type estimate
for the necessary correction factor. Hjort and Jones (1996) find the best local parametric
approximation to a density p(x, θ), where the parameter values, θ, depend on x.

Botev et al. (2010) relate the Gaussian kernel density estimator to the solution to a diffusion
partial differential equation, and use this to motivate a kernel density estimator based on a
linear diffusion partial differential equation.

The kernel methods described in this chapter apply to real-valued continuous quantities.
We have not considered issues such as dealing with missing data (Titterington and Mill, 1983;
Pawlak, 1993) or kernel methods for discrete data [see McLachlan (1992a) for a summary
of kernel methods for other data types]. Karunamuni and Alberts (2005) consider how to
reduce boundary effects when kernel density estimators are used on univariate data with
bounded support.

Online approaches to obtaining kernel density estimates as the number of data points
grows have been considered by Lambert et al. (1999), using a Taylor series expansion to
Gaussian kernels, and by Kristan et al. (2011), using a compression and revitalization scheme
to avoid the need to use all the data points.

4.4.7 Summary

Kernel methods, both for multivariate density estimation and regression, have been extensively
studied. The idea behind kernel density estimation is very simple – put a ‘bump’ function
over each data point and then add them up to form a density. One of the disadvantages of the
kernel approach is the high computational requirements for large datasets – there is a kernel
at every training data point that contributes to the density at a given point, x. Computation

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

204 DENSITY ESTIMATION – NONPARAMETRIC

can be excessive and for large datasets it may be appropriate to use kernels other than the
normal density in an effort to reduce computation. Also, since kernels are localised, only a
small proportion will contribute to the density at a given point. Some preprocessing of the data
will enable noncontributing kernels to be identified and omitted from a density calculation.
For univariate density estimates, based on the normal kernel, Silverman (1982) proposes an
efficient algorithm for computation based on the fact that the density estimate is a convolution
of the data with the kernel and the Fourier transform is used to perform the convolution
(Jones and Lotwick, 1984; Silverman, 1986). Speed improvements can be obtained in a
similar manner to those used for k-nearest-neighbour methods – by reducing the number of
prototypes (as in the edit and condense procedures).

k-nearest-neighbour methods may also be viewed as kernel approaches to density estima-
tion in which the kernel has uniform density in the sphere centred at a point x and of radius
equal to the distance to the kth nearest neighbour. The attractiveness of k-nearest-neighbour
methods is that the kernel width varies according to the local density, but is discontinuous.
The work of Breiman et al. (1977) on variable kernel methods is an attempt to combine the
best features of k-nearest-neighbour methods with the fixed kernel approaches.

There may be difficulties in applying the kernel method in high dimensions. Regions of
high density may contain few samples, even for moderate sample sizes. For example, in the
10-dimensional unit multivariate normal distribution4 (Silverman, 1986), 99% of the mass of
the distribution is at points at a distance greater than 1.6, whereas in one dimension, 90%
of the distribution lies between ±1.6. Thus, reliable estimates of the density can only be
estimated for extremely large samples in high dimensions. As an indication of the sample
sizes required to obtain density estimates, Silverman considers the special case of a unit
multivariate normal distribution, and a kernel density estimate with normal kernels where
the window width is chosen to minimise the mean squared error at the origin. In order that
the relative mean square error, E[(p̂(0) − p(0))2/p2(0)], is less than 0.1, a small number
of samples is required in one and two dimensions (Table 4.5). However, for 10 dimensions,
over 800 000 samples are necessary. Thus, in order to obtain accurate density estimates in
high dimensions, an enormous sample size is necessary. Further, these results are likely to be
optimistic and more samples would be required to estimate the density at other points in the
distribution to the same accuracy.

Kernel methods are motivated by the asymptotic results and as such are only really
relevant to low-dimensional spaces due to sample size considerations. However, as far as
discrimination is concerned, we may not necessarily be interested in accurate estimates of the
densities themselves, but rather the Bayes decision region for which approximate estimates
of the densities may suffice. In practice, kernel methods do work well on multivariate data, in
the sense that error rates similar to other classifiers can be achieved.

4.5 Expansion by basis functions

The method of density estimation based on an orthogonal expansion by basis functions was
first introduced by C̆encov (1962). The basic approach is to approximate a density function,

4 The unit multivariate normal distribution is a spherical multivariate normal distribution, with the common
variance set to one.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

EXPANSION BY BASIS FUNCTIONS 205

Table 4.5 Required sample size as a function of dimension
for a relative mean square error at the origin of less than 0.1
when estimating a unit multivariate normal density using
normal kernels with width chosen so that the mean square
error at the origin is minimised (Silverman, 1986).

Dimensionality Required sample size

1 4
2 19
3 67
4 223
5 768
6 2790
7 10 700
8 43 700
9 187 000

10 842 000

p(x), by a weighted sum of orthogonal basis functions. We suppose that the density admits
the expansion

p(x) =
∞∑

i=1

aiφi(x) (4.25)

where the {φi} form a complete orthonormal set of functions satisfying
∫

k(x)φi(x)φ j(x)dx = λiδij (4.26)

for a kernel or weighting function k(x), and δij = 1 if i = j and zero otherwise. Thus, multiplying
(4.25) by k(x)φi(x) and integrating gives

λiai =
∫

k(x)p(x)φi(x)dx = E[k(x)φi(x)]

where the expectation is with respect to the distribution defined by p(x). Given {x1, x2, . . . ,
xn}, a set of independently and identically distributed samples from p(x), then the ai can be
estimated in an unbiased manner by

λiâi = 1

n

n∑
j=1

k(x j)φi(x j)

The orthogonal series estimator based on the sample {x1, x2, . . . , xn} of p(x) is then given by

p̂n(x) =
s∑

i=1

1

nλi

n∑
j=1

k(x j)φi(x j)φi(x) (4.27)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

206 DENSITY ESTIMATION – NONPARAMETRIC

where s is the number of terms retained in the expansion. The coefficients âi may be computed
sequentially

λiâi(r + 1) = r

r + 1
λiâi(r) + 1

r + 1
k(xr+1)φi(xr+1)

where âi(r + 1) is the value obtained using r + 1 data samples. This means that, given an
extra sample point, it is a simple matter to update the coefficients. Also, a large number of
data vectors could be used to calculate the coefficients without storing the data in memory.

A further advantage of the series estimator method is that the final estimate is easy to
store. It is not in the form of a complicated analytic function, but a set of coefficients.

There are several disadvantages, however. First of all, the method is limited to low-
dimensional data spaces. Although, in principle, the method may be extended to estimate
multivariate probability density functions in a straightforward manner, the number of coef-
ficients in the series increases exponentially with dimensionality. It is not an easy matter to
calculate the coefficients.

Another disadvantage is that the density estimate is not necessarily a density. This may
or may not be a problem depending on the application. Also, the density estimate is not
necessarily nonnegative.

Many different functions have been used as basis functions. These include Fourier and
trigonometric functions on [0, 1], and Legendre polynomials on [−1, 1]; and those with
unbounded support such as Laguerre polynomials on [0, ∞] and Hermite functions on the
real line. If we have no prior knowledge as to the form of p(x), then the basis functions are
chosen for their simplicity of implementation. The most popular orthogonal series estimator
for densities with unbounded support is the Hermite series estimator. The normalised Hermite
functions are given by

φk(x) = exp(−x2/2)

(2kk!π
1
2)

1
2

Hk(x)

where Hk(x) is the kth Hermite polynomial

Hk(x) = (−1)kexp(x2)
dk

dxk
exp(−x2)

The performance and the smoothness of the density estimator depends on the number
of terms used in the expansion. Too few terms leads to over-smoothed densities. Different
stopping rules [rules for choosing the number of terms, s, in the expansion (4.27)] have been
proposed and are briefly reviewed by Izenman (1991). Kronmal and Tarter (1962) propose a
stopping rule based on minimising a mean integrated square error. Termination occurs when
the test

â2
j >

2

n + 1
b̂2

j

fails, where

b̂2
j = 1

n

n∑
k=1

φ2
j (xk)

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

COPULAS 207

or, alternatively, when t or more successive terms fail the test. Practical and theoretical
difficulties are encountered with this test, particularly with sharply peaked or multimodal den-
sities and it could happen that an infinite number of terms pass the test. Alternative procedures
for overcoming these difficulties have been proposed (Hart, 1985; Diggle and Hall, 1986).

4.6 Copulas

4.6.1 Introduction

An approach to modelling non-normal multivariate distributions that has been popular in
financial communities is the use of copulas. Copulas are a means of combining marginal
distributions to specify joint distributions with nontrivial dependencies between the variables.
Instead of specifying a direct model for the joint density function, one models univariate
marginal density functions and specifies a copula function to combine them into the joint
density function.

In other chapters and sections of this book, we may refer to probability density functions
and probability mass functions as being distributions. In this section we need to be more careful
with notation. Here a distribution function refers to the cumulative distribution function. The
distribution function, F(x), for a random variable X, is given by F(x) = P(X ≤ x). In the
continuous case the corresponding probability density function, f (x), is given by f (x) = ∂F(x)

∂x ,
so that F(x) = ∫ x

−∞ f (t)dt.

4.6.2 Mathematical basis

Suppose that we are modelling a d-dimensional multivariate distribution, u = (u1, . . . , ud),
where the marginal distribution of each constituent variable is a uniform distribution over the
range [0, 1], i.e. Ui ∼ U(0, 1), i = 1, . . . , n. The copula function C(u1, . . . , ud) is the function
that specifies the joint distribution

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud)

The use of copulas for modelling multivariate distributions arises from a theorem by Sklar
(1973) (French language original, Sklar, 1959). Sklar’s theorem states that for a multivariate
distribution function F(x1, . . . , xd), with marginal distribution functions F1(x1), . . . , Fd(xd),
there exists a d-dimensional copula function C such that

C(F1(x1), . . . , Fd(xd)) = F(x1, . . . , xd) (4.28)

Furthermore, if the marginal distributions are continuous, this copula function is unique. The
above makes use of the property that if F(x) is the distribution function of a random variable
X [i.e. F(x) = P(X ≤ x)], then F(X) ∼ U(0, 1), a uniform distribution over the range [0, 1].
The significance of Sklar’s theorem is that there is a unique function that maps the univariate
marginal distributions to the joint distribution. Thus, instead of specifying a direct model for
the joint density function, we can model univariate density functions and specify a copula
function to obtain the joint density function.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

208 DENSITY ESTIMATION – NONPARAMETRIC

Through differentiation of (4.28), the probability density function for a distribution
specified via a copula function is then given by

f (x1, . . . , xn) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

fi(xi) (4.29)

where fi(xi) is the marginal probability density function for the ith variable, and:

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
(4.30)

Such density functions can then be used within a discrimination rule based upon Bayes’
theorem.

The significance of the above is that rather than specifying a multivariate density directly,
we can:

1. model the marginal distributions of the variables;

2. specify a function, C, on the unit hypercube, that takes into account dependencies
between the variables, enabling us to combine the marginal distributions into the joint
distribution.

We may use both parametric (see Chapter 2) and nonparametric estimates (using the density
estimation techniques considered earlier in this chapter) for the marginal density functions.
The task is then to find a suitable form for the copula function (including specification of
any parameters). This procedure may be simpler than estimating a full multivariate density.
However, there is the risk that the chosen copula function does not adequately represent the
dependencies between the variables.

4.6.3 Copula functions

In practice, when using copulas to model multivariate distributions, we utilise one of a family
of parametrised copula functions. The parameters of the function are then optimised with the
aid of a set of training data.

A commonly used family of copula functions is the Archimedean copula family. An
Archimedean copula is of the form

Cφ(u1, . . . , ud) = φ−1

(
d∑

i=1

φ(ui)

)

where φ(x) is the generator of the copula. For C to be a valid copula function, φ(x) needs to
be a strictly decreasing convex function with input range (0, 1], and output range [0, ∞), such
that φ(1) = 0, and typically limx → 0φ(x) = ∞. Examples are (Frees and Valdez, 1998):

� Clayton, φ(x) = x−α − 1, α > 0,

� Gumbel, φ(x) = (− log (x))α, α ≥ 1.

� Frank, φ(x) = −log
(

exp(−αx)−1
exp(−α)−1

)
, α ∈ (− ∞, ∞), α �= 0.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

COPULAS 209

We note that if the Gumbel copula is used with α = 1, we actually have an independence
model

C(u1, . . . , ud) =
d∏

i=1

ui

so that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd (xd)) =
d∏

i=1

Fi(xi)

i.e. independence.
Alternative families of copulas can be obtained by specifying the ‘correct’ copula for

a given multivariate distribution. To do this, we note that substituting ui = Fi(xi) into
(4.28) gives

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)

where F−1
i (u) is the inverse of the marginal distribution function for the ith variable. An

example would be the Gaussian copula, in which C is chosen to be the copula for a zero-mean
multivariate Gaussian distribution (parametrised by the covariance matrix �). Such a copula
is easy to specify, since the marginal distributions of a multivariate Gaussian distribution are
themselves Gaussian distributions. A discussion on the correlation structure to use within
high-dimensional Gaussian copulas is given by Zezula (2009). Another example is a copula
based upon the multivariate t-distribution (Demarta and McNeil, 2005).

A danger of using such families of copulas to model complicated multivariate distributions,
is that the range of dependencies that the chosen family can model, might not be appropriate
for the data being modelled. Widespread banking use of an approach to modelling credit risks
(Li, 2000) that utilised Gaussian copula functions has been linked to considerable financial
losses in recent years.

Venter (2001) considers the properties and features of a range of different copulas, with
a view to selecting the most appropriate copula for a given dataset and problem. A consid-
eration of how to select the most appropriate Archimedean copula to model data is given by
Melchiori (2003).

4.6.4 Estimating copula probability density functions

Given a parametrised copula function, and parametrised forms for the marginal densities,
we can use a maximum likelihood estimation procedure to optimise the likelihood given a
set of training data. The probability density function underlying the likelihood function is
that defined in (4.29). For a dataset {x1, . . . , xn}, the log-likelihood under an assumption of
independent data vectors is therefore given by

L(α, θ1, . . . , θd) =
n∑

j=1

log(cα(F1(x j1), . . . , Fd(x jd)) +
n∑

j=1

d∑
i=1

log(fi(xji))

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

210 DENSITY ESTIMATION – NONPARAMETRIC

where α is the parameter vector associated with the (derivative of) the copula function; θ1, . . . ,
θd are the parameters of the marginal densities; and xji is the ith variable of the jth training
data example x j. The parameters {α, θ1, . . . , θd} are the ones to be optimised. In practice,
if the dimensionality of these parameters is large, optimising this likelihood function with
respect to the free parameters can be difficult.

The Inference for Margins (IFM) method, described in Trivedi and Zimmer (2005) and
Joe (2005), uses a two-stage parametric estimation procedure:

� Estimate the parameters of the marginal distributions in isolation, using maximum
likelihood estimates for a given set of training data.

� Plug the parameters of the marginal distributions into the joint density given in (4.29),
and optimise the parameters of the copula function to maximise the resulting likelihood.
This is equivalent to maximising

L(α) =
n∑

j=1

log(cα(F̂1(x j1), . . . , F̂d(xjd)))

with respect to the parameters α of the (derivative of) the copula function, where F̂i(xi) is
the optimised parametric form for the marginal distribution of the ith variable, evaluated
at xi.

Such a procedure is computationally simpler than estimating all the parameters together in
a single maximum likelihood estimation step. However, this separation into two phases will
not necessarily produce the optimal solution.

A semiparametric version of the IFM method can be used to remove the requirement for
parametric forms for the marginal densities:

� In the first stage, the marginal distributions are estimated as straightforward empirical
distributions

F̃i(y) = P̃(Xi ≤ y) ≈ 1

n

n∑
j=1

I(xji ≤ y)

� These empirical distributions are then used to approximate the marginal distributions
in (4.29). The parameters of the copula function are selected to maximise the resulting
semiparametric likelihood. This is equivalent to maximising

L(α) =
n∑

j=1

log(cα(F̃1(x j1), . . . , F̃d(xjd))) (4.31)

with respect to the parameters α of the (derivative of) the copula function.

Kim et al. (2007), demonstrate that this semiparametric method can out-perform the parametric
estimation methods, in cases where the parametric forms for the marginal densities are not
known. An alternative to estimating empirical marginal distributions directly from the training
data in the first stage is to obtain them via nonparametric density estimates, such as the kernel
density estimates considered earlier in this chapter.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

COPULAS 211

4.6.5 Simple example

We now illustrate the process of using copulas to estimate a probability density function.
We consider a bivariate example, using the Frank Archimedean copula. The density to be
estimated is a bivariate normal distribution, with mean vector μ = (0, 0), variances (1.25, 1.75)
and covariance cross-term of 0.43. 1000 training data samples are available for optimising
the copula.

The bivariate Frank Archimedean copula defined in Section 4.6.3 can be expressed as (see
Exercises)

Cα(u1, u2) = −1

α
log

(
1 + (exp[−αu1] − 1)(exp[−αu2] − 1)

exp[−α] − 1

)
(4.32)

The derivative defined in (4.30), and required in (4.29), can then be expressed in the follow-
ing form

cα(u1, u2) = −α exp[−α(u1 + u2)]

exp[−α] − 1
×
(

1 + (exp[−αu1] − 1)(exp[−αu2] − 1)

exp[−α] − 1

)−2

(4.33)

We consider the semiparametric version of the IFM procedure described in Section 4.6.4.
A Nelder–Meader (Press et al., 1992) procedure is used to optimise (4.31) using the form
of cα in (4.33), alongside the empirical estimates of the marginal distributions. The overall
probability density function given in (4.29) is estimated using the optimised copula, along
with Gaussian kernel density estimates for the marginal probability density functions (see
Section 4.4). The width of each Gaussian kernel density estimate is chosen in line with the
expression in Equation (4.23).

The estimated probability density function, evaluated over a grid, is displayed in Fig-
ure 4.29(a), alongside the actual probability density function 4.29(b). The squared errors over
the grid are displayed in Figure 4.30. Much of the error is due to errors in estimating the

x

y

Copula estimated pdf

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Actual pdf

x

y

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11(a) (b)

Figure 4.29 Copula estimate of the probability density function (a), and the actual proba-
bility density function (b).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

212 DENSITY ESTIMATION – NONPARAMETRIC

x

y

Squared error

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

2

4

6

8

10

12

x 10
−5

Figure 4.30 Squared errors between the copula estimate of the probability density function
and the actual probability density function.

marginal densities, as is shown in the plots of the kernel density estimates of the marginal
probability densities in Figure 4.31. However, for more complicated distributions the copula
function itself is likely to be a major source of error.

4.6.6 Summary

Copulas are a means of combining marginal distributions to specify joint distributions with
nontrivial dependencies between the variables. Joint density functions are obtained by mod-
elling univariate density functions and specifying a copula function on a hypercube in order

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

feature value

pd
f

Actual
Kernel density estimate

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

feature value

pd
f

Actual
Kernel density estimate

(a) (b)

Figure 4.31 The marginal probability densities for the first (a) and second (b) features, for
the actual densities (solid) and the kernel density estimates (dashed).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

APPLICATION STUDIES 213

to obtain the joint density function. In some sense, little has been gained here. We are still
required to define a multivariate function (the copula function). However, this function is
defined on a hypercube, rather than over the domain of the variables (the latter being what is
required in full multivariate density estimation). The potential gain comes from using a range
of parametrised forms for the copula function. However, there is a risk that these parametrised
forms do not adequately represent the correlations present in the variables, i.e. that the chosen
copula function does not adequately represent the dependencies between the variables. In
such cases, the resulting joint densities will be poor reflections of the true joint densities.
Copulas should therefore be used with caution. A critical assessment of the utility of copulas
is provided by Mikosch (2006).

4.7 Application studies

The nonparametric methods of density estimation described in this chapter have been applied
to a wide range of problems. Applications of Bayesian networks include the following:

� Drug safety. Cowell et al. (1991) develop a Bayesian network for analysing a specific
adverse drug reaction problem (drug-induced pseudomembranous colitis). The algo-
rithm of Lauritzen and Spiegelhalter (1988) was used for manipulating the probability
density functions in Bayesian networks [see also Spiegelhalter et al. (1991) for a clear
account of the application of probabilistic expert systems].

� Endoscope navigation. In a study on the use of computer vision techniques for auto-
matic guidance and advice in colon endoscopy, Kwoh and Gillies (1996) construct a
Bayesian network (using subjective knowledge from an expert) and compare perfor-
mance with a maximum weight dependence tree learned from data. The latter gave
better performance.

� Geographic information processing. Stassopoulou et al. (1996) compare Bayesian net-
works and neural networks (see Chapter 6) in a study to combine remote sensing
and other data for assessing the risk of desertification of burned forest areas in the
Mediterranean region. A Bayesian network is constructed using information provided
by experts. An equivalent neural network is trained and its parameters used to set the
conditional probability tables in the Bayesian network.

� Image segmentation. Williams and Feng (1998) use a tree-structured network, in con-
junction with a neural network, as part of an image labelling scheme. The conditional
probability tables are estimated from training data using a maximum likelihood proce-
dure based on the EM algorithm (see Chapter 2).

� Automated situation-assessment for naval anti-air warfare. Bladon et al. (2006) discuss
the use of Bayesian networks within automated situation-assessment tools, which can
be used as decision aids in a command and control system. They develop a Combat-ID
and Threat Assessment tool for naval anti-air warfare, making probabilistic estimates
of hostility by taking into account such factors as speed, Identification of Friend or
Foe (IFF) system responses and airlane obedience. The networks are constructed using
information provided by experts.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

214 DENSITY ESTIMATION – NONPARAMETRIC

� Modelling operational risk to information technology infrastructure. Neil et al. (2008)
show how Bayesian networks can be used to model the financial losses that could
result from information technology infrastructure risk scenarios. Both discrete and
non-Gaussian distributions are used in the model, with approximate inference taking
place with the aid of a dynamic discretisation algorithm (Neil et al., 2007), and an
inference procedure known as the Junction Tree algorithm (Jensen, 2002).

� Oil and gas exploration. Martinelli et al. (2010) use a Bayesian network to model the
dependencies between prospects in oil and gas exploration. The network is created
using expert knowledge of the local geology. They use the network to answer the two
questions of which locations should be drilled in an area where hydrocarbons have been
discovered, and what drilling locations should be used when considering abandoning
an area which to date has only had dry wells drilled?

Examples of applications of k-nearest-neighbour methods include the following:

� Target classification. Chen and Walton (1986) apply nearest-neighbour methods to ship
and aircraft classification using radar cross-section measurements. Drake et al. (1994)
compare several methods, including k nearest neighbour on multispectral imagery.

� Handwritten character recognition. There have been many studies in which nearest-
neighbour methods have been applied to handwritten characters. Smith et al. (1994)
use three distance metrics for a k-nearest-neighbour application to handwritten
digits. Yan (1994) uses nearest neighbour with a multilayer perceptron to refine
prototypes.

� Text categorisation. Han et al. (2001) use a k-nearest-neighbour classifier to assign
documents to pre-specified categories. Feature vectors are obtained by specifying a
vocabulary of words, and then creating a feature vector from the number of times each
word occurs in the document. To remove the effect of document size, feature vectors are
normalised so that their elements sum to one. Different weights are used for different
features (word counts) when calculating the distance between two documents, resulting
in a weight adjusted k-nearest-neighbour classifier. The weights are optimised using an
iterative training procedure. Good performance is obtained on a range of benchmark
text categorisation problems.

� Prostate cancer identification. Tahir et al. (2007) consider classification of prostate
cancer on the basis of multispectral images of prostate biopsies. The aim is to classify
the tissue into four groups (two benign, one a precursor to cancer, and one cancer).
128-dimensional feature vectors are extracted from multispectral images of prostate
needle biopsies. A Tabu Search heuristic (Glover, 1989, 1990) is used to perform
feature selection and feature weighting for a k-nearest-neighbour classification rule. An
improvement in performance is obtained over previously published results.

� Speech recognition. Deselaers et al. (2007) use a nearest-neighbour classifier within
a hidden Markov model (HMM) approach to speech recognition. The exponential of
the negative within-class nearest-neighbour distance is used to estimate each state-
conditional feature probability density in the HMM. A kd-tree is used to find each
nearest neighbour. When the amount of available training data is small, the performance
is better than a baseline of Gaussian mixture models within an HMM.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

APPLICATION STUDIES 215

Example applications of kernel methods are:

� Chest pain prognosis. Scott et al. (1978) use a quartic kernel to estimate the density of
plasma lipids in two groups (diseased and normal). The aim of the investigation was to
ascertain the dependence of the risk of coronary artery disease on the joint variation of
plasma lipid concentrations.

� Fruit fly classification. Sutton and Steck (1994) use Epanechnikov kernels in a two-class
fruit fly discrimination problem.

� Visual surveillance. Elgammal et al. (2002) build estimates for the scene background in
surveillance imagery, using kernel density estimation. Motion is then detected through
poor matches to the learnt background distributions, a process known as background
subtraction. Kernel density estimates are also used for modelling foreground objects.

� Crime hotspot mapping. Eck et al. (2005) consider crime mapping, in which high-crime-
density areas are identified as hot spots, in order to assist policing. They recommend a
quartic kernel density estimation approach to estimate a surface map of crime density,
which can then be visualised. Chainey et al. (2008) extend the concept of crime hotspot
mapping to using the maps to predict where crimes will occur in the future. They find
that maps produced by kernel density estimation are better at predicting future street
crime locations than less data adaptive approaches.

� Maritime surveillance. Ristic et al. (2008) consider the detection of vessels with
anomalous trajectories at Port Adelaide in Australia. The motivation for identifying
such anomalies is that abnormal routes and speeds might be indicative of customs eva-
sion, drug smuggling, piracy or terrorism. The kinematic state of a vessel is given by its
location and velocity. A kernel density estimate is built for these kinematic states
using training data. Subsequent vessels are identified as anomalous if their kinematic
probability density value estimated using the trained kernel density estimator is below a
threshold. Real data are obtained from Automatic Identification System (AIS)
broadcasts.

� Understanding tropical cyclones. Haikun et al. (2009) use kernel density estimation to
model the genesis locations of tropical cyclones in the Northwestern Pacific. A product
of normal kernels is used. The motivation is that understanding cyclone genesis could
help in predicting future occurrence of tropical cyclones.

� Safety at military firing ranges. Glonek et al. (2010) use kernel density estimation to
estimate ground impact distributions in guided missile firings. This is used to define the
safety exclusion area during trials of guided air missiles.

Applications of copulas outside of the financial and insurance industries include:

� Climate research. Schölzel and Friederichs (2008) demonstrate the use of copulas for
modelling meteorological variables at different locations, and for modelling multiple
meteorological variables (e.g. precipitation averages and temperature minima) at a
single location.

� Multimodal signal processing. Iyengar et al. (2009) show how copulas can be used for
signal detection, with a view to processing multimodel data such as audio-video streams.

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

216 DENSITY ESTIMATION – NONPARAMETRIC

4.7.1 Comparative studies

A comparative study on 25 datasets of the naı̈ve Bayes classifier and a tree-structured classifier
is performed by Friedman et al. (1997). The tree-structured classifiers outperform the naı̈ve
Bayes model while maintaining simplicity.

Numerous studies have used naı̈ve Bayes classifiers as a baseline text categorisation
procedure. For example, Joachims (1998), Yang and Liu (1999) and Zhang and Oles (2001),
all report naı̈ve Bayes text classifiers as being outperformed by SVMs (SVMs are introduced
in Chapter 6). The experiments of Yang and Liu (1999) show the naı̈ve Bayes approach
significantly underperforming an SVM and also a k-nearest-neighbour classifier. These results
have led to a number of variants of naı̈ve Bayes classifiers being proposed, such as the
approaches of Rennie et al. (2003) and Kim et al. (2006), both of which result in a modified
naı̈ve Bayes performance that is competitive with that from an SVM.

A comparative study of different kernel methods applied to multivariate data is reported by
Breiman et al. (1977) and Bowman (1985). Jones and Signorini (1997) perform a comparison
of ‘improved’ univariate kernel density estimators [see also Cao et al. (1994) and Titterington
(1980) for a comparison of kernels for categorical data].

The Statlog project (Michie et al., 1994) provides a thorough comparison of a wide range
of classification methods, including k nearest neighbour and kernel discriminant analysis
(algorithm ALLOC80). ALLOC80 has a slightly lower error rate than k nearest neighbour
(for the special case of k = 1 at any rate), but had longer training and test times. Further
comparisons include those in Liu and White (1995).

4.8 Summary and discussion

The approaches developed in this chapter towards discrimination have been based on estima-
tion of the class-conditional density functions using nonparametric techniques. It is certainly
true that we cannot design a classifier that performs better than the Bayes discriminant rule.
No matter how sophisticated a classifier is, or how appealing it may be in terms of reflecting a
model of human decision processes, it cannot outperform the Bayes classifier for any proper
performance criterion; in particular, achieve a lower error rate. Therefore a natural step is
to estimate the components of the Bayes’ rule from the data, namely the class-conditional
probability density functions and the class priors. We shall see in later chapters that we do
not need to model the density explicitly to get good estimates of the posterior probabilities of
class membership.

We have described five nonparametric methods of density estimation: the k-nearest-
neighbour method leading to the k-nearest-neighbour classifier; the histogram approach and
developments to reduce the number of parameters (naı̈ve Bayes, tree-structured density esti-
mators and Bayesian networks); kernel methods of density estimation; series methods; and
finally copula methods. With advances in computing in recent years, these methods have
now become viable and nonparametric methods of density estimation have had an impact
on nonparametric approaches to discrimination and classification. Of the methods described,
for discrete data the developments of the histogram – the independence model, the Lancaster
models and maximum weight dependence trees – are easy to implement. Learning algorithms
for Bayesian networks can be computationally demanding. For continuous data, the kernel
method is probably the most popular, with normal kernels with the same window width for

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

NOTES AND REFERENCES 217

each dimension. However, it is reported by Terrell and Scott (1992) that nearest-neighbour
methods are superior to fixed kernel approaches to density estimation beyond four dimensions.
The kernel method has also been applied to discrete data.

k-nearest-neighbour classifiers are easy to both code and understand, and are a popular
classification technique. However, the naı̈ve search algorithm is computationally demanding
for large training datasets. A variety of techniques exist for reducing the search time of
nearest-neighbour procedures.

In conclusion, an approach based on density estimation is not without its dangers of
course. If incorrect assumptions are made about the form of the distribution in the parametric
approach (and in many cases we will not have a physical model of the data generation process
to use) or data points are sparse leading to poor kernel density estimates in the nonparametric
approach, then we cannot hope to achieve good density estimates. However, the performance
of a classifier, in terms of error rate, may not deteriorate too dramatically. Thus, it is a strategy
worth trying.

4.9 Recommendations

1. Nearest-neighbour methods are easy to implement and are recommended as a starting
point for a nonparametric approach. In the Statlog project (Michie et al., 1994), the
k-nearest-neighbour method came out best on the image datasets (top in four and
runner-up in two of the six image datasets) and did very well on the whole.

2. For large datasets, some form of data reduction in the form of condensing/editing is
advised when using nearest-neighbour methods.

3. If computational time is an issue, improved nearest-neighbour search procedures should
be used, such as offered by the LAESA algorithm, or the ball-tree branch and bound
search algorithm. However, it might not be worth implementing these procedures until
after initial experiments have confirmed that the k-nearest-neighbour classifier gives
satisfactory performance in the considered problem.

4. As density estimators, kernel methods are not appropriate for high-dimensional data,
but if smooth estimates of the density are required they are to be preferred over
k-nearest neighbour. Even poor estimates of the density may still give good classifica-
tion performance.

5. For multivariate datasets, it is worth trying a simple independence model as a baseline.
It is simple to implement, handles missing values easily and can give good performance.

6. Domain-specific and expert knowledge should be used where available. Bayesian
networks are an attractive scheme for encoding such knowledge.

4.10 Notes and references

There is a large literature on nonparametric methods of density estimation. A good starting
point is the book by Silverman (1986), placing emphasis on the practical aspects of density
estimation. The book by Scott (1992) provides a blend of theory and applications, placing

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

218 DENSITY ESTIMATION – NONPARAMETRIC

some emphasis on the visualisation of multivariate density estimates. Klemelä (2009) also
considers multivariate density estimation and visualisation. The article by Izenman (1991) is
to be recommended. Other texts are by Devroye and Györfi (1985) and Nadaraya (1989). The
book by Wand and Jones (1995) presents a thorough treatment of kernel smoothing.

The literature on kernel methods for regression and density estimation is vast. A treatment
of kernel density estimation can be found in most textbooks on density estimation. Silverman
(1986) gives a particularly lucid account and the book by Hand (1982) provides a very
good introduction and considers the use of kernel methods for discriminant analysis. Other
treatments, more detailed than that presented here, may be found in the books by Scott (1992),
McLachlan (1992a) and Nadaraya (1989).

The popularity of Bayesian networks in recent years is evidenced by the large number
of good textbooks describing them. Detailed descriptions of Bayesian networks are available
in texts by Pearl (1988), Jensen (1997, 2002), Jordan (1998), Neapolitan (2003), Darwiche
(2009), Koller and Friedman (2009), Koski and Noble (2009) and Kjaerulff and Madsen
(2010), amongst others.

A good overview of kd-trees for efficient k-nearest-neighbour search is provided by Moore
(1991), and also in the course notes of Renals (2007). An implementation is available in the
WEKA data mining software package, documented in Witten and Frank (2005), and also
within the 2010 release of the Statistics toolbox of MATLAB R©.

A good introduction to copulas is provided by Trivedi and Zimmer (2005), and from
the viewpoint of actuarial statisticians by Frees and Valdez (1998). Further background and
details on the use of copulas can be found in papers by Clemen and Reilly (1999), Embrechts
et al. (2001), Dorey and Joubert (2007) and Chiou and Tsay (2008). A critical assessment of
the utility of copulas is provided by Mikosch (2006).

Exercises

Dataset 1: Generate d-dimensional multivariate data (500 samples in train and test sets, equal
priors) for two classes: for ω1, x ∼ N(μ1,�1) and for ω2, x ∼ 0.5N(μ2,�1) + 0.5N(μ3,�3)

where μ1 = (0, . . . , 0)T , μ2 = (2, . . . , 2)T , μ3 = (−2, . . . ,−2)T and �1 = �2 = �3 = I,
the identity matrix.

Dataset 2: Generate data from d-dimensional multivariate data (500 samples in train and
test sets, equal priors) for three normally distributed classes with μ1 = (0, . . . , 0)T , μ2 =
(2, . . . , 2)T , μ3 = (−2, . . . ,−2)T and �1 = �2 = �3 = I, the identity matrix.

1. Compare and contrast the k-nearest-neighbour classifier with the Gaussian classifier. What
assumptions do the models make? Also, consider such issues as training requirements,
computation time, and storage and performance in high dimensions.

2. For three variables, X1, X2 and X3 taking one of two values, 1 or 2, denote by Pij
ab the

probability that Xi = a and Xj = b. Specifying the density as

P12
12 = P13

11 = P23
11 = P23

12 = P12
22 = P13

21 = P23
21 = P23

22 = 1
4

P12
11 = P13

12 = 7
16 ; P12

21 = P13
22 = 1

16

show that the Lancaster density estimate of the probability p(X1 = 2, X2 = 1, X3 = 2) is
negative (= −1/64).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

EXERCISES 219

3. Show that the tree-dependent distribution specified in (4.13) is the same as that given in
(4.12).

4. For a tree-dependent distribution [Equation (4.12)]

pt (x) =
d∏

i=1

p(xi|x j(i))

show that minimising the Kullback–Leibler divergence

KL(p(x)|pt (x)) =
∑
x

p(x)log

(
p(x)

pt (x)

)

is equivalent to finding the tree that maximises

d∑
i=1

∑
xi,x j(i)

p(xi, x j(i))log

(
p(xi, x j(i))

p(xi)p(x j(i))

)

Hint: note that p(x)log(p(x)) does not depend on the tree structure and also that

p(x) = p(xi, x j(i))p(x−i,− j(i)|xi, x j(i))

where x−i, −j(i) refers to the variables x1, . . . , xd but excluding xi and xj(i).

5. Verify that the Bartlett–Epanechnikov kernel (see Table 4.4) satisfies the properties

∫
K(t)dt = 1

∫
tK(t)dt = 0

∫
t2K(t)dt = k2 �= 0

6. Consider a sample of n observations (x1, . . . , xn) from a density p(x). An estimate p̂ is
calculated using a kernel density estimate with Gaussian kernels for various bandwidths
h. How would you expect the number of relative maxima of p̂ to vary as h increases?
Suppose that the xi’s are drawn from the Cauchy density p(x) = 1/(π (1 + x2)). Show
that the variance of X is infinite. Does this mean that the variance of the Gaussian kernel
density estimate p̂ is infinite?

7. Consider the multivariate kernel density estimate (x ∈ R
d)

p̂(x) = 1

nhd

n∑
i=1

K

(
1

h
(x − xi)

)

Show that the k-nearest-neighbour density estimate given by (4.6) is a special case of the
above for suitable choice of K and h (which varies with position, x).

P1: OTA/XYZ P2: ABC
JWST102-c04 JWST102-Webb August 29, 2011 9:5 Printer Name: Yet to Come

220 DENSITY ESTIMATION – NONPARAMETRIC

8. Show that if F(x) is the distribution function of a random variable X [i.e. F(x) = P(X ≤
x)], then F(X) ∼ U(0, 1), a uniform distribution over the range [0, 1].

9. Starting from the definition of the Frank copula as an Archimedean family kernel in
Section 4.6.3, verify the bivariate expression given in (4.32), and hence the derivative in
(4.33).

10. Implement a k-nearest-neighbour classifier using dataset 1 and investigate its performance
as a function of dimensionality d = 1, 3, 5, 10 and k. Comment on the results.

11. For the data of dataset 1, implement a Gaussian kernel classifier. Construct a separate
validation set to obtain a value of the kernel bandwidth (initialise at the value given by
(4.23) and vary from this). Describe the results.

12. Implement a base prototype selection algorithm to select nb base prototypes using dataset
2. Implement the LAESA procedure and plot the number of distance calculations in
classifying the test data as a function of the number of base prototypes, nb, for d = 2, 4,
6, 8 and 10.

13. Using dataset 2, implement a nearest-neighbour classifier with editing and condensing.
Calculate the nearest-neighbour error rate, the error rate after editing, and the error rate
after editing and condensing.

14. Using dataset 2, implement a kd-tree nearest-neighbour classifier, and a ball-tree nearest-
neighbour classifier. Assess performance in terms of the distribution for the number of
distance calculations required to find the nearest neighbour. Investigate the effects of
using different depths of tree (i.e. different numbers of training data samples at the leaf
nodes).

15. Using dataset 1, investigate the performance of a Bayesian classifier utilising copula
density estimates. Compare the performance to that from a nearest-neighbour classifier.
Investigate the effects of using different copula functions.

16. Using dataset 2, investigate procedures for choosing k in the k-nearest-neighbour method.

17. Consider nearest neighbour with edit and condense. Suggest ways of reducing the fi-
nal number of prototypes by careful initialisation of the condensing algorithm. Plan a
procedure to test your hypotheses. Implement it and describe your results.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

5

Linear discriminant analysis

Discriminant functions that are linear in the features are constructed, resulting in (piecewise) linear
decision boundaries. Different optimisation schemes give rise to different methods including the
perceptron, Fisher’s linear discriminant function and support vector machines. The relationship
between these methods is discussed.

5.1 Introduction

This chapter deals with the problem of finding the weights of a linear discriminant function.
Techniques for performing this task have sometimes been referred to as learning algorithms
and we retain some of the terminology here even though the methods are ones of optimisa-
tion or training rather than learning. A linear discriminant function has already appeared in
Chapter 2. In that chapter, it arose as a result of a normal distribution assumption for the class
densities in which the class covariance matrices were equal. In this chapter, we make no dis-
tributional assumptions, but start from the assumption that the decision boundaries are linear.
The algorithms have been extensively treated in the literature, but they are included here as an
introduction to the nonlinear models discussed in the following chapter, since a stepping stone
to the nonlinear models is the generalised linear model in which the discriminant functions
are linear combinations of nonlinear functions.

The initial treatment is divided into two parts: the binary classification problem and the
multiclass problem. Although the two-class problem is clearly a special case of the multiclass
situation (and in fact all the algorithms in the multiclass section can be applied to two classes),
the two-class case is of sufficient interest in its own right to warrant a special treatment. It
has received a considerable amount of attention and many different algorithms have been
proposed. Linear support vector machines (SVMs) are an example of a two-class linear
discriminant function. However, due to their high prevalence in machine learning applications
they are considered in a separate section.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

222 LINEAR DISCRIMINANT ANALYSIS

5.2 Two-class algorithms

5.2.1 General ideas

In Chapter 1 we introduced the discriminant function approach to supervised classification;
here we briefly restate that approach for linear discriminant functions.

Suppose we have a set of training patterns x1, . . . , xn, each of which is assigned to one of
two classes, ω1 or ω2. Using this design set, we seek a weight vector w and a threshold w0

such that

wT x + w0

{
> 0
< 0

⇒ x ∈
{

ω1

ω2
(5.1)

5.2.1.1 Decision surface

The decision surface is the hyperplane represented by the equation

g(x) = wT x + w0 = 0

which has unit normal in the direction of w, and a perpendicular distance |w0|/|w| from
the origin.

The distance of a pattern x to the decision hyperplane is given by |r|, where

r = g(x)/|w| = (wT x + w0)/|w| (5.2)

with the sign of r indicating on which side of the decision hyperplane the pattern lies, and
therefore to which class the pattern should be assigned.

5.2.1.2 Simplification

The linear discriminant rule given by Equation (5.1) can be written as:

vT z
{

> 0
< 0

⇒ x ∈
{

ω1

ω2

where z = (1, x1, . . . , xp)
T is the augmented pattern vector and v is a (p + 1)-dimensional

vector (w0, w1, . . . , wp)T . In what follows, z could also be (1, φ1(x), . . . ,φD(x))T , with v a
(D + 1)-dimensional vector of weights, where {�i, i = 1, . . . , D} is a set of D functions of
the original variables. Thus, we may apply these algorithms in a transformed feature space.

A sample in class ω2 is classified correctly if vT z < 0, i.e. if vT (−z) > 0. If we were to
redefine all samples in class ω2 in the design set by their negative values and denote these
redefined samples by y, then we seek a value for v which satisfies:

vT y > 0 for all yi corresponding to xi in the design set

[yT
i = (1, xT

i), xi ∈ ω1; yT
i = (−1, −xT

i), xi ∈ ω2]
(5.3)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 223

Ideally, we would like a solution for v that makes vT y positive for as many samples in the
design set as possible. This minimises the misclassification error on the design set. If vT yi > 0
for all members of the design set then the data are said to be linearly separable.

However, it is difficult to minimise the number of misclassifications. Usually some other
criterion is employed. The sections that follow introduce a range of criteria adopted for
discrimination between two classes. Some are suitable if the classes are separable, others for
overlapping classes. Some lead to algorithms that are deterministic, others can be implemented
using stochastic algorithms.

5.2.2 Perceptron criterion

Perhaps the simplest criterion to minimise is the perceptron criterion function

JP(v) =
∑
yi∈Y

(−vT yi)

where Y = {yi|vT yi < 0} (the set of misclassified samples). JP is proportional to the sum of
the distances of the misclassified samples to the decision boundary [see Equation (5.2)].

5.2.2.1 Error-correction procedure

Since the criterion function JP is continuous, we can use a gradient-based procedure, such as
the method of steepest descent (Press et al., 1992), to determine its minimum:

∂JP

∂v
=
∑
yi∈Y

(−yi)

which is the sum of the misclassified patterns, and the method of steepest descent gives a
movement along the negative of the gradient with update rule

vk+1 = vk + ρk

∑
yi∈Y

yi (5.4)

where ρk is a scale parameter that determines the step size. If the sample sets are separable,
then this procedure is guaranteed to converge to a solution that separates the sets. Algorithms
of the type (5.4) are sometimes referred to as many-pattern adaptation or batch update since all
given pattern samples are used in the update of v. The corresponding single-pattern adaptation
scheme is

vk+1 = vk + ρkyi (5.5)

where yi is a training sample that has been misclassified by vk. This procedure cycles through
the training set, modifying the weight vector whenever a sample is misclassified. There are
several types of error correction procedures of the form of (5.5). The fixed increment rule takes
ρk = ρ, a constant and is the simplest algorithm for solving systems of linear inequalities.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

224 LINEAR DISCRIMINANT ANALYSIS

vTyk = 0+
−

v1

v2

yk

vk

vk+1

Figure 5.1 Perceptron training.

The error-correction procedure is illustrated geometrically in weight space in Figures 5.1
and 5.2. In Figure 5.1, the plane is partitioned by the line vT yk = 0. Since the current estimate
of the weight vector vk has vkyk < 0, the weight vector is updated by (for ρ = 1) adding on
the pattern vector yk. This moves the weight vector towards and possibly into (although not in
Figure 5.1) the region vT yk > 0. In Figure 5.2, the lines vT yk = 0 are plotted for four separate
training patterns.

If the classes are separable, the solution for v must lie in the shaded region (the solution
region for which vT yk > 0 for all patterns yk). A solution path is also shown starting from
an initial estimate v0. By presenting the patterns y1, y2, y3, y4 cyclically, a solution for v is
obtained in five steps: the first change to v0 occurs when y2 is presented (v0 is already on the

Figure 5.2 Perceptron training.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 225

positive side of vT y1 = 0, so presenting y1 does not update v). The second step adds on y3;
the third y2 (y4 and y1 are not used because v is on the positive sides of both hyperplanes
vT y4 = 0 and vT y1 = 0); the final two stages are the addition of y3, then y1. Thus, from
the sequence

y1, ŷ2, ŷ3, y4, y1, ŷ2, ŷ3, y4, ŷ1

only those vectors with a caret are used. Note that it is possible for an adjustment to undo
a correction previously made. In this example, although the iteration started on the right
(positive) side of vT y1 = 0, successive iterations of v gave an estimate with vT y1 < 0 (at
stages 3 and 4). Eventually a solution with JP(v) = 0 will be obtained for separable patterns.

5.2.2.2 Variants

There are many variants to the fixed-increment rule given in the previous section. We consider
just a few of them here.

Absolute correction rule
Choose the value of ρ so that the value of vT

k+1yi is positive. Hence:

ρ > |vT
k yi|/|yi|2

where yi is the misclassified pattern presented at the kth step. This follows from noting that
for a misclassified pattern at the kth step:

vT
k+1yi = vT

k yi + ρyT
i yi = −|vT

k yi| + ρ|yi|2

The rule means that the iteration corrects for each misclassified pattern as it is presented. For
example, ρ may be taken to be the smallest integer greater than |vT

k yi|/|yi|2.

Fractional correction rule
This sets ρ to be a function of the distance to the hyperplane vT yi = 0, i.e.

ρ = λ|vT
k yi|/|yi|2

where λ is the fraction of the distance to the hyperplane vT yi = 0, traversed in going from vk

to vk+1. If λ > 1, then pattern yi will be classified correctly after the adjustment to v.

Introduction of a margin, b
A margin, b > 0, is introduced (Figure 5.3) and the weight vector is updated whenever
vT yi ≤ b. Thus, the solution vector v, must lie at a distance greater than b/|yi| from each
hyperplane vT yi = 0. The training procedures given above are still guaranteed to produce a
solution when the classes are separable. One of the reasons often given for the introduction
of a threshold is to aid generalisation. Without the threshold, some of the points in the data
space may lie close to the separating boundary. Viewed in data space, all points xi lie at a
distance greater than b/w| from the separating hyperplane. Clearly, the solution is not unique
and in Section 5.4 we address the problem of seeking a ‘maximal margin’ classifier.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

226 LINEAR DISCRIMINANT ANALYSIS

Figure 5.3 Solution region for a margin.

Variable increment ρ

One of the problems with the above procedures is that, although they will converge if
the classes are separable, the solution for v will oscillate if the classes overlap. The
error-correction procedure also converges (for linearly separable classes) if ρk satisfies the
following conditions

ρk ≥ 0
∞∑

k=1

ρk = ∞

and

lim
m→∞

∑m
k=1 ρ2

k(∑m
k=1 ρk

)2 = 0

In many problems, we do not know a priori whether the samples are separable or not. If they
are separable, then we would like a procedure that yields a solution that separates the classes.
On the other hand, if they are not separable then a method with ρk → 0 will decrease the
effects of misclassified samples as the iteration proceeds. One possible choice is ρk = 1/k.

Relaxation algorithm
The relaxation or Agmon–Mays algorithm minimises the criterion

Jr = 1

2

∑
yi∈Y

(vT yi − b)2/|yi|2

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 227

where Y is {yi|yT
i v ≤ b}. Thus not only do the misclassified samples contribute to Jr, but also

do those correctly classified samples lying closer than b/|v| to the boundary vT y = 0. The
basic algorithm is

vk+1 = vk + ρk

∑
yi∈Yk

b − vT
k yi

|yi|2
yi

where Yk is {yi|yT
i vk ≤ b}. This has a single-pattern scheme

vk+1 = vk + ρk
b − vT

k yi

|yi|2
yi

where vT
k yi ≤ b (that is, the patterns yi that cause the vector v to be corrected). This is the

same as the fractional correction rule with a margin.

5.2.3 Fisher’s criterion

The approach adopted by Fisher was to find a linear combination of the variables that separates
the two classes as much as possible. That is, we seek the direction along which the two classes
are best separated in some sense. The criterion proposed by Fisher is the ratio of between-class
to within-class variances. Formally, we seek a direction w such that

JF = |wT (m1 − m2)|2
wT SW w

(5.6)

is a maximum, where m1 and m2 are the class means and SW is the pooled within-class sample
covariance matrix, in its bias-corrected form given by

1

n − 2

(
n1�̂1 + n2�̂2

)

where �̂1 and �̂2 are the maximum likelihood estimates of the covariance matrices of classes
ω1 and ω2, respectively, and there are ni samples in class ωi (n1 + n2 = n). Maximising the
above criterion gives a solution for the direction w. The threshold weight w0 is determined by
an allocation rule. The solution for w that maximises JF can be obtained by differentiating JF

with respect to w and equating to zero. This yields

2wT (m1 − m2)

wT SW w

{
(m1 − m2) −

(
wT (m1 − m2)

wT SW w

)
SW w

}
= 0

Since we are interested in the direction of w (and noting that wT (m1 − m2)/wT SW w is a
scalar), we must have

w ∝ S−1
W (m1 − m2) (5.7)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

228 LINEAR DISCRIMINANT ANALYSIS

We may take equality without loss of generality. The solution for w is a special case of the more
general feature extraction criteria described in Chapter 10 that result in transformations that
maximise a ratio of between-class to within-class variance. Therefore, it should be noted that
Fisher’s criterion does not provide us with an allocation rule, merely a mapping to a reduced
dimension (actually one dimension in the two-class situation) in which discrimination is in
some sense easiest. If we wish to determine an allocation rule, we must specify a threshold,
w0, so that we may assign x to class ω1 if

wT x + w0 > 0

In Chapter 2 we have seen that if the data were normally distributed with equal covariance
matrices, then the optimal decision rule is linear: assign x to ω1 if wT x + w0 > 0 where
[Equations (2.16) and (2.17)]

w = S−1
W (m1 − m2)

w0 = −1

2
(m1 + m2)

T S−1
W (m1 − m2) − log

(
p(ω2)

p(ω1)

)

Thus, the direction on to which x is projected in the Bayes classifier rule for normally dis-
tributed data with equal covariance matrices, is the same as that obtained through maximisation
of (5.6) and given by (5.7). This suggests that if we take w = S−1

W (m1 − m2) (unit constant
of proportionality giving equality in (5.7)), then we may choose a threshold to be given by
w0 above, although we note that it is optimal only for normally distributed classes with equal
covariance matrices.

Note however that the discriminant direction (5.7) has been derived without any assump-
tions of normality. We have used normal assumptions to set a threshold for discrimination. In
non-normal situations, a different threshold may be more appropriate. Nevertheless, we may
still use the above rule in the more general non-normal case, giving: assign x to ω1 if

{
x − 1

2
(m1 + m2)

}T

w > log

(
p(ω2)

p(ω1)

)
(5.8)

but it will not necessarily be optimal. Note that the above rule is not guaranteed to give a
separable solution even if the two groups are separable.

5.2.4 Least mean-squared-error procedures

The perceptron and related criteria in Section 5.2.2 are all defined in terms of misclassified
samples. In this section, all the data samples are used and we attempt to find a solution vector
for which the equality constraints

vT yi = ti

are satisfied for positive constants ti. [Recall that the vectors yi are defined by yT
i = (1, xT

i)

for xi ∈ ω1 and yT
i = (−1,−xT

i) for xi ∈ ω2, or the (D + 1)-dimensional vectors (1,φT
i) and

(−1, −φT
i) for transformations φ of the data φi = φ(xi)]. In general, it will not be possible to

satisfy these constraints exactly and we seek a solution for v that minimises a cost function of

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 229

the difference between vT yi and ti. The particular cost function we shall consider is the mean
square error.

5.2.4.1 Solution

Let Y be the n × (p + 1) matrix of sample vectors, with the ith row yi, and t = (t1, . . . , tn)T .
Then the sum-squared error criterion is

JS = |Yv − t|2 (5.9)

The solution for v minimising JS is

v = Y†t (5.10)

where Y† is the pseudo-inverse of Y (Figure 5.4).

The general linear least squares problem may be solved using the singular value decomposition
of a matrix. An m × n matrix A may be written in the form:

A = U V T =
r

i= 1

σi ui v
T
i

where:

r is the rank of A;

U is an m × r matrix with columns u1, . . . , ur , the left singular vectors and UT U = Ir ,
the r × r identity matrix;

V is an n × r matrix with columns v1, . . . , vr , the right singular vectors and V T V = Ir

also;

= diag(σ1, . . . , σr), the diagonal matrix of singular values, σ i, i = 1, . . . , r.

The singular values of A are the square roots of the nonzero eigenvalues of AAT or AT A.
The pseudo-inverse or generalised inverse is the n × m matrix A†

A† = V − 1UT =
r

i= 1

1

σi
v i u

T
i (5.11)

and the solution for x that minimises the square error

| Ax − b| 2

is given by

x = A†b

If the rank of A is less than n, then there is not a unique solution for x and singular value
decomposition delivers the solution with minimum norm.

Figure 5.4 The pseudo-inverse and its properties. (continued)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

230 LINEAR DISCRIMINANT ANALYSIS

The pseudo-inverse has the following properties:

AA† A = A

A† AA† = A†

AA† T
= AA†

A† A
T

= A† A

Figure 5.4 (continued)

If YTY is nonsingular, then another form for Equation (5.10) is:

v = (YTY)−1YT t (5.12)

This follows from writing Equation (5.9) as:

JS = (Yv − t)T (Yv − t)

and differentiating to obtain to obtain the following relationship at the minimum:

2YT (Yv − t) = 0

For the given solution for v, the approximation to t is

t̂ = Yv

= Y
(
YTY

)−1
YT t

A measure of how well the linear approximation fits the data is provided by the absolute error
in the approximation, or error sum of squares, which is

|t̂ − t|2 = |{Y (YTY)−1YT − I}t|2

and we define the normalised error as

ε =
(

|t̂ − t|2
|t − t|2

) 1
2

where t = t1 and

t = 1

n

n∑
i=1

ti is the mean of the values ti

and 1 is a vector of 1s. The denominator, |t − t|2, is the total sums of squares or total variation.
Thus, a normalised error close to zero represents a good fit to the data and a normalised

error close to one means that the model predicts the data in the mean and represents a poor fit.
The normalised error can be expressed in terms of the multiple coefficient of determination,
R2, used in ordinary least-squares regression as (Dillon and Goldstein, 1984)

R2 = 1 − ε2

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 231

5.2.4.2 Relationship to Fisher’s linear discriminant

We have still not said anything about the choice of the ti. In this section we consider a specific
choice which we write

ti =
{

t1 for all xi ∈ ω1

t2 for all xi ∈ ω2

Order the rows of Y so that the first n1 samples correspond to class ω1 and the remaining n2

samples correspond to class ω2. Write the matrix Y as

Y =
[

u1 X1

−u2 −X2

]
(5.13)

where ui(i = 1, 2) is a vector of ni 1s and there are ni samples in class ωi (i = 1, 2). The
matrix X i has ni rows containing the training set patterns for class ωi and p columns. Then
(5.12) may be written

YTYv = YT t

and on substitution for Y from (5.13) and v as (w0, w)T this may be rearranged to give

[
n n1mT

1 + n2mT
2

n1m1 + n2m2 XT
1 X1 + XT

2 X2

] [
w0

w

]
=
[

n1t1 − n2t2
t1n1m1 − t2n2m2

]

where mi is the mean of the rows of X i. The top row of the matrix gives a solution for w0 in
terms of w as

w0 = −1

n
(n1mT

1 + n2mT
2)w + n1

n
t1 − n2

n
t2 (5.14)

and the second row gives

(n1m1 + n2m2)w0 + (XT
1 X1 + XT

2 X2)w = t1m1n1 − t2m2n2

Substituting for w0 from (5.14) and rearranging gives

{
nSW + n1n2

n
(m1 − m2)(m1 − m2)

T
}

w = (m1 − m2)
n1n2

n
(t1 + t2) (5.15)

where SW is the estimate of the assumed common covariance matrix, written in terms of mi

and X i, i = 1, 2, as

SW = 1

n

{
XT

1 X1 + XT
2 X2 − n1m1mT

1 − n2m2mT
2

}

Whatever the solution for w, the term

n1n2

n
(m1 − m2)(m1 − m2)

T w

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

232 LINEAR DISCRIMINANT ANALYSIS

in (5.15) is in the direction of m1 − m2. Thus, (5.15) may be written

nSW w = α(m1 − m2)

for some constant of proportionality, α, with solution

w = α

n
S−1

W (m1 − m2)

the same solution obtained for Fisher’s linear discriminant (5.7). Thus, provided that the value
of ti is the same for all members of the same class, we recover Fisher’s linear discriminant.
We require that t1 + t2 	= 0 to prevent a trivial solution for w.

In the spirit of this approach, discrimination may be performed according to whether
w0 + wT x is closer in the least squares sense to t1 than −w0 − wT x is closer to t2. That is,
assign x to ω1 if |t1 − (w0 + wT x)|2< |t2 + (w0 + wT x)|2. Substituting for w0 and w, this
simplifies to (assuming α(t1 + t2) > 0): assign x to ω1 if

(
S−1

W (m1 − m2)
)T

(x − m) >
t1 + t2

2

n2 − n1

α
(5.16)

where m is the sample mean, (n1m1 + n2m2)/n. The threshold on the right-hand side of the
inequality above is independent of t1 and t2 – see the exercises at the end of the chapter.

Of course, other discrimination rules may be used, particularly in view of the fact that
the least squares solution gives Fisher’s linear discriminant, which we know is the optimal
discriminant for two normally distributed classes with equal covariance matrices. Compare
the one above with (5.8) that incorporates the numbers in each class in a different way.

5.2.4.3 Optimal discriminant

Another important property of the minimum squared error solution is that it approaches the
minimum mean-squared-error approximation to the Bayes discriminant function, g(x)

g(x) = p(ω1|x) − p(ω2|x)

in the limit as the number of samples tends to infinity.
In order to understand what this statement means, consider JS given by (5.9) where ti = 1

for all yi, so that

JS =
∑
x∈ω1

(w0 + wT x − 1)2 +
∑
x∈ω2

(w0 + wT x + 1)2 (5.17)

where we have assumed linear dependence of the yi on the xi. Figure 5.5 illustrates the
minimisation process taking place.

For illustration, five samples are drawn from each of two univariate normal distributions
of unit variance and means 0.0 and 2.0 and plotted on the x-axis of Figure 5.5,
 for class ω1

and • for class ω2. Minimising JS means that the sum of the squares of the distances from
the straight line in Figure 5.5 to either +1 for class ω1 or −1 for class ω2 is minimised. Also
plotted in Figure 5.5 is the optimal Bayes discriminant, g(x), for the two normal distributions.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 233

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

0.4
0.6
0.8

1

-2 -1 0 1 2 3 4 5 6

� � � � • � • • • •

Figure 5.5 Optimality of least mean-squared-error rule – illustration of Equation (5.17).

As the number of samples, n, becomes large, the expression JS/n tends to

JS

n
= p(ω1)

∫
(w0 + wT x − 1)2 p(x|ω1)dx + p(ω2)

∫
(w0 + wT x + 1)2 p(x|ω2)dx

Expanding and simplifying, this gives

JS

n
=
∫ (

w0 + wT x
)2

p(x)dx + 1 − 2
∫ (

w0 + wT x
)

g(x)p(x)dx

=
∫ (

w0 + wT x − g(x)
)2

p(x)dx + 1 −
∫

g2(x)p(x)dx

Since only the first integral in the above expression depends on w0 and w, we have
the result that minimising (5.17) is equivalent, as the number of samples becomes large,
to minimising

∫
(w0 + wT x − g(x))2 p(x)dx (5.18)

which is the minimum mean-squared-error approximation to the Bayes discriminant function.
This is illustrated in Figure 5.6.

The expression (5.18) above is the square difference between the optimal Bayes discrim-
inant and the straight line, integrated over the distribution, p(x).

Note that if we were to choose a suitable basis φ1, . . . , φD, transform the feature vector
x to (φ1(x), . . . , φD(x))T and then construct the linear discriminant function, we might
get a closer approximation to the optimal discriminant, and the decision boundary would
not necessarily be a straight line (or plane) in the original space of the variables, x. Also,
although asymptotically the solution gives the best approximation (in the least squares sense)
to the Bayes discriminant function, it is influenced by regions of high density rather than

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

234 LINEAR DISCRIMINANT ANALYSIS

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-2 -1 0 1 2 3 4 5 6

� � � � • � • • • •

Figure 5.6 Least mean-squared-error approximation to the Bayes discriminant rule –
illustration of Equation (5.18).

samples close to the decision boundary. Although Bayesian heuristics motivate the use of
a linear discriminant trained by least squares, it can give poor decision boundaries in some
circumstances (Hastie et al., 1994).

5.2.4.4 Bounds on the error rate

The least mean-squared-error criterion possesses some attractive theoretical properties that
we now quote without proof. Let E1 denote the nearest-neighbour error rate, Emse the
least mean-squared-error rate and let v be the minimum error solution. Then (Devijver and
Kittler, 1982)

JS(v)/n

1 − JS(v)/n
≥ Emse

JS(v)/n ≥ 2E1 ≥ 2E∗

JS(v)/n = 2E1 ⇒ Emse = E∗

where E∗ is the optimal Bayes’ error rate.
The first condition gives an upper bound on the error rate [and may easily be computed

from the values of JS(v) delivered by the algorithm above]. It seems sensible that if we have
two possible sets of discriminant functions, φi and ν i, then if J

φ

S < Jν
S , then the set φ should

be preferred since it gives a smaller upper bound for the error rate, Emse. Of course, this is not
sufficient but gives us a reasonable guideline.

The second condition shows that the value of the criterion function JS/n is bounded below
by twice the nearest-neighbour error rate E1.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

TWO-CLASS ALGORITHMS 235

5.2.5 Further developments

The main developments of the two-class linear algorithms are as follows:

1. Multiclass algorithms. These are discussed in Section 5.3.

2. Support vector machines. These are discussed in Section 5.4.

3. Nonlinear methods. Many classification methods that produce nonlinear decision
boundaries are essentially linear models: they are linear combinations of nonlinear
functions of the variables. Radial basis function networks are one example. Thus the
machinery developed in this chapter is important. This is examined further in Chapter 6.

4. Regularisation – introducing a parameter that controls the sensitivity of the technique
to small changes in the data or training procedure and improves generalisation (see
Section 5.3.5). This includes combining multiple versions of the same classifier, trained
under different conditions (see Chapter 8).

5.2.6 Summary

In this section we have considered a range of techniques for performing linear discrimination
in the two-class case. These are summarised in Table 5.1, where for completeness we have
also included SVMs, to be considered in Section 5.4. They fall broadly into two groups: those
techniques that minimise a criterion based on misclassified samples and those that use all
samples, correctly classified or not. The former group includes the perceptron, relaxation and
SVM algorithms. The latter group includes Fisher’s criterion and criteria based on a least
squares error measure, including the pseudo-inverse method.

A perceptron is a trainable threshold logic unit. During training, weights are adjusted to
minimise a specific criterion. For two separable classes, the basic error-correction procedure
converges to a solution in which the classes are separated by a linear decision boundary. If

Table 5.1 Summary of linear techniques

Procedure name Criterion Algorithm

Perceptron JP(v) =
∑
yi∈Y

(−vT yi) vk+1 = vk + ρk

∑
yi∈Y

yi

Relaxation Jr = 1

2

∑
yi∈Y

(vT yi − b)2

|yi|2
vk+1 = vk + ρk

b − vT
k yi

|yi|2
yi

Fisher JF = |wT (m1 − m2)|2
wT SW w

w ∝ S−1
W (m1 − m2)

lms – pseudo-inverse JS = |Yv − t|2 v̂ = Y†t

SVM wT w + C
∑

i ξi quadratic programming

subject to constraints (5.52)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

236 LINEAR DISCRIMINANT ANALYSIS

the classes are not separable, the training procedure must be modified to ensure convergence.
More complex decision surfaces can be implemented by using combinations and layers
of perceptrons (Nilsson, 1965; Minsky and Papert, 1988). This we shall discuss further in
Chapter 6.

Some of the techniques will find a solution that separates two classes if they are separable,
others do not. A further dichotomy is: the algorithms that converge for nonseparable classes
and those that do not.

The least mean-squared-error design criterion is widely used in pattern recognition. It can
be readily implemented in many of the standard computer programs for regression and we
have shown how the discrimination problem may be viewed as an exercise in regression. The
linear discriminant obtained by the procedure is optimal in the sense of providing a minimum
mean-squared-error approximation to the Bayes discriminant function. The analysis of this
section applies also to generalised linear discriminant functions [the variables x are replaced
by φ(x)]. Therefore, choosing a suitable basis for the φ j(x) is important since a good set will
lead to a good approximation to the Bayes discriminant function.

One problem with the least mean-squared-error procedure is that it is sensitive to outliers
and does not necessarily produce a separable solution, even when the classes are separable
by a linear discriminant. Modifications of the least mean-squared rule to ensure a solution
for separable sets have been proposed [the Ho–Kashyap procedure (Ho and Kashyap, 1965)
which adjusts both the weight vector, v, and the target vector t], but the optimal approximation
to the Bayes discriminant function when the sets overlap is no longer achieved.

5.3 Multiclass algorithms

There are several ways of extending two-class procedures to the multiclass case. We start
with an outline of generic procedures for converting binary classifiers into multiclass clas-
sifiers. The structure of the remainder of this section then follows that of Section 5.2 with
error-correction procedures, generalisations of Fisher’s discriminant and minimum squared-
error procedures.

5.3.1 General ideas

5.3.1.1 One-against-all

For C classes, construct C binary classifiers. The kth classifier is trained to discriminate
patterns in class ωk from those in the remaining classes. Thus, determine the weight vector,
wk, and the threshold, wk

0, such that

(wk)T x + wk
0

{
> 0
< 0

⇒ x ∈
{

ωk

ω1, . . . , ωk−1, ωk+1, . . . , ωC

Ideally, for a given pattern x, the quantity gk(x) = (wk)T x + wk
0 will be positive for one value

of k and negative for the remainder giving a clear indication of class. However, this procedure
may result in a pattern x belonging to more than one class, or belonging to none.

If there is more than one class for which the quantity gk(x) is positive, x may be assigned
to the class for which ((wk)T x + wk

0)/|wk| (the distance to the hyperplane) is the largest. If

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 237

all values of gk(x) are negative, then assign x to the class with smallest value of |((wk)T x +
wk

0)|/|wk|.

5.3.1.2 One-against-one

Construct C(C − 1)/2 classifiers. Each classifier discriminates between two classes. A pattern
x is assigned using each classifier in turn and a majority vote taken. This can lead to ambiguity,
with no clear decision for some patterns.

5.3.1.3 Discriminant functions

A third approach is, for C classes, to define C linear discriminant functions g1(x), . . . , gC(x)

and assign x to class ωi if

gi(x) = max
j

g j(x)

that is, x is assigned to the class whose discriminant function is the largest value at x. If

gi(x) = max
j

g j(x) ⇔ p(ωi|x) = max
j

p(ω j|x)

then the decision boundaries obtained will be optimal in the sense of the Bayes’ minimum
error.

5.3.2 Error-correction procedure

A generalisation of the two-class error-correction procedure for C > 2 classes is to define C
linear discriminants

gi(x) = vT
i z

where z is the augmented data vector, zT = (1, xT). The generalised error-correction pro-
cedure is used to train the classifier. Arbitrary initial values are assigned to the vi and each
pattern in the training set is considered one at a time. If a pattern belonging to class ωi is
presented and the maximum value of the discriminant functions is for the jth discriminant
function (i.e. a pattern in class ωi is classified as class ωj) then the weight vectors vi and v j

are modified according to

v′
i = vi + cz

v′
j = v j − cz

where c is a positive correction increment. That is, the value of the ith discriminant function is
increased for pattern z and the value of the jth discriminant is decreased. This procedure will
converge in a finite number of steps if the classes are separable (Nilsson, 1965). Convergence
may require the dataset to be cycled through several times (as in the two-class case).

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

238 LINEAR DISCRIMINANT ANALYSIS

Choosing c according to

c = (v j − vi)
T z
|z|2

will ensure that after adjustment of the weight vectors, z will be correctly classified.

5.3.3 Fisher’s criterion – linear discriminant analysis

The term linear discriminant analysis (LDA), although generically referring to techniques
that produce discriminant functions that are linear in the input variables (and thus applies to
the perceptron and all of the techniques of this chapter), is also used in a specific sense to
refer to the technique of this subsection in which a linear transformation is sought that, in
some sense, maximises between-class separability and minimises within-class variability. The
characteristics of the method are:

1. A transformation is produced to a space of dimension at most C − 1, where C is the
number of classes.

2. The transformation is distribution-free – for example, no assumption is made regarding
normality of the data.

3. The axes of the transformed coordinate system can be ordered in terms of ‘importance
for discrimination’. Those most important can be used to obtain a graphical repre-
sentation of the data by plotting the data in this coordinate system (usually, two or
three dimensions).

4. Discrimination may be performed in this reduced-dimensional space using any conve-
nient classifier. Often improved performance is achieved over the application of the rule
in the original data space. If a nearest-class-mean type rule is employed, the decision
boundaries are linear (and equal to those obtained by a Gaussian classifier under the
assumption of equal covariance matrices for the classes).

5. Linear discriminant analysis may be used as a post-processor for more complex,
nonlinear classifiers.

There are several ways of generalising the criterion JF (5.6) to the multiclass case. Optimisation
of these criteria yields transformations that reduce to Fisher’s linear discriminant in the two-
class case and that, in some sense, maximise the between-class scatter and minimise the
within-class scatter. We present one approach here.

We consider the criterion

JF (a) = aT SBa
aT SW a

(5.19)

where the sample-based estimates of SB and SW are given by

SB =
C∑

i=1

ni

n
(mi − m)(mi − m)T

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 239

and

SW =
C∑

i=1

ni

n
�̂i

where mi and �̂i, i = 1, . . . ,C are the sample means and covariance matrices of each class
(with ni samples) and m is the sample mean. We seek a set of feature vectors ai that maximise
(5.19) subject to the normalisation constraint aT

i SW a j = δij (class-centralised vectors in the
transformed space are uncorrelated). This leads to the generalised symmetric eigenvector
equation (Press et al., 1992)

SBA = SW A� (5.20)

where A is the matrix whose columns are the ai and � is the diagonal matrix of eigenvalues.
If S−1

W exists, this may be written

S−1
W SBA = A� (5.21)

The eigenvectors corresponding to the largest of the eigenvalues are used for feature extraction.
The rank of SB is at most C − 1; therefore the projection will be on to a space of dimension
at most C − 1. The solution for A satisfying (5.20) and the constraint also diagonalises the
between-class covariance matrix, AT SBA = �, the diagonal matrix of eigenvalues.

5.3.3.1 Solving the LDA generalised symmetric eigenvector equation

When the matrix SW is not ill-conditioned with respect to inversion, the eigenvectors
of the generalised symmetric eigenvector equation can be determined by solving the
equivalent equation

S−1
W SBa = λa (5.22)

though note that the matrix S−1
W SB is not symmetric. However, the system may be reduced to

a symmetric eigenvector problem using the Cholesky decomposition (Press et al., 1992) of
SW , which allows SW to be written as the product SW = LLT , for a lower triangular matrix L.
Then, (5.22) is equivalent to

L−1SB(L−1)T y = λy

where y = LT a. Efficient routines based on the QR algorithm (Stewart, 1973; Press et al.,
1992) may be used to solve the above eigenvector equation.

If SW is close to singular, then S−1
W SB cannot be computed accurately. One approach is

to use the QZ (Stewart, 1973) algorithm, which reduces SB and SW to upper triangular form
(with diagonal elements bi and wi, respectively) and the eigenvalues are given by the ratios
λi = bi/wi. If SW is singular, the system will have ‘infinite’ eigenvalues, and the ratio can-
not be formed. These ‘infinite’ eigenvalues correspond to eigenvectors in the null space of

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

240 LINEAR DISCRIMINANT ANALYSIS

SW . L.-F. Chen et al. (2000) propose using these eigenvectors, ordered according to bi, for the
LDA feature space.

There are other approaches. Instead of solving (5.20) or (5.21), we may determine A by
solving two symmetric eigenvector equations successively. The solution is given by:

A = Ur�
− 1

2
r Vν (5.23)

where Ur = [u1| . . . |ur] is the matrix whose columns are the eigenvectors of SW with nonzero
eigenvalues λ1, . . . , λr; �r = Diag{λ1 . . . λr} and Vν is the matrix of eigenvectors of S′

B =
�

− 1
2

r UT
r SBUr�

− 1
2

r , which has the same eigenvalues as (5.20). This is the Karhunen–Loève
transformation proposed by Kittler and Young (1973), and covered in Chapter 10. To see the
validity of this process we note that the eigen-decomposition of the symmetric matrix SW is:

Ur�rUT
r = Sw

and hence Equation (5.20) can be written:

SBA = Ur�rUT
r A� (5.24)

Then substituting (5.23) into (5.24) and noting that UT
r Ur = Ir, the r × r identity matrix,

gives:

SBUr�
− 1

2
r Vν = Ur�

1
2
r Vν�

Pre-multiplying both sides of the above equation by �
− 1

2
r UT

r , and simplifying, gives:

S′
BVν = Vν� (5.25)

i.e. as desired, V ν are the eigenvectors of S′
B with eigenvalues as (5.20).

Cheng et al. (1992) describe several methods for determining optimal discriminant trans-
formations when SW is ill-conditioned. These include

1. The pseudo-inverse method. Replace S−1
W by the pseudo-inverse, S†

W (Tian et al., 1988).

2. The perturbation method. Stabilise the matrix SW by adding a small perturbation
matrix, � (Hong and Yang, 1991). This amounts to replacing the singular values of
SW , λr, by a small fixed positive value, δ if λr < δ.

3. The rank decomposition method. This is a two-stage process, similar to the one given
above (5.23), with successive eigendecompositions of the total scatter matrix, and
between-class scatter matrix.

5.3.3.2 Discrimination

As in the two-class case, the transformation in itself does not provide us with a discrimination
rule. The transformation is independent of the distributions of the classes and is defined in

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 241

terms of matrices SB and SW . However, if we were to assume that the data were normally
distributed, with equal covariance matrices (equal to the within-class covariance matrix, SW)
in each class and means mi, then the discrimination rule is: assign x to class ωi if gi ≥ gj for
all j 	= i, j = 1, . . . , C, where

gi = log(p(ωi)) − 1

2
(x − mi)

T S−1
W (x − mi) (5.26)

or, neglecting the quadratic terms in x since they do not depend on class,

gi = log(p(ωi)) − 1

2
mT

i S−1
W mi + xT S−1

W mi (5.27)

the normal-based linear discriminant function (see Chapter 2).
If A is the linear discriminant transformation, then S−1

W may be written (see the exercises
at the end of the chapter)

S−1
W = AAT + A⊥AT

⊥

where AT
⊥(m j − m) = 0 for all j. Using the above expression for S−1

W in (5.26) gives a
discriminant function

gi = log(p(ωi)) − 1

2
(y(x) − yi)

T (y(x) − yi) − 1

2
x − mT A⊥AT

⊥x − m (5.28)

and ignoring terms that are constant across classes, discrimination is based on:

gi = log(p(ωi)) − 1

2
yT

i yi + yT(x)yi

a nearest class mean classifier in the transformed space, where yi = AT mi and y(x) = AT x.
This is simply the Gaussian classifier of Chapter 2 applied in the transformed space.

5.3.4 Least mean-squared-error procedures

5.3.4.1 Introduction

As in Section 5.2.4, we seek a linear transformation of the data x [or the transformed data
φ(x)] that we can use to make a decision and which is obtained by minimising a squared-error
measure. Specifically, let the data be denoted by the n × p matrix X = [x1| . . . |xn]T and
consider the minimisation of the quantity E,

E = ∥∥WXT + w01T − TT
∥∥2

=
n∑

i=1

(Wxi + w0 − ti)
T (Wxi + w0 − ti)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

242 LINEAR DISCRIMINANT ANALYSIS

where W is a C × p matrix of weights; w0 is a C-dimensional vector of biases and 1 is an
n-dimensional vector with each component equal to unity. The n × C matrix of constants T ,
sometimes termed the target matrix, is defined so that the ith row is

ti = λ j =

⎛
⎜⎝

λ j1
...

λ jC

⎞
⎟⎠ for xi in class ω j; (5.29)

that is, ti has the same value for all patterns in the same class. Choice of the target values is
considered later in this subsection. Minimising (5.29) with respect to w0 gives

w0 = t − Wm (5.30)

where

t = 1

n

C∑
j=1

njλ j, the mean ‘target’ vector

with nj the number of data patterns from class ωj, and

m = 1

n

n∑
i=1

xi, the mean data vector

Substituting for w0 from (5.30) into (5.29) allows us to express the error, E, as

E = ‖WX̂
T − T̂

T ‖2 (5.31)

where X̂ and T̂ are defined as

X̂
�= X − 1mT

T̂
�= T − 1t̄T

(data and target matrices with zero mean rows); 1 is an n-dimensional vector of 1s. The
minimum (Frobenius) norm solution for W that minimises E is

W = T̂
T
(X̂

T
)† (5.32)

where (X̂
T
)† is the Moore–Penrose pseudo-inverse of X̂

T
(see Section 5.2.4), and X† =

(XT X)−1XT if the inverse exists. The matrix of fitted values is given by

T̃ = X̂X̂
†
T̂ + 1tT (5.33)

Thus, we can obtain a solution for the weights in terms of the data and the ‘target matrix’
T , as yet unspecified.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 243

5.3.4.2 Properties

Before we consider particular forms for T , let us note one or two properties of the least
mean-squared-error approximation. The large sample limit of (5.29) is

E/n → E∞ =
C∑

j=1

p(ω j)E[|Wx + w0 − λ j|2] j (5.34)

where p(ωj) is the prior probability (the limit of nj/n) and the expectation, E[.]j, is with respect
to the conditional distribution of x on class ωj, i.e. for any function z of x

E[z(x)] j =
∫

z(x)p(x|ω j)dx

The solution for W and w0 that minimises (5.34) also minimises (Wee, 1968; Devijver, 1973;
also see the exercises at the end of the chapter)

E ′ = E[|Wx + w0 − ρ(x)|2] (5.35)

where the expectation is with respect to the unconditional distribution p(x) of x and ρ(x) is
defined as

ρ(x) =
C∑

j=1

λ j p(ω j|x) (5.36)

Thus, ρ(x) may be viewed as a ‘conditional target’ vector; it is the expected target vector
given a pattern x, with the property that

E[ρ(x)] =
∫

ρ(x)p(x)dx =
C∑

j=1

p(ω j)λ j

the mean target vector. From (5.34) and (5.35), the discriminant vector that minimises E∞
has minimum variance from the discriminant vector ρ.

5.3.4.3 Choice of targets

The particular interpretation of ρ depends on the choice we make for the target vectors for
each class, λ j. If we specify the prototype target matrix as

λ ji = loss in deciding ωi when the true class is ω j (5.37)

then ρ(x) is the conditional risk vector (Devijver, 1973), where the conditional risk is the
expected loss in making a decision, with the ith component of ρ(x) being the conditional risk
of deciding in favour of ωi. The Bayes’ decision rule for minimum conditional risk is

assign x to ωi if ρi(x) ≤ ρ j(x), j = 1, . . . ,C

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

244 LINEAR DISCRIMINANT ANALYSIS

From (5.34) and (5.35), the discriminant rule that minimises the mean square error E has
minimum variance from the optimum Bayes discriminant function ρ as the number of samples
tends to infinity.

For a coding scheme in which

λij =
{

1 i = j
0 otherwise

(5.38)

the vector ρ(x) is equal to the vector of posterior probabilities, with jth component p(ω j|x).
The Bayes discriminant rule for minimum error is

assign x to ωi if ρi(x) ≥ ρ j(x), j = 1, . . . ,C

The change in the direction of the inequality results from the fact that the terms λij are now
gains rather than losses. For this coding scheme, the least mean-squared-error solution for W
and w0 gives a vector discriminant function that asymptotically has minimum variance from
the vector of a posteriori probabilities, shown for the two-class case in Section 5.2.4.

5.3.4.4 Decision rule

The above asymptotic results suggest that we use the same decision rules to assign a pattern x
to a class assuming that the linear transformation Wx + w0 had produced ρ(x). For example,
with the coding scheme (5.38) for �, we would assign x to the class corresponding to the
largest component of the discriminant function Wx + w0. Alternatively, in the spirit of the
least-squares approach, assign x to ωi if

|Wx + w0 − λi|2 < |Wx + w0 − λ j|2 for all j 	= i (5.39)

which leads to the linear discrimination rule; assign x to class ωi if

dT
i x + d0i > dT

j x + d0 j ∀ j 	= i

where

di = WT λi

d0i = −|λi|2/2 + wT
0 λi

For λi given by (5.38), this decision rule is identical to the one that treats the linear discriminant
function Wx + w0 as the vector of posterior probabilities, but it is not in general (Lowe and
Webb, 1991).

We add a word of caution here. The result given above is an asymptotic result only. Even
if we had a very large number of samples and a flexible set of basis functions φ(x) (replacing
the measurements x), then we do not necessarily achieve the Bayes optimal discriminant
function. Our approximation may indeed become closer in the least-squares sense, but this is
weighted in favour of higher-density regions, not necessarily at class boundaries.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 245

A final result, which we shall quote without proof, is that for the 1-from-C coding scheme
(5.38), the values of the vector Wx + w0 do indeed sum to unity (Lowe and Webb, 1991).
That is, if we denote the linear discriminant vector z as

z = Wx + w0

where W and w0 have been determined using the mean-squared-error procedure [Equations
(5.30) and (5.32)] with the columns of � = [λ1, . . . ,λC] being the columns of the identity
matrix, then

C∑
i=1

zi = 1

that is, the sum of the discriminant function values is unity. This does not mean that the
components of z can necessarily be treated as probabilities since some may be negative.

5.3.4.5 Incorporating priors

A more general form of (5.29) is a weighted error function

E =
n∑

i=1

di(Wxi + w0 − ti)
T (Wxi + w0 − ti)

= ‖(WXT + w01T − TT)D‖2 (5.40)

where the ith pattern is weighted by the real factor di, and D is diagonal with Dii = √
di. Two

different codings for the weighting matrix D are described.

Prior-weighted patterns
In this case, each pattern in the training set is weighted according to the a priori probabilities
of class membership and the number in that class as

di = Pk

nk/n
for pattern i in class ωk

where Pk is the assumed known class probability (derived from knowledge regarding the
relative expected class importance, or frequency of occurrence in operation) and nk is the
number of patterns in class ωk in the training set.

The weighting above would be used in situations where the expected test conditions differ
from the conditions described by the training data by the expected proportions in the classes.
This may be a result of population drift (see Chapter 1), or when there are limited data
available for training. The above weighting has been used by Munro et al. (1996) for learning
low-probability events in order to reduce the size of the training set for a neural network.

Cluster-weighted patterns
The computational time for many training schemes increases with the training set size (es-
pecially if nonlinear neural network routines are being used). Clustering (see Chapter 11) is

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

246 LINEAR DISCRIMINANT ANALYSIS

one means of finding a reduced set of prototypes that characterises the training dataset. There
are many ways in which clustering may be used to preprocess the data – it could be applied
to classes separately, or to the whole training set. For example, when applied to each class
separately, the patterns for that class are replaced by the cluster means, with di for the new
patterns set proportional to the number in the cluster. When applied to the whole dataset, if a
cluster contains all members of the same class, those patterns are replaced in the dataset by
the cluster mean and di is set to the number of patterns in the cluster. If a cluster contains
members of different classes, all patterns are retained.

5.3.5 Regularisation

If the matrix (XT X) is close to singular, an alternative to the pseudo-inverse approach is to
use a regularised estimator. The error, E (5.31), is modified by the addition of a regularisation
term to give

E = ‖WX̂
T − T̂

T ‖2 + α‖W‖2

where α is a regularisation parameter or ridge parameter. The solution for W that minimises
E is

W = T̂
T

X̂(X̂
T

X̂ + αIp)
−1

We still have to choose the ridge parameter, α, which may be different for each output
dimension (corresponding to class in a discrimination problem). There are several possible
choices (Brown, 1993). The procedure of Golub et al. (1979) is to use a cross-validation
estimate. The estimate α̂ for α is the value that minimises

|(I − A(α))t̂|2
[Tr(I − A(α))]2

where

A(α) = X̂(X̂
T

X̂ + αI)−1X̂
T

and t̂ is one of the columns of T̂ ; i.e. measurements on one of the output variables, that is
being predicted.

5.3.6 Example application study

The problem
Face recognition using linear discriminant analysis (LDA) (L.-F. Chen et al., 2000).

Summary
A technique, based on LDA, that is appropriate for the small-sample problem (when the
within-class matrix, SW , is singular) is assessed in terms of error rate and computational
requirements.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

MULTICLASS ALGORITHMS 247

The data
The data comprise 10 different facial images of 128 people (classes). The raw images are
155 × 175 pixels. These images are reduced to 60 × 60 and after further processing and
alignment, further dimension reduction, based on k-means clustering (see Chapter 11), to 32,
64, 128 and 256 values is performed.

The model
The classifier is simple. The basic method is to project the data to a lower dimension and
perform classification using a nearest-neighbour rule.

Training procedure
The projection to the lower dimension is determined using the training data. Problems occur
with the standard LDA approach when the p × p within-class scatter matrix, SW is singular
(of rank s < p). In this case, let Q = [qs+1, . . . , qp] be the p × (p − s) matrix of eigenvectors
of SW with zero eigenvalue; that is, those that map into the null space of SW . The eigenvectors

of S̃B, defined by S̃B
�= QQT SB(QQT)T , are used to form the the feature vectors.

Results
Recognition rates were calculated using a leave-one-out cross validation strategy. Limited
results on small sample size datasets show good performance compared with previously
published techniques.

5.3.7 Further developments

The standard generalisation of Fisher’s linear discriminant to the multiclass situation chooses
as the columns of the feature extraction matrix A, those vectors ai that maximise

aT
i SBai

aT
i SW ai

(5.41)

subject to the orthogonality constraint

aT
i SW a j = δij

i.e. the within-class covariance matrix in the transformed space is the identity matrix. For
the two-class case (C = 2), only one discriminant vector is calculated. This is Fisher’s linear
discriminant.

An alternative approach, proposed by Foley and Sammon (1975) for the two-class case
and generalised to the multiclass case by Okada and Tomita (1985), is to seek the vector ai

that maximises (5.41) subject to the constraints

aia j = δij

The first vector, a1, is Fisher’s linear discriminant. The second vector, a2, maximises
(5.41) subject to being orthogonal to a1 (a2a1 = 0), and so on. A direct analytic solution
for the problem is given by Duchene and Leclercq (1988), and involves determining an

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

248 LINEAR DISCRIMINANT ANALYSIS

eigenvector of a nonsymmetric matrix. Okada and Tomita (1985) propose an iterative
procedure for determining the eigenvectors. The transformation derived is not limited by
the number of classes.

A development of this approach that uses error probability to select the vectors ai is
described by Hamamoto et al. (1991) and a comparison with the Fisher criterion on the basis
of the discriminant score J is given by Hamamoto et al. (1993).

Another extension of LDA is to a transformation that is not limited by the number of
classes. The set of discriminant vectors is augmented by an orthogonal set that maximises the
projected variance. Thus the linear discriminant transformation is composed of two parts: a
set of vectors determined, say, by the usual multiclass approach and a set orthogonal to the
first set for which the projected variance is maximised. This combines LDA with a principal
components analysis (Duchene and Leclercq, 1988).

There have been many developments of Fisher’s linear discriminant both in the two-class
case (Aladjem, 1991) and in the multiclass situation (Aladjem and Dinstein, 1992; Liu et al.,
1993). The aims have been either to determine transformations that aid in exploratory data
analysis or interactive pattern recognition or that may be used prior to a linear or quadratic
discriminant rule (Schott, 1993). Several methods have been proposed for a small number of
samples (Tian et al., 1988; Hong and Yang, 1991; Cheng et al., 1992) when the matrix SW

may be singular. These are compared by Liu et al. (1992). Loog and Duin (2004) propose
an extension that better deals with heteroscedastic data, i.e. data which is not well suited
to modelling the class-conditional distributions as having equal covariance matrices. Their
approach makes use of the Chernoff dissimilarity measure between probability distributions
(see Chapter 10).

A development of the least mean-squared-error approach which weights the error in
favour of patterns near the class boundary has been proposed by Al-Alaoui (1977). Al-
Alaoui describes a procedure, starting with the generalised inverse solution, that progressively
replicates misclassified samples in the training set. The linear discriminant is iteratively
updated and the procedure is shown to converge for the two-class separable case. Repeating
the misclassified samples in the dataset is equivalent to increasing the cost of misclassification
of the misclassified samples or, alternatively, weighting the distribution of the training data in
favour of samples near the class boundaries (see the description of boosting in Chapter 9).

5.3.8 Summary

In Chapter 2, we developed a multiclass linear discriminant rule based on normality assump-
tions for the class-conditional densities (with common covariance matrices). In this section,
we have presented a different approach. We have started with the requirement of a linear
discriminant rule, and sought ways of determining the weight vectors for each class. Several
approaches have been considered including perceptron schemes, Fisher’s discriminant rule
and least-mean-square procedures. Linear SVMs (see Section 5.4) can also be derived in such
a manner.

The least mean-squared-error approach has the property that asymptotically, the proce-
dure produces discriminant functions that provide a minimum squared error approximation
to the Bayes discriminant function. One of the problems of the least mean-squared-error
approach is that it places emphasis on regions of high density, which are not necessarily at
class boundaries.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 249

In many practical studies, when a linear discriminant rule is used, it is often the normal-
based linear discriminant rule of Chapter 2. However, the least mean-squared rule, with
binary-coded target vectors, is important since it forms a part of some nonlinear regression
models.

5.4 Support vector machines

5.4.1 Introduction

As we stated in the introduction to Section 5.2, algorithms for linear discriminant functions
may be applied to the original variables or in a transformed feature space defined by nonlinear
transformations of the original variables. Support vector machines are no exception. They
implement a very simple idea – they map pattern vectors to a high-dimensional feature
space where a ‘best’ separating hyperplane (the maximal margin hyperplane) is constructed
(Figure 5.7).

In this section we introduce the basic ideas behind the support vector model and in Chapter
6 we develop the model further in the context of neural network classifiers. Much of the work
on support vector classifiers relates to the binary classification problem, with the multiclass
classifier constructed by combining several binary classifiers (see Section 5.4.4).

5.4.2 Linearly separable two-class data

Consider the binary classification task in which we have a set of training patterns {xi, i =
1, . . . , n} assigned to one of two classes, ω1 and ω2, with corresponding labels yi = ±1.
Denote the linear discriminant function g(x)

g(x) = wT x + w0

with decision rule

wT x + w0

{
> 0
< 0

⇒ x ∈
{

ω1 with corresponding numeric value, yi = +1
ω2 with corresponding numeric value, yi = −1

•
•
•
•
••
•
•
••
••
•
•

� �
�
�
��
�

�
���

�

A

A
•
•
•
•
••
•
•
••
••
•
•

� �
�
�
��
�

�
���

�

Figure 5.7 Two linearly separable sets of data with separating hyperplane, labelled A. The
separating hyperplane in (b) (the thick line) leaves the closest points at maximum distance.
The thin lines on either side of the hyperplane A identify the margin.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

250 LINEAR DISCRIMINANT ANALYSIS

Thus, all training points are correctly classified if

yi(w
T xi + w0) > 0 for all i

This is an alternative way of writing (5.3).
Figure 5.7(a) shows two separable sets of points with a separating hyperplane, A. Clearly,

there are many possible separating hyperplanes. The maximal margin classifier determines the
hyperplane for which the margin – the sum of the distances from the separating hyperplane
to the closest example from class ω1 and the closest example from class ω2 – is the largest.
This is illustrated in Figure 5.7(b), where the margin is shown as the distance between two
parallel hyperplanes on each side of the hyperplane A that separates the data, with each parallel
hyperplane passing through the closest points (on a given side) to the separating hyperplane.
The assumption is that the larger the margin, the better the generalisation error of the linear
classifier defined by the separating hyperplane.

In Section 5.2.2, we saw that a variant of the perceptron rule was to introduce a margin,
b > 0, and seek a solution so that

yi(w
T xi + w0) ≥ b (5.42)

The perceptron algorithm yields a solution for which all points, xi are at a distance greater than
b/|w| from the separating hyperplane. A scaling of b and w, w0 leaves this distance unaltered
and the condition (5.42) still satisfied. Therefore, without loss of generality, a value b = 1
may be taken, defining what are termed the canonical hyperplanes, H1 : wT x + w0 = +1 and
H2 : wT x + w0 = −1, and we have

wT xi + w0 ≥ +1 for yi = +1
wT xi + w0 ≤ −1 for yi = −1

(5.43)

The distance between each of these two hyperplanes and the separating hyperplane, g(x) = 0,
is 1/|w|, and the margin is 2/|w|. Figure 5.8 shows the separating hyperplane and the canonical
hyperplanes for two separable datasets. The points that lie on the canonical hyperplanes are
called support vectors (circled in Figure 5.8).

Therefore, maximising the margin means that we seek a solution that minimises |w| subject
to the constraints

C1 : yi(wT xi + w0) ≥ 1 i = 1, . . . , n (5.44)

A standard approach to optimisation problems with equality and inequality constraints is the
Lagrange formalism (Fletcher, 1988) which leads to the primal form of the objective function,
Lp, given by1

Lp = 1

2
wT w −

n∑
i=1

αi(yi(wT xi + w0) − 1) (5.45)

1 For inequality constraints of the form ci ≥ 0, the constraints equations are multiplied by positive Lagrange
multipliers and subtracted from the objective function.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 251

g(x) = wTx + w0 = 0g < 0
g > 0

w

|w0|
|w|

H1 : wTx + w0 = +1

H2 : wTx + w0 = −1

�

�

�

�
�

�
�

�

�

�

•

•

•
•

••
•

•
•

Figure 5.8 H1 and H2 are the canonical hyperplanes. The margin is the perpendicular
distance between the separating hyperplane [g(x) = 0] and a hyperplane through the closest
points (marked by a ring around the data points). These are termed the support vectors.

where {αi, i = 1, . . . , n; αi ≥ 0} are the Lagrange multipliers. The primal parameters are w
and w0 and therefore the number of parameters is p + 1, where p is the dimensionality of the
feature space.

The solution to the problem of minimising wT w subject to constraints (5.44) is equivalent
to determining the saddlepoint of the function Lp, at which Lp is minimised with respect to w
and w0 and maximised with respect to the αi. Differentiating Lp with respect to w0 and w and
equating to zero yields

n∑
i=1

αiyi = 0 (5.46)

w =
n∑

i=1

αiyixi (5.47)

Substituting into (5.45) gives the dual form of the Lagrangian

LD =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα jyiy jx
T
i x j (5.48)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

252 LINEAR DISCRIMINANT ANALYSIS

which is maximised with respect to the αi subject to

αi ≥ 0
n∑

i=1

αiyi = 0 (5.49)

The importance of the dual form is that it expresses the optimisation criterion as inner products
of patterns, xi. This is a key concept and has important consequences for nonlinear support
vector machines discussed in Chapter 6. The dual variables are the Lagrange multipliers, αi,
and so the number of parameters is n, the number of patterns.

5.4.2.1 Karush–Kuhn–Tucker conditions

In the above, we have reformulated the primal problem in an alternative dual form which is
often easier to solve numerically. The Kuhn–Tucker conditions provide necessary and sufficient
conditions to be satisfied when minimising an objective function subject to inequality and
equality constraints. In the primal form of the objective function, these are

∂Lp

∂w
= w −

n∑
i=1

αiyixi = 0

∂Lp

∂w0
= −

n∑
i=1

αiyi = 0

yi(xT
i w + w0) − 1 ≥ 0

αi ≥ 0

αi(yi(xT
i w + w0) − 1) = 0

In particular, the condition αi(yi(xT
i w + w0) − 1) = 0 (known as the Karush–Kuhn–Tucker

complementarity condition – product of the Lagrange multiplier and the inequality constraint)
implies that for active constraints [the solution satisfies yi(xT

i w + w0) − 1) = 0] then αi ≥
0; otherwise, for inactive constraints αi = 0. For active constraints, the Lagrange multiplier
represents the sensitivity of the optimal value of Lp to the particular constraint (Cristianini and
Shawe-Taylor, 2000). These data points with nonzero Lagrange multiplier lie on the canonical
hyperplanes. They are termed the support vectors and are the most informative points in the
dataset. If any of the other patterns (with αi = 0) were to be moved around (provided that they
do not cross one of the outer – canonical – hyperplanes), they would not affect the solution
for the separating hyperplane.

5.4.2.2 Classification

Re-casting the constrained optimisation problem in its dual form enables numerical quadratic
programming solvers to be employed (see Section 5.4.6 for further discussion). Once the
Lagrange multipliers, αi, have been obtained, the value of w0 may be found from one of the
Karush–Kuhn–Tucker complementarity conditions

αi(yi(xT
i w + w0) − 1) = 0

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 253

using any of the support vectors (patterns for which αi 	= 0). For reasons of numerical stability
an average over all support vectors is preferred

nSVw0 + wT
∑
i∈SV

xi =
∑
i∈SV

yi (5.50)

where nSV is the number of support vectors, the summations are over the set of support
vectors, SV , and we have made use of y2

i = 1, for any i. The solution for w used in the above
is given by (5.47):

w =
∑
i∈SV

αiyixi (5.51)

since αi = 0 for other patterns. Thus, the support vectors define the separating hyperplane.
A new pattern, x, is classified according to the sign of

wT x + w0

Substituting for w and w0 gives the linear discriminant: assign x to ω1 if

∑
i∈SV

αiyixT
i x − 1

nSV

∑
i∈SV

∑
j∈SV

αiyixT
i x j + 1

nSV

∑
i∈SV

yi > 0

5.4.3 Linearly nonseparable two-class data

In many real-world practical problems there will be no linear boundary separating the classes
and the problem of searching for an optimal separating hyperplane is meaningless. Even if we
were to use sophisticated feature vectors, φ(x), to transform the data to a high-dimensional
feature space in which classes are linearly separable, this would lead to an overfitting of the
data and hence poor generalisation ability. We shall return to nonlinear SVMs in Chapter 6.

However, we can extend the above ideas to handle nonseparable data by relaxing the
constraints (5.43). We do this by introducing ‘slack’ variables ξ i, i = 1, . . . , n into the
constraints to give

wT xi + w0 ≥ +1 − ξi for yi = +1
wT xi + w0 ≤ −1 + ξi for yi = −1
ξi ≥ 0 i = 1, . . . , n

(5.52)

For a point to be misclassified by the separating hyperplane, we must have ξ i > 1 (the concept
is illustrated in Figure 5.9).

Analogously to Equation (5.44) for the separable case, we can rewrite the constraints as:

yi(wT xi + w0) ≥ 1 − ξi i = 1, . . . , n
ξi ≥ 0 i = 1, . . . , n

(5.53)

A convenient way to incorporate the additional cost due to nonseparability is to introduce
an extra cost term to the cost function by replacing wT w/2 by wT w/2 + C

∑
i ξi where C is a

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

254 LINEAR DISCRIMINANT ANALYSIS

g(x) = wTx + w0 = 0g < 0
g > 0

w

|w0|
|w|

H1 : wTx + w0 = +1

H2 : wTx + w0 = −1

�
�

�

�
�

�
�

�

�

�

�

|ξi|
|w|

•
•

•
•

•• •

••

Figure 5.9 Linear separating hyperplane for nonseparable data.

‘regularisation’ parameter. The term C
∑

iξ i can be thought of as measuring some amount of
misclassification – the lower the value of C, the smaller the penalty for ‘outliers’ and a ‘softer’
margin. Other penalty terms are possible, for example, C

∑
iξ

2
i (Vapnik, 1998; Cristianini and

Shawe-Taylor, 2000).
Thus, we minimise

1

2
wT w + C

∑
i

ξi (5.54)

subject to the constraints (5.53). The primal form of the Lagrangian (5.45) now becomes

Lp = 1

2
wT w + C

∑
i

ξi −
n∑

i=1

αi(yi(wT xi + w0) − 1 + ξi) −
n∑

i=1

riξi (5.55)

where αi ≥ 0 and ri ≥ 0 are Lagrange multipliers; ri are introduced to ensure positivity
of ξ i.

Differentiating with respect to w and w0 still results in (5.46) and (5.47)

n∑
i=1

αiyi = 0 (5.56)

w =
n∑

i=1

αiyixi (5.57)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 255

and differentiating with respect to ξ i yields

C − αi − ri = 0 (5.58)

Substituting the results (5.56) and (5.57) above into the primal form (5.55) and using (5.58)
gives the dual form of the Lagrangian

LD =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα jyiy jxT
i x j (5.59)

which is the same form as the maximal margin classifier (5.48). This is maximised with
respect to the αi subject to

n∑
i=1

αiyi = 0 (5.60)

0 ≤ αi ≤ C

The latter condition follows from (5.58) and ri ≥ 0. Thus, the only change to the maximisation
problem is the upper bound on the αi. Again, numerical quadratic programming solvers can
be employed.

The Karush–Kuhn–Tucker complementarity conditions are

αi(yi(xT
i w + w0) − 1 + ξi) = 0 (5.61)

riξi = (C − αi)ξi = 0

Patterns for which αi > 0 are termed the support vectors, and satisfy yi(xT
i w + w0) − 1 + ξi =

0. Those satisfying 0 < αi < C must have ξ i = 0 – that is, they lie on one of the canonical
hyperplanes at a distance of 1/|w| from the separating hyperplane (these support vectors are
sometimes termed margin vectors). Nonzero slack variables can only occur when αi = C. In
this case, the points xi are misclassified if ξ i > 1. If ξ i < 1, they are classified correctly, but
lie closer to the separating hyperplane than 1/|w|. As in the separable case, the value of w0 is
determined using the first Karush–Kuhn–Tucker complementarity condition [Equation (5.61)]
for any support vector for which 0 < αi < C (for which ξ i = 0). For reasons of numerical
stability it is usual to take the average over samples for which 0 < αi < C. Equations (5.50)
and (5.51) become

nS̃Vw0 + wT
∑

i∈S̃V

xi =
∑

i∈S̃V

yi (5.62)

w =
∑
i∈SV

αiyixi (5.63)

where SV is the set of support vectors with associated values of αi satisfying 0 < αi ≤
C and S̃V is the set of nS̃V support vectors satisfying 0 < αi < C (those at the target

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

256 LINEAR DISCRIMINANT ANALYSIS

(a) (b)

Figure 5.10 Linearly separable data (a) and nonseparable data [(b), C = 20].

distance of 1/|w| from the separating hyperplane). The resulting linear discriminant is: assign
x to ω1 if:

∑
i∈SV

αiyixT
i x + 1

nS̃V

⎧⎨
⎩
∑

j∈S̃V

y j −
∑

i∈SV, j∈S̃V

αiyixT
i x j

⎫⎬
⎭ > 0

Figure 5.10 shows the optimal separating hyperplane for linearly separable and non-
separable data. The support vectors (αi > 0) are circled. All points that are not support vectors
lie outside the margin strip (αi = 0, ξ i = 0). In Figure 5.10(b), one of the support vectors
(from class +) is incorrectly classified (ξ i > 1).

The only free parameter is the regularisation parameter, C. A value may be chosen by
varying C through a range of values and monitoring the performance of the classifier on a
separate validation set, or by using cross-validation (see Chapter 13).

5.4.4 Multiclass SVMs

Support vector machines are most commonly applied in multiclass problems either by using
the binary classifier in a one-against-all, or one-against-one situation, as described in Section
5.3.1

Alternatively, one can construct C linear discriminant functions simultaneously (Vapnik,
1998). Consider the linear discriminant functions

gk(x) = (wk)T x + wk
0 k = 1, . . . ,C

We seek a solution for {(wk, wk
0), k = 1, . . . ,C} such that the decision rule: assign x to class

ωi if

gi(x) = max
j

g j(x)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 257

separates the training data without error. That is, there are solutions for {(wk, wk
0), k = 1, . . . ,

C} such that for all k = 1, . . . , C,

(wk)T x + wk
0 − ((w j)T x + wj

0) ≥ 1

for all x ∈ ωk and for all j 	= k. This means that every pair of classes is separable. If a solution
is possible, we seek a solution for which

C∑
k=1

(wk)T wk

is minimal. If the training data cannot be separated, slack variables are introduced and we
minimise

L =
C∑

k=1

(wk)T wk + C
n∑

i=1

ξi

subject to the constraints

(wk)T xi + wk
0 − ((w j)T xi + wj

0) ≥ 1 − ξi

for all xi (where xi ∈ ωk), and for all j 	= k. The procedure for minimising the quantity L
subject to inequality constraints is the same as that developed in the two-class case (Abe,
2010).

5.4.5 SVMs for regression

Support vector machines may also be used for problems in regression. Suppose that we have
a dataset {(xi, yi), i = 1, . . . , n} of measurements xi on the independent variables and yi on
the response variables. Instead of the constraints (5.52) we have

(wT xi + w0) − yi ≤ ε + ξi i = 1, . . . , n
yi − (wT xi + w0) ≤ ε + ξ̂i i = 1, . . . , n
ξi, ξ̂ ≥ 0 i = 1, . . . , n

(5.64)

This allows a deviation between the target values yi and the function f ,

f (x) = wT x + w0.

Two slack variables are introduced: one (ξ) for exceeding the target value by more than ε and
the other (ξ̂) for being more than ε below the target value (Figure 5.11).

As in the classification case, a loss function is minimised subject to the constraints (5.64).
For a linear ε-insensitive loss, we minimise

1

2
wT w + C

n∑
i=1

(ξi + ξ̂i)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

258 LINEAR DISCRIMINANT ANALYSIS

(b)(a)

Figure 5.11 Linear (a) and nonlinear (b) SVM regression. The variables ξ and ξ̂ measure
the cost of lying outside the ‘ε-insensitive band’ around the regression function.

The primal form of the Lagrangian is

Lp = 1

2
wT w + C

n∑
i=1

(ξi + ξ̂i) −
n∑

i=1

αi(ξi + ε − (wT xi + w0 − yi)) −
n∑

i=1

riξi

−
n∑

i=1

α̂i(ξ̂i + ε − (yi − wT xi − w0)) −
n∑

i=1

r̂iξ̂i (5.65)

where αi, α̂i ≥ 0 and ri, r̂i ≥ 0 are Lagrange multipliers. Differentiating with respect to w, w0,
ξ i and ξ̂i gives

w +
n∑

i=1

(αi − α̂i)xi = 0

n∑
i=1

(αi − α̂i) = 0 (5.66)

C − αi − ri = 0

C − α̂i − r̂i = 0

Substituting for w into Equation (5.65) and using the relations above gives the dual form

LD =
n∑

i=1

(α̂i − αi)yi − ε

n∑
i=1

(α̂i + αi) − 1

2

n∑
i=1

n∑
j=1

(α̂i − αi)(α̂ j − α j)xT
i x j (5.67)

This is maximised subject to

n∑
i=1

(αi − α̂i) = 0 (5.68)

0 ≤ αi, α̂i ≤ C

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 259

which follows from (5.66) and ri, r̂i ≥ 0. The Karush–Kuhn–Tucker complementarity
conditions are

αi(ξi + ε − (wT xi + w0 − yi)) = 0

α̂i(ξ̂i + ε − (yi − wT xi − w0)) = 0 (5.69)

riξi = (C − αi)ξi = 0

r̂iξ̂i = (C − α̂i)ξ̂i = 0

These imply αiα̂i = 0 and ξiξ̂i = 0. To see that αiα̂i = 0, note that if both αi 	= 0 and α̂i 	= 0,
the first two conditions in Equation (5.69) imply that ξi + ε − (wT xi + w0 − yi) = 0 and
ξ̂i + ε − (yi − wT xi − w0) = 0. However, adding these two equations would give ξi + ξ̂i +
2ε = 0, which is not possible, since ε > 0 and ξi, ξ̂i ≥ 0. Hence either αi = 0 or α̂i = 0. That
ξiξ̂i = 0 follows from the bottom two conditions in Equation (5.69) together with αiα̂i = 0.

Those patterns xi with αi > 0 or α̂i > 0 are support vectors. If 0 < αi < C or 0 < α̂i < C
then (xi, yi) lies on the boundary of the tube surrounding the regression function at distance
ε. In the 0 < αi < C case this can be seen by first noting that the third condition in Equation
(5.69) is such that 0 < αi < C implies that ξ 0 = 0. Using αi 	= 0 and ξ 0 = 0 in the first
condition then implies that ε + yi = wT xi + w0, as stated. Similarly for the second case. If αi

= C or α̂i = C, then the point lies outside the tube. If αi = 0 and α̂i = 0 then the point lies
inside the tube (and is not a support vector).

Having optimised the parameters αi and α̂i using a suitable numerical quadratic program-
ming solver, the solution for f (x) is then

f (x) =
n∑

i=1

(α̂i − αi)xT
i x + w0 (5.70)

using the expression for w in (5.66). The parameter w0 is chosen so that

f (xi) − yi = ε for any i with 0 < αi < C

or f (xi) − yi = −ε for any i with 0 < α̂i < C

by the Karush–Kuhn–Tucker complementarity conditions above. As with the classification
SVMs, for numerical reasons it is usual to average the expression for w0 over all patterns for
which 0 < αi < C or 0 < α̂i < C.

5.4.6 Implementation

There are many freely available and commercial software packages for solving quadratic pro-
gramming optimisation problems, often based on standard numerical methods of nonlinear
optimisation that iteratively hill-climb to find the maximum of the objective function. For
very large datasets, however, they become impractical. Traditional quadratic programming
algorithms require that the kernel be computed and stored in memory and can involve expen-
sive matrix operations. There are many developments to handle large datasets. Decomposition
methods (see Algorithm 5.1) apply the standard optimisation package to a fixed subset of the

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

260 LINEAR DISCRIMINANT ANALYSIS

Algorithm 5.1 The decomposition algorithm.

1. Set b, the size of the subset (b < n, the total number of patterns). Set αi = 0 for all patterns.

2. Choose b patterns from the training dataset to form a subset B.

3. Solve the quadratic programming problem defined by the subsetB using a standard routine.

4. Apply the model to all patterns in the training set.

5. If there are any patterns that do not satisfy the Karush–Kuhn–Tucker conditions, replace
any patterns in B and the corresponding αi with these patterns and their αi values.

6. If not converged, go to step 3.

data and revise the subset in the light of applying the classification/regression model learned
to the training data not in the subset.

Sequential minimal optimisation
A special development of the decomposition algorithm is the sequential minimal optimi-
sation (SMO) algorithm (Platt, 1998), which optimises a subset of two parameters (each
corresponding to a different pattern) at a time, for which the optimisation admits an analytic
solution.

Each optimisation step consists of optimising two of the parameters (without loss of
generality α1 and α2 in the following discussion), whilst keeping the remaining parameters
α3, . . . , αn unchanged. The linear equality constraint [Equation (5.60)] is preserved in the
optimisation. For this to happen the following must hold:

α′
1y1 + α′

2y2 = −
n∑

i=3

αiyi = α1y1 + α2y2 (5.71)

where α′
1 and α′

2 are the updated parameters.
Now for the binary classification problem, y1, y2 ∈ { − 1, 1}. Hence (5.71) and 0 ≤ α′

1,
α′

2 ≤ C give the following bounds for α′
2:

L ≤ α′
2 ≤ H

where:

L =
{

max(0, α2 − α1) if y1 	= y2

max(0, α1 + α2 − C) if y1 = y2

and:

H =
{

min(C, C + α2 − α1) if y1 	= y2

min(C, α1 + α2) if y1 = y2

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

SUPPORT VECTOR MACHINES 261

As is derived in Cristianini and Shawe-Taylor (2000) (see Exercises) the optimal value
for α′

2 is

α′
2 = max

(
min

(
α2 + y2(E1 − E2)

xT
1 x1 + xT

2 x2 − 2xT
1 x2

, H

)
, L

)
(5.72)

where for j = 1, 2

Ej = g(x j) − y j = (wT x j + w0) − y j =
(

n∑
i=1

αiyixT
i x j + w0

)
− y j (5.73)

Having determined α′
2, Equation (5.71) can be used to obtain the following optimal value

of α′
1

α′
1 = α1 + y1y2(α2 − α′

2)

(here we have made use of the fact that y2
i = 1, for any i).

Using Equation (5.63) the weight vector w is updated to w′ according to

w′ = w + (α′
1 − α1)y1x1 + (α′

2 − α2)y2x2

The bias parameter w0 is updated so that the Karush–Kuhn–Tucker complementarity
conditions of Equation (5.61) are satisfied for the updated parameters. If 0 < α′

1 < C then w0

is updated as follows:

w′
0 = −E1 − (α′

1 − α1)y1xT
1 x1 − (α′

2 − α2)y2xT
2 x1 + w0 (5.74)

If α′
1 ∈ {0, C}, whilst 0 < α′

2 < C, then the update rule becomes:

w′
0 = −E2 − (α′

1 − α1)y1xT
1 x2 − (α′

2 − α2)y2xT
2 x2 + w0 (5.75)

If both 0 < α′
1 < C and 0 < α′

2 < C then the expressions in Equations (5.74) and (5.75) will
be equal. If neither 0 < α′

1 < C nor 0 < α′
2 < C (i.e. α′

1, α′
2 ∈ {0, C}) then the bias is set to

be the average of the values given by Equations (5.74) and (5.75).
The SVM outputs can then be updated for all patterns using the following:

g′(xi) = g(xi) + (α′
1 − α1)y1xT

1 xi + (α′
2 − α2)y2xT

2 xi + (w′
0 − w0)

This allows the errors Ei to be updated.
The SMO algorithm successively updates pairs of parameters until convergence is reached.

Heuristics are used to select these pairs. At each iteration the first pattern in the pair is set to be
one that does not satisfy the Karush–Kuhn–Tucker complementarity conditions of Equation
(5.61).2 Initially, all patterns violating the Karush–Kuhn–Tucker conditions are selected in

2 In most applications it is only necessary to have the conditions satisfied to within a small tolerance.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

262 LINEAR DISCRIMINANT ANALYSIS

turn. However, once a complete pass through the dataset is completed, violating patterns that
also belong to the set S̃V (i.e. which satisfy 0 < αi < C) are selected preferentially.

Suppose that the first selected parameter is αi1 (i.e. the i1th pattern). A second heuristic
is used to determine the second parameter, αi2 , to optimise. Specifically, i2 is selected to
maximise |Ei1 − Ei2 |, where the Ei are as specified in Equation (5.73) evaluated using the
most recent weight vector and bias parameter expressions. In practice the procedure chooses
i2 such that Ei2 is the minimum in the set {Ei, i 	= i1, i ∈ S̃V} if Ei, 1 positive, and such that Ei2
is the maximum in the set {Ei, i 	= i1, i ∈ S̃V} if Ei, 1 is negative. Further details, including a
number of special cases, are available in the pseudocode within Platt (1998) and Cristianini
and Shawe-Taylor (2000).

Initialisation of the procedure consists of setting αi = 0 for all patterns (giving w = 0 and
w0 = 0). Termination occurs when the Karush–Kuhn–Tucker complementarity conditions are
met to within a tolerance for all patterns. Cristianini and Shawe-Taylor (2000) discuss a number
of different convergence criteria, applicable to a range of SVM optimisation procedures.

Extension of the SMO algorithm to SVM regression problems is discussed in Cristianini
and Shawe-Taylor (2000). Improvements to the SMO bias update procedure have been made
by Keerthi et al. (2001). Fan et al. (2005) (see also Chang and Lin, 2011) use second-order
information to improve the convergence time of an SMO algorithm.

5.4.7 Example application study

The problem
This application involves classification of land cover using remote sensing satellite imagery
(Brown et al., 2000).

Summary
A conventional classification technique developed in the remote sensing community (linear
spectral mixture models) is compared, both theoretically and practically, with SVMs. Under
certain circumstances the methods are equivalent.

The data
The data comprise measurements of two classes of land cover: developed and other (including
slate, tarmac, concrete) and undeveloped and vegetation (including sand, water, soil, grass,
shrubs, etc). The measurements are Landsat images of the Leicester, UK, suburbs in two
frequency bands. Each image is 33 × 33 pixels in size and a pattern is a two-dimensional
pair of measurements of corresponding pixels in each of the two bands. Training and test sets
were constructed, the training set consisting of ‘pure’ pixels (those that relate to a region for
which there is a single class).

The model
An SVM model was adopted. Linear separable and linear nonseparable SVMs were trained
[by maximising (5.45) and (5.55)] using patterns selected from the training set.

Training procedure
The value of the regularisation parameter, C, was chosen to minimise a sum-squared-error
criterion evaluated on the test set.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

LOGISTIC DISCRIMINATION 263

5.4.8 Summary

Support vector machines have been receiving increasing research interest in recent years. They
provide an optimally separating hyperplane in the sense that the margin between two groups
is maximised. Generalisation of this idea to the nonlinear classifier, discussed in Chapter 6,
has led to classifiers with remarkable good generalisation ability.

5.5 Logistic discrimination

In the previous sections, discrimination is performed using values of a linear function of
the data sample x [or the transformed data samples φ(x)]. We continue this theme here. We
shall introduce logistic discrimination for the two-class case first and then consider the
multigroup situation.

5.5.1 Two-class case

The basic assumption is that the difference between the logarithms of the class-conditional
density functions is linear in the variables x:

log

(
p(x|ω1)

p(x|ω2)

)
= β0 + βT x (5.76)

This model is an exact description in a wide variety of situations including (Anderson, 1982):

1. when the class-conditional densities are multivariate normal with equal covariance
matrices;

2. multivariate discrete distributions following a loglinear model with equal interaction
terms between classes;

3. when situations 1 and 2 are combined: both continuous and categorical variables
describe each sample.

Hence, the assumption is satisfied by many families of distributions and has been found
to be applicable to a wide range of real datasets that depart from normality.

It is a simple matter to show from (5.76) that the assumption is equivalent to

p(ω2|x) = 1

1 + exp
(
β ′

0 + βT x
)

p(ω1|x) = exp
(
β ′

0 + βT x
)

1 + exp
(
β ′

0 + βT x
) (5.77)

where β ′
0 = β0 + log(p(ω1)/p(ω2)).

Discrimination between two classes depends on the ratio p(ω1|x)/p(ω2|x),

assign x to

{
ω1

ω2
if

p(ω1|x)

p(ω2|x)

{
>

<
1

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

264 LINEAR DISCRIMINANT ANALYSIS

and substituting the expressions (5.77), we see that the decision about discrimination is
determined solely by the linear function β ′

0 + βT x and is given by

assign x to

{
ω1

ω2
if β ′

0 + βT x
{

>

<
0

This is an identical rule to that given in Section 5.2 on linear discrimination, and we gave
several procedures for estimating the parameters. The only difference here is that we are
assuming a specific model for the ratio of the class-conditional densities that leads to this
discrimination rule, rather than specifying the rule a priori. Another difference is that we
may use the models for the densities (5.77) to obtain maximum likelihood estimates for
the parameters.

5.5.2 Maximum likelihood estimation

The parameters of the logistic discrimination model may be estimated using a maximum
likelihood approach (Day and Kerridge, 1967; Anderson, 1982). An iterative nonlinear opti-
misation scheme may be employed using the likelihood function and its derivatives.

The estimation procedure depends on the sampling scheme used to generate the la-
belled training data (Anderson, 1982; McLachlan, 1992a) and three common sampling de-
signs are considered by Anderson. These are (i) sampling from the mixture distribution
(i.e. randomly selected data from the full distribution over all classes), (ii) sampling con-
ditional on x in which x is fixed and one or more samples of the observation are taken
(which may be ω1 or ω2 in a two-class discrimination problem) and (iii) separate sampling
for each class in which the conditional distributions, p(x|ωi), i = 1, 2, are sampled. Maxi-
mum likelihood estimates of β are independent of the sampling scheme though one of the
sampling designs considered (separate sampling from each class) derives estimates for β0

rather than β ′
0 (which is the term required for discrimination). We assume in our deriva-

tion below a mixture sampling scheme, which arises when a random sample is drawn from
a mixture of the classes. Each of the sampling schemes above is discussed in detail by
McLachlan (1992a).

The likelihood of the observations is

L =
n1∏

r=1

p(x1r|ω1)

n2∏
r=1

p(x2r|ω2) r = 1, . . . , ns; s = 1, 2.

where xsr(s = 1, 2; r = 1, . . . , ns) are the observations in class ωs.
This may be rewritten as

L =
n1∏

r=1

p(ω1|x1r)
p(x1r)

p(ω1)

n2∏
r=1

p(ω2|x2r)
p(x2r)

p(ω2)

= 1

p(ω1)n1 p(ω2)n2

∏
all x

p(x)

n1∏
r=1

p(ω1|x1r)

n2∏
r=1

p(ω2|x2r)

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

LOGISTIC DISCRIMINATION 265

The factor

1

p(ω1)n1 p(ω2)n2

∏
all x

p(x)

is independent of the parameters of the model [the assumption in Anderson (1982) and Day
and Kerridge (1967) is that we are free to choose p(x); the only assumption we have made is on
the log-likelihood ratio]. Therefore maximising the likelihood L is equivalent to maximising

L′ =
n1∏

r=1

p(ω1|x1r)

n2∏
r=1

p(ω2|x2r)

or

log(L′) =
n1∑

r=1

log(p(ω1|x1r)) +
n2∑

r=1

log(p(ω2|x2r))

and using the functional forms (5.77)

log(L′) =
n1∑

r=1

(β ′
0 + βT x1r) −

∑
all x

log{1 + exp(β ′
0 + βT x)}

The gradient of log(L′) with respect to the parameters β j is

∂ log L′

∂β ′
0

= n1 −
∑
all x

p(ω1|x)

∂ log L′

∂β j
=

n1∑
r=1

(x1r) j −
∑
all x

p(ω1|x)x j j = 1, . . . , p

Having written down an expression for the likelihood and its derivative, we may now use a
nonlinear optimisation procedure to obtain a set of parameter values for which the function
log(L′) attains a local maximum. First of all, we need to specify initial starting values for the
parameters. Anderson recommends taking zero as a starting value for all p + 1 parameters,
β ′

0, β1, . . . , βp. Except in two special cases (see below), the likelihood has a unique maximum
attained for finite β (Anderson, 1982; Albert and Lesaffre, 1986). Hence, the starting point is
in fact immaterial.

If the two classes are separable, then there are nonunique maxima at infinity. At each stage
of the optimisation procedure, it is easy to check whether β ′

0 + βT x gives complete separation.
If it does, then the algorithm may be terminated. The second situation when L does not have
a unique maximum at a finite value of β occurs with discrete data when the proportions for
one of the variables are zero for one of the values. In this case, the maximum value of L
is at infinity. Anderson (1974) suggests a procedure for overcoming this difficulty, based on
the assumption that the variable is conditionally independent of the remaining variables in
each class.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

266 LINEAR DISCRIMINANT ANALYSIS

5.5.3 Multiclass logistic discrimination

In the multiclass discrimination problem, the basic assumption is that, for C classes

log

(
p(x|ωs)

p(x|ωC)

)
= βs0 + βT

s x, s = 1, . . . ,C − 1

that is, the log-likelihood ratio is linear for any pair of likelihoods. Again, we may show that
the posterior probabilities are of the form

p(ωs|x) = exp
(
β ′

s0 + βT
s x
)

1 +∑C−1
s=1 exp

(
β ′

s0 + βT
s x
) s = 1, . . . ,C − 1

p(ωC|x) = 1

1 +∑C−1
s=1 exp

(
β ′

s0 + βT
s x
)

where β ′
s0 = βs0 + log(p(ωs)/p(ωC)). Also, the decision rule about discrimination depends

solely on the linear functions β ′
s0 + βT

j x and the rule is: assign x to class ωj if

max {β ′
s0 + βT

s x} = β ′
j0 + βT

j x > 0, s = 1, . . . ,C − 1

otherwise assign x to class ωC.
The likelihood of the observations is given by

L =
C∏

i=1

ni∏
r=1

p(xir|ωi) (5.78)

using the notation given previously. As in the two-class case, maximising L is equivalent to
maximising

log(L′) =
C∑

s=1

ns∑
r=1

log(p(ωs|xsr)) (5.79)

with derivatives

∂ log L′

∂β ′
j0

= nj −
∑
all x

p(ω j|x)

∂ log L′

∂(β j)l
=

n j∑
r=1

(x jr)l −
∑
all x

p(ω j|x)xl

Again, for separable classes, the maximum of the likelihood is achieved at a point at infinity
in the parameter space, but the algorithm may be terminated when complete separation
occurs. Also, zero marginal sample proportions cause maxima at infinity and the procedure
of Anderson may be employed.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

LOGISTIC DISCRIMINATION 267

5.5.4 Example application study

The problem
This application is to predict in the early stages of pregnancy the feeding method (bottle or
breast) a woman would use after giving birth (Cox and Pearce, 1997).

Summary
A ‘robust’ two-group logistic discriminant rule was developed and compared with the ordinary
logistic discriminant. Both methods gave similar (good) performance.

The data
Data were collected on 1200 pregnant women from two district general hospitals. Eight
variables were identified as being important to the feeding method: presence of children
under 16 years of age in the household, housing tenure, taught at school about feeding babies,
feeding intention, frequency of seeing own mother, feeding advice from relatives, how woman
was fed, previous experience of breast feeding.

Some patterns were excluded from the analysis for various reasons: incomplete infor-
mation, miscarriage, termination, refusal and delivery elsewhere. This left 937 cases for
parameter estimation.

The model
Two models were assessed: the two-group ordinary logistic discrimination model [Equation
(5.76)] and a robust logistic discrimination model, designed to reduce the effect of outliers on
the discriminant rule,

p(x|ω1)

p(x|ω2)
= c1 + c2 exp[β0 + βT x]

1 + exp[β0 + βT x]

where c1 and c2 are fixed positive constants.

Training procedure
The prior probabilities p(ω1) and p(ω2) are estimated from the data and c1 and c2 specified.
This is required for the robust model, although it can be incorporated with β0 is the stan-
dard model (see Section 5.5.1). Two set of experiments were performed, both determining
maximum likelihood estimates for the parameters: training on the full 937 cases and testing
on the same data; training on 424 cases from one hospital and testing on 513 cases from the
second hospital.

Results
Both model gave similar performance, classifying around 85% cases correctly.

5.5.5 Further developments

Further developments of the basic logistic discriminant model have been to robust (i.e. re-
ducing the effect of outliers) procedures (Cox and Ferry, 1993; Cox and Pearce, 1997) and
to more general models. Several other discrimination methods are based on models of dis-
criminant functions that are nonlinear functions of linear projections. These include the

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

268 LINEAR DISCRIMINANT ANALYSIS

multilayer perceptron (Chapter 6), and projection pursuit (Friedman and Tukey, 1974;
Friedman and Stuetzle, 1981; Friedman et al., 1984; Huber, 1985; Friedman, 1987; Jones
and Sibson, 1987) in which the linear projection and the form of the nonlinear function are
simultaneously determined.

5.5.6 Summary

Logistic discrimination makes assumptions about the log-likelihood ratios of one population
relative to a reference population. As with the methods discussed in the previous sections,
discrimination is made by considering a set of values formed from linear transformations
of the explanatory variables. These linear transformations are determined by a maximum
likelihood procedure. It is a technique which lies between the linear techniques of Chapters
1 and 5 and the nonlinear methods of Chapter 6 in that it requires a nonlinear optimisation
scheme to estimate the parameters (and the posterior probabilities are nonlinear functions of
the explanatory variables), but discrimination is made using a linear transformation.

One of the advantages of the maximum likelihood approach is that asymptotic results
regarding the properties of the estimators may readily be derived. Logistic discrimination has
further advantages as itemised by Anderson (1982):

1. It is appropriate for both continuous and discrete-valued variables.

2. It is easy to use.

3. It is applicable over a wide range of distributions.

4. It has a relatively small number of parameters (unlike some of the nonlinear models
discussed in Chapter 6).

5.6 Application studies

There have been several studies comparing logistic discrimination with LDA (Press and
Wilson, 1978; Bull and Donner, 1987). Logistic discrimination has been found to work well
in practice, particularly for data that depart significantly from normality – something that
occurs often in practice. The Statlog project (Michie et al., 1994) compared a range of
classification methods on various datasets. It reports that there is little practical difference
between linear and logistic discrimination. Both methods were in the top five algorithms.

There are many applications of SVMs, primarily concerned with the nonlinear variant,
reported in Chapter 6. However, in a communications example, SVMs have been used suc-
cessfully to implement a decision feedback equaliser (to combat distortion and interference),
giving superior performance to the conventional minimum mean-squared-error approach
(S. Chen et al., 2000).

5.7 Summary and discussion

The discriminant functions discussed in the previous section are all linear in the components
of x or the transformed variables φi(x) (generalised linear discriminant functions). We have

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

RECOMMENDATIONS 269

described several approaches for determining the parameters of the model (error-correction
schemes, least-squares optimisation, logistic model), but we have regarded the initial transfor-
mation, φ, as being prescribed. Some possible choices for the functions φi(x) were given in
Chapter 1 and there are many other parametric and nonparametric forms that may be used, as
we shall see in the next chapter. But how should we choose the functions �i? A good choice
for the �i will lead to better classification performance for a subsequent linear classifier than
simply applying a linear classifier to the variables xi. On the other hand, if we were to use a
complex nonlinear classifier after the initial transformation of the variables, then the choice
for the �i may not be too critical. Any inadequacies in a poor choice may be compensated for
by the subsequent classification process. However, in general, if we have knowledge about
which variables or transformations are useful for discrimination, then we should use it, rather
than hope that our classifier will ‘learn’ the important relationships.

Many sets of basis functions have been proposed, and the more basis functions we use in
our classifier, the better we might expect our classifier to perform. This is not necessarily the
case, since increasing the dimension of the vector φ, by the inclusion of more basis functions,
leads to more parameters to estimate in the subsequent classification stage. Although error
rate on the training set may in fact decrease, the true error rate may increase as generalisation
performance deteriorates.

For polynomial basis functions, the number of terms increases rapidly with the order of the
polynomial, restricting such an approach to polynomials of low order. However, an important
development is that of SVMs that replaces the need to calculate D-dimensional feature vectors
φ(x) with the evaluation of a kernel K(x, y) at points x and y in the training set.

In the next chapter, we turn to discriminant functions that are linear combinations of
nonlinear functions, φ (i.e. generalised linear discriminant functions). The radial basis function
network defines the nonlinear function explicitly. It is usually of a prescribed form with
parameters set as part of the optimisation process. They are usually determined through
a separate procedure and the linear parameters are obtained using the procedures of this
chapter. The SVM defines the nonlinear function implicitly, through the specification of a
kernel function.

5.8 Recommendations

1. Linear schemes provide a baseline from which more sophisticated methods may be
judged. They are easy to implement and should be considered before more complex
methods.

2. The error correction procedure, or an SVM, can be used to test for separability. This
might be important for high-dimensional datasets where classes may be separable due
to the finite training set size. A classifier that achieves linear separability on a training
set does not necessarily mean good generalisation performance.

3. Linear discriminant analysis, which is the multiclass extension of Fisher’s linear dis-
criminant, is recommended.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

270 LINEAR DISCRIMINANT ANALYSIS

5.9 Notes and references

The theory of algorithms for linear discrimination is well developed. The books by Nilsson
(1965) and Duda et al. (2001) provide descriptions of the most commonly used algorithms;
see also Ho and Agrawala (1968) and Kashyap (1970). A treatment of the perceptron can be
found in the book by Minsky and Papert (1988).

Logistic discrimination is described in the survey article by Anderson (1982) and the book
by McLachlan (1992a).

Support vector machines were introduced by Vapnik and co-workers. The book by Vapnik
(1998) provides a very good description with historical perspective. Cristianini and Shawe-
Taylor (2000) present an introduction to SVMs aimed at students and practitioners. Burges
(1998) provides a very good tutorial on SVMs for pattern recognition; see also Abe (2010).

Exercises

1. By considering two arbitrary points lying on the decision surface

wT x + w0 = 0

show that w is perpendicular to the surface. By considering the closest point in the
surface to the origin, show that the perpendicular distance of the hyperplane from the
origin is |w0|/|w|. Show that the distance of a pattern, x, from the hyperplane is given by
|r|, where

r = g(x)

|w| = (wT x + w0
)
/|w|

Hint: write x as a sum of two components: its projection onto the hyperplane, xh, and a
component normal to the hyperplane.

2. Linear programming or linear optimisation techniques are procedures for maximising
linear functions subject to equality and inequality constraints. Specifically, we find the
vector x such that

z = aT
0 x

is minimised subject to the constraints

xi ≥ 0 i = 1, . . . , n (5.80)

and the additional constraints

aT
i x ≤ bi i = 1, . . . , m1

aT
j x ≥ bj ≥ 0 j = m1 + 1, . . . , m1 + m2

aT
k x = bk ≥ 0 k = m1 + m2 + 1, . . . , m1 + m2 + m3

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

EXERCISES 271

for given m1, m2 and m3. Consider optimising the perceptron criterion function as a
problem in linear programming. The perceptron criterion function, with a positive margin
vector b, is given by

JP =
∑
yi∈Y

(bi − vT yi)

where now yi are the vectors satisfying vT yi ≤ bi. A margin is introduced to prevent the
trivial solution v = 0 . This can be reformulated as a linear programming problem as
follows. We introduce the artificial variables ai and consider the problem of minimising

Z =
n∑

i=1

ai

subject to

ai ≥ 0

ai ≥ bi − vT yi

Show that minimising Z with respect to a and v will minimise the perceptron criterion
(observe that for fixed v, minimising with respect to the ai gives the perceptron objective
function).

3. Evaluate the constant of proportionality, α, in (5.16) and hence show that the offset on
the right-hand side of (5.16) does not depend on the choice for t1 and t2 and is given by

p2 − p1

2

(
1 + p1 p2d2

p1 p2

)

where pi = ni/n and d2 is given by

d2 = (m1 − m2)
T S−1

W (m1 − m2)
T

the Mahalanobis distance between two normal distributions of equal covariance matrices.
Compare this with the optimal value for normal distributions, given by (5.8).

4. Show that the maximisation of

Tr{S−1
W SB}

in the transformed space leads to the same feature space as the linear discriminant solution.
Hint: write SW in the transformed space as WT SWW and SB in the transformed space as
WT SBW ; then differentiate with respect to W and note that (WT SWW)−1WT SBW may
be written as U�U−1 for eigenvectors U and a diagonal matrix of eigenvectors, �.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

272 LINEAR DISCRIMINANT ANALYSIS

5. Show that the criterion

J4 = Tr{AT SBA}
Tr{AT SW A}

is invariant to an orthogonal transformation of the matrix A.

6. Consider the squared error,

C∑
j=1

p(ω j)E[‖Wx + w0 − λ j‖2] j

where E[.]j is with respect to the conditional distribution of x on class ωj. By writing

E[‖Wx + w0 − λ j‖2] j = E[‖(Wx + w0 − ρ(x)) + (ρ(x) − λ j)‖2] j

and expanding, show that the linear discriminant rule also minimises

E ′ = E[‖Wx + w0 − ρ(x)‖2]

where the expectation is with respect to the unconditional distribution p(x) of x and ρ(x)

is defined as

ρ(x) =
C∑

j=1

λ j p(ω j|x)

7. Show that if A is the linear discriminant transformation (transforming the within-class
covariance matrix to the identity and diagonalising the between-class covariance matrix),
then the inverse of the within-class covariance matrix may be written

S−1
W = AAT + A⊥AT

⊥

where AT
⊥(m j − m) = 0 for all j (the columns of A are orthogonal to the space spanned

by the vectors m j − m). Hint: note that for an n × n orthogonal matrix, V = [v1, . . . , vn],
VVT = ∑n

i=1 vivT
i = ∑r

i=1 vivT
i +∑n

i=r+1 vivT
i = VrV T

r + Vr̄V T
r̄ , where V r = [v1, . . . , vr]

and V r̄ = [vr+1, . . . , vn].

8. Show that the outputs of a linear discriminant function, trained using a least-squares
approach with 0–1 targets, sum to unity. Hint: using the solution Wx + w0 of 5.3.4, show
that 1TWx + w0 = 1.

9. Generate data from three bivariate normal distributions, with means (− 4, −4), (0, 0),
(4, 4) and identity covariance matrices; 300 samples in train and test sets; equal priors.
Train a least-squares classifier (Section 5.3.4) and a linear discriminant function (Section
5.3.3) classifier. For each classifier, obtain the classification error and plot the data and
the decision boundaries. What do you conclude from the results?

10. Derive the dual form of the Lagrangian for SVMs applied to the multiclass case.

P1: OTA/XYZ P2: ABC
JWST102-c05 JWST102-Webb September 6, 2011 17:31 Printer Name: Yet to Come

EXERCISES 273

11. For SVM regression with a quadratic (rather than linear) ε-insensitive loss, the primal
form of the Lagrangian is written

Lp = wT w + C
n∑

i=1

(ξ2
i + ξ̂ 2

i)

and is minimised subject to the constraints (5.64). Derive the dual form of the Lagrangian
and state the constraints on the Lagrange multipliers.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

6

Nonlinear discriminant
analysis – kernel and
projection methods

Developed primarily in the neural networks and machine learning literature, the radial basis
function (RBF) network, the support vector machine (SVM) and the multilayer perceptron (MLP)
are flexible models for nonlinear discriminant analysis that give good performance on a wide range
of problems. RBFs are sums of radially symmetric functions; SVMs define the basis functions
implicitly through the specification of a kernel; MLPs are nonlinear functions of linear projections
of the data.

6.1 Introduction

In the previous chapter, classification of an object is achieved as the result of a linear trans-
formation whose parameters were determined through some optimisation procedure. The
linear transformation may be applied to the observed data, or some prescribed features of
that data. Various optimisation schemes for the parameters were considered, including simple
error-correction schemes (as in the case of the perceptron), least squares error minimisation
and in the logistic discrimination model, the parameters were obtained through a maximum
likelihood approach using a nonlinear optimisation procedure.

In this chapter, we generalise the discriminant model still further by assuming parametric
forms for the discriminant functions gj. Specifically, we assume a discriminant function of
the form

gj(x) =
m∑

i=1

wjiφi(x; μi) + wj0, j = 1, . . . ,C (6.1)

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

INTRODUCTION 275

where there are m nonlinear ‘basis’ functions, φi, each of which has nm parameters μi =
{μik, k = 1, . . . , nm} (the number of parameters may differ between the φi, but here we shall
assume an equal number), and use the discriminant rule:

assign x to class ωi if gi(x) = max
j

g j(x)

that is, x is assigned to the class whose discriminant function is the largest. In (6.1) the
parameters of the model are the values wji and μik and the number of basis functions, m.

Equation (6.1) is exactly of the form of a generalised linear discriminant function, but we
allow some flexibility in the nonlinear functions φi. There are several special cases of (6.1);
these include:

φi(x;μi) ≡ xi linear discriminant function
m = d, dimension of x.

φi(x;μi) ≡ φi(x) generalised linear discriminant function with
fixed transformation; it can take any of the forms
in Table 1.1 for example.

Equation (6.1) may be written

g(x) = Wφ(x) + w0 (6.2)

where W is the C × m matrix with (ji) component wji, φ(x) is the m-dimensional vector with
ith component φi(x,μi) and w0 is the vector (w10, . . . , wC0)T . Equation (6.2) may be regarded
as providing a transformation of a data sample x ∈ R

d to R
C through an intermediate space

R
m defined by the nonlinear functions φi. This is a model of the feed-forward type. As we shall

discuss later, models of this form have been widely used for functional approximation and (as
with the linear and logistic models), they are not confined to problems in discrimination.

There are two problems to solve with the model (6.2). The first is to determine the
complexity of the model or the model order. How many functions φi do we use (specify
the value of m)? How complex should each function be (how many parameters do we allow)?
The answers to these questions are data dependent. There is an interplay between model
order, training set size and the dimensionality of the data. Unfortunately there is no simple
equation relating the three quantities – it is very much dependent on the data distribution. The
problem of model order selection is nontrivial and is very much an active area of research
(see Chapter 13). The second problem is to determine the remaining parameters of the model
(W and the μi), for a given model order. This is simpler and will involve some nonlinear
optimisation procedure for minimising a cost function. We shall discuss several of the most
commonly used forms.

In this chapter we introduce models that have been developed primarily in the neural
network and machine learning literatures. The types of neural network model that we consider
in this chapter are of the feed-forward type and there is a very strong overlap between these
models and those developed in the statistical literature, particularly kernel discrimination and
logistic regression. The radial basis function network and the multilayer perceptron may be
thought of as a natural progression of the generalised linear discriminant models described in
the previous chapter.

Therefore, for the purpose of the chapter, we consider neural network models to provide
models of discriminant functions that are linear combinations of simple basis functions,

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

276 NONLINEAR DISCRIMINANT ANALYSIS

usually of the same parametric form. The parameters of the basis functions, as well as the
linear weights, are determined by a training procedure. Other models that we have described
in earlier chapters could be termed neural network models (for example, linear discriminant
analysis). Also, the development of classification and regression models in the neural network
literature is no longer confined to such simple models.

Neural network optimisation criteria assume that we have a set of data samples {(xi, ti), i =
1, . . . , n} that we use to ‘train’ the model. In a regression problem, the xi are measurements on
the regressors (also known as predictor variables or input variables) and ti are measurements
on the dependent or response variables. In a classification problem, ti are the class labels. In
both cases, we wish to obtain an estimate of t given x, a measurement. In the neural network
literature, ti are referred to as targets, the desired response of the model for measurements
or inputs, xi; the actual responses of the model, g(xi), are referred to as outputs. In all the
algorithms considered, standardisation of the inputs (e.g. linear scaling so that each input
variable has zero mean and unit variance over the training data, or linear scaling so that
all input variables range between −1 and 1) may improve algorithm performance (not least
through ensuring that variables with large numeric range do not dominate those with small
numeric range).

The issues in neural network development are the common ones of pattern recognition:
model specification, training and model selection for good generalisation performance. Sec-
tions 6.2, 6.4 and 6.3 introduce three popular models, namely the radial basis function network,
the nonlinear support vector machine (SVM) and the multilayer perceptron (MLP).

6.2 Radial basis functions

6.2.1 Introduction

Radial basis functions (RBFs) were originally proposed in the functional interpolation lit-
erature (see the review by Powell, 1987; Lowe, 1995a) and first used for discrimination by
Broomhead and Lowe (1988). However, radial basis functions have been around in one form
or another for a very long time. They are very closely related to kernel methods for density
estimation and regression developed in the statistics literature (see Chapter 4) and to normal
mixture models (Chapter 2).

The RBF may be described mathematically as a linear combination of radially symmetric
nonlinear basis functions. The RBF provides a transformation of a pattern x ∈ R

d to an
n′-dimensional output space according to1

gj(x) =
m∑

i=1

wjiφi(|x − μi|) + wj0, j = 1, . . . , n′ (6.3)

The parameters wji are often referred to as the weights; wj0, the bias and the vectors μi the
centres. The model (6.3) is very similar to the kernel density model described in Chapter 4 in
which n′ = 1, w10 = 0, and the number of centres m is taken to be equal to the number of data
samples n, with μi = xi (a centre at each data sample); wji = 1/n and φ is one of the kernels

1 Here we use n′ to denote the dimensionality of the output space. In a classification problem, we usually have
n′ = C, the number of classes.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 277

given in Chapter 4, sometimes referred to as the activation function in the neural network
literature.

In the case of exact interpolation, a basis function is also positioned at each data point
(m = n). Suppose we seek a mapping g from R

d to R (taking n′ = 1) through the points
(xi, ti) which satisfies the condition that g(xi) = ti; that is, under the assumed model (6.3)
(and ignoring the bias), we seek a solution for w = (w1, . . . , wn)

T that satisfies

t = �w

where t = (t1, . . . , tn)T and � is the n × n matrix with (i, j) element φ(|xi − x j|), for a
nonlinear function φ. For a large class of functions Micchelli (1986) has shown that the
inverse of � exists and the solution for w is given by

w = �−1t

However, exact interpolation is not a good thing to do in general. It leads to poor generali-
sation performance in many pattern recognition problems (see Chapter 1). The fitting function
can be highly oscillatory. Therefore, we usually take m < n.

An often-cited advantage of the RBF model is its simplicity. Once the forms of the
nonlinearity have been specified and the centres determined, we have a linear model whose
parameters can be easily obtained by a least squares procedure, or indeed any appropriate
optimisation procedure such as those described in Chapter 5.

For supervised classification, the RBF is used to construct a discriminant function for each
class. Figure 6.1 illustrates a one-dimensional example.

Data drawn from two univariate normal distributions of unit variance and means of 0.0
and 2.0 are plotted on the axis of Figure 6.1. Normal kernels are positioned over centres
selected from these data. The weights wji are determined using a least squares procedure
and the discriminant functions g• and g� plotted in Figure 6.1. Thus, a linear combination

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4 5

g�

g•

�� � ��� � ��� • •• ••• •• • •

Figure 6.1 Discriminant functions constructed using a radial basis function network of
normal kernels.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

278 NONLINEAR DISCRIMINANT ANALYSIS

of ‘blob’-shaped functions is used to produce two functions that can be used as the basis for
discrimination.

6.2.2 Specifying the model

The basic RBF model is of the form

gj(x) =
m∑

i=1

wjiφ

(|x − μi|
h

)
+ wj0, j = 1, . . . , n′

that is, all the basis functions are of the same functional form (φi = φ) and a scaling parameter
h has been introduced. In this model, there are five quantities to prescribe or to determine
from the data:

� the form of the basis function, φ;

� the positions of the centres, μi;

� the smoothing parameter, h;

� the weights, wji, and bias wj0;

� the number of basis functions, m.

There are three main stages in constructing an RBF model:

1. Specify the nonlinear functions, φ. To a large extent, this is independent of the data
and the problem (though the parameters of these functions are not).

2. Determine the number and positions of the centres, and the smoothing parameters.
These values should be data dependent.

3. Determine the weights of the RBF. These values are data dependent.

Items 2 and 3 above are not necessarily carried out independently. Over the next few subsec-
tions we will consider each stage in turn.

Most of the stages in the optimisation of an RBF use techniques described elsewhere
in this book (for example, clustering/prototype selection, kernel methods, least squares or
maximum likelihood optimisation). In many ways, an RBF was not a new development; all
its constituent parts are widely used tools of pattern recognition. In Section 6.2.8 we put them
together to derive a discrimination model based on Gaussian nonlinearities.

6.2.3 Specifying the functional form

The ideal choice of basis function is a matter for debate. However, although certain types
of problem may be matched inappropriately to certain forms of nonlinearity, the actual form
of the nonlinearity is relatively unimportant (as in kernel density estimation) compared with
the number and the positions of the centres. Typical forms of nonlinearity are given in
Table 6.1. Note that some RBF nonlinearities produce smooth approximations, in that the
fitting function and its derivatives are continuous. Others [for example, zlog(z) and exp(−z)]
have discontinuous gradients with respect to the measurements x.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 279

Table 6.1 Radial basis function nonlinearities.

Nonlinearity Mathematical form

Gaussian exp(−z2)
Exponential exp(−z)
Quadratic z2 + αz + β

Inverse quadratic 1/[1 + z2]
Thin-plate spline zαlog(z)
Trigonometric sin(z)

The two most popular forms are the thin-plate spline, φ(z) = z2log(z), and the nor-
mal or Gaussian form, φ(z) = exp(−z2). Each of these functions may be motivated from
different perspectives (see Section 6.2.9): the normal form from a kernel regression and
kernel density estimation point of view and the thin-plate spline from curve fitting (Lowe,
1995a). Indeed, each may be shown to be optimal under certain conditions: in fitting data in
which there is normally distributed noise on the inputs, the normal form is the optimal basis
function in a least-squares sense (Webb, 1994); in fitting a surface through a set of points
and using a roughness penalty, the natural thin-plate spline is the solution (Duchon, 1976;
Meinguet, 1979).

These functions are very different: one is compact and positive, the second diverges at
infinity and is negative over a region. However, in practice, this difference is to some extent
superficial since, for training purposes, the function φ need only be defined in the feature
space over the range [smin/h, smax/h], where

smax = max
ij

|xi − μ j|

smin = min
ij

|xi − μ j| (6.4)

and therefore φ may be redefined over this region as φ̂(s) given by

φ̂ ← φ(s/h) − φmin

φmax − φmin
(6.5)

where φmax and φmin are the maximum and minimum values of φ over [0, smax/h] (taking
smin = 0); respectively and s = |x − μ j| is the distance in the feature space. The redefined

function satisfies 0 ≤ φ̂ ≤ 1. Scaling of φ may simply be compensated for by adjustment of
weights {wji, i = 1, . . . , m} and bias wj0, j = 1, . . . , n′. The fitting function is unaltered.

Choice of the smoothing parameters is discussed in more detail in Section 6.2.5. As in
kernel density estimation it is more important to choose appropriate values for the smoothing
parameters than the functional form. There is some limited empirical evidence to suggest that
thin-plate splines fit data better in high-dimensional settings (Lowe, 1995b).

6.2.4 The positions of the centres

Suppose that the number of basis functions, m, has been specified. The values of centres and
weights may be found by minimising a suitable criterion (for example, least squares) using

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

280 NONLINEAR DISCRIMINANT ANALYSIS

a nonlinear optimisation scheme. However, it is more usual to position the centres first, and
then to calculate the weights using one of the optimisation schemes appropriate for linear
models. Of course, this means that the optimisation criterion will not be at an extremum with
respect to the positions of the centres, but in practice this does not matter.

Positioning of the centres can have a major effect on the performance of an RBF for dis-
crimination and interpolation. In an interpolation problem, more centres should be positioned
in regions of high curvature. In a discrimination problem, more centres should be positioned
near class boundaries. There are several schemes commonly employed.

1. Select from dataset – random selection
Select randomly from the dataset. We would expect there to be more centres in regions where
the density is greater. A consequence of this is that sparse regions may not be ‘covered’ by
the RBF unless the smoothing parameter is adjusted. Random selection is an approach that is
commonly used. An advantage is that it is fast. A disadvantage is that the fitting function, or
the class labels in a supervised classification problem, is not taken into account; that is, it is an
unsupervised placement scheme and may not provide the best solution for a mapping problem.

2. Clustering approach
The values for the centres obtained by the previous approach could be used as seeds for a
k-means clustering algorithm, thus giving centres for RBFs as cluster centres. The k-means
algorithm seeks to partition the data into k groups or clusters so that the within-group sum
of squares is minimised; that is, it seeks the cluster centres, {μ j, j = 1, . . . , k} that minimise∑k

j=1Sj where the within-group sum of squares for group j is

Sj =
n∑

i=1

zji|xi − μ j|2

where zji = 1 if xi is in group j (of size nj = ∑n
i=1zji) and zero otherwise; μ j is the mean of

group j,

μ j = 1

n j

n∑
i=1

zjixi

Algorithms for computing the cluster centres, μ j, using k-means are described in Chapter 11.
Alternatively, any other clustering approach could be used: either pattern based, or dis-

similarity matrix based by first forming a dissimilarity matrix (see Chapter 11).

3. Normal mixture model
If we are using Gaussian nonlinearities, then it seems sensible to use as centres (and indeed
widths) the parameters resulting from a normal mixture model of the underlying distribution
p(x) (see Chapter 2). We model the distribution as a mixture of normal models

p(x) =
g∑

j=1

π j p(x|μ j, h)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 281

where

p(x|μ j, h) = 1

(2π)d/2hd
exp

{
− 1

2h2
(x − μ j)

T (x − μ j)

}

The values of h, π j and μ j may be determined using the EM algorithm to maximise the
likelihood (see Chapter 2). The weights π j are ignored and the resulting normal basis functions,
defined by h and μi, are used in the RBF model.

4. k-nearest neighbour initialisation
The approaches described above use the input data only to define the centres. Class labels, or
the values of the dependent variables in a regression problem, are not used. Thus, unlabelled
data from the same distribution as the training data may be used in the centre initialisation
process. We now consider some supervised techniques. In Chapter 4 we found that in the
k-nearest neighbour classifier not all data samples are required to define the decision boundary.
We may use an editing procedure to remove those prototypes that contribute to the error (with
the hope of improving the generalisation performance) and a condensing procedure to reduce
the number of samples needed to define the decision boundary. The prototypes remaining
after editing and condensing may be retained as centres for an RBF classifier.

5. Orthogonal least squares
The choice of RBF centres can be viewed as a problem in variable selection (see Chapter 10).
Chen et al. (1991, 1992) consider the complete set of data samples to be candidates for centres
and construct a set of centres incrementally. Suppose that we have a set of k − 1 centres,
positioned over k − 1 different data points. At the kth stage, the centre selected from the
remaining n − (k − 1) data samples that reduces the prediction error the most is added to the
set of centres. Centres are added until a criterion that balances the fitting error against model
complexity is minimised. The approach therefore performs model selection alongside centre
position optimisation.

A naı̈ve implementation of this method would solve for the network weights n − (k −
1) times at the kth stage, each time evaluating Equation (6.7) of Section 6.2.6. Chen et al.
(1991) propose a scheme that reduces the computation based on an orthogonal least squares
algorithm. An efficient procedure is proposed for calculating the error when each additional
centre is introduced.

6.2.5 Smoothing parameters

Having obtained centres, we need to specify the smoothing parameters. It is important to
choose an ‘appropriate’ value for the smoothing parameters in order to fit the structure in
the data. This is a compromise between the one extreme of fitting noise in the data and the
other of being unable to model the structure. The choice depends on the particular form we
adopt for the nonlinearity. If it is Gaussian, then the normal mixture model approach to centre
selection will lead to values for the widths of the distributions naturally. The other approaches
will necessitate a separate estimation procedure.

There are several heuristics which were discussed in Chapter 4 on kernel density estima-
tion. Although they are suboptimal, they are fast to calculate. An alternative is to choose the
smoothing parameter that minimises a cross-validation estimate of the sum-square error.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

282 NONLINEAR DISCRIMINANT ANALYSIS

0.2 0.4 0.6 0.8 1.0
s/smax

0.2

0.4

0.6

0.8

1.0

quadratic

h/smax 2.0

h/smax 1.0

h/smax 0.5

h/smax =

=

=

=

0.2

Figure 6.2 Normalised Gaussian basis functions, φ̂(s), for h/smax = 0.2, 0.5, 1.0, 2.0 and
the limiting quadratic.

Figure 6.2 illustrates the normalised form [see the discussion surrounding Equations (6.4)
and (6.5)] of the nonlinearity for the Gaussian basis function for several values of the smoothing
parameter, h. For these Gaussian basis functions we see that there is little change in the shape
of the normalised form for h/smax greater than about 2. As h → ∞, the normalised form for
the nonlinearity tends to the quadratic

φ̂∞(s)

= 1 − s2

s2
max

Thus, asymptotically, the normalised basis function is independent of h.
For large h/smax (greater than about 2), changes in the value of h may be compensated for

by adjustments of the weights, wji, and the RBF is a quadratic function of the input variables.
For smaller values of h, the normalised function tends to the Gaussian form, thus allowing
small-scale variation in the fitting function.

6.2.6 Calculation of the weights

The final stage of determining the RBF for a given model order is the calculation of the weights.
The most popular technique for calculating the weights is based on the least squares error
measure. In certain special cases, alternative techniques such as maximum likelihood proce-
dures have been proposed. Examples are the generalised logistic model (see Section 6.4.5 for a
description) and an EM algorithm for use with Gaussian basis functions (Lázaro et al., 2003).

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 283

Least squares error measure
As in the linear case (Chapter 5), we seek to minimise a square error measure

E =
n∑

i=1

|ti − g(xi)|2

= ‖ − TT + W�T + w01T ‖2 (6.6)

with respect to the parameters wij, where T = [t1| . . . |tn]T is an n × C target matrix whose
ith row is the target for input xi; � = [φ(x1)| . . . |φ(xn)]T is an n × m matrix whose ith
row is the set of basis functions values evaluated at xi (and dependent on the centres μ j);
‖A‖2 = Tr{AAT } = ∑

ij A2
ij; and 1 is a n × 1 vector of 1s.

Suppose that the parameters {μ} of the nonlinear functions φ have been determined. The
solution for W with minimum norm that minimises (6.6) is

W = T̂
T
(�̂

T
)† (6.7)

where † denotes the pseudo-inverse of a matrix (Figure 5.4). The matrices T̂ and �̂ have zero

mean rows (T̂
T

1 = 0; �̂
T

1 = 0) and are defined as

T̂

= T − 1tT

�̂

= � − 1φ

T

where

t = 1

n

n∑
i=1

t i = 1

n
TT 1

φ = 1

n

n∑
i=1

φ(xi) = 1

n
�T 1

are the mean values of the targets and the basis function outputs, respectively. The solution
for w0 is

w0 = t − Wφ

Therefore, we may solve for the weights W using a linear method such as a singular value
decomposition.

In a classification problem, in which we have the 1-from-C coding for the class labels
(that is, if xi ∈ ω j then we have the target ti = (0, 0, . . . , 0, 1, 0, . . . , 0)T , where the 1 is in
the jth position), then using the pseudo-inverse solution (6.7) for the final layer weights gives
the property that the components of g sum to unity for any data sample x, i.e.

∑
i

gi = 1

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

284 NONLINEAR DISCRIMINANT ANALYSIS

where

g = T̂
T
(�̂

T
)†�T + w0 (6.8)

The values of g are not constrained to be positive. One way to ensure positivity is to transform
the values gi by replacing gi by exp(−gi)/

∑
jexp(−gj). This forms the basis of the generalised

logistic model (sometimes called softmax).
One can incorporate priors into the error function through pattern weights, as in Equa-

tion (5.40).

Regularisation of the least squares error measure
Too many parameters in a model may lead to over-fitting of the data by the model and poor
generalisation performance (see Chapter 1). One means of smoothing the model fit is to
penalise the sum square error. Thus, we modify the square error measure (6.6) and minimise

E =
n∑

i=1

|ti − g(xi)|2 + α

∫
F(g(x))dx (6.9)

where α is a regularisation parameter and F is a function of the complexity of the model.
For example, in a univariate curve-fitting problem, a popular choice for F(g) is ∂2g/∂x2, the
second derivative of the fitting function g. In this case, the solution for g that minimises (6.9)
is a cubic spline (Green and Silverman, 1994).

In the neural network literature, a penalising term of the form

α
∑

i

w̃2
i

is often used, where the summation is over all adjustable network parameters, w̃. This proce-
dure is termed weight decay.

For the generalised linear model (6.2) we have seen that the penalised error is taken to be
(see Chapter 5)

E = ‖ − T̂
T + W�̂

T ‖2 + α‖W‖2 (6.10)

expressed in terms of the zero-mean matrices T̂ and �̂; and α is termed the ridge parameter
(see Chapter 5). The solution for W that minimises E is

W = T̂
T
�̂(�̂

T
�̂ + αIm)−1

6.2.7 Model order selection

Finally, we address the question of how to choose the number of centres.2 The model order
selection problem is very similar to many of the problems of model complexity discussed

2 Note that the orthogonal least squares centre selection procedure has a model selection criterion incorporated
into the centre selection process.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 285

elsewhere in this book (see Chapter 13); for example, how many clusters are best, how many
components in a normal mixture, how do we determine intrinsic dimensionality, etc.? It is not
easy to answer. The number depends on several factors including the amount and distribution
of the data, the dimension and the form adopted for the nonlinearity. It is probably better
to have many centres with limited complexity (single smoothing parameter) than an RBF
with few centres and a complex form for the nonlinearity. There are several approaches to
determining the number of centres. These include:

1. Using cross-validation. The cross-validation error (minimised over the smoothing pa-
rameter) is plotted as a function of the number of centres. The number of centres is
chosen as that above which there is no appreciable decrease, or an increase in the
cross-validation error [as used by Orr (1995) in forward selection of centres].

2. Monitoring the performance on a separate test set. This is similar to the cross-validation
procedure above, except that the error is evaluated on a separate test set.

3. Using information complexity criteria. The sum-square error is augmented by an
additional term that penalises complexity (Chen et al., 1991).

4. If we are using a normal mixture model to set the positions and widths of centres, we
may use one of the methods for estimating the number of components in a normal
mixture (see Chapter 2).

6.2.8 Simple RBF

We have now set up the machinery for implementing a simple RBF. The stages in a simple
implementation are as follows:

1. Specify the functional form for the nonlinearity.

2. Prescribe the number of centres m.

3. Determine the positions of the centres (for example, random selection, or the k-means
algorithm).

4. Determine the smoothing parameters (for example, simple heuristic or cross-
validation).

5. Map the data to the space spanned by the outputs of the nonlinear functions; i.e. for a
given dataset xi, i = 1, . . . , n, form the vectors φi = φ(xi), i = 1, . . . , n.

6. Solve for the weights and the biases using the minimum least squared error.

7. Calculate the final output on the train and test sets; classify the data if required.

The above is a simple prescription for an RBF network that uses unsupervised techniques for
centre placement and width selection (and therefore is suboptimal). One of the often-quoted
advantages of the RBF network is its simplicity – there is no nonlinear optimisation scheme
required, in contrast to the multilayer perceptron classifier discussed later in this chapter.
However, many of the sophisticated techniques for centre placement and width determination
are more involved and increase the computational complexity of the model substantially.
Nevertheless, the simple RBF can give acceptable performance for many applications.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

286 NONLINEAR DISCRIMINANT ANALYSIS

6.2.9 Motivation

The RBF model may be motivated from several perspectives. We present the first two in a
discrimination context and then two from a regression perspective.

6.2.9.1 Kernel discriminant analysis

Consider the multivariate kernel density estimate (see Chapter 4)

p(x) = 1

nhd

n∑
i=1

K

(
1

h
(x − xi)

)

where K(x) is defined for d-dimensional x satisfying
∫

Rd K(x)dx = 1. Suppose we have a
set of samples xi (i = 1, . . . , n) with nj samples in class ωj (j = 1, . . . , C). If we construct
a density estimate for each class then the posterior probability of class membership can
be written

p(ω j|x) = p(ω j)

p(x)

1

njhd

n∑
i=1

zjiK

(
1

h
(x − xi)

)
(6.11)

where p(ωj) is the prior probability of class ωj and zji = 1 if xi ∈ class ωj, 0 otherwise. Thus,
discrimination is based on a model of the form

n∑
i=1

wjiφi(x − xi) (6.12)

where φi(x − xi) = K((x − xi)/h) and

wji = p(ω j)

nj
zji (6.13)

[We neglect the term p(x)hd in the denominator of (6.11) since it is independent of j.]
Equation (6.12) is of the form of an RBF with a centre at each data point and weights
determined by class priors [Equation (6.13)].

6.2.9.2 Mixture models

In discriminant analysis by Gaussian mixtures (Chapter 2), the class-conditional density for
class ωj is expressed as

p(x|ω j) =
Rj∑

r=1

π jr p(x|θ jr)

where class ωj has Rj mixture components, π jr are the mixing proportions (
∑Rj

r=1π jr = 1) and
p(x|θ jr) is the density of the rth mixture component of class ωj evaluated at x (θ jr denote the

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 287

mixture component parameters: for normal mixtures, the mean and covariance matrix). The
posterior probabilities of class membership are

p(ω j|x) = p(ω j)

p(x)

Rj∑
r=1

π jr p(x|θ jr)

where p(ωj) is the prior probability of class ωj.
For normal mixture components, p(x|θ jr), with means μ jr, j = 1, . . . ,C; r = 1, . . . , R j

and common spherical covariance matrices, σ 2I, we have discriminant functions of the form
(6.3). There are m = ∑C

j=1Rj basis functions, centred at the μ jr, with the weights set by the
mixing proportions, class priors and class indicator variables.

6.2.9.3 Regularisation

Suppose that we have a dataset {(xi, ti), i = 1, . . . , n} where xi ∈ R
d and we seek a smooth

surface g,

ti = g(xi) + error

One such approach is to minimise the penalised sum of squares

S =
n∑

i=1

(ti − g(xi))
2 + αJ(g)

where α is a regularisation or roughness (Green and Silverman, 1994) parameter and J(g) is
a penalty term that measures how ‘rough’ the fitted surface is and has the effect of penalising
‘wiggly’ surfaces (see Chapter 5 and Section 6.2.6).

A popular choice for J is one based on mth derivatives. Taking J as

J(g) =
∫

Rd

∑ m!

ν1! . . . νd!

(
∂mg

∂xν1
1 . . . ∂xνd

d

)2

dx1 . . . dxd

where the summation is over all nonnegative integers ν1, ν2, . . . , νd such that ν1 + ν2 + · · ·
+ νd = m, results in a penalty invariant under translations and rotations of the coordinate
system (Green and Silverman, 1994).

Defining ηmd(r) by

ηmd(r) =
{

θr2m−dlog(r) if d is even
θr2m−d if d is odd

and the constant of proportionality, θ , by

θ =
{

(−1)m+1+d/221−2mπ−d/2 1
(m−1)!

1
(m−d/2)! if d is even

�(d/2 − m)2−2mπ−d/2 1
(m−1)! if d is odd

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

288 NONLINEAR DISCRIMINANT ANALYSIS

then (under certain conditions on the points xi and m) the function g minimising J(g) is a
natural thin-plate spline. This is a function of the form

g(x) =
n∑

i=1

biηmd(|x − xi|) +
M∑

j=1

ajγ j(x)

where

M =
(

m + d − 1
d

)

and {γ j, j = 1, . . . , M} is a set of linearly independent polynomials spanning the M-
dimensional space of polynomials in R

d of degree less than m. The coefficients {aj, j =
1, . . . , M}, {bi, i = 1, . . . , n} satisfy certain constraints [see Green and Silverman (1994)
for further details]. Thus, the minimising function contains radially symmetric terms, η, and
polynomials.

An alternative derivation based on a different form for the penalty terms leading to
Gaussian RBFs is provided by Bishop (1995).

6.2.10 RBF properties

One of the properties of an RBF that has motivated its use in a wide range of applications
both in functional approximation and in discrimination is that it is a universal approximator:
it is possible (given certain conditions on the kernel function) to construct an RBF that
approximates a given (integrable, bounded and continuous) function arbitrarily accurately
(Park and Sandberg, 1993; Chen and Chen, 1995). This may require a very large number
of centres. In most, if not all, practical applications the mapping we wish to approximate is
defined by a finite set of data samples providing class-labelled data or, in an approximation
problem, data samples and associated function values and implemented in finite precision
arithmetic. Clearly, this limits the complexity of the model.

6.2.11 Example application study

The problem
The problem of source position estimation using measurements made on a radar focal-plane
array using RBFs was treated by Webb and Garner (1999). This particular approach was
motivated by a requirement for a compact integrated (hardware) implementation of a bearing
estimator in a sensor focal plane (a solution was required that could readily be implemented
in silicon on the same substrate as the focal-plane array).

Summary
The problem is one of prediction rather than discrimination: given a set of training samples
{(xi, θi); i = 1, . . . , n}, where xi is a vector of measurements on the independent variables
(array calibration measurements in this problem) and θ i is the response variable (position), a
predictor, f , was sought such that given a new measurement, z, then f (z) is a good estimate of
the position of the source that gave rise to the measurements, z. However, the problem differs

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RADIAL BASIS FUNCTIONS 289

from a standard regression problem in that there is noise on the measurement vector, z, and
this is similar to errors-in-variables models in statistics. Therefore, we seek a predictor that is
robust to noise on the inputs.

The data
The training data comprised detector outputs of an array of 12 detectors, positioned in the
focal plane of a lens. Measurements were made on the detectors as the lens scanned across
a microwave point source (thus providing measurements of the point-spread function of
the lens). There were 3721 training samples measured at a signal-to-noise ratio (SNR) of
about 45 dB. The test data were recorded for the source at specific positions over a range of
lower SNR.

The model
The model adopted was a standard RBF network with a Gaussian kernel with centres defined
in the 12-dimensional space. The approach adopted to model parameter estimation was a
standard least squares one. The problem may be regarded as one example from a wider class in
discrimination and regression in which the expected operating conditions (the test conditions)
differ from the training conditions in a known way. For example, in a discrimination problem,
the class priors may differ considerably from the values estimated from the training data. In
a least squares approach, this may be compensated for by modifying the sum-squared-error
criterion appropriately (see Section 5.3.4). Also, allowance for expected population drift may
be made by modifying the error criterion. In the source position estimation problem, the
training conditions are considered ‘noiseless’ (obtained through a calibration procedure) and
the test conditions differ in that there is noise (of known variance) on the data. Again, this can
be taken into account by modifying the sum-squared-error criterion.

Training procedure
An RBF predictor was designed with centres chosen using a k-means procedure. A ridge
regression-type solution was obtained for the weights (see Section 6.2.6 on regularisation),
with the ridge parameter inversely proportional to a SNR term. Thus, there was no need to
perform any search procedure to determine the ridge parameter. It can be set by measuring the
SNR of the radar system. The theoretical development was validated by experimental results
on a 12-element microwave focal-plane array in which two angle coordinates were estimated.

Results
It was shown that it was possible to compensate for noisy test conditions by using a regular-
isation solution for the parameters, with regularisation parameter proportional to the inverse
of the SNR.

6.2.12 Further developments

There have been many developments of the basic RBF model in the areas of RBF design,
learning algorithms and Bayesian treatments.

Developments of the k-means approach to RBF training to take account of the class labels
of the data samples are described by Musavi et al. (1992), in which clusters contain samples
from the same class, and Karayiannis and Mi (1997), in which a localised class-conditional
variance is minimised as part of a network growing process.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

290 NONLINEAR DISCRIMINANT ANALYSIS

Chang and Lippmann (1993) propose a supervised approach for allocating RBF centres
near class boundaries. An alternative approach that chooses centres for a classification task
in a supervised way based on the ideas of support vectors is described by Schölkopf et al.
(1997) (see Chapter 5 and Section 6.3). In support vector learning of RBF networks with
Gaussian basis functions, the separating surface obtained by an SVM approach (that is,
the decision boundary) is a linear combination of Gaussian functions centred at selected
training points (the support vectors). The number and location of centres is automatically
determined. In a comparative study reviewing several approaches to RBF training, Schwenker
et al (2001) find that the SVM learning approach is often superior on a classification task to the
standard two-stage learning of RBFs (selecting or adapting the centres followed by calculating
the weights).

The orthogonal least squares forward selection procedure has been developed to use a
regularised error criterion by Chen et al. (1996) and Orr (1995), who uses a generalised
cross-validation criterion as a stopping condition.

In the basic approach, all patterns are used at once in the calculation for the weights
(‘batch learning’). Online learning methods have been developed (Marinaro and Scarpetta,
2000). These enable the weights of the network to be updated sequentially according to the
error computed on the last selected new example. This allows for possible temporal changes
in the task being learned.

A Bayesian treatment that considers the number of basis functions and weights to be
unknown has been developed by Holmes and Mallick (1998). A joint probability density
function is defined over model dimension and model parameters. Using reversible jump
Markov chain Monte Carlo methods (see Chapter 3), inference is made by integrating over
the model dimension and parameters. A hierarchical Bayesian model for RBF networks has
been developed by Andrieu et al. (2001), again making use of reversible jump Markov chain
Monte Carlo.

6.2.13 Summary

RBFs are simple to construct, easy to train and find a solution for the weights rapidly. They
provide a very flexible model and give very good performance over a wide range of problems,
both for discrimination and for functional approximation. The RBF model uses many of
the standard pattern recognition building blocks (clustering, least squares optimisation, for
example). There are many variants of the RBF model (due to the choice of centre selection
procedure, form of the nonlinear functions, procedure for determining the weights, and model
selection method). This can make it difficult to draw meaningful conclusions about RBF
performance over a range of studies on different applications, since the form of an RBF may
vary from study to study.

The disadvantages of RBFs also apply to many, if not all, of the discrimination models
covered in this book. That is, care must be taken not to construct a classifier that models noise in
the data, or models the training set too well, which may give poor generalisation performance.
Choosing a model of the appropriate complexity is very important as we emphasise repeatedly
in this book. Regularising the solution for the weights can improve generalisation performance.
Model selection requirements add to the computational requirements of the model, and thus
the often-stated claim for RBF networks of simplicity is perhaps overstated. Yet it should
be said that a simple scheme can give good performance and, not unusually, performance
exceeds many of the more ‘traditional’ statistical classifiers.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

NONLINEAR SUPPORT VECTOR MACHINES 291

6.3 Nonlinear support vector machines

6.3.1 Introduction

In Chapter 5 we introduced the SVM as a tool for finding the optimal separating hyperplane for
linearly separable data and considered developments of the approach for situations when the
data are not linearly separable. As we remarked in that chapter, the support vector algorithm
may be applied in a transformed feature space, φ(x), for some nonlinear function φ. Indeed,
this is the principle behind many methods of pattern classification: transform the input features
nonlinearly to a space in which linear methods may be applied (see also Chapter 1). We discuss
this approach further in the context of nonlinear SVMs.

6.3.2 Binary classification

For the binary classification problem, we seek a discriminant function of the form

g(x) = wT φ(x) + w0

with decision rule

wT φ(x) + w0

{
> 0
< 0

⇒ x ∈
{

ω1 with corresponding numeric value yi = +1
ω2 with corresponding numeric value yi = −1

The SVM procedure determines the maximum margin solution through determination of the
saddle point of a Lagrangian. The dual form of the Lagrangian [Equation (5.59)] becomes

LD =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiα jyiy jφ
T (xi)φ(x j) (6.14)

where yi = ±1, i = 1, . . . , n are class indicator values and αi, i = 1, . . . , n are Lagrange
multipliers satisfying

n∑
i=1

αiyi = 0

0 ≤ αi ≤ C (6.15)

for a ‘regularisation’ parameter, C. Maximising (6.14) subject to the constraints (6.15) leads
to support vectors identified by nonzero values of αi.

The solution for w [Equation (5.63)] is

w =
∑
i∈SV

αiyiφ(xi)

and classification of a new data sample x is performed according to the sign of

g(x) =
∑
i∈SV

αiyiφ
T (xi)φ(x) + w0 (6.16)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

292 NONLINEAR DISCRIMINANT ANALYSIS

where

w0 = 1

nS̃V

⎧⎨
⎩

∑

i∈S̃V

yi −
∑

i∈SV, j∈S̃V

αiyiφ
T (xi)φ(x j)

⎫⎬
⎭ (6.17)

where SV is the set of support vectors with associated values of αi satisfying 0 < αi ≤ C and
S̃V is the set of nS̃V support vectors satisfying 0 < αi < C (those at the target distance of
1/|w| from the separating hyperplane).

Optimisation of LD (6.14) and the subsequent classification of a sample [(6.16) and (6.17)]
relies only on scalar products between transformed feature vectors, which can be replaced by
a kernel function

K(x, y) = φT (x)φ(y)

Thus, we can avoid computing the transformation φ(x) explicitly and replace the scalar
product with K(x, y) instead. This is referred to as the kernel trick. The discriminant function
(6.16) becomes

g(x) =
∑
i∈SV

αiyiK(xi, x) + w0 (6.18)

The advantage of the kernel representation is that we need only use K in the training algorithm
and even do not need to know φ explicitly, provided that the kernel can be written as an inner
product. In some cases (for example, the exponential kernel), the feature space is infinite-
dimensional and so it is more efficient to use a kernel.

Solution of the quadratic programming optimisation problem to obtain theαi (and therefore
the support vectors) is as in the linear case (see Section 5.4.6), but with the scalar products
between vectors replaced by kernel evaluations. For example, one can use the decomposition
algorithm of Osuna et al. (1997), or the SMO algorithm proposed by Platt (1998).

6.3.3 Types of kernel

There are many types of kernel that may be used in an SVM. Table 6.2 lists some commonly
used forms.

Table 6.2 Support vector machine kernels.

Nonlinearity Mathematical form

Simple polynomial (1 + xT y)p

Polynomial (r + γ xT y)p, γ > 0
Gaussian exp(−|x − y|2/σ 2)

Sigmoid tanh(kxT y − δ)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

NONLINEAR SUPPORT VECTOR MACHINES 293

As an example, consider the kernel K(x, y) = (1 + xT y)p for p = 2 and x, y ∈ R
2. This

may be expanded as

(1 + x1y1 + x2y2)
2 = 1 + 2x1y1 + 2x2y2 + 2x1x2y1y2 + x2

1y2
1 + x2

2y2
2

= φT (x)φ(y)

where φ(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x2
1, x2

2).
Acceptable kernels must be expressible as an inner product in a feature space, which

means that they must satisfy Mercer’s condition (Courant and Hilbert, 1959; Vapnik, 1998): a
kernel K(x, y), x, y ∈ R

d is an inner product in some feature space, or K(x, y) = φT (x)φ(y),
if and only if K(x, y) = K(y, x) and

∫
K(x, z) f (x) f (z)dxdz ≥ 0

for all functions f satisfying

∫
f 2(x)dx < ∞

That is, K(x, y) may be expanded as

K(x, y) =
∞∑
j=1

λ jφ̂ j(x)φ̂ j(y)

where λj and φ j(x) are the eigenvalues and eigenfunctions satisfying

∫
K(x, y)φ j(x)dx = λ jφ j(x)

and φ̂ j is normalised so that
∫

φ̂2
j (x)dx = 1.

6.3.4 Model selection

The degrees of freedom of the SVM model are the choice of kernel. the parameters of the
kernel and the choice of the regularisation parameter, C, which penalises the training errors.
For most types of kernel, it is generally possible to find values for the kernel parameters for
which the classes are separable. However, this is not a sensible strategy and leads to overfitting
of the training data and poor generalisation to unseen data.

The simplest approach to model selection is to reserve a validation set that is used
to monitor performance as the model parameters are varied. More expensive alternatives
that make better use of the data are data re-sampling methods such as cross-validation and
bootstrapping (see Chapter 9, in the context of classifier error rate estimation, and Chapter 13).
Appropriate model selection is a critical aspect when training SVMs. Use of default parameters
may well lead to disappointing performance. However, as with the smoothing parameters of

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

294 NONLINEAR DISCRIMINANT ANALYSIS

RBF networks (see Section 6.2.5), heuristics can be used to select initial values of SVM kernel
parameters. For the Gaussian kernel, these could be based on those used in kernel density
estimation (see Chapter 4).

Often a grid-based search approach is used (with performance estimated using cross-
validation), as advocated by Chang and Lin (2011) when describing their LIBSVM C++
software for implementing SVMs (see also Hsu et al., 2003). As noted by Hsu et al. (2003),
one can reduce search time by using a hierarchical search strategy, starting with a coarse
grid, and then performing finer searches within the best grids. They recommend parameter
search covering many orders of magnitude for each parameter (e.g. exponential sequences).
Staelin (2002) advocates iterative reductions in the search range for each parameter, each time
centring the search around the previous best estimate.

Fröhlich and Zell (2005) propose learning an online Gaussian process model of the error
surface in parameter space, and then training SVMs only at points for which the expected
improvement in the fitted error is highest. Huang and Wang (2006) develop a genetic algorithm
for SVM parameter selection and also selection of a subset of features to use as input data.
Genetic algorithms (Goldberg, 1989) seek to use ideas from Darwinian natural selection to
move a population of potential solutions towards an optimal solution. Lin et al. (2008) propose
the use of particle swarm optimisation for joint SVM parameter and feature selection. Particle
swarm optimisation (Kennedy and Eberhart, 1995) is a population-based search heuristic
motivated by observance of birds flocking to a promising position.

Hastie et al. (2004) demonstrate how an alternative formulation of the SVM optimisation
problem allows a path of SVM solutions for different values of the regularisation parameter
C to be calculated efficiently. This removes the need to include the C parameter alongside the
kernel parameters in a grid search.

6.3.5 Multiclass SVMs

Multiclass SVMs may be developed along the lines discussed in Chapter 5: whether by
combining binary classifiers in a one-against-one or a one-against-all method, or by solving a
single multiclass optimisation problem (the ‘all-together’ method). In an assessment of these
methods, Hsu and Lin (2002) find that the all-together method yields fewer support vectors,
but one-against-all is more suitable for practical use.

6.3.6 Probability estimates

A drawback with SVMs is that they do not produce estimates of the class membership
probabilities. To address this for binary classification problems, Platt (2000) proposes training
a binary SVM classifier in the usual manner and then learning a separate sigmoid function to
map the SVM outputs [Equation (6.18)] into probabilities. The probabilities are modelled as

p̂(y = +1|g(x)) = 1

1 + exp(Ag(x) + B)
(6.19)

and

p̂(y = −1|g(x)) = 1 − p̂(y = +1|g(x))

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

NONLINEAR SUPPORT VECTOR MACHINES 295

where A and B are parameters to be optimised. A maximum likelihood optimisation procedure
is used to estimate A and B. The procedure requires the outputs of the trained SVM on labelled
validation data (perhaps from a cross-validation procedure). The validation set target values
{yi, i = 1, . . . , n} are redefined as

ti =
{

0 if yi = −1
1 if yi = +1

or in a regularised version as

ti =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1∑n
i=1 I(yi = −1) + 2

if yi = −1

∑n
i=1 I(yi = +1) + 1∑n
i=1 I(yi = +1) + 2

if yi = 1

where I is the indicator function, taking value one if its argument is true, and 0 otherwise. The
maximum likelihood procedure is to select A and B to maximise the log-likelihood

l(A, B) =
n∑

i=1

(ti log pi + (1 − ti) log(1 − pi))

where pi is as defined in (6.19) for g(xi) the output for the ith pattern in the validation set.
Numerical optimisation routines are used to solve the maximisation problem (Press et al.,
1992). Lin et al. (2007) discuss the optimisation step in more detail, including reduction of
numerical stability issues.

An unfortunate property of the procedure is that the following relationship does not hold

g(x > 0) ⇔ p̂(y = +1) > 0.5

Hence the class with the largest probability might not be the same as the class predicted by
the SVM.

An extension of the approach in order to provide multiclass probability estimates is
provided by Wu et al. (2004). The approach is based upon the one-against-one multiclass
procedure (see Section 5.3.1), in each case obtaining binary classification probability estimates
using the procedure of Platt (2000). For a test pattern x, denote by rij the probability estimate
for class ωi estimated by the classifier for class ωi against class ωj. The class probability
vector p = (p1, . . . , pC) for the pattern is optimised to be the vector which minimises

C∑
i=1

∑
j �=i

(rji pi − rij p j)
2

subject to
∑C

i=1pi = 1, pi ≥ 0, i = 1, . . . , C. Further procedures for combining the one-
against-one probability estimates are discussed by Wu et al. (2004) and also by Milgram
et al. (2006).

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

296 NONLINEAR DISCRIMINANT ANALYSIS

6.3.7 Nonlinear regression

The linear SVMs for regression (see Section 5.4.5) may also be generalised to a nonlinear
regression function in a similar manner to the SVMs for binary classification. If the nonlinear
function is given by

f (x) = wT φ(x) + w0

then Equation (5.67) is replaced by

LD =
n∑

i=1

(α̂i − αi)yi − ε

n∑
i=1

(α̂i + αi) − 1

2

n∑
i=1

n∑
j=1

(α̂i − αi)(α̂ j − α j)K(xi, x j)

where K(x, y) is a kernel satisfying Mercer’s conditions. This is maximised subject to the
constraints in Equation (5.68).

The solution for f (x) is then [compare with (5.70)]

f (x) =
n∑

i=1

(α̂i − αi)K(x, xi) + w0

The parameter w0 is chosen so that

f (xi) − yi = ε for any i with 0 < αi < C

or f (xi) − yi = −ε for any i with 0 < α̂i < C

by the Karush–Kuhn–Tucker complementarity conditions [Equation (5.69)] with the scalar
products replaced by kernel evaluations. As with the linear case, for numerical reasons it is
usual to average the expression for w0 over all patterns for which 0 < αi < C or 0 < α̂i < C.

6.3.8 Example application study

The problem
The application is to determine land-cover types (e.g. crop type) using airborne hyperspectral
imagery of the land (Melgani and Bruzzone, 2004).

Summary
Determination of broad land-cover classes (e.g. forestry, crops and urban areas) can be
addressed using imagery from multispectral sensors. Classification of different types or con-
ditions of the same species (such as types of forest and types of crop) is more problematic,
because of the reduced variation between these classes. Classification based upon imagery
from hyperspectral sensors, with hundreds of observation channels, is advocated for such
problems. The performance of SVM classifiers on hyperspectral data was compared with an
RBF classifier and a k-nearest-neighbour classifier (see Chapter 4). Comparisons were made
both before and after the use of feature selection criteria to reduce the dimensionality of
the data.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

NONLINEAR SUPPORT VECTOR MACHINES 297

The data
Hyperspectral imagery collected by the airborne visible/infrared imaging spectroradiometer
(AVIRIS) sensor in trials in June 1992 in Indiana, USA, was used to test the performance of
the algorithm. Two hundred spectral channels were used from the data. A nine-class problem
was constructed from the data, with 4757 training data examples (ranging from 236 to 1245
examples for a class) and 4588 test examples.

Training procedure
Four different approaches for combining binary SVM classifiers to obtain a multiclass classi-
fier (see Section 6.3.5) were considered: one-against-all; one-against-one and two hierarchical
tree-based strategies (differing in the strategy used to define the pairs of combined classes to
consider at each level of the tree). Two SVM kernels were considered: linear and Gaussian.
SVM parameters (C and σ for the Gaussian kernel) were optimised by examining performance
on the training data. The feature selection criteria were based on optimisation of a distance
measure using a steepest ascent search procedure. The same features were therefore used for
each classifier.

Results
The Gaussian kernel SVM provided the best performance in terms of classification accuracy,
both with and without feature selection. The computational cost of applying the linear SVM
classifier was an order of magnitude larger than that for the other classifiers. The one-against-
one combination rule provided the best performance for the Gaussian kernel SVM, although
the hierarchical tree combiners were more efficient computationally.

6.3.9 Further developments

There are many developments of the basic SVM model for discrimination and regression
presented in this chapter.

Incorporation of priors and costs into the SVM model (to allow for test conditions that differ
from training conditions, as often happens in practice) is addressed by Lin et al. (2002). Lauer
and Bloch (2008) review techniques for incorporation of a range of additional knowledge on
the data, including invariances to transformations of the data features and imbalances of the
training set. Two types of approach are used to incorporate such information: (i) alterations
of the kernel function to provide transformation-invariance; and (ii) extension of the training
sets to reflect the prior knowledge (termed sample methods).

The basic regression model has been extended to take account of different ε-insensitive
loss functions and ridge regression solutions (Vapnik, 1998; Cristianini and Shawe-Taylor,
2000). The ν-support vector classification algorithm (Schölkopf et al., 2000) introduces a
parameter to control the number of support vectors and training errors. The support vector
method has also been applied to density estimation (Vapnik, 1998).

The relationship of the support vector method to other methods of classification is dis-
cussed by Guyon and Stork (1999) and Schölkopf et al. (2000). Sollich (2002) and Van Gestel
et al. (2002) develop Bayesian frameworks for SVMs. Joachims (2006) considers an SVM
approach to learning structured outputs, such as trees and sequences, which has relevance to
natural language parsing.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

298 NONLINEAR DISCRIMINANT ANALYSIS

6.3.10 Summary

Support vector machines comprise a class of algorithms that represent the decision boundary
in a pattern recognition problem in terms of a small subset of the training samples, typically.
This generalises to problems in regression through the ε-insensitive loss function that does
not penalise errors below ε > 0.

The loss function that is minimised comprises two terms, a term wT w that characterises
model complexity and a second term that measures training error. A single parameter, C,
controls the tradeoff between these two terms. The optimisation problem can be re-cast as a
quadratic programming problem for both the classification and regression cases.

Several approaches for solving the multiclass classification problem have been proposed:
combining binary classifiers and a one-step multiclass SVM approach.

SVMs have been applied to a wide range of applications, and demonstrated to be valuable
for real-world problems. The generalisation performance often either matches or is signifi-
cantly better that competing methods.

Once the kernel is fixed, SVMs have only one free parameter – the regularisation parameter
that controls the balance between model complexity and training error. However, there are
often parameters of the kernel that must be set and a poor choice can lead to poor generalisation.
The choice of best kernel for a given problem is not resolved and special kernels have been
derived for particular problems, for example document classification (Lodhi et al., 2002).

6.4 The multilayer perceptron

6.4.1 Introduction

The MLP is yet another tool in the pattern recognition toolbox, and one that has received
considerable use over the years. It was presented in a paper by Rumelhart et al. (1986) as an
enhancement to the perceptron of Chapter 5 (in particularly providing an ability to classify
data that is not linearly separable). Since that time it has been extensively employed in many
pattern recognition tasks.

In order to introduce some terminology, let us consider a simple MLP model. We shall
then consider some generalisations. The basic MLP produces a transformation of a pattern
x ∈ R

d to an n′-dimensional space according to

g j(x) =
m∑

i=1

wjiφi(α
T
i x + αi0) + wj0, j = 1, . . . , n′ (6.20)

The functions φi are fixed nonlinearities, usually identical and taken to be of the logistic form
representing historically the mean firing rate of a neuron as a function of the input current

φi(y) = φ(y) = 1

1 + exp(−y)
(6.21)

Thus, the transformation (6.20) consists of projecting the data onto each of m directions
described by the vectors αi = (αi1, . . . , αid); then transforming the projected data (offset by
a bias αi0) by the nonlinear functions φi(y); and finally, forming a linear combination using
the weights wji (offset by a bias wj0).

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 299

Figure 6.3 Single hidden layer multilayer perceptron.

The MLP is often presented in diagrammatic form (Figure 6.3).
The input nodes accept the data vector or pattern. There are weights associated with the

links between the input nodes and the hidden nodes that accept the weighted combination
y = αT

i x + αi0, and perform the nonlinear transformation φ(y). The output nodes take a linear
combination of the outputs of the hidden nodes and deliver these as outputs. In principle,
there may be many hidden layers, each one performing a transformation of a scalar product
of the outputs of the previous layer and the vector of weights linking the previous layer to a
given node. Also, there may be nonlinearities associated with the output nodes that, instead
of producing a linear combination of weights wji and hidden unit outputs, perform nonlinear
transformations of this value.

The emphasis of the treatment of MLPs in this section is on MLPs with a single hidden
layer. Further, it is assumed either that the ‘outputs’ are a linear combination of the functions
φi or at least that, in a discrimination problem, discrimination may be performed by taking
a linear combination of the functions φi (a logistic discrimination model is of this type).
There is some justification for using a single hidden layer model in that it has been shown
that an MLP with a single hidden layer can approximate an arbitrary (continuous bounded
integrable) function arbitrarily accurately (Hornik, 1993; see Section 6.4.4). Also, practical
experience has shown that very good results can be achieved with a single hidden layer on
many problems. There may be practical reasons for considering more than one hidden layer
and it is conceptually straightforward to extend the analysis presented here to do so.

The MLP is a nonlinear model: the output is a nonlinear function of its parameters and
the inputs, and a nonlinear optimisation scheme must be employed to minimise the selected
optimisation criterion. Therefore, all that can be hoped for is a local extremum of the criterion
function that is being optimised. This may give satisfactory performance but several solutions
may have to be sought before an acceptable one is found.

6.4.2 Specifying the MLP structure

To specify the network structure we must prescribe the number of hidden layers, the number
of nonlinear functions within each layer and the form of the nonlinear functions. Most of

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

300 NONLINEAR DISCRIMINANT ANALYSIS

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

lo
gi

st
ic

(y
)

−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

ta
nh

(y
)

(a) (b)

Figure 6.4 Standard MLP transformation functions: logistic (a) and tanh (b).

the MLP networks to be found in the literature consist of layers of logistic processing units
(6.21) with each unit connected to every unit in the previous layer (fully connected) and no
connections between units in nonadjacent layers.

A common alternative to the logistic processing unit is the hyperbolic tangent (tanh)
function, given by

φi(y) = φ(y) = tanh(y) = exp(y) − exp(−y)

exp(y) + exp(−y)
(6.22)

Both the logistic and tanh functions are illustrated in Figure 6.4.
Although fully connected MLPs are most common in the literature, it should be noted

that many examples exist of MLP networks that are not fully connected. There has been
some success with networks in which each processing unit is connected to only a small
subset of the units in the previous layer. The units chosen are often part of a neighbourhood,
especially if the input is some kind of image. In even more complex implementations the
weights connected to units that examine similar neighbourhoods at different locations may
be forced to be identical (shared weights), e.g. as used in Le Cun et al. (1989) for recognition
of handwritten zip codes. Such advanced MLP networks, although of practical importance
(particularly for image processing), are not universally applicable and are not considered
further here.

6.4.3 Determining the MLP weights

There are two stages to optimisation of the MLP parameters. The first is the initialisation of
the parameter values; the second is the implementation of a nonlinear optimisation scheme.

6.4.3.1 Weight initialisation

There are several schemes for initialising the weights. The weights of the MLP are often
started at small random values. In addition, some work has been carried out to investigate the
benefits of starting the weights at values obtained from simple heuristics. Given good starting
values, training time is reduced, albeit at the expense of increased initialisation times.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 301

For random initialisation, the weights are initialised with values drawn from a uniform
distribution3 over [−�, �], where � depends on the scale of the values taken by the data.
If all the variables are equally important and the sample variance is σ 2, then � = 1/(dσ)
is a reasonable choice (d variables). Hush et al. (1992) assess several weight initialisation
schemes and support initialisation to small random values.

There have been studies that use various pattern recognition schemes for initialisation.
For example, Weymaere and Martens (1994) propose a network initialisation procedure that
is based on k-means clustering (see Chapter 11) and nearest-neighbour classification. Brent
(1991) uses decision trees (see Chapter 7) for initialisation. An approach that initialises
an MLP to deliver class conditional probabilities under the assumption of independence of
variables is described in Lowe and Webb (1990). This really only applies to categorical
variables in which the data can be represented as binary patterns.

6.4.3.2 Optimisation

Many different optimisation criteria and many nonlinear optimisation schemes have been
considered for the MLP. Over the years, the MLP has been explored in depth, particularly in
the engineering literature. This has sometimes been by researchers who do not have a real
application, but whose imagination has been stimulated by the ‘neural network’ aspect of
the MLP. It would be impossible to offer anything but a brief introduction to optimisation
schemes for the MLP.

Most optimisation schemes involve the evaluation of a function and its derivatives with re-
spect to a set of parameters. Here, the parameters are the multilayer perceptron weights and the
function is a chosen error criterion. In the following discussion we consider least-squares min-
imisation as the error criterion. In Section 6.4.5 we consider a logistic discrimination model.

Least squares error minimisation
The error to be minimised is the average squared distance between the approximation given
by the model and the ‘desired’ value

E =
n∑

k=1

|tk − g(xk)|2 (6.23)

where g(xk) is the vector of ‘outputs’ and tk is the desired pattern (sometimes termed the
target) for training data sample xk. In a regression problem, tk are the dependent variables; in
a discrimination problem, tk = (tk1, . . . , tkC)T are the class labels usually coded as

tk j =
{

1 if xk is in class ω j

0 otherwise

Modifications of the error criterion to take into account the effect of priors and alternative
target codings to incorporate costs of misclassification are described in Section 5.3.4.

Most of the nonlinear optimisation schemes used for the MLP require the error and its
derivative to be evaluated for a given set of weight values.

3 Initialisation using samples from normal distributions is also common.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

302 NONLINEAR DISCRIMINANT ANALYSIS

The derivative of the error with respect to a weight v (which at the moment can represent
either a weight α, between inputs and hidden units, or a weight w, between the hidden units
and the outputs – see Figure 6.3) can be expressed as4

∂E

∂v
= −2

n∑
k=1

n′∑
l=1

(tk − g(xk))l
∂gl (xk)

∂v
(6.24)

The derivative of gl with respect to v, for v one of the weights w, v = wji say, is

∂gl

∂wji
=

{
δlj i = 0
δljφi(α

T
i xk + αi0) i �= 0

(6.25)

and for the weights α, v = αji say, is

∂gl

∂αji
= wlj

∂φ j

∂αji
=

⎧⎪⎪⎨
⎪⎪⎩

wlj
∂φ j
∂y i = 0

wlj
∂φ j
∂y xki i �= 0

(6.26)

where xki is the ith element of input xk, and ∂φj/∂y is the derivative of φ with respect to its
argument, given by

∂φ

∂y
= exp(−y)

(1 + exp(−y))2
= φ(y)(1 − φ(y)) (6.27)

for the logistic form (6.21) and evaluated at y = αT
j xk + αj0. Equations (6.24), (6.25), (6.26)

and (6.27) can be combined to give expressions for the derivatives of the square error with
respect to the weights w and α.

Back-propagation
In the above example, we explicitly calculated the derivatives for a single hidden layer network.
Here we consider a more general treatment. Back-propagation is the term given to efficient cal-
culation of the derivative of an error function in multilayer networks. We write the error, E, as

E =
n∑

k=1

Ek

where Ek is the contribution to the error from pattern k. For example, in (6.23) we have

Ek = |tk − g(xk)|2

We refer to Figure 6.5 for general notation: let the weights between layer o − 1 and
layer o be wo

ji (the weight connecting the ith node of layer o − 1 to the jth node of layer o);

4 Again, we use n′ to denote the output dimensionality; in a classification problem, n′ = C, the number of classes.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 303

wo−1
ji wo

ji

zo−2
j ao−1

j zo−1
j ao

j

Figure 6.5 Notation used for back-propagation.

let ao
j be the inputs to the nonlinearity at layer o and zo

j be the outputs of the nonlinearity,
so that

ao
j =

no−1∑
i=1

wo
jiz

o−1
i (6.28)

zo−1
i = φ

(
ao−1

i

)

where no − 1 is the number of nodes at layer o − 1 and φ is the (assumed common) nonlinearity
associated with a node.5 These quantities are calculated during the process termed forward
propagation: namely the calculation of the error, E, from its constituent parts, Ek.

Now let layer o be the final layer of the network. The term Ek is a function of the inputs
to the final layer,

Ek = Ek
(
ao

1, . . . , ao
no

)

For example, with a network with linear output units and using a square error criterion

Ek =
no∑

j=1

(
tk j − ao

j

)2

where tkj is the jth component of the kth target vector.
The derivatives of the error E are simply the sums of the derivatives of Ek, the contribution

to the error by the kth pattern. Since the only dependence of Ek on the specific weight wo
ji is

through the input ao
j at the final layer, the derivatives of Ek with respect to the final layer of

weights, wo
ji, are given by

∂Ek

∂wo
ji

= ∂Ek

∂ao
j

∂ao
j

∂wo
ji

= δo
j z

o−1
i (6.29)

5 Strictly, the terms ao
j and zo−1

j should be subscripted by k since they depend on the kth pattern.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

304 NONLINEAR DISCRIMINANT ANALYSIS

where we use the convenient shorthand notation δo
j to denote ∂Ek/∂ao

j, the derivative with
respect to the input of a particular node in the network.

Similarly, the only dependence of Ek on the specific weight wo−1
ji is through the input ao−1

j

to the nonlinearity at layer o − 1. Hence, the derivatives of Ek with respect to the weights
wo−1

ji are given by

∂Ek

∂wo−1
ji

= ∂Ek

∂ao−1
j

∂ao−1
j

∂wo−1
ji

= δo−1
j zo−2

i (6.30)

where we have again used the notation δo−1
j for ∂Ek/∂ao−1

j . Equation (6.30) may be expanded
using the chain rule for differentiation as

δo−1
j =

no∑
l=1

∂Ek

∂ao
l

∂ao
l

∂ao−1
j

=
no∑

l=1

δo
l

∂ao
l

∂ao−1
j

Using the relationships (6.28), we have

∂ao
l

∂ao−1
j

= ∂

∂ao−1
j

(
no−1∑
i=1

wo
liφ

(
ao−1

i

)) = wo
ljφ

′
(

ao−1
j

)

giving the back-propagation formula

δo−1
j = φ′

(
ao−1

j

) no∑
l=1

δo
l wo

lj (6.31)

The above result allows the derivatives of Ek with respect to the inputs to a particular
node to be expressed in terms of derivatives with respect to the inputs to nodes higher up
the network; that is, nodes in layers closer to the output layer. Once calculated, these are
combined with node outputs in equations of the form (6.29) and (6.30) to give derivatives
with respect to the weights. It is is easy to extend this formulation to consider more than one
hidden layer.

Equation (6.31) requires the derivatives with respect to the nonlinearities φ to be specified.
For φ given by (6.21)

φ′(a) = φ(a)(1 − φ(a))

For φ given by (6.22)

φ′(a) = (1 − φ(a)2)

The derivative calculation also requires the initialisation of δo
j , the derivative of the kth

component of the error with respect to ao
j. For the sum-square error criterion with linear output

units, this is

δo
j = −2

(
tk j − ao

j

)
(6.32)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 305

The above scheme is applied recursively to each layer to calculate derivatives. The term
back-propagation networks is often used to describe multilayer perceptrons employing such
a calculation, though strictly back-propagation refers to the method of derivative calculation,
rather than the type of network.

Bias terms
Each layer in the network, up to the output layer, may have biases: the terms αi0 and wj0 in
the single hidden layer model of Equation (6.20). The bias node at any given layer may be
regarded as a node with a fixed output of one [i.e. φ(.) ≡ 1], which does not therefore require
any connections to the preceding layer. We typically assign an index of 0 to a bias node, and
extend the expression for ao

j in (6.28) to

ao
j =

no−1∑
i=1

wo
jiz

o−1
i + wo

j0

Hence (6.29) becomes

∂Ek

∂wo
j0

= ∂Ek

∂ao
j

∂ao
j

∂wo
j0

= δo
j

and (6.30) becomes

∂Ek

∂wo−1
j0

= ∂Ek

∂ao−1
j

∂ao−1
j

∂wo−1
j0

= δo−1
j (6.33)

Note that under the convention (rule) zo′
0 ≡ 1 for the bias output from any layer o′, these

expressions for the bias term derivatives are the same as those for the full weight derivatives.

Optimisation using the derivatives
Now that we can evaluate the error and its derivatives, we can, in principle, use one of many
nonlinear optimisation schemes available (Press et al., 1992).

A simple, although inefficient, approach is to use the technique of gradient descent
(also known as steepest descent). In gradient descent each weight is updated by an amount
depending on the gradient of the error with respect to that weight

wo
ji → wo

ji − λ

n∑
k=1

∂Ek

∂wo
ji

where λ > 0 is the update rate. Such an approach can require a large number of steps before
reaching a (local) minimum (Press et al., 1992).

We have found that the conjugate gradients algorithm with the Polak–Ribière update
scheme works well on many practical problems. For problems with a small number of param-
eters (less than about 250), the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimisation
scheme (which is a quasi-Newton nonlinear optimisation method) is recommended (Webb
et al., 1988; Webb and Lowe, 1988). Storage of the inverse Hessian matrix (np × np where

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

306 NONLINEAR DISCRIMINANT ANALYSIS

np is the number of parameters) limits its use in practice for large networks. Both conjugate
gradients and BFGS are described in Press et al. (1992).

For further details of optimisation algorithms see, for example, van der Smagt (1994) and
Karayiannis and Venetsanopolous (1993).

Stopping criterion
The most common stopping criterion used in the nonlinear optimisation schemes is to termi-
nate the algorithm when the relative change in the error is less than a specified amount, or the
maximum number of allowed iterations has been exceeded.

An alternative that has been employed for classification problems is to cease training
when the classification error (either on the training set or preferably a separate validation set)
stops decreasing (see Chapter 9 for model selection). Another strategy is based on growing
and pruning in which a network larger than necessary is trained and parts that are not needed
are removed. See Reed (1993) for a survey of pruning algorithms.

Training strategies
There are several training strategies that may be used to minimise the error. The one that we
have described above uses the complete set of patterns to calculate the error and its derivatives
with respect to the weights, w. These may then be used in a nonlinear optimisation scheme to
find the values for which the error is a minimum. This is known as batch learning.

A different approach that has been commonly used is to update the parameters using
individual gradients ∂Ek/∂w. This is a form of online learning. At each iteration of the chosen
nonlinear optimisation procedure, rather than calculating the gradient using all the patterns,
the gradient for just a single pattern is used. The pattern considered varies (randomly or in
sequence) with each iteration of the optimisation scheme. Such an approach is commonly used
with the gradient descent technique. In practice, although the total error will decrease, it will
not converge to a minimum, but tend to fluctuate around the local minimum. An improvement
is a stochastic update scheme which also uses single patterns at a time to calculate the gradient,
but decreases the influence of each gradient calculation (i.e. decreases the update rate) as the
iteration number increases. This allows the approach to converge to a minimum. The stochastic
update scheme can reduce the computational cost of MLP training using a large dataset, and
also have beneficial effects through allowing greater exploration of the parameter space than
full batch updating.

Finally, incremental training is a heuristic technique for speeding up the overall learning
time of neural networks whilst simultaneously improving the final classification performance.
The method is simple: first the network is partially trained on a subset of the training data
(there is no need to train to completion) and then the resulting network is further tuned using
the entire training database. The motivation is that the subset training will perform a coarse
search of weight space to find a region that ‘solves’ the initial problem. The hope is that this
region will be a useful place to start for training on the full dataset. The technique is often used
with a small subset used for initial training and progressing through larger and larger training
databases as the performance increases. The number of patterns used in each subset will
vary according to the task although one should ensure that sufficient patterns representative
of the data distribution are present to prevent the network over-fitting the subset data. In a
discrimination problem, there should, of course, be samples from all classes in the initial
training subset.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 307

6.4.3.3 Variations to the optimisation scheme

Most algorithms for determining the weights of an MLP (including that described above)
do not make direct use of the fact that the discriminant function is (usually specified to be)
linear in the final layer of weights w. Specifically, they solve for all the weights using a
nonlinear optimisation scheme. Another approach is to alternate between solving for the final
layer weights w (using a linear pseudo-inverse method) and adjusting the parameters of the
nonlinear functions φ, namely α [see Equation (6.20)]. This is equivalent to regarding the
final layer weights as a function of the parameters α (Webb and Lowe, 1988; Stäger and
Agarwal, 1997).

6.4.4 Modelling capacity of the MLP

If we are free to choose the weights and nonlinear functions, then a single-layer MLP can
approximate any continuous function to any degree of accuracy if and only if the nonlinear
function is not a polynomial (Leshno et al., 1993). Since such networks are simulated on
a computer, the nonlinearity of the hidden nodes are finite polynomials. Thus, they are not
capable of universal approximation (Wray and Green, 1995). However, for most practical
purposes, the lack of a universal approximation property is irrelevant.

Classification properties of MLPs are addressed by Faragó and Lugosi (1993). Let L∗ be
the Bayes’ error rate (see Chapter 1); let gkn be an MLP with one hidden layer of k nodes
(with step function nonlinearities) trained on n samples to minimise the number of errors on
the training data [with error probability L(gkn)]; then, provided k is chosen so that

k → ∞
k

log(n)

n
→ 0

as n → ∞, then

lim
n→∞ L(gkn) = L∗

with probability 1. Thus, the classification error approaches the Bayes’ error as the number
of training samples becomes large, provided k is chosen to satisfy the conditions above.
However, although this result is attractive, the problem of choosing the parameters of gkn to
give minimum errors on a training set is computationally difficult.

6.4.5 Logistic classification

We now consider an alternative error criterion to the least squares error used within Sec-
tion 6.4.3. The criterion is based upon the generalised logistic model.

6.4.5.1 Generalised logistic model

In the multiclass case, the basic assumption for the generalised logistic discrimination is

log

(
p(x|ωs)

p(x|ωC)

)
= βs0 + βT

s φ(x), s = 1, . . . ,C − 1

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

308 NONLINEAR DISCRIMINANT ANALYSIS

where φ(x) is a nonlinear function of the variables x, with parameters {μ}; that is, the
log-likelihood ratio is a linear combination of the nonlinear functions, φ. The posterior
probabilities are of the form (see Chapter 5)

p(ωs|x) = exp(β ′
s0 + βT

s φ(x))

1 + ∑C−1
j=1 exp

(
β ′

j0 + βT
j φ(x)

) , s = 1, . . . ,C − 1

p(ωC|x) = 1

1 + ∑C−1
j=1 exp

(
β ′

j0 + βT
j φ(x)

) (6.34)

where β ′
s0 = βs0 + log(p(ωs)/p(ωC)). Discrimination depends solely on the C − 1 functions

β ′
s0 + βT

s φ(x)(s = 1, . . . , C − 1) with the decision:

assign x to class ω j if max
s=1,...,C−1

β ′
s0 + βT

s φ(x) = β ′
j0 + βT

j φ(x) > 0

else assign x to class ωC.
The parameters of the model (in this case, the β terms and {μ}, the set of parameters on

which φ depends) may be determined using a maximum likelihood procedure. Following the
same arguments as for logistic discrimination in Chapter 5, for a dataset {x1, . . . , xn} we seek
the parameters that maximise

log(L′) =
C∑

i=1

∑
xr∈ωi

log(p(ωi|xr)) (6.35)

These parameters can be found through the use of some form of numerical optimisation
scheme, such as conjugate gradient methods or quasi-Newton procedures (Press et al., 1992).

The parameters of the generalised logistic model may also be found using a least square
error procedure by minimising

n∑
i=1

|ti − p(ω j(i)|xi)|2

where ti = (0, 0, . . . , 0, 1, 0, . . . , 0)T (a one in the jth position) for xi ∈ ω j and p is the model
for the vector of a posterior probabilities given by (6.34).

6.4.5.2 MLP model

We now consider the generalised logistic discrimination for an MLP model. The basic as-
sumption is

log

(
p(x|ω j)

p(x|ωC)

)
=

m∑
i=1

wo
jiφi

(
ao−1

i

) + wo
j0, j = 1, . . . ,C − 1

where φi is the ith nonlinearity (a logistic function) and ao−1
i represents the input to the ith

nonlinearity. The terms ao−1
i may be linear combinations of the outputs of a previous layer in a

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 309

layered network system and depend on the parameters of a network. The generalised logistic
discrimination posterior probabilities of (6.34) become

p(ω j|x) =
exp

(∑m
i=1 wo

jiφi
(
ao−1

i

) + w′
j0

)

1 + ∑C−1
s=1 exp

(∑m
i=1 wo

siφi
(
ao−1

i

) + w′
s0

) , j = 1, . . . ,C − 1

p(ωC|x) = 1

1 + ∑C−1
s=1 exp

(∑m
i=1 wo

siφi
(
ao−1

i

) + w′
s0

) (6.36)

where w′
j0 = wo

j0 + log(p(ωj)/p(ωC)). The discrimination rule is to assign to the class with the
largest posterior probability.

In terms of the MLP model (Figure 6.5), Equation (6.36) can be thought of as a final
normalising layer in which wo

ji are the final layer weights and the set of C − 1 inputs to the final

layer (terms of the form ao
j = ∑

iwo
jiφi(ao−1

i) + wo
j0, j = 1, . . . , C − 1) is offset by prior terms

log(p(ωj)/p(ωC)) and normalised through (6.36) to give C outputs p(ω j|x), j = 1, . . . ,C
(the posterior class probability for class ωC being specified so that the sum of the posterior
probabilities is one).

Estimates of the parameters of the model may be achieved by maximising (6.35) using
the posterior probability estimates given in (6.36). This is equivalent to minimising

E = −
n∑

i=1

C∑
k=1

tiklog(p(ωk|xi)) (6.37)

where tik is the kth element of the vector ti, which is the target vector for xi: a vector of zeros,
except that there is a 1 in the position corresponding to the class of xi. The above criterion is
of the form

∑
iEi, where

Ei = −
C∑

k=1

tiklog(p(ωk|xi)) (6.38)

Given this expression for the error, and noting that

p(ω j|x) =
exp

(
ao

j + log(p(ω j)/p(ωC))
)

1 + ∑C−1
s=1 exp

(
ao

s + log(p(ω js)/p(ωC))
) , j = 1, . . . ,C − 1

p(ωC|x) = 1

1 + ∑C−1
s=1 exp

(
ao

s + log(p(ω js)/p(ωC))
) (6.39)

we can use the back-propagation algorithm considered previously. This requires δo
j = ∂Ei/∂ao

j,
j = 1, . . . , C − 1, which is given by

δo
j = ∂Ei

∂ao
j

= −tij + p(ω j|xi)

the difference between the jth component of the target vector and the jth output for pattern i
[compare with (6.32); see Exercises].

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

310 NONLINEAR DISCRIMINANT ANALYSIS

6.4.6 Example application study

The problem
This application involves prediction of the power that is anticipated to be produced by each
turbine in a wind farm, for use as a maintenance indicator (Shuhui et al., 2001).

Summary
Lower-than-expected power outputs from a wind turbine may be an indicator of the need for
maintenance. The study therefore predicts the power outputs for each turbine in a wind farm,
which are then compared against the actual outputs. Power prediction is complicated because
the power generated by wind turbines changes rapidly due to variations in wind speed and
direction. Moreover, wind conditions vary at different locations in a wind farm, and usually
are not measured at each turbine. The study uses a separate MLP for each turbine to predict
power generation, based upon wind measurements (velocity and direction) at two locations
in the wind farm.

The data
The study used real data collected at Central and South West Services Fort Davis wind farm in
Texas, USA. In 1996 the wind farm consisted of 12 turbines, and two meteorological towers
providing wind measurements (speed and direction) collected as 10 min averages. For each
turbine, 1500 sets of 10 min average data measurements from March 1996 were used to train
(optimise) the MLP neural network for the turbine under consideration. Performance was
assessed using data from April 1996.

The model
Single hidden layer MLPs were used, with 4 input nodes (wind speed and direction measure-
ments from the two meteorological towers), 8 hidden nodes, and 1 output node. Bias nodes
were added to the input and hidden layers. Hyperbolic tangent hidden layer nonlinearities
were used. A separate MLP was trained for each wind turbine, with target outputs the power
output of the turbine.

Training procedure
Data preprocessing took place before the wind speed and direction measurements were used
as inputs to the MLP networks. Higher wind speeds were compressed to reflect limitations on
power output when winds are strong. Additionally, since power output is less influenced by
wind direction than wind speed, the wind direction measurement inputs were compressed into
a more limited range than the wind speed. This was done in such a manner as to emphasise
wind direction in certain directions with environmental significance. The precise forms of
these preprocessing functions were determined by trial and error. The preprocessing was
found to both reduce MLP training time, and improve prediction performance.

Randomly generated initial weights were used in the training process, with
back-propagation calculations of mean-squared-error function derivatives. Weights were
reinitialised if performance was unsatisfactory.

Results
Prediction performance from the MLPs was better than that for a model based upon the turbine
manufacturer’s performance curve for the turbines (which amongst other things assumes that

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 311

the wind speed and direction at each turbine is the same as at the measurement locations). The
percentage differences between estimated and measured power generation for all the turbines
were around 2% in the April 1996 test data.

6.4.7 Bayesian MLP networks

An interesting development of MLPs is the application of Bayesian inference techniques to
the fitting of neural network models, which has been shown to lead to practical benefits on
real problems.

In the predictive approach (Ripley, 1996), the posterior distribution of the observed target
value (t) given an input vector (x) and the dataset (D), p(t|x,D), is obtained by integrating
over the posterior distribution of network weights, w

p(t|x,D) =
∫

p(t|x, w)p(w|D)dw (6.40)

where p(w|D) is the posterior distribution for w and p(t|x, w) is the distribution of outputs
for the given model, w, and input, x. For a dataset D = {(xi, ti), i = 1, . . . , n} of measurement
vectors xi with associated targets ti, the posterior of the weights w may be written

p(w|D) = p(w,D)

p(D)
= 1

p(D)
p(w)

n∏
i=1

p(t i|xi, w)p(xi|w)

assuming independent samples. Further, if we assume that p(xi|w) does not depend on w,
then

p(w|D) ∝ p(w)

n∏
i=1

p(ti|xi, w)

The maximum a posteriori (MAP) estimate of w is that for which p(w|D) is a maximum.
Specifying a spherical Gaussian prior distribution for the weights

p(w) ∝ exp
(
−α

2
‖w‖2

)

where the parameter α defines the diagonal covariance matrix (1/α)I; and a zero-mean
spherical Gaussian noise model so that

p(t|x, w) ∝ exp

(
−β

2
|t − g(x; w)|2

)

for the diagonal covariance matrix, (1/β)I and network output, g(x; w); then

p(w|D) ∝ exp

(
−β

2

∑
i

|ti − g(xi; w)|2 − α

2
‖w‖2

)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

312 NONLINEAR DISCRIMINANT ANALYSIS

The MAP estimate is that for which

S(w)

= 1

2

∑
i

|ti − g(xi; w)|2 + α

2β
‖w‖2 (6.41)

is a minimum. This is the regularised solution [Equation (6.10)] derived as a solution for the
MAP estimate for the parameters w.

Equation (6.41) is not a simple function of w and may have many local minima (many
local peaks of the posterior density), and the integral in (6.40) is computationally difficult to
evaluate. Bishop (1995) approximates S(w) using a Taylor expansion around its minimum
value, wMAP (although, as we have noted above, there may be many local minima) to write

S(w) = S(wMAP) + 1

2
(w − wMAP)T A(w − wMAP)

where A is the Hessian matrix

Aij = ∂

∂wi

∂

∂wj
S(w)

∣∣∣∣
w=wMAP

to give

p(w|D) ∝ exp

{
−β

2
(w − wMAP)T A(w − wMAP)

}

Also, expanding g(x; w) around wMAP (assuming for simplicity a scalar quantity)

g(x; w) = g(x; wMAP) + (w − wMAP)T h

where h is the gradient vector, evaluated at wMAP, gives

p(t|x,D) ∝
∫

exp

{
−β

2
[t − g(x; wMAP) − �wT h]2 − β

2
�wT A�w

}
dw (6.42)

where �w = (w − wMAP). This may be evaluated to give (Bishop, 1995)

p(t|x,D) = 1
(
2πσ 2

t

) 1
2

exp

{
− 1

2σ 2
t

(t − g(x; wMAP))2

}
(6.43)

where the variance σ 2
t is given by

σ 2
t = 1

β
(1 + hT A−1h) (6.44)

Equation (6.43) describes the distribution of output values for a given input value, x,
given the dataset. The expression can be used to provide error bars on the estimate. Further
discussion of the Bayesian approach is given by Bishop (1993) and Ripley (1996).

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

THE MULTILAYER PERCEPTRON 313

The approach has been extended by Cawley and Talbot (2005) to use a diagonal (rather
than spherical) Gaussian prior distribution for the weights. This allows redundant weights to be
removed from the network, hence providing a means to reduce over-fitting of the training data.

6.4.8 Projection pursuit

An alternative projection-based nonlinear-modelling approach to the MLP is projection pur-
suit. Projection pursuit has been used for exploratory data analysis, density estimation and
in multiple regression problems (Friedman and Tukey, 1974; Friedman and Stuetzle, 1981;
Friedman et al., 1984; Huber, 1985; Friedman, 1987; Jones and Sibson, 1987).

Projection pursuit models the regression surface as a sum of nonlinear functions of linear
combinations of the variables (as in the basic MLP model)

y =
m∑

j=1

φ j
(
βT

j x
)

where the parameters β j, j = 1, . . . , m, and the function φj are determined from the data
and y is the response variable. However, unlike the MLP model, the nonlinear functions are
also determined from the data. Friedman and Stuetzle (1981), and Jones and Sibson (1987)
describe an optimisation procedure. Zhao and Atkeson (1996) use an RBF smoother for the
nonlinear functions, and solve for the weights as part of the optimisation process (Kwok and
Yeung, 1996).

Projection pursuit may produce projections of the data that reveal structure that is not
apparent by using the coordinates axes or simple projections such as principal components
(see Chapter 10). However, a disadvantage is that ‘projection pursuit will uncover not only
true but also spurious structure’ (Huber, 1985). In a comparative study between projection
pursuit and the MLP on simulated data, Hwang et al. (1994) report similar accuracy and
similar computation times, but projection pursuit requires fewer functions.

6.4.9 Summary

The MLP is a model that, in its simplest form, can be regarded as a generalised linear
discriminant function in which the nonlinear functions φ are flexible and adapt to the data. This
is the way that we have chosen to introduce it in this chapter as it forms a natural progression
from linear discriminant analysis, through generalised linear discriminant functions with fixed
nonlinearities to the MLP. The parameters of the model are determined through a nonlinear
optimisation scheme, which is one of the drawbacks of the model. Computation time may be
excessive.

There have been many assessments of gradient-based optimisation algorithms, variants and
alternatives. Webb et al. (1988; see also Webb and Lowe, 1988) compared various gradient-
based schemes on several problems. They found that the Levenberg–Marquardt optimisation
scheme gave best overall performance for networks with a small number of parameters, but
favoured conjugate gradient methods for networks with a large number of parameters. Further
comparative studies include those of Karayiannis and Venetsanopolous (1993), van der Smagt
(1994), Stäger and Agarwal (1997) and Alsmadi et al. (2009). The addition of extra terms to the
error involving derivatives of the error with respect to the input has been considered by Drucker
and Le Cun (1992) as a means of improving generalisation (Bishop, 1993; Webb, 1994). The

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

314 NONLINEAR DISCRIMINANT ANALYSIS

latter approach of Webb was motivated from an error-in-variables perspective (noise on the
inputs). The addition of noise to the inputs as a means of improving generalisation has also
been assessed by Holmström and Koistinen (1992) and Matsuoka (1992).

The MLP is a very flexible model, giving good performance on a wide range of problems
in discrimination and regression. We have presented only a very basic model. There are many
variants, some adapted to particular types of problem such as time series (for example, time-
delay neural networks). Growing and pruning algorithms for MLP construction have also been
considered in the literature, as well as the introduction of regularisation in the optimisation
criteria in order to prevent over-fitting of the data. The implementation in hardware for some
applications has received attention. There are several commercial products available for MLP
design and implementation.

6.5 Application studies

The term ‘neural networks’ is used to describe models that are combinations of many simple
processing units – for example, the RBF is a linear combination of kernel basis functions
and the multilayer perceptron is a weighted combination of logistic (or other nonlinearity)
units – but the boundary between what does and what does not constitute a neural network is
rather vague. In many respects, the distinction is irrelevant, but it still persists, largely through
historical reasons relating to application domain, with neural network methods tending to be
developed more in the engineering and computer science literature.

Applications of neural networks are widespread and many classification studies mentioned
in this book will include an assessment of an MLP model in particular. Zhang (2000) surveys
the area of classification from a neural network perspective. Some review articles in specific
application domains include:

� Face processing. Valentin et al. (1994) review connectionist models (combining many
simple processing units) for face recognition (see also Samal and Iyengar, 1992).

� Speech recognition. Morgan and Bourlard (1995) review the use of artificial neural
networks (ANNs) in automatic speech recognition, and describe hybrid hidden Markov
models and ANN models.

� Image compression. A summary of the use of neural network models as signal pro-
cessing tools for image compression is provided by Dony and Haykin (1995) and Jiang
(1999).

� Fault diagnosis. Sorsa et al. (1991) consider several neural architectures, including the
MLP, for process fault diagnosis.

� Chemical science. Sumpter et al. (1994) discuss neural computing in chemical science.

� Target recognition. Reviews of neural networks for automatic target recognition are
provided by Roth (1990) and Rogers et al. (1995).

� Financial engineering. Refenes et al. (1997) and Burrell and Folarin (1997) consider
neural networks in financial engineering.

There have been many special issues of journals focusing on different aspects of neu-
ral networks, including everyday applications (Dillon et al., 1997), industrial electronics

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

APPLICATION STUDIES 315

(Chow, 1993), general applications (Lowe, 1994), signal processing (Constantinides et al.,
1997; Unbehauen and Luo, 1998), target recognition, image processing (Chellappa et al.,
1998), machine vision (Dracopoulos and Rosin, 1998), oceanic engineering (Simpson, 1992),
process engineering (Fernändez de Cañete and Bulsari, 2000), human–computer interac-
tion (Yasdi, 2000), financial engineering (Abu-Mostafa et al., 2001) and data mining and
knowledge discovery (Bengio et al., 2000). This latter area is one that is currently receiving
considerable attention. Over the last twenty years there has been a huge increase in the amount
of information available from the Internet, business and other sources. One of the challenges
in the area of data mining and knowledge discovery is to develop models that can handle large
datasets, with a large number of variables (high dimensional). Many standard data analysis
techniques may not scale suitably.

There have been many comparative studies assessing the performance of neural networks
in terms of speed of training, memory requirements, and classification performance (or predic-
tion error in regression problems), comparing the results with statistical classifiers. Probably
the most comprehensive comparative study is that provided by the Statlog project (Michie
et al., 1994). A neural network method (an RBF) gave best performance on only one out of 22
datasets, but provided close to best performance in nearly all cases. Other comparative studies
include, for example, assessments on character recognition (Logar et al., 1994), fingerprint
classification (Blue et al., 1994) and remote sensing (Serpico et al., 1996).

Applications of MLPs, trained using a Bayesian approach, to image analysis are given by
Vivarelli and Williams (2001) and Lampinen and Vehtari (2001). Skabar (2005) uses Bayesian
MLP techniques to predict which geographical areas might contain certain types of mineral
deposits.

There is an increasing amount of application and comparative studies involving SVMs.
These include:

� Financial time series prediction. Cao and Tay (2001) investigate the feasibility of using
SVMs in financial forecasting [see also Van Gestel et al. (2001) and Cao et al. (2009)].
An SVM with Gaussian kernel is applied to multivariate data (5 or 8 variables) relating
to the closing price of the S&P Daily Index in the Chicago Mercantile.

� Drug design. This is an application in structure–activity relationship analysis, a tech-
nique used to reduce the search for new drugs. Combinatorial chemistry enables the
synthesis of millions of new molecular compounds at a time. Statistical techniques that
direct the search for new drugs are required to provide an alternative to testing every
molecular combination. Burbidge et al. (2001) compare SVMs with an RBF network
and a classification tree (see Chapter 7). The training time for the classification tree
was much smaller than for the other methods, but significantly better performance
(measured in terms of error rate) was obtained with the SVM.

� Cancer diagnosis. There have been several applications of SVMs to disease diagnosis.
Furey et al. (2000) address the problem of tissue sample labelling using measurements
from DNA microarray experiments. The datasets comprise measurements on ovarian
tissue; human tumour and normal colon tissues; and bone marrow and blood samples
from patients with leukaemia. Similar performance to a linear perceptron was achieved.
Further cancer studies are reported by Guyon et al. (2002) and Ramaswamy et al. (2001).

� Radar image analysis. Zhao et al. (2000) compare three classifiers, including an SVM,
on an automatic target recognition task using synthetic aperture radar (SAR) data.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

316 NONLINEAR DISCRIMINANT ANALYSIS

Experimental results show that the SVM and an MLP gave similar performance, but
superior to nearest neighbour.

� Prediction of protein secondary structure. As a step towards the goal of predicting three-
dimensional protein structures directly from protein sequences Hua and Sun (2001) use
an SVM to classify secondary structure (as helix, sheets, or coil) based on sequence
features.

� Vehicle driver assistance systems. Schaack et al. (2009) use SVMs within a system
for detecting pedestrians and vehicles using video imagery. Coordinate transformations
were made using MLPs.

� Handwriting recognition. Bahlmann et al. (2002) use an SVM for online handwriting
recognition. The SVM utilises an application specific kernel incorporating ideas from
dynamic time warping to deal with varying lengths and temporal distortion of online
handwriting.

� Computer forensics. De Vel et al. (2001) use SVMs to analyse e-mail messages. In the
growing field of computer forensics, of particular interest to investigators is the misuse
of e-mail for the distribution of messages and documents that may be unsolicited,
inappropriate, unauthorised or offensive. The objective of the study was to classify
e-mails as belonging to a particular author.

� Text categorisation. Joachims (1998) and Lodhi et al. (2002) consider the use of SVMs
for categorising text documents. Joachims (1998) uses features based on word fre-
quencies within each document (a bag of words model), along with polynomial or
Gaussian kernels. Lodhi et al. (2002) adopt a different approach of representing docu-
ments as symbol sequences, requiring the development of a string subsequence kernel,
specifically designed for text sequences.

� Plagiarism detection. With the advent of the Internet, accusations of plagiarism are
becoming more common, particularly with regard to student essays. Diederich (2006)
advocates the use of SVMs for attributing authorship based upon an analysis of the
words present in documents.

6.6 Summary and discussion

In this chapter we have developed the basic linear discriminant model to one in which the
model is essentially linear, but the decision boundaries are nonlinear. The RBF model is
implemented in a straightforward manner and, in its simplest form, it requires little more than
a matrix pseudo-inverse operation to determine the weights of the network. This hides the fact
that optimum selection of the numbers and positions of centres is a more complicated process.
Nevertheless, simple rules of thumb can result in acceptable values giving good performance.

The MLP takes a sum of univariate nonlinear functions φ of linear projections of the data,
x, onto a weight vector α, and uses this for discrimination (in a classification problem). The
nonlinear functions are of a prescribed form (usually logistic) and a weighted sum is formed.
Optimisation of the objective function is performed with respect to the projection directions
and the weights in the sum.

There have been many links between neural networks, such as the MLP, and established
statistical techniques. The basic idea behind neural network methods is the combination of

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

RECOMMENDATIONS 317

simple nonlinear processing in a hierarchical manner, together with efficient algorithms for
their optimisation. In this chapter we have confined our attention primarily to single hidden
layer networks, where the links to statistical techniques are more apparent. However, more
complex networks can be built for specific tasks. Also, neural networks are not confined to
the feed-forward types for supervised pattern classification or regression as presented here.
Networks with feedback from one layer to the previous layer, and unsupervised networks
have been developed for a range of applications.

The SVM defines the basis functions implicitly through the definition of a kernel function
in the data space and has been found to give very good performance on many problems. There
are few parameters to set: the kernel parameters and the regularisation parameter. These can
be varied to give optimum performance on a validation set. The SVM focuses on the decision
boundary and the standard model is not suitable for the nonstandard situation where the oper-
ating conditions differ from the training conditions due to drifts in values for costs and priors.

6.7 Recommendations

The nonlinear discriminant methods described in this chapter are easy to implement and there
are many sources of software for applying these methods to a dataset. Before applying these
techniques you should consider the reasons for doing so. Do you believe that the decision
boundary is nonlinear? Is the performance provided by linear techniques below that desired
or believed to be achievable? Moving to neural network techniques or SVMs may be one way
to achieve improved performance. This is not guaranteed. If the classes are not separable, a
more complex model will not make them so. It may be necessary to make measurements on
additional variables.

The following recommendations are made:

1. A simple pattern recognition technique (e.g. Gaussian classifier, Chapter 2, k nearest
neighbour, Chapter 4, linear discriminant analysis, Chapter 5) should be implemented
as a baseline before considering neural network methods.

2. A simple RBF (unsupervised selection of centres, weights optimised using a squared
error criterion) should be tried to get a feel for whether nonlinear methods provide
some gain for your problem.

3. Data preprocessing based on the specific application under consideration should be
used (this may help reduce the risk of MLP training becoming stuck in local minima).

4. Data should be standardised (e.g. linear rescaling to have zero mean and unit variance
for each input; or linear rescaling so that each element lies within the interval [−1, 1])
before application of the algorithms. Be sure to apply the same linear rescalings to test
data as are derived and applied for training data.

5. Take care in model selection so that over-training does not result. Use cross-validation
or a separate validation set for model selection. For RBFs use a regularised solution
for the weights.

6. An MLP should be trained using a batch training method unless the dataset is very
large (in this case, divide the dataset into subsets, randomly selected from the original
dataset).

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

318 NONLINEAR DISCRIMINANT ANALYSIS

7. For a model that provides approximations to the posterior probabilities that enable
changes of priors and costs to be incorporated into a trained model, an RBF should
be used.

8. For classification problems in high dimensional spaces where training data are rep-
resentative of test conditions and misclassification rate is an acceptable measure of
classifier performance, SVMs should be implemented.

6.8 Notes and references

There are many developments of the techniques described in this chapter, in addition to other
neural network methods. A description of these is beyond the scope of this book, but the use
of neural techniques in pattern recognition and the relationship to statistical and structural
pattern recognition can be found in the book by Schalkoff (1992). Views of neural networks
from statistical perspectives, and relationships to other pattern classification approaches, are
provided by Barron and Barron (1988), Ripley (1994, 1996), Cheng and Titterington (1994)
and Holmström et al. (1997).

Bishop (1995, 2007) and Theodoridis and Koutroumbas (2008) both provide thorough
accounts of feed-forward neural networks, whilst Duda et al. (2001) provide a good ac-
count of the MLP and related procedures. A more engineering perspective is provided by
Haykin (1994). Relationships to other statistical methods and other insights are described by
Ripley (1996). Tarassenko (1998) provides a basic introduction to neural network methods
(including RBFs, MLPs, recurrent networks and unsupervised networks) with an emphasis
on applications.

A good summary of Bayesian perspectives is given in the book by Ripley (1996); see also
Bishop (1995, 2007), MacKay (1995), Buntine and Weigend (1991) and Thodberg (1996).

Although many of the features of SVMs can be found in the literature of the 1960s (large
margin classifiers, optimisation techniques and sparseness, slack variables), the basic SVM
for nonseparable data was not introduced until 1995 (Cortes and Vapnik, 1995). The book
by Vapnik (1998) provides an excellent description of SVMs. A very good self-contained
introduction is provided by Cristianini and Shawe-Taylor (2000). The tutorial by Burges
(1998) is an excellent concise account. A comprehensive treatment of this field is provided in
the book by Schölkopf and Smola (2001).

MATLABTM routines for RBFs and MLPs are documented in the book by Nabney (2002).
MLPs, SVMs and RBFs are available in the open source WEKA Data Mining Software,
described in Witten and Frank (2005). Many packages are available for implementing SVMs,
such as the freely available LIBSVM C++ software package (Chang and Lin, 2011; Hsu
et al., 2003).

Exercises

Dataset 1: Five hundred samples in training, validation and test sets; d-dimensional;
three classes; class ω1 ∼ N(μ1,�1); class ω2 ∼ 0.5N(μ2,�2) + 0.5N(μ3,�3) (a mixture
model, see Chapter 2); class ω3 ∼ 0.2N(μ4, �4) + 0.8N(μ5, �5); μ1 = (−2, 2, . . . , 2)T ,
μ2 = (−4,−4, . . . ,−4)T , μ3 = (4, 4, . . . , 4)T , μ4 = (0, 0, . . . , 0)T , μ5 = (−4, 4, . . . , 4)T

and �i as the identity matrix; equal class priors.

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

EXERCISES 319

Dataset 2: Generate time series data according to the iterative scheme

ut+1 =
4
(

1 − �2

2

)
ut − (

2 + μ�
(
1 − u2

t

))
ut−1

2 − μ�
(
1 − u2

t

)

initialised with u−1 = u0 = 2. Plot the generated time series. Construct training and test sets
of 500 patterns (xi, ti) where xi = (ui, ui+1)

T and ti = ui+2. Thus the problem is one of time
series prediction: predict the next sample in the series given the previous two samples. Take
μ = 4, � = π/50.

1. Compare an RBF classifier with a k-nearest-neighbour classifier. Take into account the
type of classifier, computational requirements on training and test operations and the
properties of the classifiers.

2. Compare and contrast an RBF classifier and a classifier based on kernel density estimation.

3. Implement a simple RBF classifier: m Gaussian basis functions of width h and centres
selected randomly from the data. Using data from dataset 1, evaluate performance as a
function of dimensionality, d, and number of basis functions, where h is chosen based on
the validation set.

4. For dataset 2, train an RBF for a exp(−z2) and a z2log(z) nonlinearity for varying numbers
of centres. Once trained, use the RBF in a generative mode: initialise ut − 1, ut (as a sample
from the training set), predict ut + 1; then predict ut + 2 from ut and ut + 1 using the RBF.
Continue for 500 samples. Plot the generated time series. Investigate the sensitivity of the
final generated time series to starting values, number of basis functions and the form of
the nonlinearity.

5. Consider the optimisation criterion [see Equations (5.40) and (6.6) for notation]

E = ‖(−TT + W�T + w01T)D‖2

where D is a diagonal matrix with Dii = √
di and the di are weights for the ith pattern.

By minimising with respect to w0 and substituting back the solutions for w0, show that
this may be written

E = ‖(−T̂
T + W�̂

T
)D‖2

where T̂ and �̂ are zero-mean matrices. By minimising with respect to W and substituting
into the expression for E, show that minimising E with respect to the parameters of the
nonlinear functions, φ is equivalent to maximising Tr(SBS†

T), where

ST = 1

n
�̂

T
D2�̂

SB = 1

n2
�̂

T
D2T̂T̂

T
D2�̂

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

320 NONLINEAR DISCRIMINANT ANALYSIS

6. For D equal to the identity matrix in the above and a target coding scheme

tik =
{

ak xi ∈ ωk

0 otherwise

determine the value of ak for which SB is the conventional between-class covariance
matrix of the hidden output patterns.

7. Given a normal mixture model for each of C classes (see Chapter 2) with a common
spherical covariance matrix across classes, together with class priors p(ωi), i = 1, . . . , C,
construct an RBF network whose outputs are proportional to the posterior probabilities
of class membership. Write down the forms for the centres and weights.

8. Implement an SVM classifier and assess performance using dataset 1. Use a Gaussian
kernel and choose kernel width and regularisation parameter using a validation set.
Investigate performance as a function of dimensionality, d.

9. Let K1 and K2 be kernels defined on R
d × R

d . Show that the following are also kernels.

K(x, z) = K1(x, z) + K2(x, z)
K(x, z) = aK1(x, z) where a is a positive real number
K(x, z) = g(x)g(z) where g(.) is a real-valued function on x

10. Show that a support vector machine with a spherically-symmetric kernel function sat-
isfying Mercer’s conditions implements an RBF classifier with numbers of centres and
positions chosen automatically by the SVM algorithm.

11. Discuss the differences and similarities between an MLP and an RBF classifier with
reference to network structure, geometric interpretation, initialisation of parameters and
algorithms for parameter optimisation.

12. For the logistic form of the nonlinearity in an MLP

φ(z) = 1

1 + exp(−z)

show that

∂φ

∂z
= φ(z)(1 − φ(z))

13. Verify that error derivatives calculated using back-propagation [Equations (6.29)–(6.33)]
are the same as those obtained from the direct expressions for the single layer model
[Equations (6.24)–(6.27)].

14. Consider an MLP with a final normalising layer (‘softmax’)

zo
j = exp(ao

j)∑C
k=1 exp(ao

k)

P1: OTA/XYZ P2: ABC
JWST102-c06 JWST102-Webb September 6, 2011 17:13 Printer Name: Yet to Come

EXERCISES 321

where ao
j are the inputs to the final layer. How would you initialise the MLP to give a

nearest class mean classifier?

15. Describe two ways of estimating the posterior probabilities of class membership without
modelling the class densities explicitly and using Bayes’ theorem; state the assumptions
and conditions of validity.

16. Logistic classification. Given (6.38) and (6.39) derive the expression for the derivative

∂Ei

∂a0
j

= −tij + oij

where oi is the output for input pattern xi.

17. Using the results that for a nonsingular matrix A and vector u

(A + uuT)−1 = A−1 − A−1uuT A−1/(1 + uT A−1u)

derive the result (6.43) from (6.42) with σ 2
t given by (6.44).

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

7

Rule and decision tree induction

Classification or decision trees lie at the intersection of the areas of statistical pattern recognition
and machine learning. On one hand they are an example of a nonparametric approach that models
the classification/regression function as a weighted sum of basis functions. On the other hand, they
can be used to generate interpretable rules, which can be very important in many applications. The
basic model is described and then developed in two directions: rule induction and the modelling
of continuous functions.

7.1 Introduction

Classification trees, or decision trees, are conceptually very simple models that differ in
one important aspect from the approaches to classification discussed in earlier chapters: the
representation of a classification rule as a tree, with nodes labelled as features, edges labelled as
values (or a set of values) of those features and leaves as class labels enables the interpretation
of the classifier. This is essential in some applications where a degree of explanation of the
classification decision is required.

Decision trees are capable of modelling complex nonlinear decision boundaries. Decision
tree rules automatically determine those features important for classification as part of the
construction process. Thus, feature selection (see Chapter 10) and classification are integrated.
In common with many methods of discrimination that are based on an expansion of the clas-
sification rule into sums of basis functions – the radial basis function uses a weighted sum
of univariate functions of radial distances; the multilayer perceptron uses a weighted sum
of sigmoidal functions of linear projections – a decision tree model uses an expansion into
indicator functions of multidimensional rectangles. It achieves this through a process known
as recursive partitioning: the data space is recursively partitioned into smaller and smaller hy-
perrectangles. The MARS (multivariate adaptive regressions splines) model is a development
of the recursive partitioning approach that permits continuous and smooth basis functions.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 323

The top-down induction of decision trees (TDIDT) is another term used to describe
tree construction. It is one of many methods of rule induction, particularly appropriate for
categorical data and the study of approaches that integrate probabilistic methods and rule-
based methods has received considerable attention in recent years.

There are three main sections to this chapter. The chapter begins with a description of
the basic decision tree model and methods for its construction and then develops the idea
in two different directions. Section 7.3 introduces rule-based approaches and presents two
basic paradigms:

� rule extraction from decision trees (indirect methods);

� rule induction using a sequential covering approach (direct methods).

Section 7.4 considers the development of the recursive partitioning approach employed
for decision tree construction to the modelling of continuous functions through the
MARS procedure.

7.2 Decision trees

7.2.1 Introduction

A classification tree or a decision tree is an example of a multistage decision process. Instead
of using the complete set of features jointly to make a decision, different subsets of features are
used at different levels of the tree. Let us illustrate with an example. Consider the problem of
deciding whether to make a loan to an applicant based on the measurements of three variables:
applicant’s income, marital status and previous credit rating. We approach the decision-making
problem by asking a series of questions about the applicant. The first question we ask concerns
the applicant’s income: is it high, medium or low? If it is high, we decide that a loan may
be made. If the income is medium, we ask a further question: What is the applicant’s marital
status? If the client is married, we make the loan; if not, then a loan is not made. If the income
is low, we ask a question concerning the credit rating of the applicant. If the credit rating is
good, we make the loan, if not then a loan is not made.

The series of questions above and their answers may be represented as a hierarchical
decision tree (Figure 7.1) of nodes and directed edges. There are three types of node:

� Root node: this is the node that has no incoming edges. It is usually at the top of the
tree (trees are commonly drawn ‘upside-down’).

� Internal nodes: nodes with one incoming edge and two or more outgoing edges.

� Leaf or terminal nodes: nodes with one incoming edge.

Associated with each nonterminal node (a root or internal node) is one of the features and the
edges emanating from a node represent a value, or set of values, that that feature may take.
Associated with each leaf or terminal node is a class label. In Figure 7.1, the root node is the
feature ‘income’, the internal nodes are ‘marital status’ and ‘credit rating’, and the leaf nodes
are the class labels ‘loan’ and ‘no loan’. The series of questions, represented as a tree, is a
description of the decision boundary. Classifying a test pattern proceeds by starting at the top
of the tree and evaluating the feature for the test pattern and then taking the appropriate path
down the tree.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

324 RULE AND DECISION TREE INDUCTION

Figure 7.1 A decision tree for a loan example. CR, credit rating; MS, marital status.

Classifier construction is the process of designing a decision tree given a set of data. This
involves deciding whether the node at the end of an edge is a terminal node; if not, which
feature should be associated with that node and how that feature should be partitioned (how
many edges emanate from the node and the range of values of the features that those edges
correspond to).

A second example is given by Figure 7.2, which shows a classification tree solution to the
head injury data problem of Chapter 2. Figure 7.2 is an example of a binary decision tree,
in that there are only two edges leading away from a node. Thus, at each node, the values of
the feature are partitioned into two sets. For a continuous variable, this is a threshold on the
feature. Now suppose we wish to classify the pattern x = (5, 4, 6, 2, 2, 3). Beginning at the
root, we compare the value of x6 with the threshold 2. Since the threshold is exceeded, we
proceed to the right child. We then compare the value of the variable x5 with the threshold
5. This is not exceeded, so we proceed to the left child. The decision at this node leads us
to the terminal node with classification label ω3. Thus, we assign the pattern x to class ω3.
Note that the tree constructed from the training data does not use all the features – the training
procedure has selected those features important for classification.

The decision tree of Figure 7.2 is a conceptually simple approximation to a complex
decision that breaks up the decision into a series of simpler decisions at each node. The
number of decisions required to classify a pattern depends on the pattern.

Binary trees successfully partition the feature space at each node into two parts. In
the example above, the partitions are hyperplanes parallel to the coordinate axes. Figure
7.3 illustrates this in two dimensions for a two-class problem and Figure 7.4 shows the
corresponding binary tree. The tree gives 100% classification performance on the design set.
The tree is not unique for the given partition. Other trees also giving 100% performance
are possible.

The decisions at each node need not be thresholds on a single variable (giving hyperplanes
parallel to coordinate axes as decision boundaries), but could involve a linear or nonlinear
combination of variables. In fact, the data in Figure 7.3 are linearly separable by a line

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 325

Figure 7.2 Decision tree for the head injury patient data: the variables x1, . . . , x6 are age,
EMV score (eye, motor, verbal response score), MRP (a summary
of the motor responses in all four limbs), change, eye indicant
and pupils and the classes ω1, ω2 and ω3 are dead/vegetative, severely disabled and
moderate or good recovery, respectively.

x2 = mx1 + c

b1

b2

b3

x2

a1 a2 x1

�

�

�

�

�

�

�

�

�

�

��

�

� � �

�

�

� �

• •

•
• •

•

•

•

• •

•

•

•

•
•

Figure 7.3 Boundaries on a two-class, two-dimension problem.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

326 RULE AND DECISION TREE INDUCTION

Figure 7.4 Binary decision tree for the two-class, two-dimension data of Figure 7.3.

that is not parallel to the coordinate axes and the decision rule: assign x to class �
if x2 − mx1 − c > 0 classifies all samples correctly.

7.2.2 Decision tree construction

There are several heuristic methods for construction of decision tree classifiers, beginning at
the root node and successively partitioning the feature space. A classification tree is constructed
using a labelled dataset, L = {(xi, yi), i = 1, . . . , n} where xi are the data samples and yi the
corresponding class labels. The construction involves three steps:

� Selecting a splitting rule for each internal node. This means determining the features,
together with a method for partitioning the values that those features take. The aim is
to partition the data into successively purer subsets, although it may not be possible to
continue splitting until all leaf nodes are pure. For example, if two patterns belonging to
different classes are identical, then it will not be possible to split them. For a continuous
variable and a binary tree, the splitting rule may simply be determining a threshold that
will be used to partition the dataset at each node.

� Determining which nodes are terminal nodes. This means that for each node, we must
decide whether to continue splitting or to make the node a terminal node and assign
to it a class label. If we continue splitting until every terminal node has pure class
membership (all samples in the design set that arrive at that node belong to the same

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 327

class), then we are likely to end up with a large tree that overfits the data and gives a poor
error rate on an unseen test set. Alternatively, relatively impure terminal nodes (nodes
for which the corresponding subset of the design set has mixed class membership) lead
to small trees that may underfit the data (see Chapter 1). Several stopping rules have
been proposed in the literature, but the approach suggested by Breiman et al. (1984)
is successively to grow and selectively prune the tree, using cross-validation to choose
the subtree with the lowest estimated misclassification rate.

� Assigning class labels to terminal nodes. This is relatively straightforward and labels
can be assigned by minimising the estimated misclassification rate.

We shall now consider each of these stages in turn.

7.2.3 Selection of the splitting rule

A splitting rule is a prescription for deciding which variable, or combination of variables,
should be used at a node to divide the data samples into subgroups, and for deciding how the
values that the variable takes should be partitioned.

7.2.3.1 Defining the split

The way in which a split is expressed depends on the nature of the feature.

� Binary feature. There are two possible outcomes, one for each feature value.

� Nominal feature. Since a nominal feature can take many distinct values, there could
be as many child nodes of a nominal feature node as there are values that the nominal
feature can take. Thus, there is a different path in the tree for each feature value.
Alternatively, values may be grouped, reducing the number of child nodes.

� Ordinal feature. As with nominal features, there could be a single path from the node
for each feature value or values could be grouped. However, grouping should maintain
the ordering of the feature values.

� Continuous feature. A split consists of a condition on the coordinates of a vector
x ∈ R

p. For example, we may define a split sp to be

sp = {x ∈ R
p; x4 ≤ 8.2}

a threshold on an individual feature, or

sp = {x ∈ R
p; x2 + x7 ≤ 2.0}

a threshold on a linear combination of features. Nonlinear functions have also been
considered (Gelfand and Delp, 1991). The above examples are binary splits at a
node, but multiway splits may be considered by partitioning a variable into more than
two segments.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

328 RULE AND DECISION TREE INDUCTION

b1

b2

b3

x2

a1 a2 x1

u(11)

u(10)
u(6)

u(4) u(8)

u(9)

4 6

89 1011

1

2 3

5 7

Figure 7.5 Decision tree and decision regions for the decision tree of Figure 7.4.

7.2.3.2 Selecting the best split

The question we now have to address is how to split the data (denoted by L =
{(xi, yi); i = 1, . . . , n}, the set of patterns and their labels) that lie in the subspace u(t) at
node t [Figure 7.5 shows the regions u(t) associated with the terminal nodes for the binary
decision tree of Figure 7.4]. This is achieved through the definition of node impurity measures,
which are expressed in terms of estimates of p

(
ω j|x ∈ u(t)

)
, the probability that the class of

a pattern, x, is ωj, given that it falls into node t, given by

p
(
ω j|x ∈ u(t)

) = p(ω j|t) ∼ Nj (t)

N (t)

the proportion of patterns belonging to class ωj at node t, where N(t) denotes the number of
samples for which xi ∈ u(t) and Nj(t) the number of samples for which xi ∈ u(t) and yi = ωj

(
∑

jNj(t) = N(t)).
Following Breiman et al. (1984) we define the node impurity function, I(t), to be

I(t) = φ(p(ω1|t), . . . , p(ωC|t))

where φ is a function defined on all C-tuples (q1, . . . , qC) satisfying qj ≥ 0 and
∑

jqj = 1. It
has the properties

1. φ is a maximum only when qj = 1/C for all j.

2. It is a minimum when for some j, qj = 1 and qi = 0 for all i �= j.

3. It is a symmetric function of q1, . . . , qC.

Several different forms for I(t) have been used. Examples include:

� Gini criterion

I(t) =
∑
i�= j

p(ωi|t)p(ω j|t) = 1 −
∑

i

[p (ωi|t)]2

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 329

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

I

Error

Entropy

Gini

Figure 7.6 Examples of node impurity functions for a binary classification problem as a
function of p = p(ω1|t).

� Entropy

I(t) = −
∑

i

p(ωi|t) log2 (p(ωi|t))

� Classification error

I(t) = 1 − max
i

[p(ωi|t)]

These are easily computed for a given split. Figure 7.6 plots these measures as a function
of p = p(ω1|t) (p(ω2|t) = 1 − p) for a binary classification problem (C = 2). The functions
have their peak at p = 1/C = 1/2 (the class distribution is uniform) and their minimum when
p = 0 or p = 1 (when the patterns all belong to the same class).

One measure of the goodness of a split is the difference between the impurity function
of a parent node (before splitting) and the impurity of the child nodes (after splitting). For k
child nodes we define

�I(sp, t)
�= I(t) −

k∑
i=1

I(t j)
N(t j)

N(t)

where tj is a child of node t and N(tj) is the number of patterns that fall into that child node,
and we seek a split that maximises �I . When I is the entropy measure, �I is known as
Information Gain.

Since, for a given node t, I(t) is the same for all splits, maximising �I over all splits is
equivalent to minimising the weighted average impurity of the child nodes; i.e. finding the
split that makes the child nodes most pure.

At each stage of the classification tree procedure, we must decide which variable to split
and how to make that split. The variable and split combination that results in the greatest
reduction in impurity is chosen. For a binary variable, there is only one way to split, so no
search over splits is required. Nominal or ordinal variables may produce a binary or multi-way
split. For example, the variable ‘income’ in Figure 7.1 could be split in a binary manner –
{low, medium} and {high} or {low} and {medium, high} – or a three-way split – {low},
{medium} and {high} – as shown in the figure.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

330 RULE AND DECISION TREE INDUCTION

For continuous variables, we choose the possible splits to consist of thresholds on indi-
vidual variables

sp = {x; xk ≤ τ }

where k = 1, . . . , p and τ ranges over the real numbers. Clearly, we must restrict the number
of splits we examine and so, for each variable xk, τ is allowed to take one of a finite number of
values within the range of possible values. Thus, we are dividing each variable into a number
of categories, though this should be kept reasonably small to prevent excessive computation
and need not be larger than the number of samples at each node.

There are many other approaches to splitting. Some are given in the survey by Safavian and
Landgrebe (1991). The approach described above assumes ordinal variables. For a categorical
variable with N unordered outcomes, partitioning on that variable means considering 2N

partitions. By exhaustive search, it is possible to find the optimal one, but this could result in
excessive computation time if N is large. Techniques for nominal variables can be found in
Breiman et al. (1984) and Chou (1991).

7.2.4 Terminating the splitting procedure

So now we can grow our tree by successively splitting nodes, but how do we stop? We could
continue until each terminal node contained one observation only. This would lead to a very
large tree, for a large dataset, that would over-fit the data. Thus, we could achieve very good
classification performance on the dataset used to train the model (perhaps even an error rate
of zero), but the model’s generalisation performance (the performance on an independent
dataset representative of the true operating conditions) is likely to be poor. There are two
basic approaches to avoiding overfitting in classification tree design.

� Implement a stopping rule: we do not split the node if the change in the impurity
function is less than a pre-specified threshold. The difficulty with this approach is the
specification of the threshold. In addition, even if the current splits results in a small
decrease in impurity measure, further splits, if allowed to happen, may lead to a larger
decrease.

� Pruning: we grow a tree until the terminal nodes have pure (or nearly pure) class
membership and then prune it, replacing a subtree with a terminal node whose class
label is determined from the patterns that lie in the region of data space corresponding
to that node. This can lead to better performance than a stopping rule. We now discuss
one pruning algorithm.

These approaches lead to a simpler tree and more easily interpreted decision rules.

7.2.4.1 Pruning algorithms

Many algorithms prune the tree to minimise an error that incorporates a term that depends
on model complexity, and thus penalising complex models to prevent overfitting. There are
several approaches. The CART1 (classification and regression trees; Breiman et al., 1984)
algorithm employs one such approach.

1 CART is a registered trademark of California Statistical Software, Inc.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 331

Let R(t) be real numbers associated with each node t of a given tree T . If t is a terminal
node, i.e. t ∈ T̃ , where T̃ denotes the set of terminal nodes, then R(t) could represent the
proportion of misclassified samples – the number of samples in u(t) that do not belong to the
class associated with the terminal node, defined to be M(t), divided by the total number of
data points, n

R(t) = M(t)

n
t ∈ T̃

More generally, in a regression problem, R(t) could represent a mean square error between
the predicted value and the response variable values of the patterns.

Let Rα(t) = R(t) + α for a real number α. Set2

R(T) =
∑

t∈T̃

R(t)

Rα(T) =
∑

t∈T̃

Rα (t) = R(T) + α

∣∣∣T̃
∣∣∣

In a classification problem, R(T) is the estimated misclassification rate, |T̃ | denotes
the cardinality of the set T̃ , Rα(T) is the estimated complexity–misclassification rate of a
classification tree and α is a constant that can be thought of as the complexity cost per
terminal node. If α is small, then there is a small penalty for having a large number of nodes.
As α increases, the minimising subtree [the subtree T ′ ≤ T that minimises Rα(T ′)] has fewer
terminal nodes.

Let the quantity R(t) be written as

R(t) = r(t)p(t)

where r(t) is the resubstitution estimate of the probability of misclassification (or apparent
error rate, see Chapter 9) given that a case falls into node t,

r(t) = 1 − max
ω j

p(ω j|t)

and p(t) and p(ωj|t) are defined as

p(t) = N(t)

n
(7.1)

an estimate of p(x ∈ u(t)) based on the dataset L;

p(ω j|t) = Nj(t)

N(t)
(7.2)

an estimate of p(y = ω j|x ∈ u(t)) based on the dataset L. Thus, if t is taken to be a terminal
node, R(t) is the contribution of that node to the total error.

2 The argument of R may be a tree or a node; capital letters denote a tree.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

332 RULE AND DECISION TREE INDUCTION

Let Tt be the subtree with root t (the part of the tree that grows out from the node t as a
root node). If Rα(Tt) < Rα(t), then the cost complexity of the subtree is less than that for the
node t. This occurs for small α. As α increases, equality is achieved when

α = R(t) − R(Tt)

Nd(t) − 1

where Nd(t) is the number of terminal nodes in Tt, i.e. Nd(t) = |T̃t | and termination of the tree
at t is preferred.

7.2.5 Assigning class labels to terminal nodes

Let λ(ωj, ωi) be the cost of assigning a pattern x to ωi when x ∈ ω j. Denote the patterns that
lie in u(t), the part of the data space corresponding to node t, by {xi}, with corresponding class
labels {yi}, where yi ∈ {ω1, . . . , ωC}. The terminal node is assigned the class label ωk for
which

∑
x j∈u(t)

λ
(
y j, ωk

)

is a minimum. For the equal cost loss matrix,

λ(ω j, ωi) =
{

1 i �= j
0 i = j

the terminal node is assigned to the class that gives the smallest number of misclassifications.

7.2.6 Decision tree pruning – worked example

7.2.6.1 Terminology

The approach we present is based on the CART description of Breiman et al. (1984). A
binary decision tree is defined to be a set T of positive integers together with two functions
l(.) and r(.) from T to T ∪ {0}. Each member of T corresponds to a node in the tree. Figure
7.7 shows a tree and the corresponding values of l(t) and r(t) (denoting the left and right
nodes, respectively).

1. For each t ∈ T , either l(t) = 0 and r(t) = 0 (a terminal node) or l(t) > 0 and r(t) > 0
(a nonterminal node).

2. Apart from the root node (the smallest integer, t = 1 in the above) there is a unique
parent s ∈ T of each node; that is, for t �= 1, there is an s such that either t = l(s) or
t = r(s).

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 333

8 9

5

10 11 13

14 15

1

2 3

4 6 7

12

t l(t) r(t)

Figure 7.7 Classification tree and the values of l(t) and r(t).

A subtree is a nonempty subset T1 of T together with two functions l1 and r1 such that

l1(t) =
{

l(t) if l(t) ∈ T1

0 otherwise

r1(t) =
{

r(t) if r(t) ∈ T1

0 otherwise

(7.3)

and provided that T1, l1(.) and r1(.) form a tree. For example, the set {3, 6, 7, 10, 11} together
with (7.3) forms a subtree, but the sets {2, 4, 5, 3, 6, 7} and {1, 2, 4, 3, 6, 7} do not; in the
former case because there is no parent for both 2 and 3 and in the latter case because l1(2) >

0 and r1(2) = 0. A pruned subtree T1 of T is a subtree of T that has the same root. This is
denoted by T1 ≤ T . Thus, example (b) in Figure 7.8 is a pruned subtree, but example (a) is
not (though it is a subtree).

Let T̃ denote the set of terminal nodes (the set {5, 8, 9, 10, 11, 13, 14, 15} in Figure 7.7).
Let {u(t), t ∈ T̃ } be a partition of the data space R

p (that is, u(t) is a subspace of R
p associated

with a terminal node such that u(t) ∩ u(s) = ∅ for t �= s, t, s ∈ T̃ ; and ∪t∈T̃ u(t) = R
p). Let

ωj(t) ∈ {ω1, . . . , ωC} denote one of the class labels. Then, a classification tree consists of
the tree T , together with the class labels {ω j(t), t ∈ T̃ } and the partition {u(t), t ∈ T̃ }. All we
are saying here is that associated with each terminal node is a region of the data space that
we label as belonging to a particular class. There is also a subspace of R

p, u(t) associated
with each nonterminal node, being the union of the subspaces of the terminal nodes that are
its descendants.

A classification tree is constructed using the labelled dataset, L = {(xi, yi), i = 1, . . . , n}
of data samples xi and the corresponding class labels, yi .

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

334 RULE AND DECISION TREE INDUCTION

10 11

7

3

6

t l1(t) r1(t)

5

8 9

3

1

2

4

t l1(t) r1(t)

Figure 7.8 Possible subtrees of the tree in Figure 7.4.

We also define

pL = p(tL)

p(t)
pR = p(tR)

p(t)

where tL = l(t), tR = r(t), as estimates of p(x ∈ u(tL)|x ∈ u(t)) and p(x ∈ u(tR)|x ∈ u(t))
based on L, respectively.

We may assign a label to each node, t, according to the proportions of samples from each
class in u(t): assign label ωj to node t if

p(ω j|t) = max
i

p(ωi|t)

We have now covered most of the terminology that we shall use. Table 7.1 illustrates some
of these concepts using the data of Figure 7.3 and the tree of Figure 7.4.

7.2.6.2 Algorithm description

We describe the CART pruning algorithm using the tree of Figure 7.9. In Figure 7.9, each
terminal node has been labelled with a single number R(t), the amount by which that node
contributes to the error rate. Each nonterminal node has been labelled by two numbers. The
number to the left of the node is the value of R(t), the contribution to the error rate if that node
were a terminal node. The number to the right is g(t), defined by

g(t) = R(t) − R(Tt)

Nd(t) − 1
(7.4)

Thus, the value of g(t) for node t = 2, say, is 0.03 = [0.2 − (0.01 + 0.01 + 0.03 + 0.02 +
0.01)]/4.

The first stage of the algorithm searches for the node with the smallest value of g(t). This
is node 12, with a value of 0.0075. This is now made a terminal node and the value of g(t)
recalculated for all its ancestors. This is shown in Figure 7.10.

The values of the nodes in the subtree beginning at node 2 are unaltered. The process is
now repeated. The new tree is searched to find the node with the smallest value of g(t). In this

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 335

Table 7.1 Tree table: class ω1, �; class ω2, •.

t node l(t) r(t) N(t) N1(t) N2(t) p(t) p(1|t) p(2|t) pL pR

1 x2 > b2 2 3 35 20 15 1 20
35

15
35

22
35

13
35

2 x1 < a2 4 5 22 17 5 22
35

17
22

5
22

15
22

7
22

3 x1 > a1 6 7 13 4 9 13
35

4
13

9
13

9
13

4
13

4 � 0 0 15 15 0 15
35 1 0

5 x2 > b3 9 8 7 2 5 7
35

2
7

5
7

5
7

2
7

6 • 0 0 9 0 9 9
35 0 1

7 x2 < b1 11 10 4 3 1 4
35

3
4

1
4

3
4

1
4

8 • 0 0 5 0 5 5
35 0 1

9 � 0 0 2 2 0 2
35 1 0

10 � 0 0 3 3 0 3
35 1 0

11 • 0 0 1 0 1 1
35 0 1

case, there are two nodes, 6 and 9, each with a value of 0.01. Both are made terminal nodes
and again the values of g(t) for the ancestors recalculated. Figure 7.11 gives the new tree (T3).
Node 4 now becomes a new terminal node. This continues until all we are left with is the root
node. Thus, the pruning algorithm generates a succession of trees. We denote the tree at the
kth stage by Tk. Table 7.2 gives the value of the error rate for each successive tree, together

Figure 7.9 Pruning example; original tree.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

336 RULE AND DECISION TREE INDUCTION

Figure 7.10 Pruning example; pruning at node 12.

with the number of terminal nodes in each tree and the value of g(t) at each stage (denoted by
αk) that is used in the pruning to generate tree Tk. The tree Tk has all internal nodes with a
value of g(t) > αk.

The results of the pruning algorithm are summarised in Figure 7.12.
In this figure is shown the original tree together with the values g6(t) for the internal nodes,

where gk is defined recursively (0 ≤ k ≤ K − 1, where K is the number of pruning stages):

gk =
{

g(t) t ∈ T k − T̃ k (t an internal node of T k)
gk−1(t) otherwise

The values of g6(t) together with the tree T1 are a useful means of summarising the pruning
process. The smallest value is 0.0075 and shows that in going from T1 to T2 nodes 16, 17,

Figure 7.11 Pruning example; pruning at nodes 6 and 9.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 337

Table 7.2 Tree results.

αk |T̃ k| R(Tk)

1 0 11 0.185
2 0.0075 9 0.2
3 0.01 6 0.22
4 0.02 5 0.25
5 0.045 3 0.34
6 0.05 2 0.39
7 0.11 1 0.5

20 and 21 are removed. The smallest value of the pruned tree is 0.01 and therefore in going
from T2 to T3 nodes 12, 13, 14, 15, 18 and 19 are removed; from T3 to T4 nodes 8 and 9 are
removed; from T4 to T5 nodes 4, 5, 10 and 11; from T5 to T6 nodes 6 and 7 and finally nodes
2 and 3 are removed to obtain T7 the tree with a single node.

An explicit algorithm for the above process is given by Breiman et al. (1984).

7.2.7 Decision tree construction methods

Having considered approaches to growing and pruning decision trees and estimating
their error rate, we are now in a position to present methods for tree construction using
these features.

Figure 7.12 Pruning example; summary of pruning process.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

338 RULE AND DECISION TREE INDUCTION

7.2.7.1 CART independent training and test set method

The stages in the CART independent training and test set method are as follows. Assume that
we are given a training set Lr and a test set (or more correctly a validation set) Ls of data
samples. These are generated by partitioning the design set approximately into two groups.

The CART independent training and test set method is as follows:

1. Use the set Lr to generate a tree T by splitting all the nodes until all the terminal nodes
are ‘pure’ – all samples at each terminal node belong to the same class. It may not
be possible to achieve this with overlapping distributions, therefore an alternative is
to stop when the number in each terminal node is less than a given threshold or the
split of a node t results in a left child node tL or a right child node tR with min(N(tL),
N(tR)) = 0.

2. Use the CART pruning algorithm to generate a nested sequence of subtrees Tk using
the set Ls.

3. Select the smallest subtree for which R(Tk) is a minimum.

7.2.7.2 CART cross-validation method

For the cross-validation method, the training set L is divided into V subsets L1, . . . ,LV ,
with approximately equal numbers in each class. Let Lv = L − Lv, v = 1, . . . ,V . We shall
denote by T(α) the pruned subtree with all internal nodes having a value of g(t) > α. Thus,
T(α) = Tk, the pruned subtree at the kth stage where k is chosen so that αk ≤ α ≤ αk + 1

(αK + 1 = ∞).
The CART cross-validation method is as follows.

1. Use the set L to generate a tree T by splitting all the nodes until all the terminal nodes
are ‘pure’ – all samples at each terminal node belong to the same class. The same
caveats and alternative of step 1 of the CART independent training and test set method
above apply.

2. Using the CART pruning algorithm, generate a nested sequence of pruned subtrees
T = T0 ≥ T1 ≥ · · · ≥ TK = root(T).

3. Use Lv to generate a tree Tv and assign class labels to the terminal nodes, for
v = 1, . . . , V .

4. Using the CART pruning algorithm, generate a nested sequence of pruned subtrees of
Tv.

5. Calculate Rcv(Tk) (the cross-validation estimate of the misclassification rate) given by

Rcv(T k) = 1

V

V∑
v=1

Rv(Tv(
√

αkαk+1))

where Rv is the estimate of the misclassification rate based on the set Lv for the pruned
subtree Tv(

√
αkαk+1).

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 339

6. Select the smallest T∗ ∈ {T0, . . . , TK} such that

Rcv(T ∗) = min
k

Rcv(T k)

7. Estimate the misclassification rate by

R̂(T ∗) = Rcv(T ∗)

The procedure presented in this section implements one of many approaches to recursive
tree design which use a growing and pruning approach and that have emerged as reliable
techniques for determining right-sized trees. The CART approach is appropriate for datasets
of continuous or discrete variables with ordinal or nominal significance, including datasets of
mixed variable types.

There have been many different growing and pruning strategies proposed in the literature.
Quinlan (1987) describes and assesses four pruning approaches, the motivation behind the
work being to simplify decision trees in order to use the knowledge in expert systems. The use
of information theoretic criteria in tree construction has been considered by several authors.
Quinlan and Rivest (1989) describe an approach based on the minimum description length
principle and Goodman and Smyth (1990) present a top-down mutual information algorithm
for tree design. A comparative study of pruning methods for decision trees is provided by
Esposito et al. (1997) [see also comments by Kay (1997) and Mingers (1989)]. Averaging, as
an alternative to pruning, is discussed by Oliver and Hand (1996).

In addition to the top-down approach to decision tree construction, other strategies include
the bottom-up approach of Landeweerd et al. (1983). See the review by Murthy (1998).

7.2.8 Other issues

7.2.8.1 Missing data

The procedure given above contains no mechanism for handling missing data. The CART
algorithm deals with this problem through the use of surrogate splits. If the best split of a
node is s on the variable xm say, then the split s∗ that predicts s most accurately, on a variable
xj other than xm, is termed the best surrogate for s. Similarly, a second best surrogate on a
variable other than xm and xj can be found, and so on.

A tree is constructed in the usual manner, but at each node t, the best split s on a variable
xm is found by considering only those samples for which a value for xm is available. Objects
are assigned to the groups corresponding to tL and tR according to the value on xm. If this
is missing for a given test pattern, the split is made using the best surrogate for s (that
is, the split is made on a different variable). If this value is also missing, the second best
surrogate is used, and so on until the sample is split. Alternatively, we may use procedures
that have been developed for use by conventional classifiers for dealing with missing data
(see Chapter 13).

7.2.8.2 Priors and costs

The definitions (7.1) and (7.2) assume that the prior probabilities for each class, denoted
by π(j), are equal to Nj/n. If the distribution on the design set is not proportional to the

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

340 RULE AND DECISION TREE INDUCTION

expected occurrence of the classes, then the resubstitution estimates of the probabilities that a
sample falls into node t, p(t), and that it is in class ωj given that it falls into node t, p(j|t), are
defined as

p (t) =
C∑

j=1

π (j)
N j (t)

N j

p (j|t) = π (j) Nj (t) /Nj∑C
j=1 π (j) Nj (t) /Nj

(7.5)

In the absence of costs (or assuming an equal cost loss matrix – see Chapter 1), the
misclassification rate is given by

R(T) =
∑

j

∑
i�= j

q(i| j)π(j) (7.6)

where q(i| j) is the proportion of samples of class ωj defined as class ωi by the tree. If λji is
the cost of assigning an object of class ωj to ωi, then the misclassification cost is

R(T) =
∑

j

∑
i �= j

λ jiq(i| j)π(j)

This may be written in the same form as (7.6), with redefined priors, provided that λji (j �= i)
is independent of i (that is, the cost of misclassifying an object of class ωj does not depend
on the class to which it is assigned); thus, λji = λj and the priors are redefined as

π ′(j) = λ jπ(j)∑
j λ jπ(j)

In general, with nonconstant costs of misclassification for each class, then the costs cannot be
incorporated into modified priors.

7.2.9 Example application study

The problem
In drug development research, it is a challenging task to examine high-throughput screening
data (often requiring the testing of millions of compounds generated using combinatorial
chemistry in a matter of days) for potential interest. Han et al. (2008) developed decision tree
approaches for screening the data.

Summary
A decision tree model was developed to discriminate compound bioactivities by using their
chemical structure fingerprints.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

DECISION TREES 341

The data
A model was developed for each of four protein targets selected from the PubChem BioAssay
database. For each protein target, there were between about 61 000 and 99 000 compounds
tested, with a small percentage (but hundreds) identified as active compounds.

The model
The decision tree model developed was based on the C4.5 algorithm (Quinlan, 1993).

Training procedure
A 10-fold cross-validation procedure was used as part of the assessment procedure together
with a tree pruning procedure.

Results
The results suggested that biologically interesting compounds could be identified using deci-
sion tree models developed for specific protein targets. These models could then be used as
part of a filtering process to select active compounds for that target.

7.2.10 Further developments

The splitting rules described have considered only a single variable. Some datasets may be
naturally separated by hyperplanes that are not parallel to the coordinate axes, and Chapter 5
concentrated on means for finding linear discriminants. The basic CART algorithm attempts
to approximate these surfaces by multidimensional rectangular regions, and this can result in
very large trees. Extensions to this procedure that allow splits not orthogonal to axes (termed
oblique decision trees) are described by Loh and Vanichsetakul (1988), Wu and Zhang (1991),
Murthy et al. (1994), Shah and Sastry (1999) and Heath et al. (1993) (and indeed can be found
in the CART book of Breiman et al., 1984). Sankar and Mammone (1991) use a neural network
to recursively partition the data space and allow general hyperplane partitions. Pruning of this
neural tree classifier is also addressed [see also Sethi and Yoo (1994) for multifeature splits
methods using perceptron learning].

Tree-based methods for vector quantisation are described by Gersho and Gray (1992). A
tree-structured approach reduces the search time in the encoding process. Pruning the tree
results in a variable-rate vector quantiser and the CART pruning algorithm may be used. Other
approaches for growing a variable-length tree (in the vector quantisation context) without first
growing a complete tree are described by Riskin and Gray (1991). Crawford (1989) describes
some extensions to CART that improve upon the cross-validation estimate of the error rate
and allow for incremental learning – updating an existing tree in the light of new data. Such
incremental decision trees (Kalles and Morris, 1996) may be required if the properties of the
data are time-dependent (and so the tree is required to adapt) or if the dataset is too large to
process all at one time.

The kd approach for searching for nearest neighbours (see Chapter 4) exploits a tree
approach similar to that presented in this chapter.

One of the problems with nominal variables with a large number of categories is that there
may be many possible partitions to consider. Chou (1991) presents a clustering approach
to finding a locally optimum partition without exhaustive search. Buntine (1992) develops
a Bayesian statistics approach to tree construction that uses Bayesian techniques for node

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

342 RULE AND DECISION TREE INDUCTION

splitting, pruning and averaging of multiple trees (also assessed as part of the Statlog project).
A Bayesian CART algorithm is described by Denison et al. (1998a).

7.2.11 Summary

Decision trees are nonparametric approaches for constructing classification models. Their
advantages are that they can be compactly stored; they efficiently classify new samples and
have demonstrated good generalisation performance on a wide variety of problems. Possible
disadvantages are the difficulty in designing an optimal tree, leading perhaps to large trees with
poor error rates on certain problems, particularly if the separating boundary is complicated
and a binary decision tree, with decision boundaries parallel to the coordinate axes is used.
Also, most approaches are nonadaptive – they use a fixed training set and additional data may
require redesign of the tree.

One of the main attractions of decision trees is their simplicity: they employ a top-down
recursive partitioning approach and, in particular, CART performs binary splits on single
variables in a recursive manner. Although finding an optimal tree can be time consuming,
there are efficient tree-construction algorithms available. Classification of a test sample is fast –
it may require only a few simple tests. Yet despite its simplicity, a decision tree is able to give
performance superior to many traditional methods on complex nonlinear datasets of many
variables. Of course there are possible generalisations of the model to multiway splitting on
linear (or even nonlinear) combinations of variables (oblique decision trees), but there is no
strong evidence that these will lead to improved performance. In fact, the contrary has been
reported by Breiman and Friedman (1988). Also, univariate splitting has the advantage that the
models can be interpreted more easily, particularly on small datasets. Lack of interpretability
by many, if not most, of the other methods of discrimination described in this book can be a
serious shortcoming in many applications. Although different node impurity functions may
lead to a different choice of variable to split, there is much consistency in the performance of
the different functions.

Another advantage of decision trees is that the approach has been extensively evaluated
and tested, both by the workers who have developed them and numerous researchers who
have implemented the software. In addition, the tree-structured approach may be used for
regression using the same impurity function (for example, a least-squares error measure) to
grow the tree as to prune it.

Decision trees are a nonparametric approach to classification. An alternative to decision
trees is to use a parametric approach with the inherent underlying assumptions. The use
of nonparametric methods in discrimination, regression and density estimation has been
increasing with the continuing development of computing power. In most applications it is
the cost of data collection that far exceeds any other cost and the nonparametric approach is
appealing because it does not make the (often gross) assumptions regarding the underlying
population distributions that other discrimination methods do.

7.3 Rule induction

7.3.1 Introduction

In the previous section, we presented an approach to classification based on the construction
of decision trees using a recursive partitioning algorithm. Such decision trees may be used

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

RULE INDUCTION 343

to generate a set of IF-THEN rules that represents the learned model. Rule-based approaches
produce descriptive models that can be easier to interpret than the decision tree classifier. In
this section, we consider two major approaches to rule induction:

� rule extraction from decision trees;

� rule induction using a sequential covering approach.

Much of the work in this area has been developed in the machine learning literature and
can be found in books on data mining. Nevertheless, it is included here since increasingly
many application domains require some degree of classification rule interpretability: it is
necessary for a classifier to ‘explain’ its decision and approaches that provide a description
of the decision boundary in terms of rules are of growing interest. In addition, the area of
research that bridges rule-based and statistical approaches is an active research area.

7.3.1.1 Notation and terminology

A rule-based classifier represents the model as a set of IF-THEN rules. An IF-THEN rule, r,
is an expression of the form

r: IF condition THEN conclusion

For example, in the loan applicant decision tree example (Figure 7.1), we have the rule r1

r1: IF income = medium AND marital status = married THEN loan

The left-hand side of the rule (the IF part) is the rule antecedent or precondition and contains
a conjunction of tests on features:

condition = (A1 op v1) ∧ (A2 op v2) ∧ · · · ∧ (Ak op vk)

where ∧ is the conjunction operator (AND); op is a logical operator from the set { =, �=,
<, >, ≤, ≥}; and (Aj, vj) are variable-value pairs. In the above condition, k = 2; (A1, v1) =
(income, low); (A2, v2) = (marital status, married); and op is = for all tests.

The right-hand side of the rule (the THEN part) is the rule consequent, which for
classification problems is the predicted class.

7.3.1.2 Coverage and accuracy

A rule covers a pattern x if the antecedent is satisfied (the rule is said to be triggered). For
example, a loan applicant with x = (medium, married, good) satisfies the antecedent of the
rule r1 above, or r1 covers x. The coverage of a rule r is the proportion of patterns covered
by the rule:

Coverage (r) = ncovers (r)

N

where ncovers(r) is the number of patterns covered by the rule r and N is the total number of
patterns in the dataset.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

344 RULE AND DECISION TREE INDUCTION

The accuracy of a rule r is the proportion of patterns covered that the rule correctly
classifies,

Accuracy (r) = ncorrect (r)

ncovers (r)

where ncorrect(r) is the number of patterns correctly classified by rule r.

7.3.1.3 Using a rule-based classifier

Suppose that our rule-based classifier consists of a set of rules (r1, . . . , rn). A rule-based
classifier predicts the class of a given pattern x using the predictions of the rules ri that are
triggered by x. If no two rules are triggered by the same pattern x, the rules are said to be
mutually exclusive. If there is one rule for every combination of feature values, the rules are
said to be exhaustive. In this case, every potential pattern triggers a rule, or there is a rule for
every part of the feature space.

7.3.1.4 Handling conflict and indecision

A set of mutually exclusive and exhaustive rules ensures that every pattern is covered by
exactly one rule. However, not all rule-based classifiers have this property:

� a rule set may not be exhaustive – in this case there may be patterns for which no rule
triggers;

� a rule set may not be mutually exclusive – several rules may be triggered by the same
record. If each of the rules triggered produces the same class prediction, then there is
no conflict to resolve. However, if a conflict arises, a strategy for resolution must be
provided.

No rule triggered
If no rule is triggered, then we need a strategy for assigning a class to the pattern x. We add
a default rule to the rule set which triggers when other rules fail. This rule specifies a default
class based on the training data and may typically be the majority class of the patterns in the
training set not covered by a rule.

Multiple rules triggered
There are many approaches to conflict resolution when multiple rules are triggered. One
approach is to use all the predictions and to make a class decision based on the number of
votes cast for a particular class by the set of rules. This may simply be a majority vote, or
the votes weighted by the rule’s accuracy. An alternative approach is to order the rules and to
proceed through the rule list in order until the first one is triggered and to use that rule’s class
prediction.

Class-based ordering With this scheme, the rules are sorted according to their class
prediction, so that rules belonging to the same class appear together in the list. Classes are
ranked according to the ‘importance’ of the class (for example, the most common class is
placed first in the list).

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

RULE INDUCTION 345

Rule-based ordering The rules are ordered according to some measure of rule quality
[for example, accuracy, coverage, size (the number of features tested in the condition)]. A
disadvantage of this approach is that a given rule in the list implies the negation of rules
preceding it. This can make interpretation difficult, particularly for lower-ranked rules.

7.3.2 Generating rules from a decision tree

To extract a set of rules from a decision tree, every path from the root node to a leaf node is
expressed as a classification rule. The rule antecedent is the conjunction of the test conditions
along the path from the root to the leaf. The rule consequent (the class prediction) is the class
label assigned to the leaf node. The rules extracted from Figure 7.1 are:

IF income = high THEN loan

IF income = medium AND marital status = married THEN loan

IF income = medium AND marital status = not married THEN no loan

IF income = low AND credit rating = good THEN loan

IF income = low AND credit rating = poor THEN no loan

The rules extracted from the tree are mutually exclusive and exhaustive. In some cases, the
set may be large or difficult to interpret and it may be possible to simplify some of the rules.
However, the rules obtained after simplification may no longer be mutually exclusive.

7.3.2.1 Rule pruning in C4.5

The decision tree algorithm C4.5 has a mechanism to express the learnt decision tree as an
ordered list of IF-THEN rules. The number of rules is usually substantially fewer than the
number of leaf nodes in the tree since a rule pruning procedure is employed. This removes
one of the conjuncts in turn and assesses the classification error rate. Often it leads to rules
that are more easily interpreted.

7.3.2.2 Conflict resolution in C4.5

C4.5 adopts a simple conflict resolution scheme. It uses a class-based ordering: rules that
predict the same class are grouped together and then the classes are ordered using the minimum
description length principle (Quinlan, 1993; see Chapter 13). The first rule in the list that covers
a pattern is then used to predict the class of the pattern.

7.3.3 Rule induction using a sequential covering algorithm

Extracting rules directly from a dataset, without generating a decision tree first, can be achieved
using the sequential covering algorithm. Rules are learned sequentially, extracted for one class
at a time, with the order of the classes depending on several factors such as class priors and
misclassification costs.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

346 RULE AND DECISION TREE INDUCTION

Algorithm 7.1 Sequential covering algorithm.

Let D (R) be the set of training patterns and their class labels not covered by the rule set R.
Initially, D = {(xi, zi) , i = 1, . . . , n}, the dataset of patterns xi and their corresponding class
labels, zi ∈ {ω1, . . . , ωC}.

LetA be the set of features and corresponding values the features take:A = {(
X j, v j

)}
. So

for the loan example, A = {(income, high), (income, medium), (income, low), (MS, married),
(MS, not married), (CR, good), (CR, poor)}.

Initialise the order of the classes, Y = {y1, . . . , yC} (where {y1, . . . , yC} is a permutation
of {ω1, . . . , ωC}).

1. Initialise R = { }, the initial rule list.

2. For each class y ∈ Y
Repeat

(a) Rule, r = Learn-One-Rule (D (R) ,A, y)

(b) Add r to the current list of rules, R: R = R ∨ r

(c) Remove patterns from D covered by the rule, r

until a terminating condition is satisfied.

3. Return the rule set, R.

7.3.3.1 Sequential covering algorithm

A description of the approach is provided by Algorithm 7.1. It uses the Learn-One-Rule
function described below.

Suppose that we wish to extract a set of rules for class ωj. The patterns for class ωj are
labelled as positive and all remaining patterns are labelled as negative. We seek a rule that
covers as many of the patterns of class ωj as possible, and ideally none (or few) of the patterns
of the remaining classes. Denote this rule by r1. All the training patterns covered by r1 are
removed from the dataset and the algorithm finds the next best rule to classify correctly the
patterns from class ωj. The process continues until a terminating condition is satisfied (when
the added rule fails to improve the accuracy of the set of rules on a validation set). Once this
is achieved, rules are generated for the next class. The outcome is a set of classification rules,
ordered by class.

The approach is depicted pictorially in Figure 7.13. Figure 7.13(a) shows the distribution
of three classes, labelled as �, � and �. First, we seek rules for the class �, which is labelled
as the positive class and the remaining classes as the negative class [Figure 7.13(b)]. The rule
R1, whose coverage is shown in Figure 7.13(c) is extracted first since it is the rule covering
the greatest proportion of positive patterns. The patterns that it covers are removed from the
dataset [Figure 7.13(d) and a second rule, R2, is sought. The coverage is shown in Figure
7.13(e) and the patterns removed from the training dataset. The algorithm then proceeds to
find the rules for the next class [Figure 7.13(f)].

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

RULE INDUCTION 347

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

R1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

R1

R2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

R1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1(a) (b)

(c) (d)

(e) (f)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 7.13 Sequential covering algorithm illustration.

7.3.3.2 Learn-One-Rule function

The Learn-One-Rule procedure in Algorithm 7.1 extracts the best rule for the current class
given the current set of training patterns (that is, the original set of training data less those
patterns already covered by the rules extracted so far). The procedure proceeds in a ‘greedy’
fashion – making a locally optimal decision at each stage of the algorithm. It seeks an optimal
rule by refining the current best rule until a stopping criterion is reached.

Rule growing
Rules are generally grown under a general-to-specific or specific-to-general strategy. Under
the general-to specific approach, the initial rule is of the form

IF <empty> THEN class=y

that is, the condition is empty and the rule consequent is the class under consideration.
The rule covers all patterns in the current set of patterns and would have poor quality, as
assessed according to some rule evaluation measure (discussed below). The rule is grown by
adding conjuncts (tests on the feature values) to improve the rule’s quality. There may be many
features, each one taking many possible values, and one approach is to choose the feature-value

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

348 RULE AND DECISION TREE INDUCTION

combination that improves the rule quality the most. The process repeats, greedily adding
more conjuncts, until a stopping criterion is met (for example, the rule quality meets a
desired level).

Thus, at each step of the rule learning in Learn-One-Rule the current best choice of feature-
value combination is added. This may lead to suboptimal rules – the current best choice may
turn out ultimately to be a poor choice when additional feature-value combinations are con-
sidered. A modification of the approach designed to reduce this effect is to select the k best
feature-value combinations at each stage and to maintain the k best candidate rules. That is, for
each member of a given set of k rules, all feature-value combinations are considered. After re-
moving duplicate rules, the k best rules are retained. This is termed a beam search (Liu, 2006).

Evaluation measures
A measure of rule quality is required in order to determine which feature-value combination
should be appended to the rule during the Learn-One-Rule growing process. Rule accuracy,
an obvious choice, has its limitations in that it is not a reliable measure of rule quality. It does
not take into account coverage of the rule. Consider the example of a dataset with 70 positive
and 80 negative patterns and the choice between two rules:

R1: covers 50 patterns and correctly classifies 47

R2: covers 3 samples and correctly classifies each one

Rule R2 has the greater accuracy, but is not necessarily the better rule because of its small
coverage. There have been several approaches to handle this situation.

1. Information gain, proposed in FOIL (first-order inductive learner; Quinlan, 1990). Let
the number of positive samples covered by the rule r be p0 and the number of negative
samples be n0. Denote the new rule (after the addition of a conjunct) by r′ and the
number of positive samples covered by r′ by p1 and the number of negative samples
by n1. FOIL assesses the information gained by the addition of a conjunction to r to
form r′ as

FOIL Gain = p1 log2

[(
p1

p1 + n1

) (
p0 + n0

p0

)]

This favours rules that have high accuracy and high coverage of the positive patterns.
For the example above, p0 = 70, n0 = 80, p1 = 47 and n1 = 3 for rule R1, giving
an information gain of 46.5; for rule R2, p1 = 3 and n1 = 0 and the information
gain is 2.73.

2. Likelihood ratio. A statistical test is used to prune rules that have poor coverage. It
is used to assess whether the observed distribution of the patterns among classes is
attributed to chance. We compute the likelihood ratio test statistic

L = 2
C∑

i=1

fi log

(
fi

ei

)

where C is the number of classes, fi is the observed frequency of each of the classes
among the patterns covered by the rule and ei is the expected frequency of the rule if

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

RULE INDUCTION 349

the rule made predictions at random (it depends on the class priors and the coverage
of the rule). The statistic has a χ2 distribution with C − 1 degrees of freedom. A large
value of L suggests there is a significant difference in the number of correct predictions
made by the rule than random guessing. The performance of the rule is not due to
chance. The rule giving the larger value of L is the preferred rule. For example, using
the illustration above, the expected frequency for the positive class, e+ = 50 × 70/

150 = 23.3 for Rule R1 and e− = 50 × 80/150 = 26.7, giving

L(R1) = 2
[
47 log2

(
47

23.3

) + 3 log2

(
3

26.7

)] = 90.95

For rule R2, e+ = 3 × 70/150 = 1.4 and e− = 3 × 80/150 = 1.6, giving

L(R2) = 2
[
3 log2

(
3

1.4

) + 0 × log2

(
0

1.6

)] = 5.46

Rule pruning
Note that the Learn-One-Rule algorithm does not employ a separate validation set; rule quality
is assessed on the basis of the training data alone. Therefore, the resulting rule is likely to
overfit the data and provide an optimistic estimate of performance. One approach to improve
performance is to remove conjuncts, one at a time, while monitoring the performance on a
separate validation set. If the error decreases, on the removal of a conjunct, the pruned rule is
preferred.

7.3.3.3 Illustration

RIPPER (repeated incremental pruning to produce error reduction) is an approach proposed
by Cohen (1995) to address some of the computational issues arising from the application of
existing rule induction systems applied to large noisy datasets. For multiple classes, the classes
are ordered ω1, . . . , ωC, where ω1 is the least prevalent and ωC the most prevalent. Then,
starting with ω1 as the positive class and the remaining classes as the negative class, a rule set
is built to separate the positive class from the negative class, one rule at a time. After growing
a rule, it is immediately pruned using the separate pruning set to monitor performance. The
rule is then added to the rule set provided that it does not violate a stopping condition.

Rule growing and pruning
Beginning with an empty set of conjunctions, a conjunction is added that maximises FOIL’s
information gain criterion until the rule covers no examples from the negative class. The rule
is then pruned by deleting the conjunct that maximises the function

v∗ = p − n

p + n

where p (n) is the number of positive (negative) examples in the pruning set covered by the
rule, subject to performance on the pruning set not deteriorating. The rule is then added to
the rule set (if it does not violate the stopping condition). The positive and negative examples
covered by the rule are removed from the training set and, if there are still positive examples
remaining, a new rule is grown.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

350 RULE AND DECISION TREE INDUCTION

Stopping condition
The stopping condition employed by RIPPER is based on the description length of the rule
set and the examples. If the new rule increases the total description length by d bits [Cohen
(1995) takes d = 64], then no further rules are added to the rule set. The rule set is then
examined and rules are deleted that reduce the total description length.

Optimisation of the rule set
The final stage of RIPPER is a rule optimisation process that examines each rule in turn and
generates a revision rule and a replacement rule. The MDL principle is then used to decide
whether the final set includes the original rule, its revision rule or its replacement rule (for
further details see Cohen, 1995).

7.3.4 Example application study

The problem
Discovery of classification rules for Egyptian rice diseases (El-Telbany et al., 2006). The main
aim of the research is the discovery and control of diseases and an automatic rule discovery
approach was taken to help farmers identify diseases from collected evidence. Formalising
knowledge that can benefit agriculture required an approach that had interpretability. Disease
identification is important as it is estimated that rice diseases cause losses that reduce the
potential yield by 15%.

Summary
The C4.5 decision tree algorithm was used to discover classification rules and performance
suitable for accurate classification of the disease demonstrated.

The data
The data consisted of measurements on six features [variety, age, part (e.g. leaves, grains),
appearance, colour, temperature] for each of the five most important diseases (blight, brown-
spot, false smut, white tip nematode and stem rot). The features were a mixture of continuous
and categorical variables. A total of 206 samples were collected.

The model
A decision tree was constructed using the C4.5 algorithm (Quinlan, 1993).

Training procedure
The algorithm was trained using the default parameters for C4.5 in WEKA (Witten and Frank,
2005). A cross-validation procedure was used to assess performance.

Results
Rules were extracted from the decision tree. Two of the resulting rule set are as follows:

IF appearance=spot AND colour=olive THEN disease=blight

IF appearance=spot AND colour=brown AND age≤55 THEN disease=brown-
spot.

A good classification accuracy was achieved.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

MULTIVARIATE ADAPTIVE REGRESSION SPLINES 351

7.3.5 Further developments

Rule induction approaches induce a set of rules so that (in the case of two classes) a pattern is
classified as belonging to the positive class if it satisfies one of the rules. We have described
approaches for handling multiclass problems. These approaches provide a description of the
classification rule in terms of the features and values of the patterns.

On the other hand, many of the techniques presented earlier in this book classify an object
by defining a probability distribution over the feature space and providing a probability of
class membership.

Integrating probabilistic and rule induction approaches (in areas such as probabilistic
inductive logic programming) has been addressed by several authors and is an active area of
research (Getoor and Taskar, 2007; De Raedt et al., 2008).

7.3.6 Summary

Rule-based classifiers offer descriptive models that are interpretable. Rules may be extracted
directly from a decision tree (leading to a set of mutually exclusive and exhaustive rules) or
using a rule induction approach such as sequential covering. These methods may be regarded
as providing a basis function model for the discriminant function, where the basis function is
a hyperrectangle in the feature space and associated with each basis function is a class label.
In the case of the rule induction methods, the basis functions overlap, permitting complex
decision boundaries to be modelled more easily, but requiring a conflict resolution strategy
since multiple rules giving conflicting class predictions may be triggered by a pattern.

7.4 Multivariate adaptive regression splines

7.4.1 Introduction

The multivariate adaptive regression splines (MARS)3 (Friedman, 1991) approach may be
considered as a continuous generalisation of the regression tree methodology treated separately
in Section 7.2 and the presentation here follows Friedman’s approach.

Suppose that we have a dataset of n measurements on p variables, {xi, i = 1, . . . , n},
xi ∈ R

p, and corresponding measurements on the response variable {yi, i = 1, . . . , n}. We
shall assume that the data have been generated by a model

yi = f (x) + ε

where ε denotes a residual term. Our aim is to construct an approximation, f̂ , to the function f .

7.4.2 Recursive partitioning model

The recursive partitioning model takes the form

f̂ (x) =
M∑

m=1

amBm(x)

3 MARS is a trademark of Salford Systems.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

352 RULE AND DECISION TREE INDUCTION

b1

b2

b3

x2

a1 a2 x1

u(11)

u(10)
u(6)

u(4) u(8)

u(9)

4 6

89 1011

1

2 3

5 7

Figure 7.14 Classification tree and decision regions; the decision nodes (circular) are char-
acterised as follows: node 1, x2 > b2; node 2, x1 < a2; node 5, x2 > b3; node 3, x1 > a1; node
7, x2 < b1. The square nodes correspond to regions in the feature space.

The basis functions Bm are produced recursively and take the form

Bm(x) = I{x ∈ um}

where I is an indicator function with value unity if the argument is true and zero otherwise. We
have used the notation that {um, m = 1, . . . , M} is a partition of the data space R

p (that is, ui is
a subspace of R

p such that ui ∩ uj = ∅ for i �= j, and ∪iui = R
p). The set {am, m = 1, . . . , M}

are the coefficients in the expansion whose values are determined (often) by a least-squares
minimisation procedure for fitting the approximation to the data. In a classification problem,
a regression for each class separately may be performed (using binary dependent variables,
with value equal to 1 for xi ∈ class ωj, and zero otherwise) giving C functions f̂ j, on which
discrimination is based.

The basis functions are produced by a recursive partitioning algorithm (Friedman, 1991)
and can be represented as a product of step functions. Consider the partition produced by the
tree given in Figure 7.14. The first partition is on the variable x2 and divides the plane into
two regions, giving basis functions

H[(x2 − b2)] and H[−(x2 − b2)]

where

H(x) =
{

1 x ≥ 0
0 otherwise

The region x2 < b2 is partitioned again, on variable x1 with threshold a1, giving the basis
functions

H[−(x2 − b2)]H[+(x1 − a1)] and H[−(x2 − b2)]H[−(x1 − a1)]

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

MULTIVARIATE ADAPTIVE REGRESSION SPLINES 353

The final basis functions for the tree comprise the products

H[−(x2 − b2)]H[−(x1 − a1)]H[+(x2 − b1)]
H[−(x2 − b2)]H[−(x1 − a1)]H[−(x2 − b1)]
H[−(x2 − b2)]H[+(x1 − a1)]
H[+(x2 − b2)]H[−(x1 − a2)]
H[+(x2 − b2)]H[+(x1 − a2)]H[+(x2 − b3)]
H[+(x2 − b2)]H[+(x1 − a2)]H[−(x2 − b3)]

Thus, each basis function is a product of step functions, H.
In general, the basis functions of the recursive partitioning algorithm have the form

Bm(x) =
Km∏

k=1

H[skm(xv(k,m) − tkm)] (7.7)

where skm take the values ±1 and Km is the number of splits that give rise to Bm(x); xv(k, m) is
the variable split and tkm are the thresholds on the variables.

The MARS procedure is a generalisation of this recursive partitioning procedure in the
following ways.

7.4.2.1 Continuity

The recursive partitioning model described above is discontinuous at region boundaries. This
is due to the use of the step function H. The MARS procedure replaces these step functions
by spline functions. The two-sided truncated power basis functions for qth-order splines are

b±
q (x − t) = [±(x − t)]q

+

where [.]+ denotes that the positive part of the argument is considered. The basis functions
b+

q (x) are illustrated in Figure 7.15.
The step function, H, is the special case of q = 0. The MARS algorithm employs q = 1.

This leads to a continuous function approximation, but discontinuous first derivatives.
The basis functions now take the form

Bq
m(x) =

Km∏
k=1

[skm(xv(k,m) − tkm)]q
+ (7.8)

where the tkm are referred to as the knot locations.

7.4.2.2 Retention of parent functions

The basic recursive partitioning algorithm replaces an existing parent basis function by its
product with a step function and its product with the reflected step function. The number
of basis functions therefore increases by one on each split. The MARS procedure retains
the parent basis function. Thus the number of basis functions increases by two at each split.
This provides a much more flexible model that is capable of modelling classes of functions

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

354 RULE AND DECISION TREE INDUCTION

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

q = 0

q = 1

q = 2

Figure 7.15 Spline functions, b+
q (x), for q = 0, 1, 2.

that have no strong interaction effects, or strong interactions involving at most a few of the
variables, as well as higher-order interactions. A consequence of the retention of the parent
functions is that the regions corresponding to the basis functions may overlap.

7.4.2.3 Multiple splits

The basic recursive partitioning algorithm allows multiple splits on a single variable: as part
of the modelling procedure, a given variable may be selected repeatedly and partitioned. Thus
basis functions comprise products of repeated splits on a given variable (the basis functions
for the tree in Figure 7.14 contain repeated splits). In the continuous generalisation, this leads
to functional dependencies of higher order than q [see Equation (7.8)] on individual variables.
To take advantage of the properties of tensor product spline basis functions, whose factors
involve a different variable, MARS restricts the basis functions to products involving single
splits on a given variable. By reselecting the same parent for splitting (on the same variable),
the MARS procedure is able to retain the flexibility of the repeated split model (it trades depth
of tree for breadth of tree).

The second stage in the MARS strategy is a pruning procedure; basis functions are
deleted one at a time – the basis function being removed being that which results in the fit
being improved the most (or degrades it the least). A separate validation set could be chosen
to estimate the goodness of fit of the model. The lack-of-fit criterion proposed for the MARS
algorithms is a modified form of the generalised cross-validation criterion of Craven and
Wahba (1979). In a discrimination problem, a model could be chosen that minimises error
rate on the validation set.

In applying MARS to discrimination problems, one approach is to use the usual binary
coding for the response function, fj, j = 1, . . . , C, with f j(x) = 1 if x is in class ωj and zero
otherwise. Each class may have a separate MARS model; the more parsimonious model of
having common basis functions for all classes will reduce the computation. The weights ai

in the MARS algorithms are replaced by vectors ai, determined to minimise a generalised
cross-validation measure.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

MULTIVARIATE ADAPTIVE REGRESSION SPLINES 355

7.4.3 Example application study

The problem
This application is to construct reliable network intrusion detection systems for protecting
information systems security against the increasing threat of cyber attacks (Mukkamala et al.,
2004).

Summary
The detection and classification of network traffic behaviour types based on an examination
of patterns of user activity is a problem requiring the analysis of often huge amounts of data.
Three nonparametric models (MARS, support vector machines and neural networks) were
trained to predict traffic patterns in a network.

The data
The data, supplied by MIT Lincoln Laboratory for a DARPA intrusion detection evaluation,
comprised records in five classes of behaviour: normal, probing (surveillance), denial of ser-
vice, user to super-user (unauthorised access to super-user), and remote to local (unauthorised
access from a remote machine). Separate training and test sets were generated.

The model
Three types of model were assessed. The MARS model used cubic splines to fit the data with
5 basis functions.

Training procedure
Five MARS models were employed for the classification (one developed for each of the
classes). A model was generated that overfitted the data and a backwards pruning procedure
employed to remove unwanted basis functions.

Results
For this study, MARS gave superior classification performance for the most important classes
(user to super-user and remote to local). The development of the MARS approach for dy-
namic environments, essential in applications such as intrusion detection, was identified as an
important way forward.

7.4.4 Further developments

A development of the basic model to include procedures for mixed ordinal and categorical
variables is provided by Friedman (1993). POLYMARS (Stone et al., 1997) is a development
to handle a categorical response variable, with application to classification problems.

Time series versions of MARS (TSMARS) have been developed for forecasting appli-
cations (De Gooijer et al., 1998). A Bayesian approach to MARS (BMARS) fitting, which
averages over possible models (leading to a consequent loss interpretability of the final model),
is described by Denison et al. (1998b) [see also Holmes and Denison (2003) for an application
in a classification context].

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

356 RULE AND DECISION TREE INDUCTION

7.4.5 Summary

MARS is a method for modelling high-dimensional data in which the basis functions are
a product of spline functions. MARS searches over threshold positions on the variables, or
knots, across all variables and interactions. Once it has done this, it uses a least squares
regression to provide estimates of the coefficients of the model.

MARS can be used to model data comprising measurements on variables of different
type – both continuous and categorical. The optimal model is achieved by growing a large
model and then pruning the model by removing basis functions until a lack-of-fit criterion is
minimised. In common with decision trees, it selects the variables important for classification,
thus performing automatic variable selection.

7.5 Application studies

Applications of decision tree and rule induction methodology are varied and include the
following:

� Intrusion detection. Komviriyavut et al. (2009) evaluate C4.5 and RIPPER on an online
dataset in a study to detect attacks on computer networks. The network data collected
were processed to produce 13 features. Rules were developed to classify the data into
Normal, Denial of Service attack and Probe attack. The training data comprised 7200
records equally distributed between the three classes. The test data comprised 4800
records, also equally distributed. RIPPER obtained 17 rules. Both approaches gave
similar (very good) results (classification rates greater than 98%). [see also Saravanan
(2009)].

� Power systems security. Swarnkar and Niazi (2005) [see also Swarup et al. (2005)
and Wehenkel and Pavella (1993)] develop a decision tree approach based on CART
for online transient security evaluation of a power system to predict system security
and provide a preventative control strategy. Such an approach is an alternative to
neural networks, which although showing promise do not offer the explanation of a
decision tree.

� Predicting stroke inpatient rehabilitation outcome. A classification tree model (CART)
was developed to predict rehabilitation outcomes for stroke patients (Falconer et al.,
1994). The data comprised measurements on 51 ordinal variables on 225 patients. A
classification tree was used to identify those variables most informative for predict-
ing favourable and unfavourable outcomes. The resulting tree used only 4 of the 51
variables measured on admission to a university-affiliated rehabilitation institute, im-
proving the ability to predict rehabilitation outcomes, and correctly classifying 88% of
the sample.

� Gait events. In a study into the classification of phases of the gait cycle (as part
of the development of a control system for functional electrical stimulation of the
lower limbs), Kirkwood et al. (1989) develop a decision tree approach that enable
redundant combinations of variables to be identified. Efficient rules are derived with
high performance accuracy.

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

APPLICATION STUDIES 357

� Thyroid diseases. In a study to use a decision tree to synthesise medical knowledge,
Quinlan (1986) employs C4, a descendant of ID3 that implements a pruning algorithm,
to generate a set of high-performance rules. The data consist of input from a referring
doctor (patient’s age, sex and 11 true–false indicators); a clinical laboratory (up to six
assay results) and a diagnostician. Thus, variables are of mixed type, with missing
values and some misclassified samples. The pruning algorithm leads to an improved
simplicity and intelligibility of derived rules.

Other applications have been in the areas of telecommunications, marketing and industrial
applications. See Langley and Simon (1995) for a review of the applications of machine
learning and rule induction.

There have been several comparisons with neural networks and other discrimination
methods; for example,

� Digit recognition. Brown et al. (1993) compare a classification tree with a multilayer
perceptron (MLP) on a digit recognition (extracted from license plate images) problem
(with application to highway monitoring and tolling). All features were binary and the
classification tree performance was poorer than the MLP, but performance improved
when features that were a combination of the original variables were included.

� Various datasets. Curram and Mingers (1994) compared an MLP with a decision tree on
several datasets. The decision tree was susceptible to noisy data, but had the advantage
of providing insight. Shavlik et al. (1991) compared ID3 with an MLP on four datasets,
finding that the MLP handled noisy data and missing features slightly better than ID3,
but took considerably longer to train.

Other comparative studies include speaker-independent vowel classification and load forecast-
ing (Atlas et al., 1989), finding the MLP superior to a classification tree; disk drive manufacture
quality control and the prediction of chronic problems in large-scale communication networks
(Apté et al., 1994).

The MARS methodology has been applied to problems in classification and regression
including the following:

� Intrusion detection systems. The development of efficient and reliable intrusion detec-
tion systems is essential for protecting information systems security from the increasing
threat of cyber attack. This is a great challenge. Mukkamala et al. (2004) compare
MARS with neural networks and support vector machines on a problem to classify
attack into four main categories. MARS was found to be superior to the other methods
in its ability to classify the most important classes in terms of attack severity.

� Ecology. Leathwick et al. (2005) use MARS for predicting the distributions of fresh-
water fish. MARS is used to model the nonlinear relationship between a set of environ-
mental variables and the occurrence of fifteen species of fish. The R implementation of
MARS was used to obtain a set of basis functions that were used in further modelling.

� Economic time series. Sephton (1994) uses MARS to model three economic time series:
annual US output, capital and labour inputs; interest rates and exchange rates using a
generalised cross-validation score for model selection.

� Telecommunications. Duffy et al. (1994) compare neural networks with CART and
MARS on two telecommunications problems: modelling switch processor memory

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

358 RULE AND DECISION TREE INDUCTION

(a regression problem) and characterising traffic data (speech and modem data at three
different baud rates) (a four-class discrimination problem).

� Particle detection. In a comparative study of four methods of discrimination, Holmström
and Sain (1997) compare MARS with a quadratic classifier, a neural network and
kernel discriminant analysis on a problem to detect a weak signal against a dominant
background. Each event (in the two-class problem) was described by 14 variables and
the training set comprised 5000 events. MARS appeared to give best performance.

7.6 Summary and discussion

Recursive partitioning methods have a long history and have been developed in many dif-
ferent fields of endeavour. Complex decision regions can be approximated by the union of
simpler decision regions. A major step in this research was the development of CART, a
simple nonparametric method of partitioning data. The approach described in this chapter for
constructing a classification tree is based on that work. The basic idea has then been developed
in two different directions: rule induction and the modelling of continuous functions.

Decision trees may be used to generate a set of IF-THEN rules that provide an interpretable
classification rule important in some applications. There are other approaches to rule induction
and one based on a sequential covering algorithm has been described.

There have been many comparative studies between decision trees and neural networks,
especially MLPs. Both approaches are capable of modelling complex data. The MLP usually
takes longer to train and does not provide the insight of a tree, but performance has often been
better than a tree on the datasets used for the evaluation (which may favour an MLP anyway
since they variables are continuous). Further work is required.

The multivariate adaptive regression spline approach is a recursive partitioning method that
utilises products of spline functions as the basis functions. Like CART, it is also well-suited
to model mixed variable (discrete and continuous) data.

7.7 Recommendations

Although it cannot be said that classification trees perform substantially better than other
methods (and for a given problem, there may be a parametric method that will work better – but
you do not know which one to choose), their simplicity and consistently good performance on
a wide range of datasets have led to their widespread use in many disciplines. We recommend
that you try them for yourselves.

Specifically, classification tree approaches are recommended:

1. For complex datasets in which you believe decision boundaries are nonlinear and
decision regions can be approximated by the sum of simpler regions.

2. For problems where it is important to gain an insight into the data structure and the
classification rule, the explanatory power of trees may lead to results that are easier to
communicate than other techniques.

3. For problems with data consisting of measurements on variables of mixed type (con-
tinuous, ordinal, nominal).

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

EXERCISES 359

4. Where ease of implementation is required.

5. Where speed of classification performance is important – the classifier performs simple
tests on (single) variables.

The above recommendations apply equally to methods of rule induction, particularly the
interpretability aspect.

MARS is simple to use and is recommended for high-dimensional regression problems,
for problems involving variables of mixed type and for problems where some degree of
interpretability of the final solution is required.

7.8 Notes and references

There is a very large literature on classification trees in the areas of pattern recognition, artificial
intelligence, statistics and the engineering sciences, but by no means exclusively within these
disciplines. Many developments have taken place by researchers working independently
and there are many extensions of the approach described in this chapter as well as many
alternatives. A survey is provided by Safavian and Landgrebe (1991); see also Feng and
Michie (1994). Several tree-based approaches were assessed as part of the Statlog project
(Michie et al., 1994) including CART, which proved to be one of the better ones because it
can incorporate costs into the decision.

Quinlan developed C4.5, building on his earlier algorithm ID3. The decision tree algorithm
implemented in the machine learning software WEKA (Witten and Frank, 2005), J48, is an
implementation of C4.5. A later development, with added features, is C5.0.

Examples of rule induction algorithms that employ sequential covering are CN2 (Clark
and Niblett, 1989) and RIPPER (Cohen, 1995).

MARS was introduced by Friedman (1991). Software for CART, other decision tree
software and MARS is publicly available (from Salford Systems and in the WEKA and R
software packages).

Exercises

1. In Figure 7.5, if regions u(4) and u(6) correspond to class ω1 and u(8), u(9), u(10) and
u(11) to class ω2, construct a multilayer perceptron with the same decision boundaries.

2. A standard classification tree produces binary splits on a single variable at each node. For
a two-class problem, using the results of Chapter 5, describe how to construct a tree that
splits on a linear combination of variables at a given node.

3. The predictability index (relative decrease in the proportion of incorrect predictions for
split s on node t) is written (using the notation of Section 7.2.6)

τ (ω|s) =
∑C

j=1 p2(ω j|tL)pL + ∑C
j=1 p2(ω j|tR)pR − ∑C

j=1 p2(ω j|t)
1 − ∑C

j=1 p2(ω j|t)

P1: QTA/XYZ P2: ABC

JWST102-c07 JWST102-Webb August 29, 2011 9:13 Printer Name: Yet to Come

360 RULE AND DECISION TREE INDUCTION

Show that the decrease in impurity when passing from one group to two subgroups for the
Gini criterion can be written

�I(s, t) =
C∑

j=1

p2(ω j|tL)pL +
C∑

j=1

p2(ω j|tR)pR −
C∑

j=1

p2(ω j|t)

and hence that maximising the predictability also maximises the decrease in impurity.

4. Consider the two-class problem with bivariate distributions characterised by x1 and x2

which can take three values. The training data are given by:

Class ω1 Class ω2

x1 x1

1 2 3 1 2 3

1 3 0 0 1 0 1 4
x2 2 1 6 0 x2 2 0 5 7

3 4 1 2 3 1 0 1

where, for example, there are four training samples in class ω1 with x1 = 1 and x2 = 3.
Using the Gini criterion, determine the split (variable and value) for the root node of a tree.

5. Construct a classification tree using dataset 1 from the exercises in Chapter 6. Initially allow
10 splits per variable. Monitor the performance on the validation set as the tree is grown.
Prune using the validation set to monitor performance. Investigate the performance of the
approach for p = 2, 5 and 10. Describe the results and compare with a linear discriminant
analysis.

6. Show that MARS can be recast in the form

a0 +
∑

i

fi(xi) +
∑

i j

fi j(xi, x j) +
∑
i jk

fi jk(xi, x j, xk) + · · ·

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

8

Ensemble methods

The classification techniques considered so far in this book predict the class membership of a
pattern based on a single classifier induced from the dataset. We now ask the question whether
we can gain improvements in performance by combining the outputs of several classifiers.
Ensemble methods (or classifier combination techniques) has been an area of growing research
in recent years and is related to developments in the data fusion literature where, in particular,
the problem of decision fusion (combining decisions from multiple target detectors) is being
addressed extensively.

8.1 Introduction

The approach to classifier design commonly taken is to identify a candidate set of plausible
models; to train the classifiers using a training set of labelled patterns and to adopt the classifier
that gives the best generalisation performance, estimated using an independent test set assumed
representative of the true operating conditions. This results in a single ‘best’ classifier that
may then be applied throughout the feature space. In the following chapter we shall address
the question of how we measure classifier performance to select a ‘best’ classifier.

We now consider the potential of combining classifiers for datasets with complex decision
boundaries. It may happen that, out of our set of classifiers, no single classifier is clearly
best (using some suitable performance measure, such as error rate). However, the set of
misclassified samples may differ from one classifier to another. Thus, the classifiers may give
complementary information and combination could prove useful.

A simple example is illustrated in Figure 8.1. Two linear classifiers, Cl1 and Cl2, are
defined on a univariate data space with the rule

Cli(x) > 0 ⇒ x ∈ class •
Cli(x) < 0 ⇒ x ∈ class � (8.1)

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

362 ENSEMBLE METHODS

�����•••••••��� ��
BA

Cl1 Cl2

Figure 8.1 Two linear discriminants defined on a univariate data space.

Thus, classifier Cl1 predicts class • for data points to the left of B and class � for points to
the right of B. Classifier Cl2 predicts class • for points to the right of A and class � for points
to the left. Neither classifier obtains 100% performance on the dataset. However, combining
them with the rule:

IF Cl1 AND Cl2 predict • THEN assign x to •
ELSE assign x to �

gives 100% performance.
The idea of combining classifiers is not a new one. Early work on multiclass discrimination

developed techniques for combining the results of two-class discrimination rules (Devijver
and Kittler, 1982) defining different rules for different parts of a feature space. The terms
‘dynamic classifier selection’ (Woods et al., 1997) and ‘classifier choice system’ (Hand et al.,
2001) have been used for classifier systems that attempt to predict the best classifier for
a given region of feature space. The term ‘classifier fusion’ or ‘multiple classifier system’
usually refers to the combination of predictions from multiple classifiers to yield a single class
prediction.

8.2 Characterising a classifier combination scheme

Combination schemes may themselves be classified according to several characteristics
including their structure, input data type, form of component classifiers and training
requirements. In this section, we summarise some of the main features of a combiner
according to the following taxonomy:

� feature space of classifiers – same or different;

� level of combiner – data, feature or decision;

� degree of training – fixed or trainable;

� form of individual component classifiers – common or dissimilar;

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CHARACTERISING A CLASSIFIER COMBINATION SCHEME 363

� structure – parallel, serial or hierarchical;

� optimisation – separate or simultaneous optimisation of classifiers and combiner.

We assume that there are measurements from C classes and there are L component classifiers.

8.2.1 Feature space

There are several ways of characterising multiple classifier systems according to the feature
space, as indeed there are with basic component classifiers. We define three broad categories
as follows:

C1. Different feature spaces
This describes the combination of a set of classifiers, each designed on different feature spaces
(perhaps using data from different sensors). For example, in a person verification application,
several classifier systems may be designed for use with different sensor data (for example,
retina scan, facial image, handwritten signature) and we wish to combine the outputs of each
system to improve performance.

Figure 8.2 illustrates this situation. A set of L sensors (S1, S2, . . . , SL) provides measure-
ments, x1, x2, . . . , xL, on an object. Associated with each sensor is a classifier (Cl1, Cl2, . . . ,
ClL) providing, in this case, estimates of the posterior probabilities of class membership, p(c|xi)
for sensor Si. The combination rule (denoted Com in the figure), which is itself a classifier
defined on a feature space of posterior probabilities, combines these posterior probabilities

Figure 8.2 Classifier fusion architecture, C1 – component classifiers defined on different
feature spaces.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

364 ENSEMBLE METHODS

to provide an estimate of p(c|x1, . . . , xL). Thus, the individual classifiers can be thought of as
performing a particular form of feature extraction prior to classification by the combiner.

The question usually addressed with this architecture is: Given the component classifiers,
what is the best combination rule? This is closely related to dynamic classifier selection and
to architectures developed in the data fusion literature (see Section 8.3).

C2. Common feature space
In this case, we have a set of classifiers, Cl1, . . . , ClL, each defined on the same feature space
and the combiner attempts to obtain a ‘better’ classifier through combination (Figure 8.3).

The classifiers can differ from each other in several ways.

1. The classifiers may be of different type, belonging to the set of favourite classifiers
of a user: for example, nearest neighbour, neural network, decision tree and linear
discriminant.

2. They may be of similar type (for example, all linear discriminant functions or all neural
network models) but trained using different training sets (or subsets of a larger training
set as in bagging described in Section 8.4.9), perhaps gathered at different times or
with different noise realisations added to the input.

3. The classifiers may be of similar type, but with different random initialisation of
the classifier parameters (for example, the weights in a neural network of a given
architecture) in an optimisation procedure.

In contrast with category C1, a question that we might ask here is: Given the combination
rule, what is the best set of component classifiers? Equivalently, in case 2 above for example,
how do we train our neural network models to give the best performance on combination?

The issue of accuracy and diversity of component classifiers (Hansen and Salamon, 1990)
is important for this multiple classifier architecture. Each component classifier is said to
be accurate if it has an error rate lower than that obtained by random guessing on new
patterns. Two classifiers are diverse if they make different errors in predicting the class of a

Figure 8.3 Classifier fusion architecture, C2 – component classifiers defined on a common
feature space of measurements x made by sensor S.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CHARACTERISING A CLASSIFIER COMBINATION SCHEME 365

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 8.4 Error rate of the ensemble as a function of the error rate of the base classifier, p.

pattern, x. To see why both accuracy and diversity are important, consider an ensemble of
three classifiers h1(x), h2(x) and h3(x), each predicting a class label as output. If all classifiers
produce identical outputs, then there will be no improvement gained by combining the outputs:
when h1 is incorrect, h2 and h3 will also be incorrect. However, if the classifier outputs are
uncorrelated, then when h1 is incorrect, h2 and h3 may be correct and, if so, a majority vote
will give the correct prediction. More specifically, consider L classifiers h1, . . . , hL, each with
an error rate of p < 1

2 . For the majority vote to be incorrect, we require that L/2 or more
classifiers be incorrect. The probability that R classifiers are incorrect is

L!

R!(L − R)!
pR(1 − p)L−R

The probability that the majority vote is incorrect is therefore1

L∑
R=�(L+1)/2�

L!

R!(L − R)!
pR(1 − p)L−R (8.2)

the probability under the binomial distribution that at least L/2 are incorrect (�.� denotes the
integer part). For example, with L = 11 classifiers, each with an error rate p = 0.25, the
probability of six or more classifiers being incorrect is 0.034, which is much less than the
individual error rate. Figure 8.4 plots the error rate of the ensemble, given by Equation (8.2),
as a function of the error rate of the base classifier p, for L = 11.

If the error rates of the individual classifiers exceed 0.5, then the error rate of the majority
vote will increase, depending on the number of classes and the degree of correlation between
the classifier outputs.

In both cases C1 and C2, each classifier is performing a particular form of feature extraction
for inputs to the combiner classifier. If this combiner classifier is not fixed (that is, it is allowed
to adapt to the forms of the input), then the general problem is one in which we seek the best
forms of feature extractor matched to a combiner (Figure 8.5).

1 For more than two classes, the majority vote could still produce a correct prediction even if more than L/2
classifiers are incorrect.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

366 ENSEMBLE METHODS

Figure 8.5 Classifier fusion architecture, C2 – component classifiers defined on a common
feature space with L component classifiers delivering features xi.

There is no longer a requirement that the outputs of the classifiers Cl1. . .ClL are estimates
of posterior probabilities (are positive and sum to unity over classes). Indeed, these may not be
the best features. Thus the component classifiers are not classifiers at all and the procedure is
essentially the same as many described elsewhere in this book – neural networks, projection
pursuit, and so on. In this sense, there is no need for research on classifier combination
methods since they impose an unnecessary restriction on the forms of the features input to
the combiner.

C3. Repeated measurements
The final category of combination systems arises due to different classification of an object
through repeated measurements. This may occur when we have a classifier designed on
a feature space giving an estimate of the posterior probabilities of class membership, but
in practice several (correlated) measurements may be made on the object (Figure 8.6). An
example is that of recognition of aircraft from visual or infrared data.

A probability density function of feature vectors may be constructed using a training
dataset. In the practical application, successive measurements are available from the sensor.
How can we combine these predictions? This is sometimes described as multiple observation
fusion or temporal fusion.

8.2.2 Level

Combination may occur at different levels of component classifier output.

L1. Data level
Raw sensor measurements are passed to a combiner that produces an estimation of the
posterior probabilities of class membership. This simply amounts to defining a classifier
on the augmented feature space comprising measurements on all sensor variables. That is,
for sensors producing measurements x, y and z, a classifier is defined on the feature vector
(x, y, z). In the data fusion literature (see Section 8.3) this is referred to as a centralised

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CHARACTERISING A CLASSIFIER COMBINATION SCHEME 367

Figure 8.6 Classifier fusion architecture, C3 – repeated measurements on a common feature
space. Sensor S produces a sequence of measurements xi, i = 1, . . . , T , which are input to
classifier Cl.

system: all the information collected at distributed sensors is passed to a central processing
unit that makes a final decision. A consequence of this procedure is that the combiner must
be constructed using data of a high dimensionality. Consequently, it is usual to perform some
feature selection or extraction prior to combination.

L2. Feature level
Each constituent classifier (we shall use the term ‘classifier’ even though the output may
not be an estimate of the posterior probabilities of class membership nor a prediction of
class) performs some local preprocessing, perhaps to reduce dimensionality. This could be
important in some data fusion applications where the communication bandwidth between
constituent classifiers and combiner is an important consideration. In data fusion, this is
termed a decentralised system. The features derived by the constituent classifier for input
(transmission) to the combiner can take several forms including the following:

1. A reduced-dimensional representation, perhaps derived using principal components
analysis.

2. An estimate of the posterior probabilities of class membership. Thus, each constituent
processor is itself a classifier. This is a very specific form of preprocessing that may
not be optimum, but it may be imposed by application constraints.

3. A coding of the constituent classifier’s input. For an input, x, the output of the
constituent classifier is the index, y, in a codebook of vectors corresponding to the

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

368 ENSEMBLE METHODS

codeword, z, which is nearest to x. At the combiner, the code index y is decoded
to produce an approximation to x (namely, z). This is then used, together with
approximations of the other constituent classifier inputs, to produce a classification.
Such a procedure is important if there are bandwidth constraints on the links between
constituent classifier and combiner. Procedures for vector quantisation (see Chapter 11)
are relevant to this process.

L3. Decision level
Each constituent classifier produces a unique class label. The combiner classifier is then
defined on an L-dimensional space of categorical variables, each taking one of C values.
Techniques for classifier construction on discrete variables (for example, histograms and
generalisations – maximum weight dependence trees and Bayesian networks – see Chapter 4)
can be used.

8.2.3 Degree of training

R1. Fixed combiners
In some cases, we may wish to use a fixed combination rule. This may occur if the training
data used to design the constituent classifiers are unavailable, or different training sets have
been used.

R2. Trainable combiners
Alternatively, the combination rule is adjusted based on knowledge of the training data used
to define the constituent classifiers. This knowledge can take different forms:

1. Probability density functions. The joint probability density function of constituent
classifier outputs is assumed known for each class through knowledge of the distribution
of the inputs and the form of the classifiers. For example, in the two-class target
detection problem, under the assumption of independent local decisions at each of
the constituent classifiers, an optimal detection rule for the combiner can be derived,
expressed in terms of the probability of false alarm and the probability of missed
detection at each sensor (Chair and Varshney, 1986).

2. Correlations. Some knowledge concerning the correlations between constituent clas-
sifier outputs is assumed. Again, in the target detection problem under correlated local
decisions (correlated outputs of constituent classifiers), Kam et al. (1992) expand the
probability density function using the Bahadur–Lazarsfeld polynomials to rewrite the
optimal combiner rule in terms of conditional correlation coefficients (see Section 8.3).

3. Training data available. It is assumed that the outputs of each of the individual con-
stituent classifiers are known for a given input of known class. Thus, we have a set of
labelled samples that may be used to train the combiner classifier.

8.2.4 Form of component classifiers

F1. Common form
Classifiers may all be of the same form. For example, they all may be neural networks
(multilayer perceptrons) of a given architecture; all linear discriminants or all decision trees.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CHARACTERISING A CLASSIFIER COMBINATION SCHEME 369

The particular form may be chosen for several reasons: interpretability – it is easy to interpret
the classification process in terms of simple rules defined on the input space; implementability –
the constituent classifiers are easy to implement and do not require excessive computation;
adaptability – the constituent classifiers are flexible and it is easy to implement diverse
classifiers whose combination leads to a lower error rate than any of the individuals.

F2. Dissimilar form
The constituent classifiers may be a collection of neural networks, decision trees, nearest
neighbour methods and so on, the set perhaps arising through the analysis of a wide range of
classifiers on different training sets. Thus, the classifiers have not necessarily been chosen so
that their combination leads to the best improvement.

8.2.5 Structure

The structure of a multiple classifier system is often dictated by a practical application.

T1. Parallel
The results from the constituent classifiers are passed to the combiner together before a
decision is made by the combiner.

T2. Serial
Each constituent classifier is invoked sequentially, with the results of one classifier being used
by the next one in the sequence, perhaps to set a prior on the classes.

T3. Hierarchical
The classifiers are combined in a hierarchy with the outputs of one constituent classifier
feeding as inputs to a parent node, in a similar manner to decision tree classifiers (see Chapter
7). Thus the partition into a single combiner with several constituent classifiers is less apparent,
with all classifiers (apart from the leaf and root nodes) taking output of a classifier as input
and passing its own outputs as input to another classifier.

8.2.6 Optimisation

Different parts of the combining scheme may be optimised separately or simultaneously,
depending on the motivating problem.

O1. Combiner
Optimise the combiner alone. Thus, given a set of constituent classifiers, we determine the
combining rule to improve performance the greatest.

O2. Constituent classifiers
Optimise the constituent classifiers. For a fixed combiner rule, and the number and type
of constituent classifiers, the parameters of these classifiers are determined to maximise
performance of the combined classifier.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

370 ENSEMBLE METHODS

O3. Combiner and constituent classifiers
Optimise both the combiner rule and the parameters of the constituent classifiers. In this case,
the constituent classifiers may not be classifiers in the strict sense, performing some form
of feature extraction. Practical constraints such as limitations on the bandwidth between the
constituent classifiers and the combiner may need to be considered.

O4. No optimisation
We are provided with a fixed set of classifiers and use a standard combiner rule that requires
no training (see Section 8.4).

8.3 Data fusion

Much of the work on multiple classifier systems reported in the pattern recognition, statis-
tics and machine learning literature has strong parallels, and indeed overlaps substantially,
with research on data fusion systems carried out largely within the engineering community
(Dasarathy, 1994b; Varshney, 1997; Waltz and Llinas, 1990). In common with the research
on classifier combination, different architectures may be considered (for example, serial or
parallel) and different assumptions made concerning the joint distribution of classifier outputs,
but the final architecture adopted and the constraints under which it is optimised are usually
motivated by real problems. One application of special interest is that of distributed detection:
detecting the presence of a target using a distributed array of sensors. In this section we review
some of the work in this area.

8.3.1 Architectures

Figures 8.7 and 8.8 illustrate the two main architectures for a decentralised distributed detec-
tion system – the serial and parallel configurations. We assume that there are L sensors. The
observations at each sensor are denoted by yi and the decision at each sensor by ui, i = 1, . . . ,
L, where

ui =
{

1 if ‘target present’ declared
0 if ‘target absent’ declared

and the final decision is denoted by u0. Each sensor can be considered as a binary classifier
and the problem is termed as one in decision fusion. This may be thought a very restrictive
model, but one that may arise in some practical situations.

The main drawback with the serial network structure (Figure 8.7) is that it has a serious
practical reliability problem.

S1 S2 SL

y1 y2 yL

u1 u2 uL−1 u0

Figure 8.7 Sensors arranged in a serial configuration.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

DATA FUSION 371

SL

S2

S1

y1

y2

yL

u1

u2

uL−1

u0

Figure 8.8 Sensors arranged in a parallel configuration.

This problem arises because if there is a link failure between the (i − 1)th sensor and the
ith sensor then all the information used to make the previous decisions would be lost, resulting
in the ith sensor becoming effectively the first sensor in the decision process.

The parallel system has been widely considered and is shown in Figure 8.8. Each sensor
receives a local observation yi, i = 1, . . . , L and produces a local decision ui which is sent to
the fusion centre. At the fusion centre all the local decisions ui, i = 1, . . . , L are combined to
obtain a global decision u0. The parallel architecture is far more robust to link failure. A link
failure between the ith sensor and the fusion centre does not seriously jeopardize the overall
global decision, since it is only the decision of the ith sensor that is lost. The parallel distributed
system has been considered under the assumptions of both correlated and independent local
decisions, and methods have been proposed for solving the optimal solution in both these cases.

The parallel decision system has also been extended to allow the local decisions to be
passed to intermediate fusion centres, each processing all the L local decisions before passing
their decisions onto another layer of intermediate fusion centres (Li and Sethi, 1993; Gini,
1997). After K such layers these intermediate fusion centre decisions are passed to the fusion
centre and a global decision u0 is made. This corresponds to the hierarchical model in multiple
classifier systems (see Section 8.2).

The parallel architecture has also been used to handle repeated observations. One approach
has been to use a memory term that corresponds to the decision made by the fusion centre using
the last set of local decisions (Kam et al., 1999). The memory term is used in conjunction
with the next set of local decisions to make the next global decision. This memory term
therefore allows the fusion centre to take into consideration the decision made on the last set
of observations.

8.3.2 Bayesian approaches

We formulate the Bayes rule for minimum risk for the parallel configuration. Let class ω2

be ‘target absent’ and class ω1 be ‘target present’, then the Bayes’ rule for minimum risk is
[Equation (1.12)]: declare a target present (class ω1) if

λ11 p(ω1|u)p(u) + λ21 p(ω2|u)p(u) ≤ λ12 p(ω1|u)p(u) + λ22 p(ω2|u)p(u)

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

372 ENSEMBLE METHODS

that is,

(λ21 − λ22)p(u|ω2)p(ω2) ≤ (λ12 − λ11)p(u|ω1)p(ω1) (8.3)

where u = (u1, u2, . . . , uL)T is the vector of local decisions; p(u|ωi), i = 1, 2 are the
class–conditional probability density functions; p(ωi), i = 1, 2 are the class priors and λji

are the costs:

λ ji = cost of assigning a pattern u to ωi when u ∈ ω j

In order to evaluate the fusion rule (8.3), we require knowledge of the class-conditional
densities and the costs. Several special cases have been considered. By taking the equal cost
loss matrix (see Chapter 1), and assuming independence between local decisions, the fused
decision [based on the evaluation of p(ωi|u)] can be expressed in terms of the probability of
false alarm and the probability of missed detection at each sensor (see the exercises at the end
of the chapter).

The problem of how to tackle the likelihood ratios when the local decisions are correlated
has been addressed by Kam et al. (1992) who showed that by using the Bahadur–Lazarsfeld
polynomials to form an expansion of the probability density functions, it is possible to rewrite
the optimal data fusion rule in terms of the conditional correlation coefficients.

The Bahadur–Lazarsfeld expansion expresses the density p(x) as

p(x) =
L∏

j=1

(p
xj

j (1 − pj)
1−x j) ×

⎡
⎣1 +

∑
i< j

γi jziz j +
∑

i< j<k

γi jkziz jzk + · · ·
⎤
⎦

where the γ s are the correlation coefficients of the corresponding variables

γi j = E[ziz j]

γi jk = E[ziz jzk]

γi j...L = E[ziz j . . . zL]

and

pi = P(xi = 1); 1 − pi = P(xi = 0)

so that

E[xi] = 1 × pi + 0 × (1 − pi) = pi

var[xi] = pi(1 − pi)

and

zi = xi − pi√
var(xi)

= xi − pi√
pi(1 − pi)

Substituting each of the conditional densities in Equation (8.3) by its Bahadur–Lazarsfeld
expansion replaces the unknown densities by unknown correlation coefficients (see Exercises).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

DATA FUSION 373

However, this may simplify considerably under assumptions about the form of the individual
detectors (Kam et al., 1992).

8.3.3 Neyman–Pearson formulation

In the Neyman–Pearson formulation, we seek a threshold on the likelihood ratio so that a
specified false alarm rate is achieved (see Section 1.5.5). Since the data space is discrete (for
an L-dimensional vector, u, there are 2L possible states) the decision rule of Chapter 1 is
modified to become:

if
p(u|ω1)

p(u|ω2)

⎧⎨
⎩

> t then decide u0 = 1 (target present declared)
= t then decide u0 = 1 with probability ε

< t then decide u0 = 0 (target absent declared)
(8.4)

where ε and t are chosen to achieve the desired false alarm rate.
As an example, consider the case of two sensors, S1 and S2, operating with probabilities of

false alarm pfa1 and pfa2, respectively, and probabilities of detection pd1 and pd2. Table 8.1
gives the probability density functions for p(u|ω1) and p(u|ω2) assuming independence.

There are four values for the likelihood ratio, p(u|ω1)/p(u|ω2), corresponding to u =
(0, 0), (0, 1), (1, 0), (1, 1)). For pfa1 = 0.2; pfa2 = 0.4; pd1 = 0.6 and pd2 = 0.7, these
values are 0.25, 0.875, 1.5 and 5.25. Figure 8.9 gives the ROC curve for the combiner,
combined using rule (8.4). This is a piecewise linear curve, with four linear segments, each
corresponding to one of the values of the likelihood ratio. For example, if we set t = 0.875 (one
of the values of the likelihood ratio), then u0 = 1 is decided if u = (1, 0) and u = (1, 1) and
also for u = (0, 1) with probability ε. This gives a probability of detection and a probability
of false alarm of (using Table 8.1)

pd = pd1 pd2 + (1 − pd2) pd1 + ε(1 − pd1) pd2 = 0.6 + 0.28ε

pfa = pfa1 pfa2 + (1 − pfa2) pfa1 + ε(1 − pfa1) pfa2 = 0.2 + 0.32ε

a linear variation (as ε is varied) of (pfa, pd) values between (0.2, 0.6) and (0.52, 0.88).

Table 8.1 Probability density functions for p(u|ω1) (top) and
p(u|ω2) (bottom) for the case of two sensors S1 and S2, operating
with probabilities of false alarm pfa1 and pfa2, respectively, and
probabilities of detection pd1 and pd2

Sensor S1

u = 0 u = 1

Sensor S2 u = 0 (1 − pd1)(1 − pd2) (1 − pd2) pd1

u = 1 (1 − pd1) pd2 pd1 pd2

Sensor S1

u = 0 u = 1

Sensor S2 u = 0 (1 − pfa1)(1 − pfa2) (1 − pfa2) pfa1

u = 1 (1 − pfa1) pfa2 pfa1 pfa2

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

374 ENSEMBLE METHODS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pd

pfa

pd1 pd2

pd1

pd1 + pd2(1 − pd1)

pfa1 pfa2

pfa1
pfa1 + pfa2(1 − pfa1)

Figure 8.9 ROC curve for two sensors, assuming independence.

It may be possible to achieve a better probability of detection of the combiner, for a given
probability of false alarm, by operating the individual sensors at different local thresholds.
For L sensors, this is an L-dimensional search problem and requires knowledge of the ROC
of each sensor (Viswanathan and Varshney, 1997).

Approaches to the distributed detection problem using the Neyman–Pearson formulation
have been proposed for correlated decisions. One approach is to expand the likelihood ratio
using the Bahadur–Lazarsfeld polynomials, in a similar manner to the Bayesian formulation
of the preceding subsection. The Neyman–Pearson fusion rule can then be expressed as a
function of the correlation coefficients.

If the independence assumption is not valid, and it is not possible to estimate the likelihood
ratio through other means, then it may still be possible to achieve better performance than
individual sensors through a ‘random choice’ fusion system. Consider two sensors S1 and S2,
with ROC curves shown in Figure 8.10.

For probabilities of false alarm greater than pfaB, we operate sensor S2 and for probabilities
of false alarm less than pfaA, we operate sensor S1. If, for probabilities of false alarm between
pfaA and pfaB, we operate sensor S1 with probability of false alarm pfaA and sensor S2 at the
pfaB point on its ROC curve, and randomly select sensor S1 with probability ε and sensor
S2 with probability (1 − ε), then the probability of false alarm of the random choice fusion
system is εpfaA + (1 − ε)pfaB and the probability of detection is εpdA + (1 − ε)pdB. Thus,
the best performance is achieved on the convex hull of the two ROC curves.

This differs from the example in Figure 8.9, where the combined output of both sensors
is used, rather than basing a decision on a single sensor output.

8.3.4 Trainable rules

One of the difficulties with the Bayesian and the Neyman–Pearson formulations for a set of
distributed sensors is that both methods require some knowledge of the probability density
of sensor outputs. Often this information is not available and the densities must be estimated
using a training set.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

DATA FUSION 375

pdB

pdA

pfaA pfaB

S1

S2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pd

pfa

Figure 8.10 ROC curves for sensors S1 and S2 and points on the convex hull.

This is simply a problem of classifier design where the classifiers are defined on a feature
space comprising the outputs of separate sensors (local decisions). Many of the techniques
described elsewhere in this book, suitably adapted for binary variables, may be employed.

8.3.5 Fixed rules

There are a few ‘fixed’ rules for decision fusion that do not model the joint density of sensor
predictions.

AND
Class ω1 (target present) is declared if all sensors predict class ω1, otherwise class ω2 is
declared.

OR
Class ω1 (target present) is declared if at least one of the sensors predicts class ω1, otherwise
class ω2 is declared.

Majority vote
Class ω1 (target present) is declared if a majority of the sensors predicts class ω1, otherwise
class ω2 is declared.

k-out-of-N
Class ω1 (target present) is declared if at least k of the sensors predict class ω1, otherwise
class ω2 is declared. All of the previous three rules are special cases of this rule.

It is difficult to draw general conclusions about the performance of these rules. For low
false alarm rates, there is some evidence to show that the OR rule is inferior to AND and
to the majority vote rules in a problem of signal detection in correlated noise. For similar

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

376 ENSEMBLE METHODS

local sensors, the optimal rule is the k-out-of-N decision rule, with k calculated from the
prior probabilities and the sensor probability of false alarm and probability of detection
(see Exercises).

8.4 Classifier combination methods

The characterising features of multiple classifier systems have been described in Section
8.2, and a practical motivating problem for the fusion of decisions from distributed sensors
summarised in Section 8.3. We turn now to the methods of classifier fusion, many of which
are multiclass generalisations of the binary classifiers employed for decision fusion.

We begin with the Bayesian decision rule and, following Kittler et al. (1998), make certain
assumptions to derive combination schemes that are routinely used. Various developments of
these methods are described.

We assume that we have an object Z that we wish to classify and that we have L classifiers
with inputs x1, . . . , xL (as in Figure 8.2). The Bayes’ rule for minimum error [Equation (1.1)]
assigns Z to class ωj if

p(ω j|x1, . . . , xL) > p(ωk|x1, . . . , xL) k = 1, . . . ,C; k 	= j (8.5)

or, equivalently [Equation (1.2)], assign Z to class ωj if

p(x1, . . . , xL|ω j)p(ω j) > p(x1, . . . , xL|ωk)p(ωk) k = 1, . . . ,C; k 	= j (8.6)

This requires knowledge of the class-conditional joint probability densities p(x1, . . . ,

xL|ω j), j = 1, . . . , L, which is assumed to be unavailable.

8.4.1 Product rule

If we assume conditional independence (x1, . . . , xL are conditionally independent given class),
then the decision rule (8.6) becomes: assign Z to class ωj if

L∏
i=1

(p(xi|ω j))p(ω j) >

L∏
i=1

(p(xi|ωk))p(ωk) k = 1, . . . ,C; k 	= j (8.7)

or, in terms of the posterior probabilities of the individual classifiers: assign Z to class ωj if

[p(ω j)]
−(L−1)

L∏
i=1

p(ω j|xi) > [p(ωk)]
−(L−1)

L∏
i=1

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.8)

This is the product rule and for equal priors simplifies to: assign Z to class ωj if

L∏
i=1

p(ω j|xi) >

L∏
i=1

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.9)

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 377

Both forms (8.8) and (8.9) have been used in studies. The independence assumption may
seem rather severe, but it is one that has been successfully used in many practical prob-
lems (Hand and Yu, 2001). The rule requires the individual classifier posterior probabilities,
p(ω j|x), j = 1, . . . ,C to be calculated and these are usually estimated from training data. The
main problem with this method is that the product rule is sensitive to errors in the posterior
probability estimates, and deteriorates more rapidly than the sum rule (see below) as the
estimation errors increase. If one of the classifiers reports that the probability of a sample
belonging to a particular class is zero, then the product rule will give a zero probability also,
even if the remaining classifiers report that this is the most probable class.

The product rule would tend to be applied where each classifier receives input from
different sensors.

8.4.2 Sum rule

The sum rule may be derived from the product rule by making the (rather strong) assumption
that

p(ωk|xi) = p(ωk)(1 + δki) (8.10)

where δki
 1; that is, the posterior probabilities, p(ωk|xi) used in the product rule (8.8) do
not deviate substantially from the class priors, p(ωk). Then substituting for p(ωk|xi) in the
product rule (8.8), neglecting second order and higher terms in δki, and using (8.10) leads to
the sum rule (see the exercises at the end of the chapter): assign Z to class ωj if

(1 − L)p(ω j) +
L∑

i=1

p(ω j|xi) > (1 − L)p(ωk) +
L∑

i=1

p(ωk|xi) k = 1, . . . ,C; k 	= j

(8.11)

This is the sum rule and for equal priors it simplifies to: assign Z to class ωj if

L∑
i=1

p(ω j|xi) >

L∑
i=1

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.12)

The assumption used to derive the sum rule approximation to the product rule, namely that
the posterior probabilities are similar to the priors, will be unrealistic in many practical
applications. However, it is a rule that is relatively insensitive to errors in the estimation of
the posterior probabilities and could be applied to classifiers operating on a common input
pattern (Figure 8.3).

In order to implement the above rule, each classifier must produce estimates of the
posterior probabilities of class membership. In a comparison of the sum and product
rules, Tax et al. (2000) concluded that the sum rule is more robust to errors in the esti-
mated posterior probabilities (see also Kittler et al., 1998). The averaging process reduces
any effects of overtraining of the individual classifiers and may be thought of as a regularisa-
tion process.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

378 ENSEMBLE METHODS

It is also possible to applying a weighting to the sum rule to give: assign Z to class ωj if

L∑
i=1

wi p(ω j|xi) >

L∑
i=1

wi p(ωk|xi) k = 1, . . . ,C; k 	= j (8.13)

where wi, i = 1, . . . , L are weights for the classifiers. A key question here is how to choose
weights. These may be estimated using a training set to minimise the error rate of the combined
classifier. In this case, the same weighting is applied throughout the data space. An alternative
is to allow the weights to vary with the location of a given pattern in the data space. An extreme
example of this is dynamic classifier selection where one weight is assigned the value unity
and the remaining weights are zero. For a given pattern, dynamic feature selection attempts
to select the best classifier. Thus, the feature space is partitioned into regions with a different
classifier for each region.

Dynamic classifier selection has been addressed by Woods et al. (1997) who use local
regions defined in terms of k-nearest-neighbour regions to select the most accurate classifier
(based on the percentage of training samples correctly classified in the region); see also Huang
and Suen (1995).

8.4.3 Min, max and median combiners

The max combiner may be derived by approximating the sum of the posterior probabilities in
(8.11) by an upper bound, L max

i
p(ωk|xi) to give the decision rule: assign Z to class ωj if

(1 − L)p(ω j) + L max
i

p(ω j|xi) > (1 − L)p(ωk) + L max
i

p(ωk|xi) (8.14)

This is the max combiner and for equal priors simplifies to

max
i

p(ω j|xi) > max
i

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.15)

We can also approximate the product in (8.8) by an upper bound, min
i

p(ωk|xi), to give the

decision rule: assign Z to class ωj if

[p(ω j)]
−(L−1)min

i
p(ω j|xi) > [p(ωk)]

−(L−1)min
i

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.16)

This is the min combiner and for equal priors simplifies to: assign Z to class ωj if

min
i

p(ω j|xi) > min
i

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.17)

Finally, the median combiner is derived by noting that the sum rule calculates the mean of
the classifier outputs and that a robust estimate of the mean is the median. Thus, under equal
priors, the median combiner is: assign Z to class ωj if

med
i

p(ω j|xi) > med
i

p(ωk|xi) k = 1, . . . ,C; k 	= j (8.18)

The min, max and median combiners are all easy to implement and require no training.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 379

8.4.4 Majority vote

Among all the classifier combination methods described in this section, the majority vote is
one of the easiest to implement. It is applied to classifiers that produce unique class labels as
outputs (level L3) and requires no training. It may be considered as an application of the sum
rule to classifier outputs where the posterior probabilities, p(ωk|xi), have been ‘hardened’
(Kittler et al., 1998); that is, p(ωk|xi) is replaced by the binary-valued function, �ki, where

�ki =
{

1 if p(ωk|xi) = max
j

p(ω j|xi)

0 otherwise

which produces decisions at the classifier outputs rather than posterior probabilities. A decision
is made to classify a pattern to the class most often predicted by the constituent classifiers.
In the event of a tie, a decision can be made according to the largest prior class probability
(among the tying classes).

An extension to the method is the weighted majority voting technique in which classifiers
are assigned unequal weights based on their performance. The weights for each classifier may
be independent of predicted class, or they may vary across class depending on the performance
of the classifier on each class. A key question is how to choose the weights. The weighted
majority vote combiner requires the results of the individual classifiers on a training set as
training data for the allocation of the weights.

For weights that vary between classifiers but are independent of class, there are L − 1
parameters to estimate for L classifiers (we assume that the weights may be normalised to
sum to unity). These may be determined by specifying some suitable objective function and
an appropriate optimisation procedure. One approach is to define the objective function, F

F = Re − βE

where Re is the recognition rate and E is the error rate of the combiner (they do not sum to
unity as the individual classifiers may reject patterns – see Chapter 1); β is a user-specified
parameter that measures the relative importance of recognition and error rates and is problem
dependent (Lam and Suen, 1995). Rejection may be treated as an extra class by the component
classifiers and thus the combiner will reject a pattern if the weighted majority of the classifiers
also predicts a rejection. In a study of combination schemes applied to a problem in optical
character recognition, Lam and Suen (1995) use a genetic optimisation scheme (a scheme that
adjusts the weights using a learning method loosely motivated by an analogy to biological
evolution) to maximise F and concluded that simple majority voting (all weights equal) gave
the easiest and most reliable classification.

8.4.5 Borda count

The Borda count is a quantity defined on the ranked outputs of each classifier. If we define
Bi(j) as the number of classes ranked below class ωj by classifier i, then the Borda count for
class ωj is Bj defined as

Bj =
L∑

i=1

Bi(j),

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

380 ENSEMBLE METHODS

the sum of the number of classes ranked below ωj by each classifier. A pattern is assigned
to the class with the highest Borda count. This combiner requires no training, with the final
decision being based on an average ranking of the classes.

8.4.6 Combiners trained on class predictions

The combiners described so far require no training, at least in their basic forms. General
conclusions are that the sum rule and median rule can be expected to give better performance
than other fixed combiners. We now turn to combiners that require some degree of training and
initially we consider combiners acting on discrete variables. Thus, the constituent classifiers
deliver class labels and the combiner uses these class predictions to make an improved estimate
of class (type L3 combination) – at least that is what we hope.

‘Bayesian combiner’
This combiner simply uses the product rule with estimates of the posterior probabilities
derived from the classifier predictions of each constituent classifier together with a summary
of their performance on a labelled training set.

Specifically, the Bayesian combination rule of Lam and Suen (1995) approximates the
posterior probabilities by an estimate based on the results of a training procedure. Let D(i)

denote the C × C confusion matrix (see Chapter 1) for the ith classifier based on the results of a
classification of a training set by classifier i. The (j, k) entry, d(i)

jk , is the number of patterns with
true class ωk that are assigned to ωj by classifier i. The total number of patterns in class ωk is

nk =
C∑

l=1

d(i)
lk

for any i. The number of patterns assigned to class ωl is

C∑
k=1

d(i)
lk

The conditional probability that a sample x assigned to class ωl by classifier i actually belongs
to ωk is estimated as

p(ωk|classifier i predicts ωl) = d(i)
lk∑C

k=1 d(i)
lk

Thus, for a given pattern, the posterior probability depends only on the predicted class: two
distinct patterns, say x and w, having the same predicted class, are estimated as having the
same posterior probability. Substituting into the product rule (8.9), equal priors assumed,
gives the decision rule: assign the pattern to class ωj if

L∏
i=1

d(i)
li j∑C

k=1 d(i)
lik

>

L∏
i=1

d(i)
lim∑C

k=1 d(i)
lik

m = 1, . . . ,C; m 	= j

where ωli is the predicted class under classifier i for a given input pattern.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 381

S

ClL

Cl2

Cl1

Com
x

x

x

ω(1)

ω(2)

ω(L)

p(c|x)

Figure 8.11 Classifier fusion architecture, C2 – component classifiers defined on a common
feature space. ω(i) is the predicted class of classifier CIi.

Density estimation in classifier output space
An alternative approach is to regard the L class predictions from the constituent classifiers for
an input, x, as inputs to a classifier, the combiner, defined on an L-dimensional discrete-valued
feature space (Figure 8.11).

Suppose that we have N training patterns (xi, i = 1, . . . , N) with associated class labels
(yi, i = 1, . . . , N), then the training data for the combiner comprises N L-dimensional vectors
(zi, i = 1, . . . , N) with associated class labels (yi, i = 1, . . . , N). Each component of zi is a
discrete-valued variable taking 1 of C possible values corresponding to the class label from
the component classifier (or 1 of C + 1 possible values if a reject option is included in the
constituent classifiers).

The combiner is trained using the training set {(zi, yi), i = 1, . . . , N} and an unknown
pattern x classified by first applying each constituent classifier to obtain a vector of predictions
z, which is then input to the combiner.

The most obvious approach to constructing the combiner is to estimate class-conditional
probabilities, p(z|ωi), i = 1, . . . ,C, and to classify z to class ωj if

p(z|ω j)p(ω j) > p(z|ωk)p(ωk) k = 1, . . . ,C; k 	= j

with the priors, p(ωj), estimated from the training set (or perhaps using domain knowledge)
and the densities, p(z|ω j) estimated using a suitable nonparametric density estimation method
appropriate for categorical variables.

Perhaps the simplest method is the histogram. This is the approach adopted by Huang and
Suen (1995) and termed the Behaviour-Knowledge Space method, and also investigated by
Mojirsheibani (1999). However, this has the disadvantage of having to estimate and store high
order distributions which may be computationally expensive. The multidimensional histogram
has CL cells, which may be large making reliable density estimation difficult in the absence
of a large training dataset. In Chapter 4 we described several ways around this difficulty:

1. Independence. Approximate the multivariate density as the product of the univariate
estimates.

2. Lancaster models. Approximate the density using marginal distributions.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

382 ENSEMBLE METHODS

3. Maximum weight dependence trees. Approximate the density with a product of pair-
wise conditional densities.

4. Bayesian networks. Approximate the density with a product of more complex condi-
tional densities.

Other approaches, based on constructing discriminant functions directly, rather than estimating
the class-conditional densities and using Bayes’ rule, are possible.

8.4.7 Stacked generalisation

Stacked generalisation, or simply stacking, constructs a generaliser using training data that
consist of the ‘guesses’ of the component generalisers which are taught with different parts
of the training set and try to predict the remainder, and whose output is an estimate of the
correct class. Thus, in some ways it is similar to the models of the previous section – the
combiner is a classifier (generaliser) defined on the outputs of the constituent classifiers – but
the training data used to construct the combiner comprise the prediction on held-out samples
of the training set.

The basic idea is that the output of the constituent classifiers, termed level 1 data, L1 (level
0, L0, is the input level), has information that can be used to construct good combinations of
the classifiers. We suppose that we have a set of constituent classifiers, fj, j = 1, . . . , L, and
we seek a procedure for combining them. The level 1 data are constructed as follows:

1. Divide the L0 data (the training data, {(xi, yi), i = 1, . . . , n}) into V partitions.

2. For each partition, v = 1, . . . , V,

(a) Repeat the procedure for constructing the constituent classifiers using a subset of
the data: train the constituent classifier j (j = 1, . . . , L) on all the training data apart
from partition v to give a classifier denoted, f −v

j .

(b) Test each classifier, f −v
j , on all patterns in partition v.

This gives a dataset of L predictions on each pattern in the training set. Together with the
labels, {yi, i = 1, . . . , n}, these comprise the training data for the combiner.

We must now construct a combiner for the outputs of the constituent classifiers. If the
constituent classifiers produce class labels, then the training data for the combiner comprise
L-dimensional measurements on categorical variables. Several methods are available to us
including those based on histogram estimates of the multivariate density, and variants, men-
tioned at the end of the previous section; for example, tree-based approaches and neural
network methods. Merz (1999) compares an independence model and a multilayer perceptron
model for the combiner with an approach based on a multivariate analysis method (correspon-
dence analysis). For the multilayer perceptron, when the ith value of the variable occurred,
each categorical variable is represented as C binary-valued inputs, with all inputs assigned
the value of zero apart from the ith which is assigned a value of one.

8.4.8 Mixture of experts

The adaptive mixture of local experts model (Jacobs et al., 1991; Jordan and Jacobs, 1994) is
a learning procedure that trains several component classifiers (the ‘experts’) and a combiner

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 383

Figure 8.12 Mixture of experts architecture.

(the ‘gating function’) to achieve improved performance in certain problems. The experts
each produce an output vector, oi, (i = 1, . . . , L), for a given input vector, x, and the gating
network provides linear combination coefficients for the experts. The gating function may
be regarded as assigning a probability to each of the experts, based on the current input
(Figure 8.12).

The emphasis of the training procedure is to find the optimal gating function and, for a
given gating function, to train each expert to give maximal performance.

In the basic approach, the output of the ith expert, oi(x), is a generalised linear function
of the input, x,

oi(x) = f (wix)

where wi is a C × p weight matrix associated with the ith expert and f (.) is a fixed continuous
nonlinear function,2 generally chose to be the logistic function. The gating network is also a
generalised linear function, g, of its input, with ith component

gi(x) = g(x, vi) = exp(vT
i x)

L∑
k=1

exp(vT
i x)

for weight vectors vi, i = 1, . . . , L. These outputs of the gating network are used to weight the
outputs of the experts to give the overall output, o(x), of the mixture of experts architectures as

o(x) =
L∑

k=1

gk(x)ok(x) (8.19)

2 We use the shorthand notation that f (u), for scalar function f , is the vector (f (u1), . . . , f (uC)).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

384 ENSEMBLE METHODS

The above description is very similar to that giving rise to the weighted sum rule [Equation
(8.13)] in that the model produces a linear combination of component classifiers. The key
difference is that in the mixture of experts model, the combination model (the gating network)
is trained simultaneously with the constituent classifiers (the experts). In many combination
models, the basic models are trained first and then the combiner tuned to these trained
models. A further difference is that the linear combination depends on the input pattern, x.
An interpretation is that the gating network provides a ‘soft’ partitioning of the input space
with experts providing local predictions (Jordan and Jacobs, 1994).

The mixture of experts model [Equation (8.19)] is also similar to the multilayer perceptron3

(Chapter 6) in that the output is a linear combination of nonlinear functions of projections
of the data. The difference is that in Equation (8.19) the linear combination depends on
the input.

A probabilistic interpretation of the model is provided by Jordan and Jacobs (1994). We
assume that we have an input variable x and a response variable y that depends probabilistically
on x. The mixing proportions, gi(x), are interpreted as multinomial probabilities associated
with the process that maps x to an output y. For a given x, an output y is generated by selecting
an expert according to the values of gk(x), k = 1, . . . , L, say expert i, and then generating y
according to a probability density p(y|x, wi), where wi denotes the set of parameters associ-
ated with expert i. Therefore, the total probability of generating y from x is the mixture of
probabilities of generating y from each component density, where the mixing proportions are
the multinomial probabilities gk(x); i.e.

p(y|x, �) =
L∑

k=1

gk(x)p(y|x, wk) (8.20)

where � is the set of all parameters, including both expert and gating network parameters.
The generating density p(y|x, wk), can be taken to be one of several popular forms;

for a problem in regression, a normal distribution with identical covariance matrices σ 2I is
often assumed,

p(y|x, wk) ∼ exp{− 1

σ 2
(y − ok(x))T (y − ok(x))}

For binary classification, the Bernoulli distribution is generally assumed (single output, ok;
univariate binary response variable y = 0, 1)

p(y|x, wk) = oy
k(1 − ok)

1−y

and for multiclass problems, the multinomial distribution (C binary variables yi, i = 1, . . . ,
C, that sum to unity, where C is the number of classes)

p(y|x, wk) ∼
C∏

i=1

(oi
k)

yi

3 The basic multilayer perceptron, with single hidden layer and linear output layer. Further developments of the
mixture of experts model to hierarchical models are discussed by Jordan and Jacobs (1994).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 385

(oi
k is the ith component of ok, the output of the kth expert). Optimisation of the model

(8.20) may be achieved via a maximum likelihood approach. Given a training set {(xi, yi), i =
1, . . . , n} (in the classification case, yi would be a C-dimensional vector coding the class –
for class ωj, all entries are zero apart from the jth, which is one), we seek a solution for � for
which the log likelihood

∑
t

log

[
L∑

k=1

gk(xt)p(yt |xt, wk)

]

is a maximum. Jordan and Jacobs (1994) propose an approach based on the EM algorithm
(see Chapter 2) for adjusting the parameters wk and vk. At the stage s of the iteration, the
Expectation and Maximisation procedures are as follows:

1. E-step: compute the probabilities

h(t)
i = g(xt, v(s)

i)p(yt |xt, w(s)
i)

L∑
k=1

g(xt, v(s)
k)p(yt |xt, w(s)

k)

for t = 1, . . . , n; i = 1, . . . , L.

2. M-step: solve the following maximisation problem for the parameters of the experts

w(s+1)
i = arg max

wi

n∑
t=1

h(t)
i log[p(yt |xt, wi)]

and for the parameters of the gating network

V (s+1) = arg max
V

n∑
t=1

L∑
k=1

h(t)
k log[g(xt, vk)]

where V is the set of all vi.
Procedures for solving these maximisation problems are discussed by Chen et al. (1999),

who propose a Newton–Raphson method, but other ‘quasi-Newton’ methods may be used
(Press et al., 1992).

8.4.9 Bagging

Bagging and boosting (see the following section) are procedures for combining different
classifiers generated using the same training set. Bagging or bootstrap aggregating (Breiman,
1996) produces replicates of the training set and trains a classifier on each replicate. Each
classifier is applied to a test pattern x which is classified on a majority vote basis, ties being
resolved arbitrarily. Algorithm 8.1 shows the steps in the bagging algorithm. A bootstrap
sample is generated by sampling n times from the training set with replacement. This means
that some patterns may be used several times, but others may not appear in the sample. This

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

386 ENSEMBLE METHODS

Algorithm 8.1 The bagging algorithm.

1. Given a training set (xi, zi), i = 1, . . . , n, of patterns xi and labels zi.

2. For b = 1, . . . , B,

(a) Generate a bootstrap sample of size n by sampling with replacement from the training
set; some patterns will be replicated, others will be omitted.

(b) Design a classifier, ηb(x) using the bootstrap sample as training data.

3. Classify a test pattern x by recording the class predicted by ηb(x), b = 1, . . . , B, and
assigning x to the class most represented.

provides a new training set, Yb, of size n. B bootstrap datasets, Yb, b = 1, . . . , B, are generated
and a classifier designed for each dataset. The final classifier is that whose output is the class
most often predicted by the subclassifiers.

A vital aspect of the bagging technique is that the procedure for producing the classifier
is unstable. For a given bootstrap sample, a pattern in the training set has a probability of
1 − (1 − 1/n)n of being selected at least once in the n times that patterns are randomly selected
from the training set. For large n, this is approximately 1 − 1/e = 0.63, which means that
each bootstrap sample contains only about 63% unique patterns from the training set. This
causes different classifiers to be built. If the change in the classifiers is large (that is small
changes in a dataset lead to large changes in the predictions), then the procedure is said to be
unstable. Bagging of an unstable classifier should result in a better classifier and a lower error
rate. However, averaging of a bad classifier can result in a poorer classifier. If the classifier
is stable – that is, changes in the training dataset lead to little changes in the classifier – then
bagging will lead to little improvement.

The bagging procedure reduces the variance of the base classifier and its performance
depends on the stability of that base classifier. It is particularly useful in classification problems
using neural networks (Chapter 6) and classification trees (Chapter 7) since these are all
unstable processes. If the base classifier is stable (robust to minor perturbations in the training
set), bagging may not be able to improve the performance. For trees, a negative feature is that
there is no longer the simple interpretation as there is with a single tree. Nearest-neighbour
classifiers are stable and bagging offers little, if any, improvement.

In studies on linear classifiers, Skurichina (2001) reports that bagging may improve the
performance on classifiers constructed on critical training sample sizes, but when the classifier
is stable, bagging is usually useless. Also, for very large sample sizes, classifiers constructed
on bootstrap replicates are similar and combination offers no benefit.

The procedure, as presented in Algorithm 8.1, applies to classifiers whose outputs are
class predictions. For classifier methods that produce estimates of the posterior probabilities,
p̂(ω j|x), two approaches are possible. One is to make a decision for the class based on the
maximum value of p̂(ω j|x) and then to use the voting procedure. Alternatively, the posterior
probabilities can be averaged over all bootstrap replications, obtaining p̂B(ω j|x) and then
a decision based on the maximum value of p̂B(ω j|x) is made. Breiman (1996) reports a
virtually identical misclassification rate for the two approaches in a series of experiments on

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 387

Algorithm 8.2 The Adaboost algorithm.

1. Initialise the weights wi = 1/n, i = 1, . . . , n.

2. For t = 1, . . . , T , (T is the number of boosting rounds)

(a) Construct a classifier ηt (x) from the training data with weights wi, i = 1, . . . , n.

(b) Calculate et as the sum of the weights wi corresponding to misclassified patterns.

(c) If et > 0.5 or et = 0 then terminate the procedure, otherwise set wi = wi(1 − et)/et for
the misclassified patterns and renormalise the weights so that they sum to unity.

3. For a two-class classifier, in which ηt (x) = 1 implies x ∈ ω1 and ηt (x) = −1 implies
x ∈ ω2, form a weighted sum of the classifiers, ηt,

η̂ =
T∑

t=1

log

(
1 − et

et

)
ηt (x)

and assign x to ω1 if η̂ > 0.

11 datasets. However, bagged estimates of the posterior probabilities are likely to be more
accurate than single estimates.

8.4.10 Boosting

Boosting is a procedure for combining or ‘boosting’ the performance of weak classifiers
(classifiers whose parameter estimates are usually inaccurate and give poor performance)
in order to achieve a better classifier. It differs from bagging in that it is a deterministic
procedure and generates training sets and classifiers sequentially, based on the results of the
previous iteration. In contrast, bagging generates the training sets randomly and can generate
the classifiers in parallel.

Proposed by Freund and Schapire (1996) boosting assigns a weight to each pattern in the
training set, reflecting its importance and constructs a classifier using the training set and the
set of weights. The weights may be used in several ways.

� The weights may be used by a classifier training procedure to design a classifier that is
biased towards higher-weighted patterns. Thus, it requires a classifier that can handle
weights on the training samples. The weights are adapted so that the classifier focuses
on patterns that are difficult to classify.

� The weights may be used as a sampling distribution to draw samples from the original
dataset. Some classifiers may be unable to support weighted patterns. In this case, a
subset of the training examples can be sampled according to the distribution of the
weights and these examples used to train the classifier in the next stage of the iteration.

The basic boosting procedure is Adaboost (Adaptive Boosting; Freund and Schapire, 1996).
Algorithm 8.2 presents the basic Adaboost algorithm for the binary classification problem.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

388 ENSEMBLE METHODS

Initially, all samples are assigned a weight wi = 1/n. At each stage of the algorithm, a
classifier ηt (x) is constructed using the weights wi (as though they reflect the probability
of occurrence of the sample). The weight of misclassified patterns is increased and the
weight of correctly classified patterns is decreased. The effect of this is that the higher
weight patterns influence the learning classifier more, and thus cause the classifier to focus
more on the misclassifications, i.e. those patterns that are nearest the decision boundaries.
There is a similarity with support vector machines in this respect (Chapter 6). The error et

is calculated, corresponding to the sum of the weights of the misclassified samples. These
get boosted by a factor (1 − et)/et, increasing the total weight on the misclassified samples
(provided that et < 1/2). This process is repeated and a set of classifiers is generated. The
classifiers are combined using a linear weighting whose coefficients are calculated as part of the
training procedure.

There are several ways in which the Adaboost algorithm has been generalised including
how the weights are updated and how the predictions are combined. One generalisation is
for the classifiers to deliver a measure of confidence in the prediction. For example, in the
two-class case, instead of the output being ±1 corresponding to one of the two classes, the
output is a number in the range [− 1, +1]. The sign of the output is the predicted class label
(-1 or +1) and the magnitude represents the degree of confidence: close to zero is interpreted
as low confidence and close to unity as high confidence.

For the multiclass generalisation, Algorithm 8.3 presents the Adaboost.MH algorithm
(Schapire and Singer, 1999). The basic idea is to expand the training set (of size n) to a training
set of size n × C pairs,

((xi, 1), yi1), ((xi, 2), yi2), . . . , ((xi,C), yiC), i = 1, . . . , n

Thus, each training pattern is replicated C times and augmented with each of the class labels.
The new labels for a pattern (x, l) take the values

yil =
{+1 if xi ∈class ωl

−1 if xi /∈class ωl
(8.21)

A classifier, ηt (x, l) is trained and the final classifier, η̂(x, l), is a weighted sum of the
classifiers constructed at each stage of the iteration, with decision: assign x to class j if

η̂(x, j) ≥ η̂(x, k) k = 1, . . . ,C; k 	= j

Note that the classifier ηt (x, l) is defined on a data space of possible mixed variable
type: real continuous variables x and categorical variable l. Care will be needed in classifier
design (see Chapter 13 for further discussion of designing classifiers for mixed discrete and
continuous variables).

In the study of linear classifiers by Skurichina (2001), it is reported that boosting is only
useful for large sample sizes, when applied to classifiers that perform poorly. The performance
of boosting depends on many factors including training set size, choice of classifier, the way
in which the classifier weights are incorporated and the data distribution.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 389

Algorithm 8.3 The Adaboost.MH algorithm converts the C class problem into a two-class
problem operating on the original training data with an additional ‘feature’.

The training data consist of {(xi j, yi j), i = 1, . . . , n; j = 1, . . . ,C}, where xi j = (xi, j) and
yij is given by Equation (8.21).

1. Initialise the weights wij = 1/(nC), i = 1, . . . , n; j = 1, . . . , C.

2. For t = 1, . . . , T ,

(a) Construct a ‘confidence-rated’ classifier ηt (x, l) from the training data with weights
wij, i = 1, . . . , n; j = 1, . . . , C.

(b) Calculate rt,

rt =
n∑

i=1

C∑
l=1

wilyilηt (xi, l)

and αt,

αt = 1

2
log

(
1 + rt

1 − rt

)

(c) Set wi j = wi j exp(−αt yi jηt (xi, j)) and renormalise the weights so that they sum to
unity.

3. Set

η̂(x, l) =
T∑

t=1

αtηt (x, l)

and assign x to ωj if

η̂(x, j) ≥ η̂(x, k) k = 1, . . . ,C; k 	= j

8.4.11 Random forests

Random forests4 is an ensemble method that combines the predictions made by decision
trees using a majority vote decision rule. Each tree is constructed using a bootstrap sample
of the data. If there are n patterns in the dataset, n samples are taken, with replacement,
to generate a bootstrap set of size n. This results in about two-thirds of the pattern
being used to train the classifier and the remaining one-third (1/e as n → ∞) retained
for testing.

4 Random forests is a trademark of L. Breiman and A. Cutler licensed to Salford Systems.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

390 ENSEMBLE METHODS

Algorithm 8.4 The random forests algorithm.

1. Given a training set (xi, zi), i = 1, . . . , n, of patterns xi and labels zi. Specify the number
of trees in the forest, B, and the number of random features to select, m.

2. For b = 1, . . . , B,

(a) Generate a bootstrap sample of size n by sampling with replacement from the training
set; some patterns will be replicated, others will be omitted.

(b) Design a decision tree classifier, ηb(x) using the bootstrap sample as training data,
randomly selecting at each node in the tree m variables to consider for splitting.

(c) Classify the nonbootstrap patterns (the ‘out-of-bag’ data) using the classifier ηb(x).

3. Assign xi to the class most represented by the classifiers ηb′ (x), where b′ refers to the
bootstrap samples that do not contain xi.

If the number of features is M, then each tree is constructed using m
 M features randomly
selected at each node of the tree and the best split calculated using these m features. The tree
is fully grown without pruning. The procedure is repeated for all trees in the forest using
different bootstrap sample of the data. Classification of a pattern in the dataset is achieved by
a majority vote using the trees that did not contain the pattern in the bootstrap sample used
for their construction (about one-third of the trees). Thus, we see that the approach combines
bagging with decision tree classifiers.

The procedure is described in Algorithm 8.4.
Random forests have been shown to give classification accuracies comparable with the

best current classifiers on many datasets. They are able to handle data with a very large number
of features (such as microarray data). Those features that are important for classification can
be determined through the calculation of an importance score for each feature.

8.4.12 Model averaging

8.4.12.1 Introduction

In this section, we address model uncertainty (in contrast to parameter uncertainty) through
a model averaging approach. Suppose that we wish to design a classifier given a set of data
and we believe that that data arise from one of a set of models, M1, . . . , Mk, arising through
different assumptions regarding the data probability density functions.

Model selection is the problem of using the data to select one model from the set of
candidate models, M1, . . . , Mk. Model averaging (in the context of classification) refers to
the process of estimating the class (or the probability of the class given a measurement on
an object) for each model Mj and averaging the estimates according to the likelihood of
each model.

Many methods of classification ignore model uncertainty, leading to overconfident
inferences. In model averaging, in addition to uncertainty in model parameter values
(within-model uncertainty), there is also uncertainty in model choice (uncertainty about

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 391

which model is the best performing) (Gibbons et al., 2008). Bayesian model averaging (BMA)
is a particular type of ensemble method that provides a mechanism for accounting for this
model uncertainty. It takes model uncertainty into consideration by averaging over posterior
distributions of a quantity of interest based on multiple models, weighted by their posterior
model probabilities.

A major task in model averaging is in determining the weights for individual models.
For forecasting, the predictive abilities of potential models are used to determine the optimal
weights [the posterior model probabilities; see Wasserman (2000) who discusses how to derive
the weights; also, Gibbons et al. (2008)]. Implementing BMA is also discussed in the review
by Hoeting et al. (1999).

A disadvantage of model averaging methods is that, whereas component models may
involve just a few variables, model averages typically involve an order of magnitude more
variables (Brown et al., 2002). This may be a drawback if the measurements involve costs or
if we are looking for interpretability as an output of the analysis.

A drawback of the Bayesian approach is that it requires assumptions concerning prior
information about the distribution of unknown parameters. Other model averaging approaches
have been developed (Doppelhofer, 2007).

We seek an implementation of an approach that accounts for model uncertainty which
in our case is the choice of variables in variable selection. We work within the linear
discriminant analysis framework and combine models (linear discriminants) with different
feature subsets.

8.4.12.2 Bayesian model selection and model averaging

Suppose that Y is some quantity of interest. For example, in the classification case, Y is a
class prediction at some feature value, x. We assume that we have a set of candidate models,
M1, . . . , Mk, for a training set, D.

The posterior distribution of Y is given by

p(Y |D) =
∑

Mk∈A
p(Y |D, Mk)p(Mk|D) (8.22)

a weighted average of the individual model predictions, with the weights equal to the posterior
probability of each model, p(Mk|D). A is the set of possible models.

The posterior probability of the model Mk may be written

p(Mk|D) = p(D|Mk)p(Mk)∑
Ml∈A

p(D|Ml)p(Ml)
(8.23)

and if each model Mk has parameters θ k (in a linear discriminant model it would be the vector
of parameters), then we may write, p(D|Mk), the integrated likelihood of model Mk as

p(D|Mk) =
∫

p(D|θk, Mk)p(θk|Mk)dθk (8.24)

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

392 ENSEMBLE METHODS

Evaluation of the integral can be difficult to compute and we seek approximations. We use
the Bayesian Information Criterion approximation (Raftery, 1995)

p(D|Mk) ≈ m̂k

where

log(m̂k) = log
(

p(D|Mk, θ̂k)
)

− dk

2
log(n) (8.25)

where θ̂k is the maximum likelihood estimate of the model parameters for the model Mk,
dk is the number of parameters in the model and n is the number of data samples. Thus,
taking all models as equally likely, the posterior probability of the model Mk may be approx-
imated by

p(Mk|D) = m̂k∑
Ml∈A m̂l

(8.26)

with m̂k given by Equation (8.25). Substituting Equation (8.26) into Equation (8.22) and using
the further approximation,

p(Y |D, Mk) ≈ p(Y |θ̂k)

gives the prediction

p(Y |D) =

∑
Mk∈A

p(Y |θ̂k)m̂k

∑
Mk∈A

m̂k

(8.27)

Figure 8.13 lists the stages in the Bayesian model averaging approach. We now need to
specify the set of models to include in the summation. Exhaustive summation over all models

1. Compute the maximum likelihood parameters, θ̂k , for each model, Mk

2. For each model, compute the approximation to the integrated likelihood, m̂k , given by
Equation (8.25).

3. For each test sample, evaluate the prediction using the maximum likelihood values,
p(Y | θ̂k).

4. Calculate the Bayesian model average over all models using Equation (8.27).

Figure 8.13 Stages in Bayesian model averaging.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 393

could render the calculation in Equation (8.27) impractical. For example, within the set of
logistic discrimination classifiers, we could consider all possible subsets of variables, but this
may be computationally too expensive.

There are several approaches to managing the summation. One approach is to use the ‘leaps
and bounds’ algorithm (Volinsky, 1997) to identify the models to be used in the summation.
The strategy described below is due to Madigan and Raftery (1994).

8.4.12.3 Implementation – model selection and search strategy

Determining the set of models
Models that predict the data much less well than the best model in the class are discarded.
Thus, models are excluded if they do not belong to the set

A′ =
{

Mk :
max

i
{p(Ml |D)}

p(Mk|D)
≤ c

}
(8.28)

for a constant c, taken by Madigan and Raftery (1994) to be a value of 20, although other
values may be used for some problems.

Also excluded from the summation are models which have a submodel that is better
predicted by the data (principle of Occam’s razor). Examples of when a model M0 is considered
to be a submodel of M1 include the following:

� In a linear regression context, the variables that form model M0 are subsets of the
variables that form M1.

� In a graphical model context, all the links in M0 are also in M1.

Thus, models are excluded if they belong to the set

B =
{

Mk : ∃Ml ∈ A′, Ml ⊂ Mk,
p(Ml |D)

p(Mk|D)
> 1

}
(8.29)

Thus, in Equation (8.27), the set A is taken to be

A = A′ \ B

the set of models that belong to A′ but do not belong to B. The next stage is to find the set A
efficiently.

Searching the model space
The approach proceeds by successively comparing the ratio of posterior model probabilities
for two models, one of which is a submodel of the other. The basic rule is that if a model is
rejected, then so are all of its submodels (since none of the submodels are better predicted by

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

394 ENSEMBLE METHODS

Algorithm 8.5 BGMS-down algorithm (Madigan and Raftery, 1994).

1. Select a model M from C.

2. Set C = C \ {M}; A = A ∪ {M}.
3. Select a submodel M0 of M.

4. Compute the ratio, B, given by

B = log

(
p(M0|D)

p(M|D)

)

5. If B > OR, then set A = A\{M} and if M0 /∈ C, set C = C ∪ {M0}.
6. If OL ≤ B ≤ OR, then if M0 /∈ C, set C = C ∪ {M0}.

(a) If there are more submodels of M, go to step 3.

7. If C 	= φ, go to step 1.

the data). Two models are compared on the basis of the log of the ratio of the posterior model
probabilities.

� If the ratio is greater than some threshold OR, i.e.

log

(
p(M0|D)

p(M1|D)

)
> OR

then this provides evidence for the smaller model, M0, and M1 is rejected.

� If the ratio is smaller than some threshold OL, i.e.

log

(
p(M0|D)

p(M1|D)

)
< OL

[where OL = −log (c) with c given by Equation (8.28)] then the model M0 is rejected.

� For intermediate values of the ratio, both models are considered.

Values of OL of −log (20) and OR of 0 are adopted by Madigan and Raftery (1994), but other
values have been proposed for different applications.

We present the BGMS-down and the BGMS-up algorithms of Madigan and Raftery (1994)
(see Algorithms 8.5 and 8.6; BMGS, Bayesian Graphical Model Selection). The procedure
starts with the down algorithm, and using the models selected as the set of candidate starting
models for the up algorithm. Let C denote a set of starting models and A denote the set of
acceptable models (initially A = φ).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 395

Algorithm 8.6 BGMS-up algorithm (Madigan and Raftery, 1994).

1. Select a model M from C.

2. Set C = C \ {M}; A = A ∪ {M}.
3. Select a supermodel M1 of M; i.e. a model M1 such that M is a submodel of M1.

4. Compute the ratio, L, given by

L = log

(
p(M|D)

p(M1|D)

)

5. If L < OL, then set A = A\{M} (if {M} ⊂ A) and if M1 /∈ C, set C = C ∪ {M1}.
6. If OL ≤ L ≤ OR, then if M1 /∈ C, set C = C ∪ {M1}.
7. If there are more supermodels of M, go to step 3.

8. If C 	= φ, go to step 1.

At the conclusion of the algorithm, the set A contains the potentially acceptable models.
We then perform another pass through the set, excluding models that do not belong to the set
A′ or belong to the set B defined by Equations (8.28) and (8.29), respectively.

8.4.12.4 Specification of prior probabilities

The predictions for each individual model are weighted by the posterior probability of the
model, given by Equation (8.23). This requires the specification of p(Mk), the prior distribution
over competing models. In the analysis of this section, we have assumed as is commonly done
that all models are equally likely

p(Mk) = 1

C(A)

where C(A) is the cardinality of set A. Alternative approaches have been considered. For
example, in a variable selection context, where each model Mk is defined by a different set
of variables, then if we have prior information about the importance of a given variable for
classification purposes, the prior probabilities for models incorporating that variable may be
greater than those models that do not use that variable. For example, we may take (Hoeting
et al., 1999)

p(Mk) =
p∏

j=1

π
δi j

j (1 − π j)
δi j

where π j ∈ [0, 1] is the prior probability that variable j is important for classification; δij is an
indicator of whether variable j is included in model Mk. A value of π j = 0.5 corresponds to

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

396 ENSEMBLE METHODS

uniform priors; π j = 1 implies variable j is included in all the models selected [p(Mk) = 0 if
variable j is not present].

8.4.12.5 BMA for classification

For the binary classification case, the response variable for a sample in the test set is Y , where
Y = 0 or Y = 1. The posterior probability of Y = 1 given the training set is

p(Y = 1|D) =

∑
Mk∈A

P(Y = 1|θ̂k)m̂k

∑
Ml∈A

m̂k

a weighted sum of component classifiers, with m̂k given by Equation (8.25).
More generally, for a C-class problem, we sum the posterior class probabilities over all

models.

8.4.12.6 BMA for feature selection

For a given class of models (e.g. logistic regression) the family of models is constructed using
all possible combinations of the input variables. Thus a supermodel is constructed from a
given model by the addition of an extra variable.

When classifying test data, we would like to know which variables are contributing to
the classification. Each classifier will use a different combination of variables, but we can
calculate the posterior probability that variable is i relevant to the classifier by calculating

p(variable i is relevant|D) =

∑
Mk∈Ai

m̂k

∑
Ml∈A

m̂l

where Ai is the subset of the final set of models that use variable i.

8.4.12.7 Discussion

BMA is not a method of model combination. It is an approach for handling uncertainty in
the model under the assumption that the data were generated by one of the models. BMA
provides a means of averaging different predictive models, each model based on maximum
likelihood estimates of model parameters. The weights applied to each model are the posterior
probabilities of each model. Thus, in order to apply the approach we need a predictive model
whose parameters are maximum likelihood estimates. Not all classifiers are of this type.

8.4.13 Summary of methods

Table 8.2 lists the combination rules discussed in this section and some of their properties,
according to the taxonomy given in Section 8.2. Further discussion is provided by Jain et al.
(2000) and Sewell (2011).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

CLASSIFIER COMBINATION METHODS 397
Ta

bl
e

8.
2

Su
m

m
ar

y
of

cl
as

si
fie

r
co

m
bi

na
tio

n
m

et
ho

ds
.

M
et

ho
d

Fe
at

ur
e

sp
ac

e
L

ev
el

T
ra

in
in

g
Fo

rm
A

rc
hi

te
ct

ur
e

O
pt

im
is

at
io

n
C

om
m

en
ts

Pr
od

uc
tr

ul
e

D
if

fe
re

nt
,

C
1

Fe
at

ur
e,

L
2

Fi
xe

d,
R

1
C

om
m

on
,

F1
Pa

ra
lle

l,
T

1
C

on
st

itu
en

tc
la

ss
ifi

er
s,

O
2

C
ou

ld
be

di
ff

er
en

tf
or

m
;c

ou
ld

be
co

m
m

on
fe

at
ur

e
se

le
ct

io
n

bu
td

if
fe

re
nt

(i
nd

ep
en

de
nt

)
da

ta
re

al
is

at
io

ns
;t

ra
in

in
g

of
co

ns
tit

ue
nt

cl
as

si
fie

rs
on

ly
Su

m
ru

le
D

if
fe

re
nt

,
C

1
Fe

at
ur

e,
L

2
Fi

xe
d,

R
1

C
om

m
on

,
F1

Pa
ra

lle
l,

T
1

C
on

st
itu

en
tc

la
ss

ifi
er

s,
O

2
M

in
,m

ax
,

m
ed

ia
n

D
if

fe
re

nt
,

C
1

Fe
at

ur
e,

L
2

Fi
xe

d,
R

1
C

om
m

on
,

F1
Pa

ra
lle

l,
T

1
C

on
st

itu
en

tc
la

ss
ifi

er
s,

O
2

M
aj

or
ity

vo
te

D
if

fe
re

nt
,

C
1

D
ec

is
io

n,
L

3
Fi

xe
d,

R
1

C
om

m
on

,
F1

Pa
ra

lle
l,

T
1

C
on

st
itu

en
tc

la
ss

ifi
er

s,
O

2
B

or
da

co
un

t
D

if
fe

re
nt

,
C

1
D

ec
is

io
n,

L
3

Fi
xe

d,
R

1
C

om
m

on
,

F1
Pa

ra
lle

l,
T

1
C

on
st

itu
en

tc
la

ss
ifi

er
s,

O
2

C
om

bi
ni

ng
cl

as
s

pr
ed

ic
to

rs
C

om
m

on
D

ec
is

io
n/

fe
at

ur
e

T
ra

in
ab

le
,

R
2

C
om

m
on

,
F1

Pa
ra

lle
l,

T
1

C
om

bi
ne

r
+

co
ns

tit
ue

nt
cl

as
si

fie
rs

,O
3

St
ac

ke
d

ge
ne

ra
l

C
om

m
on

D
ec

is
io

n/
fe

at
ur

e
T

ra
in

ab
le

,
R

2
C

om
m

on
,

F1
Pa

ra
lle

l,
T

1
C

om
bi

ne
r
+

co
ns

tit
ue

nt
cl

as
si

fie
rs

,O
3

M
ix

tu
re

of
ex

pe
rt

s
C

om
m

on
Fe

at
ur

e
T

ra
in

ab
le

,
R

2
D

is
si

m
ila

r
fo

rm
Pa

ra
lle

l,
T

1
C

om
bi

ne
r
+

co
ns

tit
ue

nt
cl

as
si

fie
rs

,O
3

B
ag

gi
ng

C
om

m
on

D
ec

is
io

n
Fi

xe
d

C
om

m
on

,
F1

Pa
ra

lle
l,

T
1

C
on

st
itu

en
tc

la
ss

ifi
er

s,
O

2
Fi

xe
d

co
m

bi
ne

r

B
oo

st
in

g
C

om
m

on
Fe

at
ur

e
T

ra
in

ab
le

C
om

m
on

,
F1

Se
ri

al
C

on
st

itu
en

tc
la

ss
ifi

er
s,

O
2

R
an

do
m

fo
re

st
s

C
om

m
on

M
od

el
av

er
ag

in
g

D
if

fe
re

nt
Fe

at
ur

e
T

ra
in

ab
le

(w
ei

gh
te

d
su

m
)

C
om

m
on

,
F1

(e
.g

.
lo

gi
st

ic
)

Pa
ra

lle
l,

T
1

C
om

bi
ne

r
+

co
ns

tit
ue

nt
cl

as
si

fie
rs

,O
3

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

398 ENSEMBLE METHODS

8.4.14 Example application study

The problem
This study (Yeung et al., 2005) addresses the problem of selecting a small number of relevant
genes for accurate classification of microarray data, essential for the development of diagnostic
tests. One of the challenges with using microarray data for classification is the large number
of genes (that is, the number of features), which is usually much greater than the number
of patterns.

Summary
Yeung et al. (2005) develop a BMA approach as a feature selection method for microarray
data, using a modification of the traditional BMA implementation of Raftery (1995). Feature
selection methods are discussed in detail in Chapter 10. A small set of relevant genes is essential
for the development of inexpensive tests. They find that the BMA algorithm developed
generally selects fewer features than the existing best feature selection methods. It has the
advantages of facilitating biological interpretation.

The data
Three datasets were considered. The breast cancer prognosis dataset (a two-class dataset)
consists of primary breast tumour samples hybridised to cDNA (complementary DNA).
There are 24481 genes and 97 samples (78 in the training set and 19 in the test set). Thus, the
number of features is very much greater than the number of patterns. The samples are divided
into two classes: the good prognosis group (those patients who remained disease free for at
least 5 years) and the poor prognosis group (those patients who developed distant secondary
tumours within 5 years). After preprocessing the data, the training set comprised 95 samples
(76 train and 19 test) on 4919 genes.

The leukaemia dataset comprises 72 samples (38 in the training set and 34 in the test set),
each consisting (after filtering) of 3051 genes. There are two main classes: patients with acute
lymphoblastic leukaemia (ALL) and those with acute myeloid leukaemia (AML). The ALL
class could be further subdivided into two ALL subtypes. Therefore, the data can be divided
into two or three classes.

The hereditary breast cancer dataset contains 22 samples (from three classes) of 3226
genes.

The model
The BMA algorithm for binary classification was applied to the breast cancer and the two-class
leukaemia datasets. The multiclass iterative BMA algorithm was applied to the three-class
leukaemia dataset. Yeung et al. (2005) use a logistic regression model to predict P(Y = 1|D,
Mk) such that

ln [P(Y = 1|D, Mk)/P(Y = 0|D, Mk)] =
p∑

i=0

bixi

(for multiclass microarray data, the binary logistic regressions were combined).

Training procedure
Yeung et al. (2005) use the BMA implementation of Raftery (1995), using Equation (8.23)
to compute p(Mk|D) and the Bayesian Information Criterion to approximate p(D|Mk)

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

APPLICATION STUDIES 399

[Equation (8.25)]. For the hereditary breast cancer dataset, the leave-one-out cross-validation
procedure was used in training.

Results
For the breast cancer prognosis dataset, there were 3 classification errors on the test set using
6 selected genes. For the leukaemia dataset, there was one classification error on the test set
using 15 selected genes. The hereditary breast cancer dataset produced 6 errors (out of 22)
using 13–15 genes (the number varied because of the cross-validation procedure).

8.4.15 Further developments

Many of the methods of classifier combination, even the basic nontrainable methods, are
active subjects of research and assessment. For example, further properties of fixed rules
(sum, voting, ranking) are presented by Kittler and Alkoot (2001) and Saranli and Demirekler
(2001).

Development of stacking to density estimation is reported by Smyth and Wolpert (1999).
Further applications of stacking neural network models are given by Sridhar et al. (1999).

The basic mixture of experts model has been extended to a tree architecture by Jordan and
Jacobs (1994). Termed ‘hierarchical mixture of experts’, nonoverlapping sets of expert net-
works are combined using gating networks. Outputs of these gating networks are themselves
grouped using a further gating network.

Boosting is classed by Breiman (1998) as an ‘adaptive resampling and combining’ or
arcing algorithm. Definitions for the bias and variance of a classifier, C, are introduced and it
is shown that

eE = eB + Bias(C) + Variance(C)

where eE and eB are the expected and Bayes’ error rates, respectively (see Chapter 9). Unstable
classifiers can have low bias and high variance on a large range of datasets. Combining multiple
versions can reduce variance significantly.

Learning a classifier for nominal vector data based on a BMA approach has been described
by Sicard et al., (2008). Alternative methods of calculating weights in a weighted model
averaging approach (for example, frequentist model averaging) are provided by Schomaker
et al. (2010) and Hjort and Claeskens (2003). EnsembleBMA is an R package for BMA
(Fraley et al., 2009).

Bayesian model combination (BMC, in contrast to BMA) is an approach proposed by
Ghahramani and Kim (2003) for classification. For many classifiers, it is not possible to
define the likelihood (for example, rule induction methods) and BMC does not assume that
the classifiers are probabilistic. The classifiers may even be human experts.

8.5 Application studies

One of the main motivating applications for research on multiple classifier systems has been
the detection and tracking of targets using a large number of different types of sensors. Much
of the methodology developed applies to highly idealised scenarios, often failing to take
into account practical considerations such as asynchronous measurements, data rates and

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

400 ENSEMBLE METHODS

bandwidth constraints on the communication channels between the sensors and the fusion
centre. Nevertheless, methodology developed within the data fusion literature is relevant to
other practical problems. Example applications include:

� Biomedical data fusion. Various applications include coronary care monitoring and
ultrasound image segmentation for the detection of the esophagus (Dawant and Garbay,
1999).

� Airborne target identification (Raju and Sarma, 1991).

Examples of the use of the ensemble methods described in this chapter include the following.

� Biometrics. Chatzis et al. (1999) combine the outputs of five methods for person
verification, based on image and voice features, in a decision fusion application. Kittler
et al. (1997) assess a multiple observation fusion (Figure 8.6) approach to person
verification. In a writer verification application, Zois and Anastassopoulos (2001) use
the Bahadur–Lazarsfeld expansion to model correlated decisions. Prabhakar and Jain
(2002) use kernel-based density estimates (Chapter 4) to model the distributions of the
component classifier outputs, each assumed to provide a measure of confidence in one
of two classes, in a fingerprint verification application.

� Chemical process modelling. Sridhar et al. (1996) develop a methodology for stacking
neural networks in plant-process modelling applications.

� Remote sensing. In a classification of land cover from remotely sensed data using
decision trees, Friedl et al. (1999) assess a boosting procedure (see also Chan et al.,
2001). In a similar application, Giacinto et al. (2000) assess combination methods
applied to five neural and statistical classifiers.

� Video indexing. Benmokhtar and Huet (2006) use a classifier fusion (fusion of classifier
outputs) approach for automatic semantic-based video content and retrieval (indexing
and searching multimedia databases).

� Protein structure prediction. Melvin et al. (2008) combine classifiers of different type
(nearest neighbour and support vector machine) in a study to predict protein structure
from amino acid sequence or structure.

BMA approaches have been exploited in many applications including in the areas of finance
(Magnus et al., 2010; Ouysse and Kohn, 2010), weather prediction (Berrocal et al., 2007;
Sloughter et al., 2007; Bao et al., 2010; Fraley et al., 2010), political science (Montgomery
and Nyhan, 2010), microarray data classification (Yeung et al., 2005; Annest et al., 2009;
Abeel et al., 2010), and ecology (Prost et al., 2008).

8.6 Summary and discussion

Combining the results of several classifiers, rather than selecting the best, may offer improved
performance. There may be practical motivating problems for this – such as those in dis-
tributed data fusion – and many rules and techniques have been proposed and assessed. These
procedures differ in several respects: they may be applied at different levels of processing (raw
‘sensor’ data, feature level, decision level); they may be trainable or fixed; the component

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

NOTES AND REFERENCES 401

classifiers may be similar (for example, all decision trees), or of different forms, developed
independently; the structure may be serial or parallel; finally, the combiner alone may be
optimised, or jointly with the component classifiers.

In this chapter, we have reviewed the characteristics of combination schemes, a motivating
application (distributed sensor detection) and described the properties of some of the more
popular methods of classifier combination. Some of the research in this area is motivated by
real-world practical applications such as the distributed detection problem and some work on
person verification using different identification systems. Often, in applications such as these,
the constituent classifier is fixed and an optimal combination is sought. There is no universal
best combiner, but simple methods such as the sum, product and median rules can work well.

Of more interest are procedures that simultaneously construct the component classifiers
and the combination rule. Unstable classification methods (classification methods for which
small perturbations in their training set or construction procedure may result in large changes
in the predictor; for example, decision trees) can have their accuracy improved by combin-
ing multiple versions of the classifier. Bagging and boosting fall into this category. Bagging
perturbs the training set repeatedly and combines by simple voting; boosting reweights mis-
classified samples and classifiers are combined by weighted voting. Unstable classifiers such
as trees can have a high variance that is reduced by bagging and boosting. However, boosting
may increase the variance of a stable classifier and be counterproductive. Model averag-
ing methods (such as BMA) offer approaches for handling model uncertainty as well as
parameter uncertainty.

8.7 Recommendations

1. If you are combining prescribed classifiers, defined on the same inputs, the sum rule is
a good start.

2. For classifiers defined on separate feature spaces, the product rule is a simple one to
begin with and one that does not require training.

3. Boosting and bagging are recommended to improve performance of unstable classifiers.

8.8 Notes and references

There is a large amount of literature on combining classifiers. A good starting point is the
statistical pattern recognition review by Jain et al. (2000); see also Tulyakov et al. (2008) and
the book by Kuncheva (2004a). Kittler et al. (1998) describe a common theoretical framework
for some of the fixed combination rules.

Within the defence and aerospace domain, data fusion has received considerable atten-
tion, particularly the detection and tracking of targets using multiple distributed sources
(Waltz and Llinas, 1990; Dasarathy, 1994b; Varshney, 1997), with benefits in robust opera-
tional performance, reduced ambiguity, improved detection and improved system reliability
(Harris, 1997).

Stacking originated with Wolpert (1992) and the mixture of experts model with Jacobs
et al. (1991; see also Jordan and Jacobs, 1994). Combining neural network models is reviewed
by Sharkey (1999).

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

402 ENSEMBLE METHODS

Bagging is presented by Breiman (1996). Comprehensive experiments on bagging
and boosting for linear classifiers are described by Skurichina (2001). The first provable
polynomial-time boosting algorithm was presented by Schapire. The Adaboost algorithm was
introduced by Freund and Schapire (1996, 1999). Improvements to the basic algorithm are
given by Schapire and Singer (1999). Empirical comparisons of bagging and boosting are
given by Bauer and Kohavi (1999). A statistical view of boosting is provided by Friedman
et al. (1998).

Raftery (1995) provides a good introduction to Bayesian model averaging; see also the
tutorial by Hoeting et al. (1999), and comments on that paper, and the review by Wasserman
(2000).

Random forests is a trademark of Leo Breiman (Breiman, 2001) and Adele Cutler and is
licensed exclusively to Salford Systems. Random forest software is commercially marketed
by Salford Systems; open source implementations are available.

Exercises

1. What is the significance of the condition et > 0.5 in step 2 of the boosting algorithm in
Section 8.4.10?

2. Design an experiment to evaluate the boosting procedure. Consider which classifier to use
and datasets that may be used for assessment. How would weighted samples be incorporated
into the classifier design? How will you estimate generalisation performance? Implement
the experiment and describe the results.

3. As above, but assess the bagging procedure as a means of improving classifier performance.

4. Using the expression (8.10) for the posterior probabilities, express the product rule in terms
of the priors and δki. Assuming δki
 1, show that the decision rule may be expressed
(under certain assumptions) in terms of sums of the δki. State your assumptions. Finally,
derive (8.11) using (8.10).

5. Given measurements u = (u1, . . . , uL) made by L detectors with probabilities of false
alarm pfai and probabilities of detection pdi, (i = 1, . . . , L), show (assuming independence
and equal cost loss matrix)

log

(
p(ω1|u)

p(ω2|u)

)
= log

(
p(ω1)

p(ω2)

)
+

∑
S+

log

(
pdi

pfai

)
+

∑
S−

log

(
1 − pdi

1 − pfai

)

where S+ is the set of all detectors such that ui = +1 (target present declared – class ω1)
and S− is the set of all detectors such that ui = 0 (target absent declared – class ω2).

Therefore, express the data fusion rule as [see Equation (8.3)]

u0 =
{

1 if a0 + aT u > 0
0 otherwise

and determine a0, a.

P1: OTA/XYZ P2: ABC
JWST102-c08 JWST102-Webb August 26, 2011 16:52 Printer Name: Yet to Come

EXERCISES 403

6. Write a computer program to produce the ROC curve for the L sensor fusion problem [L
sensors with probabilities of false alarm pfai and probabilities of detection pdi, (i = 1, . . . ,
L)] using the decision rule (8.4).

7. Using the Bahadur–Lazarsfeld expansion, derive the Bayesian decision rule in terms of
the conditional correlation coefficients,

γ i
i j...L = Ei[ziz j . . . zL] =

∫
ziz j . . . zL p(u|ωi)du

for i = 1, 2.

8. k out of N decision rule. Let p(ω1) be the prior probability that a target is present; p(ω2)
[=1 − p(ω1)] is the probability that a target is not present. Let p be the probability
of detecting a target given that it is present (the probability of detection) and q be the
probability of incorrectly detecting a target given that it is not present (the probability of
false alarm). For N similar detectors operating independently, write down the probability
that a target is present given that at least k detectors fire and show that if all N detectors
fire, then the probability that a target is present is

p(ω1)

p(ω1) + p(ω2)

(
q

p

)N

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

9

Performance assessment

Classifier performance assessment is an important aspect of the pattern recognition cycle. How
good is the designed classifier and how well does it compare with competing classification
techniques? Error rate is the most widely used performance measure, but it has its shortcomings.
Alternatives measures are presented and the use of the receiver operating characteristic for
performance assessment described.

9.1 Introduction

The pattern recognition cycle (see Chapter 1) begins with the collection of data and initial data
analysis followed, perhaps, by preprocessing of the data and the design of the classification
rule. Chapters 2–7 described approaches to classification rule design, beginning with density
estimation methods and leading on to techniques that construct a discrimination rule that
may be expressed as an interpretable rule. In this chapter we address the issue of measuring
classifier performance.

Performance assessment should really be a part of classifier design and not an add-on extra
that is considered separately, as it often is. A sophisticated design stage is often followed by
a much less sophisticated evaluation stage, perhaps resulting in an inferior rule. The criterion
used to design a classifier is often different from that used to assess it, which is different
again from a performance measure appropriate for the classifier operating conditions. For
example, in constructing a discriminant rule, it is common to choose the parameters of the
rule to optimise a square error measure, yet to assess the rule using a different measure of
performance, such as error rate.

A related aspect of performance is that of comparing the performance of several classifiers
trained on the same dataset. For a practical application, we may implement several classifiers
and want to choose the best, measured in terms of error rate or perhaps computational
efficiency. In Section 9.3, comparing classifier performance is addressed.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 405

Table 9.1 2 × 2 confusion matrix.

True class

Positive Negative

Predicted Positive True positives (TP) False positives (FP)
class Negative False negatives (FN) True negatives (TN)

9.2 Performance assessment

Three aspects of performance of a classification rule are addressed. The first is the discrim-
inability of a rule (how well it classifies unseen data) and we focus on one particular method,
namely the error rate. The second is the reliability of a rule. This is a measure of how well
it estimates the posterior probabilities of class membership. Finally, the use of the receiver
operating characteristic (ROC) as an indicator of performance is considered.

9.2.1 Performance measures

Many performance metrics can be calculated from the confusion matrix. Table 9.1 shows a
2 × 2 classifier confusion matrix for two classes (positive and negative). It shows the number
of true and false predictions for each of the two classes. The true positives (TP) is the number
of members of the positive class that are correctly predicted by the classifier to belong to the
positive class. The false positives (FP) is the number of members of the negative class that
are incorrectly predicted to belong to the positive class. Table 9.2 lists some of the common
performance metrics derived from the confusion matrix. Many are extendable to multiclass
problems (Sing et al., 2007).

Table 9.2 Performance metrics derived from the 2 × 2 confusion
matrix; P = TP + FN; N = FP + TN.

Accuracy (Acc) T P+T N
P+N

Error rate (E) 1 − Acc

False positive rate (fpr) FP
N

False alarm rate (identical to fpr) FP
N

True positive rate (tpr) T P
P

Precision (Prec) T P
T P+FP

Recall (Rec, identical to tpr) T P
P

Sensitivity (Sens, identical to tpr) T P
P

Specificity (Spec) T N
N

F measure
2

1
Prec + 1

Rec

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

406 PERFORMANCE ASSESSMENT

9.2.2 Discriminability

There are many measures of discriminability (Hand, 1997), the most common being the
misclassification rate or the error rate of a classification rule. Generally, it is very difficult
to obtain an analytic expression for the error rate and therefore it must be estimated from
the available data. There is a vast amount of literature on error rate estimation, but the error
rate suffers from the disadvantage that it is only a single measure of performance, treating all
correct classifications equally and all misclassifications with equal weight also (corresponding
to a 0/1 loss function – see Chapter 1). In addition to computing the error rate, we may also
compute a confusion or misclassification matrix. The (i, j)th element of this matrix is the
number of patterns of class ωj that are classified as class ωi by the rule. This is useful in
identifying how the error rate is decomposed. A complete review of the literature on error rate
estimation deserves a volume in itself, and is certainly beyond the scope of this book. Here,
we limit ourselves to a discussion of the more popular types of error rate estimator.

First, let us introduce some notation. Let the training data be denoted by Y = {yi, i =
1, . . . , n}, where the pattern yi consists of two parts, yT

i = (xT
i , zT

i), where {xi, i = 1, . . . , n}
are the measurements and {zi, i = 1, . . . , n} are the corresponding class labels, now coded
as a vector, (zi) j = 1 if xi ∈ class ω j and zero otherwise. Let ω(zi) be the corresponding
categorical class label. Let the decision rule designed using the training data be η(x;Y)

(that is, η is the class to which x is assigned by the classifier designed using Y) and let
Q(ω(z), η(x;Y)) be the loss function

Q(ω(z), η(x;Y)) =
{

0 if ω(z) = η(x;Y) (correct classification)
1 otherwise

Apparent error rate
The apparent error rate, eA, or resubstitution rate is obtained by using the design set to
estimate the error rate,

eA = 1

n

n∑
i=1

Q(ω(zi), η(xi;Y))

It can be severely optimistically biased, particularly for complex classifiers and a small dataset
when there is a danger of overfitting the data – that is, the classifier models the noise on the
data rather than its structure. Increasing the number of training samples reduces this bias.

True error rate
The true error rate (or actual error rate or conditional error rate), eT, of a classifier is the
expected probability of misclassifying a randomly selected pattern. It is the error rate on an
infinitely large test set drawn from the same distribution as the training data.

Expected error rate
The expected error rate, eE, is the expected value of the true error rate over training sets of a
given size, eE = E[eT].

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 407

Bayes’ error rate
The Bayes’ error rate or optimal error rate, eB, is the theoretical minimum of the true error
rate, the value of the true error rate if the classifier produced the true posterior probabilities
of class membership, p(ωi|x), i = 1, . . . ,C.

9.2.2.1 Holdout estimate

The holdout method splits the data into two mutually exclusive sets, sometimes referred to
as the training and test sets. The classifier is designed using the training set and performance
evaluated on the independent test set. The method makes inefficient use of the data (using
only part of it to train the classifier) and gives a pessimistically biased error estimate (Devijver
and Kittler, 1982). However, it is possible to obtain confidence limits on the true error rate
given a set of n independent test samples, drawn from the same distribution as the training
data. If the true error rate is eT, and k of the samples are misclassified, then k is binomially
distributed

p(k|eT , n) = Bi(k|eT , n)
�=

(
n
k

)
ek

T (1 − eT)(n−k) (9.1)

The above expression gives the probability that k samples out of n of an independent test set
are misclassified given that the true error rate is eT. Using Bayes’ theorem, we may write the
conditional density of the true error rate, given the number of samples misclassified, as

p(eT |k, n) = p(k|eT , n)p(eT , n)∫
p(k|eT , n)p(eT , n)deT

Assuming p(eT, n) does not vary with eT and p(k|eT, n) is the binomial distribution, we have
a beta distribution for eT,

p(eT |k, n) = Be(eT |k + 1, n − k + 1)
�= ek

T (1 − eT)n−k

∫
ek

T (1 − eT)n−kdeT

where Be(x|α, β) = [�(α + β)/(�(α)�(β))]xα − 1(1 − x)β − 1. The above posterior density
provides a complete account of what can be learned given the test error. However, it may be
summarised in several ways, one of which is to give an upper and lower bound (a percentage
point) on the true error. For a given value of α (for example 0.05), there are many intervals in
which eT lies with probability 1 − α. These are called (1 − α)-credible regions, or Bayesian
confidence intervals (O’Hagan, 1994). Among these intervals, the highest posterior density
(HPD) credible region is the one with the additional property that every point within it has a
higher probability than any point outside. It is also the shortest (1 − α)-credible region. It is
the interval Eα

Eα = {eT : p(eT |k, n) ≥ c}

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

408 PERFORMANCE ASSESSMENT

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Test error

T
ru

e
er

ro
r

n = 3

n = 10
n = 20
n = 50
n = 100

Figure 9.1 HPD credible region limits as a function of test error (number misclassified on
test/size of test set) for several values of n, the number of test samples and α = 0.05 (i.e. the
95% credible region limits). From top to bottom, the limit lines correspond to n = 3, 10, 20,
50, 100, 100, 50, 20, 10, 3.

where c is chosen such that

∫
Eα

p(eT |k, n)deT = 1 − α (9.2)

For multimodal densities, Eα may be discontinuous. However, for the beta distribution, Eα

is a single region with lower and upper bounds ε1(α) and ε2(α) (both functions of k and n)
satisfying

0 ≤ ε1(α) < ε2(α) ≤ 1

Figure 9.1 displays the Bayesian confidence intervals as a function of test error for several
values of n, the number of samples in the test set, and a value for α of 0.05, i.e. the bounds of
the 95% credible region. For example, for 4 out of 20 test samples incorrectly classified, the
(1 − α)-credible region (for α = 0.05) is [0.069, 0.399].

Figure 9.2 plots the maximum length of the 95% HPD credible region (over the test
error) as a function of the number of test samples. For example, we can see from the figure
that, to be sure of having a HPD interval of less than 0.1, we must have more than 350 test
samples.

9.2.2.2 Cross-validation

Cross-validation (also known as the U-method, the leave-one-out estimate or the deleted esti-
mate) calculates the error by using n − 1 samples in the design set and tests on the remaining
sample. This is repeated for all n subsets of size n − 1. For large n, it is computationally

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 409

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 50 100 150 200 250 300 350 400 450 500
Number of test set samples

M
ax

im
um

in
te

rv
al

Figure 9.2 Maximum length of the 95% HPD credible region as a function of the number
of test samples.

expensive, requiring the design of n classifiers. However, it is approximately unbiased, al-
though at the expense of an increase in the variance of the estimator. Denoting by Y j the
training set with observation x j deleted, then the cross-validation error is

ecv = 1

n

n∑
j=1

Q(ω(z j), η(x j,Y j))

One of the disadvantages of the cross-validation approach is that it may involve a consid-
erable amount of computation. However, for discriminant rules based on multivariate normal
assumptions, the additional computation can be considerably reduced through the application
of the Sherman–Morisson formula (Fukunaga and Kessell, 1971; McLachlan, 1992a):

(A + uuT)−1 = A−1 − A−1uuT A−1

1 + uT A−1u
(9.3)

for matrix A and vector u, which can be used to enable efficient calculation of the covariance
matrix.

The rotation method, or ν-fold cross-validation partitions the training set into ν subsets,
training on ν − 1 and testing on the remaining set. This procedure is repeated as each subset
is withheld in turn. If ν = n, we have the standard cross-validation, and if ν = 2, we have a
variant of the holdout method in which the training set and test set are also interchanged. This
method is a compromise between the holdout method and cross-validation, giving reduced bias
compared with the holdout procedure, but less computation compared with cross-validation.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

410 PERFORMANCE ASSESSMENT

9.2.2.3 The jackknife

The jackknife is a procedure for reducing the bias of the apparent error rate. As an estimator of
the true error rate, the apparent error rate bias is of order (n−1), for n samples. The jackknife
estimate reduces the bias to the second order.

Let tn denote a sample statistic based on n observations x1, . . . , xn. We assume for large
m that the expectation for sample size m takes the form

E[tm] = θ + a1(θ)

m
+ a2(θ)

m2
+ O(m−3) (9.4)

where θ is the asymptotic value of the expectation and a1 and a2 do not depend on m. Let t (j)
n

denote the statistic based on observations excluding x j. Finally, write t (.)
n for the average of

the t (j)
n over j = 1, . . . , n,

t (.)
n = 1

n

n∑
j=1

t (j)
n

Then,

E[t (.)
n] = 1

n

n∑
j=1

(
θ + a1(θ)

n − 1
+ O(n−2)

)

= θ + a1(θ)

n − 1
+ O(n−2) (9.5)

From (9.4) and (9.5), we may find a linear combination that has bias of order n−2,

tJ = ntn − (n − 1)t (.)
n

tJ is termed the jackknifed estimate corresponding to tn.
Applying this to error rate estimation, the jackknife version of the apparent error rate, e0

J ,
is given by

e0
J = neA − (n − 1)e(.)

A

= eA + (n − 1)
(

eA − e(.)

A

)

where eA is the apparent error rate; e(.)
A is given by

e(.)

A = 1

n

n∑
j=1

e(j)
A

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 411

where e(j)
A is the apparent error rate when object j has been removed from the observations,

e(j)
A = 1

n − 1

n∑
k=1,k �= j

Q(ω(zk), η(xk;Y j))

As an estimator of the expected error rate, the bias of e0
J is of order n−2. However, as an

estimator of the true error rate, the bias is still of order n−1 (McLachlan, 1992a). To reduce
the bias of e0

J as an estimator of the true error rate to second order, we use

eJ = eA + (n − 1)(ẽA − e(.)

A) (9.6)

where ẽA is given by

ẽA = 1

n2

n∑
j=1

n∑
k=1

Q(ω(zk), η(xk;Y j))

The jackknife is closely related to the cross-validation method and both methods delete one
observation successively to form bias-corrected estimates of the error rate. A difference is that
in cross-validation, the contribution to the estimate is from the deleted sample only, classified
using the classifier trained on the remaining set. In the jackknife, the error rate estimate is
calculated from all samples, classified using the classifiers trained with each reduced sample
set, and from the classifier trained with the full sample set.

9.2.2.4 Bootstrap techniques

The term ‘bootstrap’ refers to a class of procedures that sample the observed distribution, with
replacement, to generate sets of observations that may be used to correct for bias. Introduced
by Efron (1979), it has received considerable attention in the literature during the 1980s and
1990s. It provides nonparametric estimates of the bias and variance of an estimator and as a
method of error rate estimation, the bootstrap has proved superior to many other techniques.
Although computationally intensive, it is a very attractive technique, and there have been
many developments of the basic approach, largely by Efron himself [see Efron and Tibshirani
(1986) and Hinkley (1988) for a survey of bootstrap methods].

The bootstrap procedure for estimating the bias correction of the apparent error rate is
implemented as follows. Let the data be denoted by Y = {(xT

i , zT
i)T , i = 1, . . . , n}. Let F̂ be

the empirical distribution. Under joint or mixture sampling it is the distribution with mass
1/n at each data point xi, i = 1, . . . , n. Under separate sampling, F̂i is the distribution with
mass 1/ni at point xi in class ωi (ni patterns in class ωi).

1. Generate a new set of data (the bootstrap sample) Yb = {(x̃T
i , z̃T

i)T , i = 1, . . . , n} ac-
cording to the empirical distribution.

2. Design the classifier using Yb.

3. Calculate the apparent error rate for this sample and denote it by ẽA.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

412 PERFORMANCE ASSESSMENT

4. Calculate the actual error rate for this classifier (regarding the set Y as the entire
population) and denote it by ẽc.

5. Compute wb = ẽA − ẽc.

6. Repeat steps 1–5 B times.

7. The bootstrap bias of the apparent error rate is

Wboot = E[ẽA − ẽc]

where the expectation is with respect to the sampling mechanism that generates the
sets Yb, that is

Wboot = 1

B

B∑
b=1

wb

8. The bias-corrected version of the apparent error rate is given by

e(B)
A = eA − Wboot

where eA is the apparent error rate

At step 1, under mixture sampling, n independent samples are generated from the distribution
F̂ , some of these may be repeated in forming the set Ỹ and it may happen that one or more
classes are not represented in the bootstrap sample. Under separate sampling, ni are generated
using F̂i, i = 1, . . . ,C. Thus, all classes are represented in the bootstrap sample in the same
proportions as the original data.

The number of bootstrap samples, B, used to estimate Wboot may be limited by computa-
tional considerations, but for error rate estimation it can be taken to be of the order of 25–100
(Efron, 1983, 1990; Efron and Tibshirani, 1986).

There are many variants of the basic approach described above (Efron, 1983; McLachlan,
1992a). These include the double bootstrap, the randomised bootstrap and the 0.632 estimator
(Efron, 1983).

The 0.632 estimator is a linear combination of the apparent error rate and another bootstrap
error estimator, e0,

e0.632 = 0.368eA + 0.632e0

where e0 is an estimator that counts the number of training patterns misclassified that do
not appear in the bootstrap sample. The number of misclassified samples is summed over all
bootstrap samples and divided by the total number of patterns not in the bootstrap sample. If

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 413

Ab is the set of patterns in Y , but not in bootstrap sample Yb, then

e0 =

B∑
b=1

∑
x∈Ab

Q(ω(z), η(x,Yb))

B∑
b=1

|Ab|

where |Ab| is the cardinality of the set Ab. This estimator gave best performance in Efron’s
(1983) experiments.

The bootstrap may also be used for parametric distributions in which the samples are
generated according to the parametric form adopted, with the parameters replaced by their
estimates. The procedure is not limited to estimates of the bias in the apparent error rate
and has been applied to other measures of statistical accuracy, though bootstrap calculations
for confidence limits require more bootstrap replications, typically 1000–2000 (Efron, 1990).
More efficient computational methods aimed at reducing the number of bootstrap replications
compared with the straightforward Monte Carlo approach above have been proposed by
Davison et al. (1986) and Efron (1990). Application to classifiers such as neural networks
and classification trees produces difficulties, however, due to multiple local optima of the
error surface.

9.2.2.5 Limitations of error rate

There are many other measures of discriminability (see Section 9.2.1) and limiting ourselves to
a single measure, such as the error rate, may hide important information as to the behaviour of
a rule. The error rate treats all misclassifications equally. For example, in a two-class problem,
misclassifying an object from class 0 as class 1 has the same severity as misclassifying an
object from class 1 as class 0. Costs of misclassification may be very important in some
applications. They may not be known precisely, but rarely can they be considered to be equal.

In addition, in a two-class problem, an object from class 0 that is predicted to be class
1 with a probability of 0.55 contributes equally to error rate as an object from class 0 that
is predicted to be class 1 with a probability of 1. In the former case, although the object is
misclassified, there is some uncertainty over class membership. Error rate takes no account
of this.

Two approaches for overcoming some of these shortcomings are presented in the following
two subsections:

1. Performance measures that take account of posterior probabilities of class membership.

2. An ROC methodology. The use of classification error rate (or equivalently, classifier
accuracy) as a performance measure is questioned by Provost et al. (1997), who argue
that a methodology based on ROC analysis is superior.

9.2.3 Reliability

The reliability (termed imprecision by Hand, 1997) of a discriminant rule is a measure of how
well the posterior probabilities of group membership are estimated by the rule. Thus, we are

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

414 PERFORMANCE ASSESSMENT

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

-4 -3 -2 -1 0 1 2 3 4

p(ω2|x)

p̂(ω2|x)

Figure 9.3 Good discriminability, poor reliability (following Hand, 1994).

not simply interested in the class ωi for which p(ω j|x) is the greatest, but the value of p(ω j|x)

itself. Of course, we may not easily be able to estimate the reliability for two reasons. The
first is that we do not know the true posterior probabilities. Secondly, some discriminant rules
do not produce estimates of the posterior probabilities explicitly.

Figure 9.3 illustrates a rule with good discriminability but poor reliability for a two-class
problem with equal priors.

An object, x, is assigned to class ω2 if p(ω2|x) > p(ω1|x), or p(ω2|x) > 0.5. The estimated
posterior probabilities p̂(ωi|x) lead to good discriminability in the sense that the decision
boundary is the same as a discriminant rule using the true posterior probabilities [i.e. p̂(ω2|x) =
0.5 at the same point as p(ω2|x) = 0.5]. However, the true and estimated posterior probabilities
differ.

Why should we want good reliability? Is not good discriminability sufficient? In some
cases, a rule with good discriminability may be all that is required. We may be satisfied with
a rule that achieves the Bayes’ optimal error rate. On the other hand, if we wish to make
a decision based on costs, or we are using the results of the classifier in a further stage of
analysis, then good reliability is important. Hand (1997) proposes a measure of imprecision
obtained by comparing an empirical samples statistic with an estimate of the same statistic
computed using the classification function p̂(ωi|x),

R =
C∑

j=1

1

n

n∑
i=1

{
φ j(xi)[zji − p̂(ω j|xi)]

}

where zji = 1 if xi ∈ class ωj, zero otherwise and φj is a function that determines the test
statistic [for example, φ j(xi) = (1 − p̂(ω j|xi))

2].
Obtaining interval estimates for the posterior probabilities of class membership is another

means of assessing the reliability of a rule and is discussed by McLachlan (1992a), both for the
multivariate normal class-conditional distribution and in the case of arbitrary class-conditional
probability density functions using a bootstrap procedure.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 415

9.2.4 ROC curves for performance assessment

9.2.4.1 Introduction

The ROC curve was introduced in Chapter 1, in the context of the Neyman–Pearson decision
rule, as a means of characterising the performance of a two-class discrimination rule and
provides a good means of visualising a classifier’s performance in order to select a suitable
decision threshold. The ROC curve is a plot of the true positive rate on the vertical axis against
the false positive rate on the horizontal axis. In the terminology of signal detection theory, it
is a plot of the probability of detection against the probability of false alarm, as the detection
threshold is varied. Epidemiology has its own terminology: the ROC curve plots the sensitivity
against 1− Se, where Se is the specificity.

In practice, the optimal ROC curve [the ROC curve obtained from the true class-conditional
densities, p(x|ωi)] is unknown, like error rate. It must be estimated using a trained classifier
and an independent test set of patterns with known classes although, in common with error
rate estimation, a training set reuse method such as cross-validation or bootstrap methods may
be used. Different classifiers will produce different ROC curves characterising performance
of the classifiers.

Often however, we may want a single number as a performance indicator of a classifier,
rather than a curve, so that we can compare the performance of competing classifier schemes.
We begin with an assessment of two-class rules.

In Chapter 1 it was shown that the minimum risk decision rule is defined on the basis
of the likelihood ratio [see Equation (1.15)]. Assuming that there is no loss with correct
classification, x is assigned to class ω1 if

p(x|ω1)

p(x|ω2)
>

λ21 p(ω2)

λ12 p(ω1)
, (9.7)

where λji = cost of assigning a pattern x to ωi when x ∈ ω j, or alternatively

p(ω1|x) >
λ21

λ12 + λ21
(9.8)

and thus corresponds to a single point on the ROC curve determined by the relative costs and
prior probabilities. The loss is given by [Equation (1.11)]

L = λ21 p(ω2)ε2 + λ12 p(ω1)ε1 (9.9)

where p(ωi) are the class priors and εi is the probability of misclassifying a class ωi object.
The ROC curve plots 1 − ε1 against ε2.

In the ROC curve plane [that is, the (1 − ε1, ε2) plane], lines of constant loss [termed
iso-performance lines by Provost and Fawcett (2001)] are straight lines at gradients of
λ21p(ω2)/λ12p(ω1) (Figure 9.4), with loss increasing from top left to bottom right in
the figure.

Legitimate values for the loss are those for which the loss contours intercept the ROC
curve (that is, a possible threshold on the likelihood ratio exists). The solution with minimum
loss is that for which the loss contour is tangential with the ROC curve – the point where the

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

416 PERFORMANCE ASSESSMENT

increasing loss

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1
−

ε 1

ε2

Figure 9.4 ROC curve with selected loss contours (straight lines) superimposed.

ROC curve has gradient λ21p(ω2)/λ12p(ω1). There are no other loss contours that intercept
the ROC curve with lower loss.

For different values of the relative costs and priors, the loss contours are at different
gradients, in general, and the minimum loss occurs at a different point on the ROC curve.

9.2.4.2 Practical considerations

In many cases, even though the misclassification costs (λ12 and λ21) are unknown, it is
unreasonable to assume equality (leading to the Bayes’ rule for minimum error). An alternative
strategy is to compare the overall distribution of p̂(x)

�= p(ω1|x) for samples from each of the
classes ω1 and ω2. We would expect that the values of p(ω1|x) are greater for samples x from
class ω1 than for samples x from class ω2. Generally, the larger the difference between the two
distributions, the better the classifier. A measure of the separation of these two distributions
is the area under the ROC curve (AUC). This provides a single numeric value, based on
the ROC curve, that ignores the costs, λij. Thus, in contrast to the error rate, which assumes
equal misclassification costs, it assumes nothing whatever is known about misclassification
costs and thus is not influenced by factors that relate to the application of the rule. Both of
these assumptions are unrealistic in practice since, usually, something will be known about
likely values of the relative cost λ12/λ21. Also, the advantage of the AUC as a measure of
performance (namely, that it is independent of the threshold applied to the likelihood ratio)
can be a disadvantage when comparing rules. If two ROC curves cross each other, then in
general one will be superior for some values of the threshold and the other superior for other
values of the threshold. The AUC fails to take this into account. However, an ROC analysis
is more than comparing a single number. It can be used to determine regions of the ε2 space
where different classifiers dominate. Provost et al. (1997) define ranges of the gradient of the

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 417

tangent line to the ROC convex hull (the convex hull of the ROC curves produced by different
classification algorithms) for which a classifier dominates. The slope determines the ranges
of costs and class priors for which a particular classifier minimises cost.

9.2.4.3 Interpretation

Let p̂(x) = p(ω1|x) be the estimated probability that an object x belongs to class ω1. Let
f (p̂) = f (p̂(x)|ω1) be the probability density function for p̂ values for patterns in class ω1,
and g(p̂) = g(p̂(x)|ω2) be the probability density function for p̂ values for patterns in class
ω2. If F(p̂) and G(p̂) are the cumulative distribution functions, then the ROC curve is a plot
of 1 − F(p̂) against 1 − G(p̂) (see the exercises at the end of the chapter).

The AUC is given by

∫
(1 − F(u))dG(u) = 1 −

∫
F(u)g(u)du (9.10)

or alternatively

∫
G(u)dF(u) =

∫
G(u) f (u)du (9.11)

For an arbitrary point, p̂(x) = t ∈ [0, 1], the probability that a randomly chosen pattern x
from class ω2 will have a p̂(x) value smaller than t is G(t). The density of the p̂(x) value from
a randomly chosen pattern x from class ω1 is f (u). Therefore, the probability that a randomly
chosen class ω2 pattern has a smaller p̂(x) value than a randomly chosen class ω1 pattern is∫

G(u)f (u)du. This is the same as the definition (9.11) for the AUC.
A good classification rule (a rule for which the estimated values of p(ω1|x) are very

different for x from each of the two classes) lies in the upper left triangle. The closer that it
gets to the upper corner the better.

A classification rule that is no better than chance produces an ROC curve that follows the
diagonal from the bottom left to the top right.

9.2.4.4 Calculating the AUC

The AUC is easily calculated by applying the classification rule to a test set. For a classifier that
produces estimates of p(ω1|x) directly, we can obtain values { f1, . . . , fn1; fi = p(ω1|xi), xi ∈
ω1} and {g1, . . . , gn2; gi = p(ω1|xi), xi ∈ ω2} and use these to obtain a measure of how well
separated are the distributions of p̂(x) for class ω1 and class ω2 patterns as shown below
(Hand and Till, 2001).

Rank the estimates { f1, . . . , fn1 , g1, . . . , gn2} in increasing order and let the rank of the ith
pattern from class ω1 within the ranked estimates be ri. Then there are ri − i class ω2 patterns
with estimated value of p̂(x) less than that of the ith reordered pattern of class ω1. If we sum
over class ω1 test points, then we see that the number of pairs of points, one from class ω1

and one from class ω2, with p̂(x) smaller for class ω2 than the p̂(x) value for class ω1 is

n1∑
i=1

(ri − i) =
n1∑

i=1

ri −
n1∑

i=1

i = S0 − 1

2
n1(n1 + 1)

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

418 PERFORMANCE ASSESSMENT

where S0 is the sum of the ranks of the class ω1 test patterns. Since there are n1n2 pairs, the
estimate of the probability that a randomly chosen class ω2 pattern has a lower estimated
probability of belonging to class ω1 than a randomly chosen class ω1 pattern is

Â = 1

n1n2

{
S0 − 1

2
n1(n1 + 1)

}

This is equivalent to the AUC and provides an estimate that has been obtained using the
rankings alone and has not used threshold values to calculate it.

The standard deviation of the statistic Â is (Hand and Till, 2001)

√
θ̂ (1 − θ̂) + (n1 − 1)(Q0 − θ̂2) + (n2 − 1)(Q1 − θ̂2)

n1n2

where

θ̂ = S0

n1n2

Q0 = 1

6
(2n1 + 2n2 + 1) (n1 + n2) − Q1

Q1 =
n1∑
j=1

(
r j − 1

)2

An alternative approach, considered by Bradley (1997), is to construct an estimate of the
ROC curve directly for specific classifiers by varying a threshold and then to use an integration
rule (for example, the trapezium rule) to obtain an estimate of the area beneath the curve.

9.2.4.5 Cross-validation estimates of the ROC curve

The ROC is a plot of the true positive rate against the false positive rate. Denoting the ratio
λ21/(λ12 + λ21) in Equation (9.8) by t, then the true positive rate is given by

tpr(t) = p(p(ω1|x) ≥ t|ω1)

the probability that the estimated probability of class ω1 given the observation x is greater
than the threshold t, for x belonging to class ω1. A sample-based estimate of this, using a test
set of n1 samples of class ω1 and n2 samples of class ω2 is

tpr(t) = 1

n1
× number of class ω1 test samples correctly classified with threshold t

The false positive rate is given by

fpr(t) = p(p(ω1|x) ≥ t|ω2)

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 419

the probability that the estimated probability of class ω1 given the observation x is greater
than the threshold t, for x belonging to class ω2. A sample-based estimate of this is

fpr(t) = 1

n2
× number of class ω2 test samples incorrectly classified with threshold t

The ROC curve is given by

ROC(t) = {(fpr(t), tpr(t)), t ∈ [0, 1]} (9.12)

In k-fold cross-validation, the data are divided into k partitions. For each of k runs, the
classifier is trained on training data comprising training data in k − 1 partitions and tested on
the remaining partition. The true positive rate is

tprcv(t) = 1

n1

∑
xi∈ω1

I
[
p−k(i)(ω1|xi) ≥ t

]
, t ∈ [0, 1]

where k(i) is an indicator function defining the partition to which xi belongs; p−k(i) is the
classifier trained on the set of k − 1 partitions that excludes the partition k(i); I[θ] = 1 if θ is
true and I[θ] = 0 otherwise. The false positive rate is

fprcv(t) = 1

n2

∑
xi∈ω2

I
[
p−k(i)(ω1|xi) ≥ t

]
t ∈ [0, 1]

and the ROC curve given by

ROCcv(t) = {(fprcv(t), t prcv(t)), t ∈ [0, 1]} (9.13)

Adler and Lausen (2009) also provide bootstrap definitions of the ROC curve.

9.2.4.6 Multiclass extensions

There are several extensions of the standard two-class ROC analysis to multiclass problems,
including the work of Landgrebe and Duin (2008) who review some of the literature in this
area (Ferri et al., 2003; Fieldsend and Everson, 2005; Everson and Fieldsend, 2006; Landgrebe
and Duin, 2007).

Further work on the AUC measure includes that of Hand and Till (2001) who develop it
to the multiple class classification problem (see also Hajian-Tilaki et al., 1997a,b) and Adams
and Hand (1999) who take account of some imprecisely known information on the relative
misclassification costs (see also Section 9.3.3).

9.2.5 Population and sensor drift

The basic assumption in classifier design is that the distribution from which the design sample
is selected is the same as the distribution from which future objects will arise, i.e. that the
training set is representative of the operating conditions. In many applications, this assumption
is not valid.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

420 PERFORMANCE ASSESSMENT

In classifier design, we often have a design or training set that is used to train a classifier;
a validation set (used as part of the training process) for model selection or termination of an
iterative learning rule; and an independent test set, which is used to measure the generalisation
performance of the classifier: the ability of the classifier to generalise to future objects. These
datasets are often gathered as part of the same trial and it is common that they are, in fact,
different partitions of the same dataset. In many practical situations, the operating conditions
may differ from those prevailing at the time of the test data collection, particularly in a
sensor data analysis problem. For example, sensor characteristics may drift with time or
environmental conditions may change. These effects result in changes to the distributions
from which patterns are drawn. This is referred to as population drift (Hand, 1997). The
circumstances and degree of population drift vary from problem to problem. This presents a
difficulty for classifier performance evaluation since the test set may not be representative of
the operating conditions and thus the generalisation performance quoted on the test set may be
overly optimistic. Designing classifiers to accommodate population drift is problem specific.

9.2.5.1 Population drift

In this section, we review some of the causes of population drift and the approaches that can
be taken to mitigate against distributional changes.

Sensor drift
Pattern recognition techniques need to be developed for drifting sensors. An example is an
electronic nose, a device that contains a number of different individual sensors whose response
characteristics depend on the chemical odour present. These have applications in quality
control, bioprocess monitoring and defence. All chemical sensors are affected by drift, stability
problems and memory effects. Data processing techniques are required to handle these effects
autonomously. This may be simple preprocessing to remove shifts in zero points of responses,
and changes in sensitivity handled by a gain control, but there may be more complex effects.

Changes in object characteristics
In medical applications there may be drift in the patient population (changes in patient
characteristics) over time. Population drift also occurs in speech recognition when a new
speaker is presented. There are various approaches including analysing a standard input from
a new speaker and using this to modify stored prototypes. In credit scoring, the behaviour of
borrowers is influenced by short-term pressures (for example, Budget announcements by the
Chancellor of the Exchequer) and classification rules will need to be changed quite frequently
(Kelly et al., 1999). In radar target recognition, classifiers need to be robust to changes in
vehicle equipment fit which can give rise to large changes in the radar reflectivity (Copsey and
Webb, 2000). In condition monitoring, the healthy state of an engine will change with time.
In object recognition in images, it is important that the classifier has some invariance to object
pose (translational/rotational invariance). In each of the examples above, it is an advantage if
the classification method can be dynamically updated and does not need to be re-computed
from scratch (using new sets of training data) as the conditions change.

Environmental changes
The training conditions may only approximate the expected operating conditions and a trained
classifier will need some modification (Kraaijveld, 1996). The signal-to-noise ratio of the

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 421

operating conditions may be different from the (controlled) training conditions and may
possibly be unknown. In order to derive a classifier for noisier operating conditions, sev-
eral approaches may be adopted including noise injection in the training set and modifying
the training procedure to minimise a cost function appropriate for the expected operating
conditions (Webb and Garner, 1999). Errors-in-variables models are relevant here. In target
recognition, the ambient light conditions may change. The environmental conditions, for ex-
ample the clutter in which the target is embedded, will differ from the training conditions. Sea
clutter is time-varying.

Sensor change
For various reasons, it may not be possible to gather sufficient information with the operating
sensor to train a classifier: it might be too expensive or too dangerous. However, measurements
can be made in more controlled conditions using a different sensor and a classifier can be
designed using this set of measurements. In this type of problem, a classifier needs to be
designed using sensor-independent features or a means of translating operating sensor data to
the training domain must be developed.

Variable priors and costs
Prior probabilities of class membership are likely to change with time. Thus, although class
conditional densities do not change, decision boundaries are altered due to varying priors.
This requires high-level modelling, but often there is little data available to model the
dependencies and Bayesian networks are constructed using expert opinion (Copsey and Webb,
2002). Costs of misclassification are also variable and unknown. The consequence is that the
optimisation criterion used in training (for example, minimum cost) may be inappropriate for
the operating conditions.

9.2.5.2 Conclusions

Uncertainties between training and operating conditions mean that there is a limit beyond
which it is not worth pushing the development of a classification rule (Hand, 1997). In some
cases, population drift is amenable to treatment, but this is problem dependent.

9.2.6 Example application study

The problem
This study (Bradley, 1997) comprises an assessment of AUC as a performance measure on six
pattern recognition algorithms applied to datasets characterising medical diagnostic problems.

Summary
The study estimates AUC through an integration of the ROC curve and its standard deviation
is calculated using cross-validation.

The data
There are six datasets comprising measurements on two classes:

1. Cervical cancer: 6 features, 117 patterns; classes are normal and abnormal cervical cell
nuclei.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

422 PERFORMANCE ASSESSMENT

2. Post-operative bleeding: 4 features, 113 patterns (after removal of incomplete patterns);
classes are normal blood loss and excessive bleeding.

3. Breast cancer: 9 features, 683 patterns; classes are benign and malignant.

4. Diabetes: 8 features, 768 patterns; classes are negative and positive test for diabetes.

5. Heart disease 1: 14 features, 297 patterns; classes are heart disease present and heart
disease absent.

6. Heart disease 2: 11 features, 261 patterns; classes are heart disease present and heart
disease absent.

Incomplete patterns (patterns for which measurements on some features are missing) were
removed from the datasets.

The models
Six classifiers were trained on each dataset:

1. quadratic discriminant function (Chapter 2);

2. k-nearest-neighbour (Chapter 4);

3. classification tree (Chapter 7);

4. multiscale classifier method (a development of classification trees);

5. perceptron (Chapter 5);

6. multilayer perceptron (Chapter 6).

The models were trained and classification performance monitored as a threshold was varied
in order to estimate the ROC curves. For example, for the k-nearest-neighbour classifier, the
five nearest neighbours in the training set to a test sample are calculated. If the number of
neighbours belonging to class ω1 is greater than L, where L = [0, 1, 2, 3, 4, 5], then the test
sample is assigned to class ω1, otherwise it is assigned to the second class. This gives six
points on the ROC curve.

For the multilayer perceptron, a network with a single output is trained and during testing,
it is thresholded at values of [0, 0.1, 0.2, . . . , 1.0] to simulate different misclassification costs.

Training procedure
A 10-fold cross-validation scheme was used, with 90% of the samples used for training and
10% used in the test set, selected randomly. Thus, for each classifier on each dataset, there
are 10 sets of results.

The ROC curve was calculated as a decision threshold was varied for each of the test set
partitions and the AUC calculated using trapezoidal integration. The AUC for the rule is taken
to be the average of the 10 AUC values obtained from the 10 partitions of the dataset.

9.2.7 Further developments

The aspect of classifier performance that has received most attention in the literature is the
subject of error rate estimation. Hand (1997) develops a much broader framework for the
assessment of classification rules, defining four concepts.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

PERFORMANCE ASSESSMENT 423

Inaccuracy
This is a measure of how (in)effective is a classification rule in assigning an object to the
correct class. One example is error rate; another is the Brier or quadratic score, often used as
an optimisation criterion for neural networks, defined as

1

n

n∑
i=1

C∑
j=1

{
zji − p̂(ω j|xi)

}2

where p̂(ω j|xi) is the estimated probability that pattern xi belongs to class ωj and zji = 1 if xi

is a member of class ωj and zero otherwise.

Imprecision
Equivalent to reliability defined in Section 9.2.3, this is a measure of the difference between
the estimated probabilities of class membership p̂(ω j|x) and the (unknown) true probabilities,
p(ω j|x).

Inseparability
This is a measure evaluated using the true probabilities of belonging to a class, and so it
does not depend on a classifier. It measures the similarity of the true probabilities of class
membership at a point x, averaged over x. If the probabilities at a point x are similar, then the
classes are not separable.

Resemblance
It measures the variation between the true probabilities, conditioned on the estimated ones.
Does the predicted classification separate the true classes well? A low value of resemblance
is to be hoped for.

In this section we have been unable to do full justice to the elegance of the bootstrap
method, and we have simply presented the basic bootstrap approach for the bias correction of
the apparent error rate, with some extensions. Further developments may be found in articles
by Efron (1983), Efron and Tibshirani (1986), Efron (1990) and McLachlan (1992a).

Provost and Fawcett (2001) propose an approach that uses the convex hull of ROC curves
of different classifiers. Classifiers with ROC curves below the convex hull are never optimal
(under any conditions on costs or priors) and can be ignored. Classifiers on the convex hull
can be combined to produce a better classifier. This idea has been widely used in data fusion
(see Chapter 8) and is discussed further in Section 9.3.3.

Within the context of classifier ensembles, Barreno et al. (2008) discuss an ROC analysis
and Kuncheva (2004b) address the issue of changing environments.

9.2.8 Summary

In this section, we have given a rather brief treatment of classification rule performance
assessment, covering three measures, discriminability, reliability (or imprecision) and the use
of the ROC curve. In particular, we have given emphasis to the error rate of a classifier and
schemes for reducing the bias of the apparent error rate, namely cross-validation, the jackknife
and the bootstrap methods. These have the advantage over the holdout method in that they do
not require a separate test set. Therefore, all the data may be used in classifier design.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

424 PERFORMANCE ASSESSMENT

The error rate estimators described in this chapter are all nonparametric estimators in that
they do not assume a specific form for the class-conditional probability density functions.
Parametric forms of error rate estimators, for example based on a normal distribution model
for the class-conditional densities, can also be derived. However, although parametric rules
may be fairly robust to departures from the true model, parametric estimates of error rates may
not be (Konishi and Honda, 1990). Hence our concentration in this chapter on nonparametric
forms. For a further discussion of parametric error rate estimators we refer the reader to the
book by McLachlan (1992a).

The reliability, or imprecision, of a rule tells us how well we can trust the rule – how close
the estimated posterior densities are to the true posterior densities. The area under the ROC
curve is a measure that summarises classifier performance over a range of relative costs.

Finally, population drift is a factor that should be considered in all practical classifier
design, since it is frequently true that the operating conditions differ from those used to gather
data for classifier design.

9.3 Comparing classifier performance

9.3.1 Which technique is best?

Are neural network methods better than ‘traditional’ techniques? Is the classifier that you
develop better than those previously published in the literature? There have been many
comparative studies of classifiers and we have referenced these in previous chapters. Perhaps
the most comprehensive study is the Statlog project (Michie et al., 1994) which provides
a study of more than 20 different classification procedures applied to about 20 datasets.
Yet comparisons are not easy. Classifier performance varies with the dataset, sample size,
dimensionality of the data, and skill of the analyst. There are some important issues to be
resolved, as outlined by Duin (1996):

1. An application domain must be defined. Although this is usually achieved by specifying
a collection of datasets, these datasets may not be representative of the problem domain
that you wish to consider. Although a particular classifier may perform consistently
badly on these datasets, it may be particularly suited to the one you have.

2. The skill of the analyst needs to be considered (and removed if possible). Whereas
some techniques are fairly well defined (nearest neighbour with a given metric), others
require tuning. Can the results of classifications, using different techniques, on a
given dataset performed by separate analysts be sensibly compared? If one technique
performs better than others, is it due to the superiority of the technique on that dataset
or the skill of the implementer in obtaining the best out of a favourite method? In
fact, some classifiers are valuable because they have many free parameters and allow
a trained analyst to incorporate knowledge into the training procedure. Others are
valuable because they are largely automatic and do not require user input. The Statlog
project was an attempt at developing automatic classification schemes, encouraging
minimal tuning.

Related to the second issue above is that often the main contribution to the final performance
is the initial problem formulation (abstracting the problem to be solved from the customer,

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

COMPARING CLASSIFIER PERFORMANCE 425

selecting variables and so on), again determined by the skill of the analyst. The classifier may
only produce second-order improvements to performance.

In addition, what is the basis on which we make a comparison – error rate, reliability,
speed of implementation, speed of testing, etc.?

There is no such thing as a best classifier, but there are several ways in which comparisons
may be performed (Duin, 1996):

1. A comparison of experts. A collection of problems is sent to experts who may use
whichever technique they feel is appropriate.

2. A comparison of toolsets by nonexperts. Here a collection of toolsets is provided to
nonexperts for evaluation on several datasets.

3. A comparison of automatic classifiers (classifiers that require no tuning). This is per-
formed by a single researcher on a benchmark set of problems. Although the results will
be largely independent of the expert, they will probably be inferior to those obtained if
the expert were allowed to choose the classifier.

9.3.2 Statistical tests

Bounds on the error rate are insufficient when comparing classifiers. Usually, the test sets
are not independent – they are common across all classifiers. There are several tests for
determining whether one classification rule outperforms another on a particular dataset.

The question of measuring the accuracy of a classification rule using an independent
training and test set was discussed in Section 9.2. This can be achieved by constructing a
confidence interval or HPD region. Here we address the question: Given two classifiers and
sufficient data for a separate test set, which classifier will be more accurate on new test set
examples?

Dietterich (1998) assesses five statistical tests, comparing them experimentally to deter-
mine the probability of incorrectly detecting a difference between classifier performance when
no difference exists (type I error).

Suppose that we have two classifiers, A and B. Let

n00 = number of samples misclassified by both A and B
n01 = number of samples misclassified by A but not by B
n10 = number of samples misclassified by B but not by A
n11 = number of samples misclassified by neither A nor B

Compute the z statistic

z = |n01 − n10| − 1√
n10 + n01

If classifiers A and B have the same performance, The quantity z2 is χ2 distributed approx-
imately with one degree of freedom. The null hypothesis (that the classifiers have the same
error) can be rejected (with probability of incorrect rejection of 0.05) if |z|> 1.96. This is
known as McNemar’s test or the Gillick test.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

426 PERFORMANCE ASSESSMENT

9.3.3 Comparing rules when misclassification costs are uncertain

9.3.3.1 Introduction

Error rate, or misclassification rate, discussed in Section 9.2 is often used as a comparison cri-
terion for comparing several classifiers. It requires no choice of costs, making the assumption
that misclassification costs are all equal.

An alternative measure of performance is the AUC (also see Section 9.2). This is a measure
of the separability of the two distributions f (p̂), the probability distribution of p̂ = p(ω1|x)

for patterns x in class ω1 and g(p̂), the probability distribution of p̂ for patterns x in class ω2.
It has the advantage that it does not depend on the relative costs of misclassification.

There are difficulties with the assumptions behind both of these performance measures. In
many, if not most practical applications, the assumptions of equal costs is unrealistic. Also, the
minimum loss solution, which requires the specification of costs is not sensible since rarely
are costs and priors known precisely. In many real-world environments, misclassification costs
and class priors are likely to change over time as the environment may change between design
and test. Consequently, the point on the ROC curve corresponding to minimum loss solution
[where the threshold on the likelihood ratio is λ21p(ω2)/λ12p(ω1) – Equation (9.7)] changes.
On the other hand, usually something is known about the relative costs and it is therefore
inappropriate to summarise over all possible values.

9.3.3.2 ROC curves

Comparing classifiers on the basis of AUC is difficult when the ROC curves cross. Only in
the case of one classifier dominating another will the AUC be a valid criterion for comparing
different classifiers. If two ROC curves cross, then one curve will be superior for some values
of the cost ratio and the other classifier will be superior for different values of the cost ratio.
Two approaches for handling this situation are presented here.

LC index
In this approach for comparing two classifiers A and B, the costs of misclassification λ12

and λ21, are rescaled so that λ12 + λ21 = 1 and the loss [Equation (9.9)] calculated as a
function of λ21 for each classifier. A function, L(λ21), is defined to take the value +1 in
regions of the [0, 1] interval for which classifier A is superior (it has a lower value of the
loss than classifier B) and −1 in regions for which classifier B is superior. The confidence
in any value of λ21 is probability density function D(λ21), defined later, and the LC index is
defined as

∫ 1

0
D(λ)L(λ)dλ

which ranges over ±1, taking positive values when classifier A is more likely to lead to a
smaller value of loss than classifier B, and negative values when classifier B is more likely to
lead to a smaller value of the loss than classifier A. A value of +1 means that A is certain to
be a superior classifier since it is superior for all feasible values of λ21.

How do we decide on the set of feasible values of λ21? That is, what form do we choose
for the distribution D(λ21)? One proposal is to specify an interval [a, b] for the cost ratio,
λ12/λ21, and a most likely value, m and use this to define a unit area triangle with base

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

COMPARING CLASSIFIER PERFORMANCE 427

[a, b] and apex at m. This is because, it is argued (Adams and Hand, 1999), that experts find
it convenient to specify a cost ratio λ12/λ21 and an interval for the ratio.

The ROC convex hull method
In this method a hybrid classification system is constructed from the set of available classifiers.
For any value of the cost ratio, the combined classifier will perform at least as well as the best
classifier. The combined classifier is constructed to have an ROC curve that is the convex hull
of the component classifiers.

Figure 9.5 illustrates the ROC convex hull method. For some values of costs and priors,
the slope of the iso-performance lines is such that the optimal classifier (the point on the
ROC curve lying to the top left) is classifier B. Line β is the iso-performance line with
lowest loss that intercepts the ROC curve of classifier B. For much shallower gradients of the
iso-performance lines (corresponding to different values of the priors or costs), the optimal
classifier is classifier A. Here, line α is the lowest value iso-performance line (for a given
value of priors and costs) that intercepts the ROC curve of classifier A. Classifier C is not
optimal for any value of priors or costs. The points on the convex hull of the ROC curves
define optimal classifiers for particular values of priors and costs. Provost and Fawcett (2001)
present an algorithm for generating the ROC convex hull (see Section 8.3.3).

In practice, we need to store the range of threshold values [λ21p(ω2)/λ12p(ω1)] for which
a particular classifier is optimal. Thus, the range of the threshold is partitioned into re-
gions, each of which is assigned a classifier, the one that is optimal for that range of
thresholds.

Flach and Wu (2005) introduce the term model repair to denote approaches that modify
given models to obtain better models. They show that it is possible to do better than the

A

B

C

α

β

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e
po

si
ti

ve
 r

at
e

False positive rate

Figure 9.5 ROC convex hull method illustration.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

428 PERFORMANCE ASSESSMENT

convex hull using a method to repair concavities in an ROC curve using a process of inversion
whereby parts of the ROC curve are inverted. Note however, that if we are using ROC curves
(either a single curve and repairing concavities or multiple curves and combining them) to
derive a better model, then the data used to generate the ROC curves are being used as part
of the model training process. There is no guarantee that the ROC curve generated on an
independent test set will have the same behaviour.

9.3.4 Example application study

The problem
This study (Adams and Hand, 1999) develops an approach for comparing the performance
of two classifiers when misclassification costs are uncertain, but not completely unknown. It
is concerned with classifying customers according to their likely response to a promotional
scheme.

Summary
The LC index above is evaluated to compare a neural network classifier (Chapter 6) with
quadratic discriminant analysis (Chapter 2).

The data
The data comprise 8000 records (patterns) of measurements on 25 variables, mainly describing
earlier credit card transaction behaviour. The classes are denoted class ω1 and class ω2, with
class ω2 thought likely to return a profit. The priors are set as p(ω1) = 0.87, p(ω2) = 0.13.

The model
The multilayer perceptron had 25 input nodes and 13 hidden nodes, trained using ‘weight
decay’ to avoid overfitting, with the penalty term chosen by cross-validation.

Training procedure
The LC index and AUC were computed. In order to obtain suitable values for the ratio of costs,
banking experts were consulted and a model developed for the two types of misclassification
based on factors such as cost of manufacture and distribution of marketing material, cost due
to irritation caused by receiving junk mail and loss of potential profit by failing to mail a
potential member of class ω2.

An interval of possible values for the overall cost ratio λ12/λ21 was derived as [0.065,
0.15], with the most probably value at 0.095.

Results
The AUC values for the neural network classifier and quadratic discriminant analysis are
0.7102 and 0.7244, respectively, suggesting AUC for the quadratic discriminant is slightly
preferable. The LC index was calculated to be −0.4, also suggesting that quadratic discrimi-
nant analysis is to be preferred.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

APPLICATION STUDIES 429

9.3.5 Further developments

Adams and Hand (2000) present some guidelines for better methodology for comparing
classifiers. They identify five common deficiencies in the practice of classifier performance
assessment:

1. Assuming equal costs. In many practical applications, the two types of misclassification
are not equal.

2. Integrating over costs. The AUC summarises performance over the entire range of
costs. It is more likely that something will be known about costs and that a narrower
range would be more appropriate.

3. Crossing ROC curves. The AUC measure is only appropriate if one ROC curve dom-
inates over the entire range. If the ROC curves cross, then different classifiers will
dominate for different ranges of the misclassification costs.

4. Fixing costs. It is improbable that exact costs can be given in many applications.

5. Variability. Error rate and the AUC measure are sample-based estimates. Standard
errors should be given when reporting results.

9.3.6 Summary

There are several ways in which performance may be compared. It is important to use an
assessment criterion appropriate to the real problem under investigation. Misclassification
costs should be taken into account since they can influence the choice of method. Assuming
equal misclassification costs is very rarely appropriate. Usually something can be said about
costs, even if they are not known precisely.

9.4 Application studies

That are few application studies that specifically examine different performance metrics. It is
more common for application studies to compare different classifiers using a single metric.

Ferri et al. (2009) analyse experimentally the behaviour of 18 different performance
metrics in several different scenarios. The metrics were classified into three broad families:

� metrics based on a threshold and a qualitative understanding of error (e.g. accuracy);

� metrics based on a probabilistic understanding of error (e.g. Brier score);

� metrics based on ranks (e.g. AUC).

They undertake a comprehensive assessment, identifying important similarities between mea-
sures as well as significant differences.

In a case study in breast cancer computer-aided diagnosis, Patel and Markey (2005)
compare three performance metrics developed for the extension of the standard two-class
ROC analysis to the multiclass situation.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

430 PERFORMANCE ASSESSMENT

9.5 Summary and discussion

The most common measure of classifier performance assessment is misclassification rate or
error rate. We have reviewed the different types of error rate and described procedures for
error rate estimation. There are many other performance measures, including reliability – how
good is our classifier at estimating the true posterior probabilities – and the area under the
receiver operating characteristic (ROC) curve, AUC. Misclassification rate makes the rather
strong assumption that misclassification costs are equal. In most practical applications, this is
unrealistic. The AUC is a measure averaged over all relative costs and it might be argued that
this is equally inappropriate since usually something will be known about relative costs. The
LC index was introduced as one attempt to make use of domain knowledge in performance
assessment.

One of the greatest sources of uncertainty in classifier performance can be due to the
difference between the training conditions and the operating conditions. Some of the factors
influencing these differences have been discussed under the concept of population drift.
Uncertainty in the operating conditions can lead to greater differences in performance than
the difference arising from the choice of classifier. Therefore, spending time understanding
population drift may be more beneficial than designing sophisticated classifiers. See Hand
(2006) for further discussion.

9.6 Recommendations

1. Use error rate with care. Are the assumptions of equal misclassification costs appro-
priate for your problem?

2. ROC analysis has the benefit of separating classifier performance from class skew and
should be considered as an alternative to error rate.

3. Spend time understanding population drift and how it might apply in your problem,
before assessing classifier performance.

9.7 Notes and references

The subject of error rate estimation has received considerable attention. The literature up to
1973 is surveyed in the extensive bibliography of Toussaint (1974) and more recent advances
by Hand (1986b) and McLachlan (1987). The holdout method was considered by Highleyman
(1962). The leave-one-out method for error estimation is usually attributed to Lachenbruch
and Mickey (1968) and cross-validation in a wider context is discussed by Stone (1974).

The number of samples required to achieve good error rate estimates is discussed with
application to a character recognition task by Guyon et al. (1998).

Quenouille (1949) proposed the method of sample splitting for overcoming bias, later
termed the jackknife. The bootstrap procedure as a method of error rate estimation has
been widely applied following the pioneering work of Efron (1979, 1982, 1983). Reviews of
bootstrap methods are provided by Efron and Tibshirani (1986) and Hinkley (1988). There are
several studies comparing the performance of the different bootstrap estimators (Efron, 1983;

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

EXERCISES 431

Chernick et al., 1985; Fukunaga and Hayes, 1989b; Konishi and Honda, 1990). Davison and
Hall (1992) compare the bias and variability of the bootstrap with cross-validation. They find
that cross-validation gives estimators with higher variance but lower bias than the bootstrap.
The main differences between the estimators are when there is large class overlap, when the
bias of the bootstrap is an order of magnitude greater than that of cross-validation.

The 0.632 bootstrap for error rate estimation is investigated by Fitzmaurice et al. (1991)
and the number of samples required for the double bootstrap by Booth and Hall (1994). The
bootstrap has been used to compute other measures of statistical accuracy. The monograph
by Hall (1992) provides a theoretical treatment of the bootstrap with some emphasis on curve
estimation (including parametric and nonparametric regression and density estimation).

Reliability of posterior probabilities of group membership is discussed in the book by
McLachlan (1992a). Hand (1997) also considers other measures of performance assessment.

The use of ROC curves in pattern recognition for performance assessment and comparison
is described by Bradley (1997), Hand and Till (2001), Adams and Hand (1999) and Provost
and Fawcett (2001). For introduction and reviews of ROC curve analysis see Fawcett (2006),
Park et al. (2004) and Dubrawski (2004).

Exercises

1. Two hundred labelled samples are used to train two classifiers. In the first classifier,
the dataset is divided into training and test sets of 100 samples each and the classifier
designed using the training set. The performance on the test set is 80% correct. In the
second classifier, the dataset is divided into a training set of 190 samples and a test set of
10 samples. The performance on the test set is 90%.

Is the second classifier ‘better’ than the first? Justify your answer.

2. Verify the Sherman–Morisson formula (9.3). Describe how it may be used to estimate the
error rate of a Gaussian classifier using cross-validation.

3. Show that Equation (9.8) is an alternative form of Equation (9.7).

4. The ROC curve is a plot of (1 − ε1), the ‘true positive’, against ε2, the ‘false positive’ as
the threshold on [see Equation (9.8)]

p(ω1|x)

is varied, where

ε1 =
∫

2

p(x|ω1)dx

ε2 =
∫

1

p(x|ω2)dx

and 1 is the domain where p(ω1|x) lies above the threshold.

P1: OTA/XYZ P2: ABC
JWST102-c09 JWST102-Webb August 26, 2011 16:58 Printer Name: Yet to Come

432 PERFORMANCE ASSESSMENT

Show, by conditioning on p(ω1|x), that the true positive and false positive (for a
threshold μ) may be written, respectively, as

1 − ε1 =
∫ 1

μ

dc
∫

p(ω1|x)=c
p(x|ω1)dx

and

ε2 =
∫ 1

μ

dc
∫

p(ω1|x)=c
p(x|ω2)dx

The term
∫

p(ω1|x)=c p(x|ω1)dx is the density of p(ω1|x) values at c for class ω1. Hence
show that the ROC curve is defined as one minus the cumulative density of p̂ = p(ω1|x)

for class ω1 patterns plotted against one minus the cumulative density for class ω2 patterns.

5. Generate training data consisting of 25 samples from each of two bivariate normal dis-
tributions [means (−d/2, 0) and (d/2, 0) and identity covariance matrix]. Compute the
apparent error rate and a bias-corrected version using the bootstrap. Plot both error rates,
together with an error rate computed on a test set (of appropriate size) as a function of
separation, d. Describe the results.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

10

Feature selection and extraction

Reducing the number of useful variables either through feature selection (selecting a subset of
the original variables for classifier design) or feature extraction (determining a linear or nonlinear
transformation of the original variables to obtain a smaller set) can lead to improved classifier
performance and a greater understanding of the data. Approaches to feature selection and feature
extraction are introduced. Feature selection methods tied to the classifier type offer improved
performance over filter (classifier-independent) methods. The most widely used technique of
feature extraction is principal components analysis.

10.1 Introduction

This chapter is concerned with representing data in a reduced number of dimensions.
Reasons for doing this may be easier subsequent analysis, improved classification perfor-
mance through a more stable representation, removal of redundant or irrelevant information
or an attempt to discover underlying structure by obtaining a graphical representation of
a dataset. Techniques for representing data in a reduced dimension are termed ordination
methods or geometrical methods in the multivariate analysis literature. They include such
methods as principal components analysis and multidimensional scaling. In the pattern recog-
nition literature they are termed feature selection and feature extraction methods and include
linear discriminant analysis and methods based on the Karhunen–Loève expansion. Some of
the methods are similar, if not identical, in certain circumstances and will be discussed in
detail in the appropriate section of this chapter. Here, we approach the topic initially from a
pattern recognition perspective and give a brief description of the terms feature selection and
feature extraction.

Given a set of measurements, dimensionality reduction can be achieved in essentially two
different ways. The first is to identify those variables that do not contribute to the classification

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

434 FEATURE SELECTION AND EXTRACTION

f(x)

x1

xp

f1

f2

f(x1, . . . , xp)

x1

xp

f1

f2

Figure 10.1 Dimensionality reduction by (a) feature selection and (b) feature extraction.

task. In a discrimination problem, we would neglect those variables that do not contribute to
class separability. Thus, the task is to seek d features out of the available p measurements
(the number of features d must also be determined). This is termed feature selection in the
measurement space or simply feature selection [Figure 10.1(a)]. There are situations other
than for discrimination purposes in which it is desirable to select a subset from a larger
number of features or variables.1 Miller (1990) discusses subset selection in the context of
regression.

The second approach is to find a transformation from the p measurements to a lower-
dimensional feature space. The transformation may be performed prior to classifier design –
pre-filtering of data – or integrated with a classifier. This is termed feature selection in the
transformed space or feature extraction [Figure 10.1(b)]. This transformation may be a linear
or nonlinear combination of the original variables and may be supervised (takes into account
class information) or unsupervised. In the supervised case, the task is to find the transformation
for which a particular criterion of class separability is maximised.

Feature selection and feature extraction may be regarded as transformation methods where
a set of weights is applied to the original variables to obtain transformed variables (Molina
et al., 2002). For feature selection, the weights are binary valued. For feature extraction, the
weights are continuous. These weights are learnt from a training dataset. In the binary case,
we are interested in retaining a subset of the original features only. In the continuous feature
selection problem, all original features are retained.

Both of these approaches require the optimisation of some criterion function, J, which
is often based on some measure of distance or dissimilarity between distributions, which in
turn may require distances between objects (patterns) to be defined. For feature selection, the
optimisation is over the set of all possible subsets of size d, X d , of the p possible features,
X1, . . . , Xp. Thus we seek the subset X̃d for which

J(X̃d) = max
X∈Xd

J(X)

Suboptimal approaches that add features to an existing set are often adopted.

1 The terms feature, variable or attribute are often used interchangeably.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 435

In feature extraction, the optimisation is performed over all possible transformations of the
variables. The class of transformation is usually specified (for example, a linear transformation
of the variable set) and we seek the transformation, Ã, for which

J(Ã) = max
A∈A

J(A(X))

where A is the set of allowable transformations. The feature vector is then Y = Ã(X).

10.2 Feature selection

10.2.1 Introduction

There has been a considerable amount of work on feature selection in recent years. In par-
ticular, in the bioinformatics area, the analysis of microarray data has been one of the major
motivations. However, feature selection is a problem relevant to many applications in pat-
tern recognition and machine learning: text categorisation; remote sensing; drug discovery;
marketing; speech processing; and handwritten character recognition. The data are high di-
mensional and the sample size is often small. A categorisation of feature selection approaches
has emerged that was not widely used a decade ago (Molina et al., 2002; Liu and Yu, 2005;
Saeys et al., 2007), particularly in the pattern recognition literature.

Reasons for performing feature selection may include:

� increasing predictive accuracy of a classifier;

� removing irrelevant data;

� enhancing learning efficiency – reducing computational and storage requirements;

� reducing the cost of (future) data collection – making measurements on only those
variables relevant for discrimination;

� reducing complexity of the resulting classifier description – providing an improved
understanding of the data and the model.

Nevertheless, it should be stated that feature selection is not necessarily required as a pre-
processing step for classification algorithms to perform well (Guyon, 2008). Many modern
pattern recognition algorithms employ regularisation techniques to handle overfitting (e.g.
regularised discriminant analysis – Chapter 2; support vector machines – Chapter 6) or av-
erage over multiple classifiers (ensemble methods – Chapter 8) and thus preprocessing to
remove unnecessary features may not be required.

10.2.1.1 Relevance and redundancy

It is common that a large number of features are not informative – either irrelevant or
redundant. Learning can be achieved much more efficiently and effectively with just the
relevant and nonredundant features (Yu and Liu, 2004). Irrelevant features are those that do
not contribute to a classification rule. Redundant features are those that are strongly correlated.
Eliminating redundancy will mean that there is no need to waste effort (time and cost) making
measurements on unnecessary variables. Some feature selection approaches will remove

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

436 FEATURE SELECTION AND EXTRACTION

irrelevant features but do not handle redundant features very well (since they have similar
rankings).

A feature set may be considered to comprise four basic parts (Xie et al., 2006): (1)
irrelevant features; (2) redundant features; (3) weakly relevant but nonredundant features; and
(4) strongly relevant features. An optimal subset contains features in parts 3 and 4.

Let X be a feature and denote the full set of features by X ; denote by S the set of features
excluding X ; that is, S = X − {X}.

Strong relevance
The feature X is strongly relevant iff

p(C|X, S) �= p(C|S)

The distribution of the class predictor depends on the feature, X. Thus, the feature cannot be
removed without affecting the distribution of the class predictor.

Weak relevance
The feature X is weakly relevant iff

p(C|X, S) = p(C|S)

and ∃ S′⊂ S such that p(C|X, S′) �= p(C|S′); that is, removal of the feature X from the total set
does not affect the class prediction, but X does affect the class predicted based on a subset of
the complete set. Thus, the feature is not always necessary, but may be necessary for certain
subsets.

Irrelevance
The feature X is irrelevant iff

∀ S′ ⊆ S, p(C|X, S′) = p(C|S′)

The feature X does not affect the class prediction for any subset of the complete set. Thus, the
feature is not necessary at all.

Redundancy
A good feature set will include none of the irrelevant features, all of the strongly relevant
features and a subset of the weakly relevant features. Feature redundancy is used to determine
which of the weakly relevant features to retain. It is defined here using the concept of Markov
blanket.

Let MX be a subset of the features X that does not contain the feature, X. Then, MX is
a Markov blanket for X if X is conditionally independent2 of X − MX − {X} given MX . A
Markov blanket means that MX subsumes the information that X has about all the other fea-
tures. A graphical interpretation of a Markov blanket can be provided by a Bayesian network.

2 Consider three variables, A, B and C. We say that A is conditionally independent of B given C (written A ⊥ B|C)
to mean p(A, B|C) = p(A|C)p(B|C), or equivalently, p(A|B, C) = p(A|C).

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 437

Figure 10.2 A Bayesian network. The Markov blanket, MX , for the node labelled X is the
set of nodes {d, e, f , g, h, i}: the parents, the children and the parents of the children.

A Bayesian network is a statistical model that represents graphically the independencies that
hold in a domain (see Chapter 4). For a faithful Bayesian network,3 the Markov blanket of a
feature is unique and is the set of parents, children and spouses (parents of common children)
as encoded in the graphical structure of the network (Figure 10.2). If MX is a Markov blanket
of X, then the class variable C is conditionally independent of X given its Markov blanket.

Assume that we have a set of features, G ⊂ X . A feature in G is redundant and can
be removed from the set iff it is weakly relevant and has a Markov blanket in G. Thus, the
Markov blanket property can be used to remove features that are unnecessary. However, not
all features that are retained are necessarily useful: it depends on the objective. The above
definitions of relevance and redundancy are cast in terms of the posterior probability of the
class variable. If the objective is to minimise classification error, then some of the relevant
features may not be necessary. An illustration for a two-class problem (labelled by � and �)
is provided by Figure 10.3 (Guyon, 2008). For the data points above X2 = 0.5, both classes
are distributed uniformly over 0 ≤ X1 ≤ 1, 0.5 ≤ X2 ≤ 1. Below the line X2 = 0.5, the class �
is distributed uniformly over 0.5 ≤ X1 ≤ 1, 0 ≤ X2 ≤ 0.5; the class � is distributed uniformly
over 0 ≤ X1 ≤ 0.5, 0 ≤ X2 ≤ 0.5. Clearly, the posterior probability of the class depends on
X2, but the simplest Bayes decision boundary is X1 = 0.5 and does not depend on X2.

10.2.1.2 Problem statement

Let G, be a subset of the variables X . Denote by p(C|x) the posterior probability of the class
variable given a set of measurements, x, on the vector of variables, X; similarly, denote by
p(C|g) the posterior probability of the class variable given a set of measurements, g, on the
vector of variables, G. The goal of feature selection is to select the set G so that p(C|x) and

3 A Bayesian network is faithful to a joint distribution, P, iff every conditional dependence entailed in the Bayesian
network is also present in P.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

438 FEATURE SELECTION AND EXTRACTION

0.2 0.4 0.6 0.8 1
X1

0.2

0.4

0.6

0.8

1

X2

Figure 10.3 Feature X2 is strongly relevant to the class variable since p(C|X1, X2) �= p(C|X1).
The decision boundary (X1 = 0.5) does not depend on X2.

p(C|g) are as close as possible. For two distributions μ(z) and σ (z), the Kullback–Leibler
divergence is defined to be

KL(μ|σ) =
∑

z

μ(z) log

(
μ(z)

σ (z)

)

KL measures the extent of the ‘error’ in using σ to approximate μ. We use Kullback–Leibler
divergence in our feature selection definition and seek the subset of variables such that

δG(x) = KL (p(C|x)|p(C|g))

=
∑

C

p(C|x) log

(
p(C|x)

p(C|g)

)

is as small as possible. The above is an evaluation for just one measurement vector, therefore
we sum over all measurement vectors, or using the unconditional distribution p(x), we evaluate

�G =
∑

x

p(x)δG(x)

where the summation is replaced by an integral for continuous variables.
Unfortunately, it is not practical to implement a feature selection approach directly based

on an evaluation of �G since we do not know the distributions involved – we only have a
sample of data points from the distributions. Secondly, evaluation of �G for each subset of
variables is often infeasible.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 439

For example, suppose that we have a set of measurements on p variables, and we seek the
best subset of size d? Ideally, we would evaluate the criterion �G for all possible combinations
of d variables selected from p and select that combination for which this criterion is minimised,
but the difficulty in obtaining the solution arises because the number of possible subsets is

nd = p!

(p − d)!d!

which can be very large even for moderate values of p and d. For example, selecting the best
10 features out of 25 means that 3 268 760 feature sets must be considered, and evaluating the
optimality criterion for every feature set in an acceptable time may not be feasible. Therefore,
we must consider ways of searching through the space of possible variable sets that reduce
the amount of computation, perhaps at the expense of obtaining a suboptimal solution.

Selecting the ‘best’ subset may be equivalent to selecting the subset with as few variables
as possible, although not necessarily if costs are associated with individual variables.

10.2.2 Characterisation of feature selection approaches

There are several characterisations of feature selection methods. A common approach is to
organise techniques into three broad categories: filter, wrapper and embedded methods.

Filter methods
These use the statistical properties of the variables to filter out poorly informative variables;
this is undertaken prior to a classification stage; thus, feature selection is independent of
classifier learning and it relies on various measures of the general characteristics of the
training data such as distance and dependency.

Wrapper methods
These are more computationally demanding than filter methods. Subsets are evaluated within
a classification algorithm with the predictive accuracy as a measure of the goodness of a
feature set, so the approach is classifier dependent. They tend to give better performance than
filter methods.

Embedded methods
The search for an optimal set is built into classifier design (rather than being undertaken sepa-
rately from the classifier design in wrapper methods). The approach is classifier dependent, as
in wrapper methods, and can be viewed as a search in the combined space of feature subsets
and classifier models. The decision tree classifier (see Chapter 7), which selects features as
part of classifier design, is an example of an embedded method.

Filter methods are computationally much more efficient, but usually have poorer per-
formance than wrapper methods. Many heuristic algorithms (e.g. forward and backward
selection) have been proposed to reduce the computational complexity of wrapper algo-
rithms. Saeys et al. (2007) provide a classification of feature selection techniques in the
bioinformatics domain in terms of the filter, wrapper, embedded categories.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

440 FEATURE SELECTION AND EXTRACTION

There are two key steps in a feature selection process: evaluation and subset generation:

� An evaluation measure is a means of assessing a candidate feature subset. Wrapper
and embedded methods tend to use measures based on classifier performance. Filter
methods use measures based on the properties of the data.

� A subset generation method is a means of generating a subset for evaluation. The
procedure may be a simple ranking of individual features or an incremental procedure
that adds features to (or removes features from) a current feature subset.

10.2.3 Evaluation measures

In order to choose a good feature set, we require a means of measuring the ability of a feature
to contribute to the discriminability of classes, either individually or in the context of other
features, already selected. Thus, we require a means of measuring relevance and redundancy.
There are essentially two types of measures.

1. Measures that rely on the general properties of the data. These include measures
that assess the relevance of individual features (for example, simple feature ranking)
and measures that are used to eliminate feature redundancy through the estimation
of the overlap between the distributions from which the data are drawn and through
estimation of Markov blankets. These are optimised to favour those feature sets for
which this overlap is minimal (that is, maximise separability). All these measures are
independent of the final classifier employed (they are used with filter methods) and
they have the advantage that they are often fairly cheap to implement but they have
the disadvantage that the assumptions made in determining the overlap are often crude
and may result in a poor estimate of the discriminability.

Feature ranking Features are ranked by a metric and those that fail to achieve a
prescribed score are eliminated. Ranking is performed either individually or in the
context of other features.

Interclass distance A measure of distances between classes is defined based on
distances between members of each class.

Probabilistic distance This is the computation of a probabilistic distance or diver-
gence between class-conditional probability density functions (two classes).

Probabilistic dependence These measures are multiclass criteria that measure the
distance between the class-conditional densities and the mixture probability density
function for the data irrespective of the class.

2. Measures that use a classification rule as part of their evaluation. In this second
approach a classifier is designed using measurements on the reduced feature set and
a measure of classifier performance is employed as a separability measure. We then
choose the feature sets for which the classifier performs well, according to this measure,
on a separate test/validation set. In this approach, the feature set is chosen to match the
classifier (these measures are used with a wrapper or embedded method). A different
feature set may result with a different choice of classifier.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 441

Error rate A widely used example is the error rate of the classifier trained with the
feature subset, but other metrics that may also be expressed in terms of the number of
true positives (tp), false positives (fp), true negatives (tn) and false negatives (fn) have
been assessed in the context of text classification by Forman (2003).

10.2.3.1 Feature ranking measures

Univariate feature ranking can be used to rank features individually and thus provide a simple
filtering method to remove irrelevant or redundant features. The simplest approaches are
those measures based on correlation. They are easy to calculate, do not require estimation of
probability density functions nor the discretisation of continuous features.

The Pearson correlation coefficient measures the degree of linear correlation between
two variables. For two variables X and Y with measurements {xi} and {yi} and means x̄ and
ȳ this is given by

ρ (X,Y) =

∑
i

(xi − x̄) (yi − ȳ)

[∑
i

(xi − x̄)2
∑

i

(yi − ȳ)2

] 1
2

(10.1)

If two variables are completely correlated (ρ = ±1), then one is redundant and can be
removed. However, linear correlation measures may not be able to capture relationships
that are nonlinear. Correlation between a feature and a target variable representing class (a
categorical variable) requires the coding of the target class as a binary vector. If there are C
classes and the class of xi is ωk, then yi is encoded as a C-dimensional binary vector (0, . . . ,
0, 1, 0, . . . , 0), where the ‘1’ is in the kth position: yij = 0, j �= k, yik = 1. We calculate a
least-squares regression measure, R, given by

R2 =

∑
k

(∑
i

(xi − x̄) (yik − ȳk)

)2

[∑
i

(xi − x̄)2
∑

i

∑
k

(yik − ȳk)
2

] (10.2)

where ȳk is the kth component of the mean target vector. This is the squared magnitude of the
vector of correlations between the variable X and the class variables divided by the total sum
of squares.

A nonlinear correlation measure is the mutual information. The entropy of a (discrete)
variable X is given by

H(X) = −
∑

x

p(x) log2(p(x))

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

442 FEATURE SELECTION AND EXTRACTION

and the entropy of X after observing Y is defined as

H(X |Y) = −
∑

y

p(y)
∑

x

p(x|y) log2(p(x|y))

The mutual information is the additional information about X provided by Y and is the decrease
in the entropy of X given by

MI(X |Y) = H(X) − H(X |Y)

=
∑
x,y

p(x, y) log2

[
p(x, y)

p(x)p(y)

]
(10.3)

This may be used to rank features. A feature X is more correlated than a feature Z to the class
variable Y if

MI(X |Y) > MI(Z|Y)

A normalised value, termed symmetrical uncertainty, is defined as

SU (X,Y) = 2

(
MI(X |Y)

H(X) + H(Y)

)

and gives a value in [0, 1]: a value of 1 indicates that knowing the value of one feature will
predict the other and a value of 0 indicates independence [as can be seen by Equation (10.3)].
Advantages of mutual information are that the dependency between variables is no longer
restricted to be linear and it can handle nominal or discrete features. Disadvantages of the
measure are that probability density functions must be estimated and it can be difficult to
evaluate for continuous variables, which must be discretised.

Each of the above measures can be used to rank features individually according to their
relevance. However, some features may become relevant in the context of others. This is
illustrated in Figure 10.4 [after Guyon (2008)]. Therefore, ranking criteria that take into
account context are necessary. An example is a family of algorithms called Relief. It is based
on nearest-neighbour patterns. For each pattern xi, for a prescribed value of K, compute the K
closest patterns of the same class {xHk(i), k = 1, . . . , K} (the K nearest hits) and the K closest
patterns of a different class (the K nearest misses), {xMk(i), k = 1, . . . , K}. The normalised
Relief criterion, evaluated for feature Xj is

RRelief (j) =

n∑
i=1

K∑
k=1

∣∣xi, j − xMk (i), j

∣∣

n∑
i=1

K∑
k=1

∣∣xi, j − xHk(i), j

∣∣
(10.4)

the ratio of the mean distance to the nearest misses to the mean distance to the nearest
hits, measured using the feature Xj. Various extensions to the Relief methodology have been
proposed (Duch, 2004).

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 443

0.2 0.4 0.6 0.8 1

X1

0.2

0.4

0.6

0.8

1

X2

Figure 10.4 Relevance in context. The distribution of X1 and X2 are independent of the class
variable (X1 ⊥ Y , X2 ⊥ Y), but jointly, the distribution depends on class ({X1, X2}⊥ / Y).

10.2.3.2 Interclass distance

Binary variables
Various dissimilarity measures have been proposed for binary variables. For vectors of binary
variables x and y these may be expressed in terms of quantities a, b, c, and d where

a is equal to the number of occurrences of xi = 1 and yi = 1
b is equal to the number of occurrences of xi = 0 and yi = 1
c is equal to the number of occurrences of xi = 1 and yi = 0
d is equal to the number of occurrences of xi = 0 and yi = 0

This is summarised in Table 10.1. Note that a + b + c + d = p, the total number of
variables (attributes). It is customary to define a similarity measure rather than a dissimilarity
measure. Table 10.2 summarises some of the more commonly used similarity measures for
binary data.

Table 10.1 Co-occurrence
table for binary variables.

xi

1 0

yi 1 a b
0 c d

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

444 FEATURE SELECTION AND EXTRACTION

Table 10.2 Similarity measures for binary data.

Similarity measure Mathematical form

Simple matching coefficient dsm = a+d
a+b+c+d

Russell and Rao drr = a
a+b+c+d

Jaccard dj = a
a+b+c

Czekanowski dCz = 2a
2a+b+c

Nominal and ordinal variables
These are usually represented as a set of binary variables. For example, a nominal variable
with s states is represented as s binary variables. If it is in the mth state, then each of the
s binary variables has value 0 except the mth which has the value unity. The dissimilarity
between two objects can be obtained by summing the contributions from the individual
variables.

For ordinal variables, the contribution to the dissimilarity between two objects from a
single variable does not simply depend on whether or not the values are identical. If the
contribution for one variable in state m and one in state l (m < l) is δml, then we require

δml ≥ δms for s < l
δml ≥ δsl for s > m

that is, δml is monotonic down each row and across each column of the half-matrix of distances
between states (δ14 > δ13 > δ12, etc.; δ14 > δ24 > δ34). The values chosen for δml depend very
much on the problem. For example, we may have a variable describing fruits of a plant that
can take the values short, long or very long. We would want the dissimilarity between a plant
with very long fruit and one with short fruit to be greater than that between one with long
fruit and one with short fruit (all other attributes having equal values). A numeric coding of
1, 2, 3 would achieve this, but so would 1, 10, 100.

Numeric variables
Many dissimilarity measures have been proposed for numeric variables. Table 10.3 gives some
of the more common measures. The choice of a particular metric depends on the application.
Computational considerations aside, for feature selection and extraction purposes you would
choose the metric that gives the best performance (perhaps in terms of classification error on
a validation set).

Given a measure of distance, d(x, y), between two patterns x and y, each from a different
class, we define a measure of the separation between two classes, ω1 and ω2, as

Jas = 1

n1n2

n1∑
i=1

n2∑
j=1

d(xi, y j)

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 445

Table 10.3 Dissimilarity measures for numeric variables (between x and y).

Mathematical form

Euclidean distance de = {∑p
i=1(xi − yi)

2
} 1

2

City-block distance dcb =∑p
i=1 |xi − yi|

Chebyshev distance dch = max
i

|xi − yi|

Minkowski distance of order m dM = {∑p
i=1(xi − yi)

m
} 1

m

Quadratic distance Q, positive definite dq =∑p
i=1

∑p
j=1(xi − yi)Qij(xj − yj)

Canberra distance dca =
p∑

i=1

|xi − yi|
xi + yi

Nonlinear distance dn =
{

H de > D
0 de ≤ D

Angular separation

∑p
i=1 xiyi[∑p

i=1 x2
i

∑p
i=1 y2

i

]1/2

for xi ∈ ω1 and y j ∈ ω2. This is the average separation. For C > 2 classes, we define the
average distance between classes as

J = 1

2

C∑
i=1

p(ωi)

C∑
j=1

p(ω j)Jas(ωi, ω j)

where p(ωi) is the prior probability of class ωi (estimated as pi = ni/n). Using a Euclidean
distance squared for d(x, y), then the measure J may be written,

J = J1 = Tr{SW + SB} = Tr{�̂} (10.5)

where SW and SB are the within and between class scatter matrices (see Notation).
The criterion J1 is not very satisfactory as a feature selection criterion: it is simply the

total variance, which does not depend on class information.
Our aim is to find a set of variables for which the within-class spread is small and the

between-class spread is large in some sense. Several criteria have been proposed for achieving
this. One popular measure is

J2 = Tr
{
S−1

W SB
}

(10.6)

Another is the ratio of the determinants

J3 = |�̂|
|SW | (10.7)

the ratio of the total scatter to the within-class scatter.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

446 FEATURE SELECTION AND EXTRACTION

Finally, a further measure used is

J4 = Tr{SB}
Tr{SW } (10.8)

As with the probabilistic distance measures below, each of these distance measures may
be calculated recursively (see Section 10.2.5.1).

10.2.3.3 Probabilistic distance

Probabilistic distance measures the distance between two distributions, p(x|ω1) and p(x|ω2),
and can be used in feature selection. For example, the divergence is given by

JD(ω1, ω2) =
∫

[p(x|ω1) − p(x|ω2)]log

{
p(x|ω1)

p(x|ω2)

}
dx

which is the sum of the two Kullback–Leibler divergences KL(p(x|ω1)|p(x|ω2)) and
KL(p(x|ω2)|p(x|ω1)). Other measures are given in Table 10.4. A more complete list can
be found in the books by Chen (1973) and Devijver and Kittler (1982). All of the measures
given in the table have the property that they are maximum when classes are disjoint.

One of the main disadvantages of the probabilistic distance criteria is that they require
an estimate of a probability density function and its numerical integration. This restricts their
usefulness in many practical situations. However, under certain assumptions regarding the
form of the distributions, the expressions can be evaluated analytically. Many of the commonly
used distance measures, including those in Table 10.4, simplify for normal distributions. The
divergence becomes

JD = 1

2
(μ2 − μ1)

T
(
�−1

1 + �−1
2

)
(μ2 − μ1) + Tr

{
�−1

1 �2 + �−1
1 �2 − 2I

}

for normal distributions with means μ1 and μ2 and covariance matrices �1 and �2.

Table 10.4 Probabilistic distance measures.

Dissimilarity measure Mathematical form

Chernoff Jc = −log
∫

ps(x|ω1)p1−s(x|ω2) dx

Bhattacharyya JB = −log
∫

(p(x|ω1)p(x|ω2))
1
2 dx

Divergence JD =
∫

[p(x|ω1) − p(x|ω2)]log

(
p(x|ω1)

p(x|ω2)

)
dx

Patrick–Fischer JP = {∫ [p(x|ω1)p(ω1) − p(x|ω2)p(ω2)]2dx
} 1

2

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 447

In a multiclass problem, the pairwise distance measures must be adapted. We may take as
our cost function, J, the maximum overlap over all pairwise measures,

J = max
i, j(i�= j)

J(ωi, ω j)

or the average of the pairwise measures,

J =
∑
i< j

J(ωi, ω j)p(ωi)p(ω j)

10.2.3.4 Probabilistic dependence

The probabilistic distance measures are based on discrimination between a pair of classes, us-
ing the class-conditional densities to describe each class. Probabilistic dependence measures
are multiclass feature selection criteria that measure the distance between the class-conditional
density and the mixture probability density function for the data irrespective of class
(Figure 10.5).

If p(x|ωi) and p(x) are identical then we gain no information about class by observing x,
and the ‘distance’ between the two distributions is zero. Thus, x and ωi are independent. If the
distance between p(x|ωi) and p(x) is large, then the observation x is dependent on ωi. The
greater the distance then the greater is the dependence of x on the class ωi. Table 10.5 gives
the probabilistic dependence measures corresponding to the probabilistic distance measures
in Table 10.4 (Devijver and Kittler, 1982).

In practice, application of probabilistic dependence measures is limited because, even
for normally distributed classes, the expressions given in Table 10.5 cannot be evaluated
analytically since the mixture distribution p(x) is not normal.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4
x

p(x)

p(x|ω1)

Figure 10.5 Probabilistic dependence.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

448 FEATURE SELECTION AND EXTRACTION

Table 10.5 Probabilistic dependence measures.

Dissimilarity measure Mathematical form

Chernoff Jc =∑C
i=1 p(ωi)

{−log
∫

ps(x|ωi)p1−s(x) dx
}

Bhattacharyya JB =∑C
i=1 p(ωi)

{
−log
∫

(p(x|ωi)p(x))
1
2 dx
}

Joshi JD =
C∑

i=1

p(ωi)

∫
[p(x|ωi) − p(x)]log

(
p(x|ωi)

p(x)

)
dx

Patrick–Fischer JP =∑C
i=1 p(ωi)

{∫
[p(x|ωi) − p(x)]2dx

} 1
2

10.2.3.5 Error rate

A minimum expected classification error rate is often the main aim in classifier design. Error
rate (or misclassification rate) is simply the proportion of samples incorrectly classified.
Optimistic estimates of a classifier’s performance will result if the data used to design the
classifier are naı̈vely used to estimate the error rate. Such an estimate is termed the apparent
error rate. Estimation should be based on a separate test set, but if data are limited in number,
we may wish to use all available data in classifier design. Procedures such as the jackknife and
the bootstrap have been developed to reduce the bias of the apparent error rate. An algorithm
based on a cross-validation procedure is given in Section 10.2.6. Error rate estimates are
discussed in Chapter 9.

Forman (2003) provides a summary of metrics related to error rate that were evaluated
as part of a study of machine learning for text classification (see Table 10.6, which lists
some of the common metrics for a two-class problem). One of the difficulties with the text
classification domain is the high class skew (imbalanced classes resulting from the fact that
many more documents do not match a particular word profile than there are documents of
interest). High accuracy (low error rate) can be achieved simply by classifying everything as
the negative class. Therefore alternative metrics, robust to class skew are sought.

The metrics given in Table 10.6 are defined for a two-class (positive class and negative
class) problem.

Accuracy/error rate
This is the accuracy of a classifier constructed from a single feature. It depends on class skew.

Chi-squared
This measures the lack of independence between the feature and the class variable and takes
a value of zero if the two are independent. It is known not to be reliable for low frequency
classes.

Information gain
This measures the decrease in entropy when the feature is present compared with when it
is absent.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 449

Table 10.6 Feature selection metrics.

Name Definition

Accuracy
tp + fp

tp + tn + fp + fn
Error rate 1 - Accuracy

Chi-squared
n (fp × fn − tp × tn)2

(tp + fp) (tp + fn) (fp + tn) (tn + fn)

Information gain e(tp + fn, fp + tn) − (tp + fp)e(tp, fp) + (tn + fn)e(fn, tn)

tp + fp + tn + fn

where e(x, y) = − x

x + y
log2

x

x + y
− y

x + y
log2

y

x + y

Odds ratio
tpr

1 − tpr

/
fpr

1 − fpr
= tp × tn

fp × fn

Probability ratio
tpr

fpr

tp, true positives; fp, false positives; fn, false negatives; tn, true negatives; tpr = tp/(tp +
fn), sample true positive rate; fpr = fp/(fp + tn), sample false positive rate; precision =
tp/(tp + fp); recall = tpr.

Odds ratio
This has been used to rank documents in information retrieval. It is the odds of a member
of the positive class occurring in the positive class divided by the odds of it occurring in the
negative class.

Probability ratio
This is the proportion of positive samples predicted correctly divided by the proportion of
negative samples predicted as positive.

10.2.4 Search algorithms for feature subset selection

There are three broad categories of search algorithms: complete, sequential and random (Liu
and Yu, 2005).

Complete search
These methods guarantee to find the optimal subset of features according to some specified
evaluation criterion. Of course, exhaustive search is complete, but the search strategy does not
necessarily have to be exhaustive to be complete. For example, a branch and bound method
is complete.

Sequential search
Features are added or removed sequentially (sequential forward or backward selection). Such
methods are not optimal, but are simple to implement and fast to produce results.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

450 FEATURE SELECTION AND EXTRACTION

Random search
These include approaches that inject randomness into the above methods and methods that
generate the next subset completely at random.

The problem of feature selection is to choose the ‘best’ possible subset of size d from
a set of p features. In this section we consider strategies for doing that – both optimal and
suboptimal. The basic approach is to build up a set of d features incrementally, starting with
the empty set (a ‘bottom-up’ method) or to start with the full set of measurements and remove
redundant features successively (a ‘top-down’ approach).

If Xk represents a set of k features or variables then, in a bottom-up approach, the best set
at a given iteration, X̃k, is the set for which the feature (extraction) selection criterion has its
maximum value

J(X̃k) = max
X∈Xk

J(X)

The set Xk of all sets of features at a given step is determined from the set at the previous
iteration. This means that the set of measurements at one stage of an iterative procedure is
used as a starting point to find the set at the next stage. This does not imply that the sets are
necessarily nested (X̃k ⊂ X̃k+1), though they may be.

10.2.5 Complete search – branch and bound

This is an optimal search procedure that does not involve exhaustive search. It is a top-down
procedure, beginning with the set of p variables and constructing a tree by deleting variables
successively. It relies on one very important property of the feature selection criterion, namely
that for two subsets of the variables, X and Y ,

X ⊂ Y ⇒ J(X) < J(Y) (10.9)

That is, evaluating the feature selection criterion on a subset of variables of a given set yields
a smaller value of the feature selection criterion. This is termed the monotonicity property.

We shall describe the method by way of example (Figure 10.6). Let us assume that we
wish to find the best three variables out of a set of five. A tree is constructed whose nodes
represent all possible subsets of cardinality 3, 4, and 5 of the total set as follows. Level 0 in
the tree contains a single node representing the total set. Level 1 contains subsets of the total
set with one variable removed and level 2 contains subsets of the total set with two variables

Figure 10.6 Tree figure for branch and bound method.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 451

Figure 10.7 Tree figure for branch and bound method with feature selection criterion value
at each node.

removed. The numbers to the right of each node in the tree represent a subset of variables. The
number to the left represents the variable that has been removed from the subset of the parent
node in order to arrive at a subset for the child node. Level 2 contains all possible subsets of
five variables of size three. Note that the tree is not symmetrical. This is because removing
variables 4 then 5 from the original set (to give the subset {1,2,3}) has the same result as
removing variable 5 then variable 4. Therefore, in order for the subsets not to be replicated,
we have only allowed variables to be removed in increasing order. This removes unnecessary
repetitions in the calculation.

Now we have obtained our tree structure, how are we going to use it? The tree is searched
from the least dense part to the part with the most branches (right to left in Figure 10.6).

Figure 10.7 gives a tree structure with values of the criterion J printed at the nodes. Starting
at the rightmost set (the set {1,2,3} with a value of J = 77.2), the search backtracks to the
nearest branching node and proceeds down the rightmost branch evaluating J({1, 2, 4, 5}).
Since J({1, 2, 4, 5}) is larger than J({1, 2, 3}), the monotonicity property that all subsets
of this set will yield a lower value of the criterion function cannot be utilised to discard the
branch and so the search then proceeds down the rightmost branch to J({1, 2, 4}), which gives
a lower value than the current maximum value of J, J∗, and so is discarded. The set J({1,
2, 5}) is next evaluated and retained as the current best value (largest on a subset of three
variables), J∗ = 80.1. J({1, 3, 4, 5}) is evaluated next, and since this is less than the current
best, the search of the section of the tree originating from this node is not performed. This
is because we know from the monotonicity property that all subsets of this set will yield a
lower value of the criterion function. The algorithm then backtracks to the nearest branching
node and proceeds down the next rightmost branch (in this case, the final branch). J({2, 3, 4,
5}) is evaluated, and again since this is lower than the current best value on a subset of three
variables, the remaining part of the tree is not evaluated.

Thus, although not all subsets of size 3 are evaluated, the algorithm is optimal since we
know by the condition (10.9) that those not evaluated will yield a lower value of J.

From the specific example above, we can see a more general strategy: start at the top
level and proceed down the rightmost branch, evaluating the cost function J at each node. If
the value of J is less than the current threshold then abandon the search down that particular
branch and backtrack to the previous branching node. Continue the search down the next
rightmost branch. If, on the search of any branch the bottom level is reached (as it is bound
to happen on the initial branch), then if the value of J for this level is larger than the current
threshold, the threshold is updated and backtracking begins. Note from Figure 10.6 (and you
can verify that this is true in general), that the candidates for removal at level i of the tree,

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

452 FEATURE SELECTION AND EXTRACTION

given that variable ni − 1 has been removed at the previous level, are the variables

ni−1 + 1, . . . , i + m

where m is the size of the final subset.
Note that if the criterion function is evaluated for the successor of a given node, that is

for a node which is one level below and connected by a single link to a given node, then
during the branch and bound procedure it will be evaluated for all ‘brothers and sisters’ of that
node – that is for all other direct successors of the given node. Now since a node with a low
value of J is more likely to be discarded than a node with a high value of J, it is sensible to
order these sibling nodes so that those that have lower values have more branches. This is the
case in Figure 10.7 where the nodes at level 2 are ordered so that those yielding a smaller value
of J have the larger number of branches. Since all the sibling feature sets will be evaluated
anyway, this results in no extra computation. This scheme is due to Narendra and Fukunaga
(1977).

The quadratic form feature selection criterion used for feature selection both in regression
(Miller, 1990) and in classification (Narendra and Fukunaga, 1977) is given by

xT
k S−1

k xk

where xk is a k-dimensional vector and Sk is a k × k positive definite matrix when k features are
used satisfies (10.9). For example, in a two-class problem, the Mahalanobis distance between
two groups with means μi(i = 1, 2) and covariance matrices �i(i = 1, 2) is

J = (μ1 − μ2)
T

(
�1 + �2

2

)−1

(μ1 − μ2) (10.10)

which satisfies the monotonicity criterion. In a multiclass problem, we may take the sum
over all pairs of classes as the feature selection criterion. This will also satisfy (10.9) since
each component of the sum does. There are many other feature selection criteria satisfying the
monotonicity criterion including probabilistic distance measures [for example, Bhattacharyya
distance, divergence (Fukunaga, 1990)] and measures based on the scatter matrices (for
example, Tr{S−1

W SB}) but not the measures J3 and J4, Tr{SB}/Tr{SW } or |�̂|/|SW |.
Many of the search algorithms described in this chapter, both the optimal and the subop-

timal algorithms, construct the feature sets at the ith stage of the algorithm from that at the
(i − 1)th stage by the addition or subtraction of a small number of features from the current
optimal set. For the normal distribution parametric forms of the probabilistic distance criteria,
the value of the criterion function at stage i can be evaluated by updating its value already
calculated for stage i − 1 instead of computing the criterion functions from their definitions.
This can result in substantial computational savings.

10.2.5.1 Recursive calculation of separability measures

The normal distribution parametric measures Chernoff, Bhattacharyya, divergence,
Patrick–Fischer and Mahalanobis distances, are functions of three basic building blocks

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 453

of the form

xT S−1x, Tr{TS−1}, |S| (10.11)

where S and T are positive definite symmetric matrices and x is a vector of parameters. Thus,
to calculate the criteria recursively, we only need to consider each of the building blocks. Let
S denote the k × k positive definite matrix and let S̃ be the matrix with the kth element of the
feature vector removed. The matrix S may be written

S =
[

S̃ y
yT skk

]

Assuming that S̃
−1

is known, then S−1 may be written as

S−1 =
⎡
⎣ S̃

−1 + 1
d S̃

−1
yyT S̃

−1 − 1
d S̃

−1
y

− 1
d yT S̃

−1 1
d

⎤
⎦ (10.12)

where d = skk − yT S̃
−1

y. Alternatively, if we know S−1, which may be written as

S−1 =
[

A c

cT b

]

then we may calculate S̃
−1

as

S̃
−1 = A − 1

b
ccT

Thus, we can compute the inverse of a matrix if we know the inverse before a feature is added
to or deleted from the feature set.

In some cases it may not be necessary to calculate the inverse S̃
−1

from S−1. Consider
the quadratic form xT S−1x where x is a k-dimensional vector and x̃ denotes the vector with
the kth value removed. This can be expressed in terms of the quadratic form before the kth
feature is removed as

x̃T S̃
−1

x̃ = xT S−1x − 1

b
[(cT : b)x]2 (10.13)

where [cT : b] is the row of S−1 corresponding to the feature that is removed. Thus, the

calculation of S̃
−1

can be deferred until it is confirmed that this feature is to be permanently
removed from the candidate feature set.

The second term to consider in (10.11) is Tr{TS−1}. We may use the relationship

Tr{T̃ S̃
−1} = Tr{TS−1} − 1

b
(cT : b)T

(
c
b

)
(10.14)

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

454 FEATURE SELECTION AND EXTRACTION

Finally, the determinants satisfy

|S| = (skk − yT S̃y)|S̃|

10.2.6 Sequential search

There are many problems where suboptimal methods must be used. The branch and bound
algorithm may not be computationally feasible (the growth in the number of possibilities
that must be examined is still an exponential function of the number of variables) or may
not be appropriate if the monotonicity property (10.9) does not hold. Suboptimal algorithms,
although not capable of examining every feature combination, will assess a set of potentially
useful feature combinations. We consider several techniques, varying in complexity.

10.2.6.1 Best individual N

The simplest method for choosing the best N features is to assign a score (perhaps a ranking
statistic such as mutual information) to each of the features in the original set, X , individually.
Thus, the features are ordered so that

J(X1) ≥ J(X2) ≥ · · · ≥ J(Xp)

and we select as our best set of N features the N features with the best individual scores:

{Xi|i ≤ N}

This requires a specification of the feature subset size, N. An alternative approach (Guyon,
2008) is to form nested subsets of features, S1 = {X1}, S2 = {X1, X2}, . . . , Sp = {X1, . . . ,
Xp} and to evaluate the model (a classifier appropriate to the data) performance for each
feature subset, choosing the smallest feature subset for which performance is near optimal.
This approach selects the feature set size and the features. A cross-validation algorithm (see
Chapter 9) is given in Algorithm 10.1.

In some cases this method can produce reasonable feature sets, especially if the features in
the original set are uncorrelated since the method ignores multivariate relationships. However,
if the features of the original set are highly correlated, the chosen feature set will be suboptimal
as some of the features will be adding little discriminatory power (some will be redundant).

10.2.6.2 Sequential forward selection (SFS)

Sequential forward selection (or the method of set addition) is a bottom-up search procedure
that adds new features to a feature set one at a time until the final feature set is reached.
Suppose we have a set of d1 features, Xd1 . For each of the features ξ j not yet selected (i.e.
in X − Xd1) the criterion function Jj = J(Xd1 + ξ j) is evaluated. The feature that yields the
maximum value of Jj is chosen as the one that is added to the set Xd1 . Thus, at each stage,
the variable is chosen that, when added to the current set, maximises the selection criterion.
The feature set is initialised to the null set. When the best improvement makes the feature
set worse, or when the maximum allowable number of features is reached, the algorithm
terminates. The main disadvantage of the method is that it does not include a mechanism

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 455

Algorithm 10.1 Cross-validation algorithm for selection of the best set of individually rele-
vant features.

1. Divide the data into training and test sets.

2. Specify a ranking statistic (e.g. mutual information).

3. Rank the features and form the nested subsets of features, S1, S2, . . . , Sp.

4. Cross-validation procedure:

� Split the training data into (e.g.) 10 equal parts, ensuring that all classes are represented
in each part; use nine parts for training and the remaining one part for testing.

� Train the classifier model for each nested subset of variables, Sh, on each subset, k,
of the training data in turn, testing on the remaining part. Obtain the performance (for
example, error rate), CV(h, k), h = 1, . . . , p; k = 1, . . . , 10.

� Average the result

CV (h) = 1

10

∑
k

CV (h, k)

5. Select the smallest feature subset, Sh∗ , such that CV(h) is optimal or near optimal.

6. Evaluate on test dataset using the feature subset Sh∗ , training on the entire training set and
evaluating performance on the test set.

for deleting features from the feature set once they have been added should further additions
render them unnecessary.

Algorithm 10.2 gives a modified version of Algorithm 10.1 for sequential forward selection
and the following sequential search algorithms. At each stage of the search, sets of subsets
are generated for evaluation using the cross-validation procedure.

10.2.6.3 Generalised sequential forward selection (GSFS)

Instead of adding a single feature at a time to a set of measurements, in the generalised
sequential forward selection algorithm r features are added as follows. Suppose we have a set
of d1 measurements, Xd1 . All possible sets of size r are generated from the remaining n − d1

features – this gives

(
n − d1

r

)

sets. For each set of r features, Yr, the cost function is evaluated for Xd1 + Yr and the set that
maximises the cost function is used to increment the feature set. This is more costly than
sequential forward selection, but has the advantage that at each stage it is possible to take into
account to some degree the statistical relationship between the available measurements.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

456 FEATURE SELECTION AND EXTRACTION

Algorithm 10.2 Cross-validation algorithm for selection of the best set of features in a
sequential search procedure.

1. Divide the data into training and test sets.

2. Specify the search strategy - SFS, GSFS,

At each stage of the algorithm:

(a) Generate subsets of features for evaluation.

(b) Cross-validation procedure:

� Split the training data into (e.g.) 10 equal parts, ensuring that all classes are rep-
resented in each part; use nine parts for training and the remaining one part for
testing.

� Train the classifier model for each subset of variables, h, on each subset, k, of the
training data in turn, testing on the remaining part. Obtain the performance (for
example, error rate), CV(h, k).

� Average the result

CV (h) = 1

10

∑
k

CV (h, k)

(c) Select the smallest feature subset, Sh∗ , such that CV(h) is optimal or near optimal, for
the next stage of the search.

3. Evaluate on test dataset using the smallest feature subset, Sh∗ , from the search procedure
giving best performance, training on the entire training set and evaluating performance on
the test set.

10.2.6.4 Sequential backward selection (SBS)

Sequential backward selection, or sequential backward elimination, is the top-down analogy
to sequential forward selection. Variables are deleted one at a time until d measurements
remain. Starting with the complete set, the variable ξ j is chosen for which J(X − ξ j) is the
largest (i.e. ξ j decreases J the least). The new set is {X − ξ j}. This process is repeated until
a set of the required cardinality remains. The procedure has the disadvantage over sequential
forward selection that it is computationally more demanding since the criterion function J is
evaluated over larger sets of variables.

10.2.6.5 Generalised sequential backward selection (GSBS)

If you have read the previous sections, you will not be surprised to learn that generalised
sequential backward selection decreases the current set of variables by several variables at
a time.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 457

10.2.6.6 Plus l – take away r selection

This is a procedure that allows some backtracking in the feature selection process. If l > r,
it is a bottom-up procedure. l features are added to the current set using sequential forward
selection and then the worst r features are removed using the sequential backward selection
procedure. This algorithm removes the problem of nesting since the set of features obtained
at a given stage is not necessarily a subset of the features at the next stage of the procedure.
If l < r then the procedure is top-down, starting with the complete set of features, removing
r, then adding l successively until the required number is achieved.

10.2.6.7 Generalised plus l – take away r selection

The generalised version of the l–r algorithm uses the GSFS and the GSBS algorithms at each
stage rather than the SFS and SBS procedures. Kittler (1978) generalises the procedure further
by allowing the integers l and r to be composed of several components li, i = 1, . . . , nl, and
rj, j = 1, . . . , nr (where nl and nr are the number of components), satisfying

0 ≤ li ≤ l 0 ≤ ri ≤ r

nl∑
i=1

li = l
nr∑

i=1

ri = r

In this generalisation, instead of applying the generalised sequential forward selection in
one step of l variables [denoted GSFS(l)], the feature set is incremented in nl steps by adding
li features (i = 1, . . . , nl) at each increment, i.e. apply GSFS(li) successively for i = 1, . . . ,
nl. This reduces the computational complexity. Similarly, GSBS(r) is replaced by applying
GSBS(rj), j = 1, . . . , nr, successively. The algorithm is referred to as the (Zl, Zr) algorithm,
where Zl and Zr denote the sequence of integers li and lj,

Zl = (l1, l2, . . . , lnl

)

Zr = (r1, r2, . . . , rnr

)

The suboptimal search algorithms discussed in this subsection and the exhaustive search
strategy may be considered as special cases of the (Zl, Zr) algorithm (Devijver and Kittler,
1982).

10.2.6.8 Floating search methods

Floating search methods, SFFS (sequential forward floating selection) and SBFS (sequential
backward floating selection), may be regarded as a development of the l–r algorithm above in
which the values of l and r are allowed to ‘float’ – that is, they may change at different stages
of the selection procedure.

Suppose that at stage k we have a set of subsets X1, . . . , Xk of sizes 1 to k, respectively.
Let the corresponding values of the feature selection criteria be J1 to Jk, where Ji = J(Xi), for

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

458 FEATURE SELECTION AND EXTRACTION

the feature selection criterion, J(.). Let the total set of features be X . At the kth stage of the
SFFS procedure:

1. Select the feature xj from Y − Xk that increases the value of J the greatest and add it to
the current set: Xk + 1 = Xk + xj.

2. Find the feature, xr, in the current set, Xk + 1, that reduces the value of J the least; if this
feature is the same as xj then set Jk + 1 = J(Xk + 1); increment k; go to step 1; otherwise
remove it from the set to form X ′

k = Xk + 1 − xr.

3. Continue removing features from the set X ′
k to form reduced sets X ′

k−1 while J(X ′
k−1) >

Jk − 1; k = k − 1; until k = 2; then continue with step 1.

The algorithm is initialised by setting k = 0 and X0 = ∅ (the empty set) and using the SFS
method until a set of size 2 is obtained.

10.2.7 Random search

Injecting randomness into methods of feature subset selection can be a useful approach in the
following cases:

� when deterministic algorithms are susceptible to becoming trapped in local optima of
the feature selection criterion;

� when the benefits of obtaining a good solution significantly outweigh the costs of a poor
one, i.e. it is worth the additional computational time involved in a random approach;

� when the space of possible feature subsets is large.

There are two sources of randomness in feature selection algorithms

1. Randomise the set of input variables to a classification algorithm. The search procedure
may start with a randomly selected subset and either

(a) follow a sequential procedure, but inject randomness. An example is an approach
based on simulated annealing where a new subset is proposed in an interative
manner. If the new solution results in a higher value of the feature selection
criterion function, J, then it is retained. Otherwise, the new solution is retained
with a probability that depends on the difference between the current value of J
and the new one, and a parameter called the temperature;

or

(b) generate the next subset completely at random, i.e the next subset does not grow
or shrink from the current subset.

An advantage of this approach is that it provides some protection against getting stuck
in local minima of the feature selection criterion. A disadvantage is that if only one or
a few subsets of variables give good performance, or performance significantly better
than other subsets, then the probability of selecting a good solution may be small.

2. Randomise the set of training samples. The dataset used to train the feature subset
selection algorithm is a subset of the complete training dataset, generated randomly.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 459

Algorithm 10.3 IAMB algorithm for finding the Markov blanket of a target variable, T .

1. Set the Markov blanket of the target variable to be the empty set, MB(T) = φ.

Growing phase

2. Repeat until there is no change in MB(T).

(a) Find the variable v ∈ χ − {T} − MB(T) such that MI(v, T|MB(T)) is a maximum.

(b) If Not CondInd(v, T|MB(T)) then add v to MB(T).

Shrinking phase

3. For each v ∈ MB(T)

(a) If CondInd(v, T|MB(T) − {v}) then remove v from MB(T).

4. Return MB(T).

Thus the algorithm selects at random which patterns to use and then performs a
traditional deterministic search.

This approach is useful when the number of patterns is very large or the available
computation time is short.

Examples of random procedures in feature selection are provided by Stracuzzi (2007). Specific
studies include those of Hussein et al. (2001) on genetic algorithms (Mitchell, 1997) and
Chang (1973) who considers a dynamic programming approach. Monte Carlo methods based
on simulated annealing and genetic algorithms are described by Siedlecki and Sklansky
(1988), Brill et al. (1992) and Chang and Lippmann (1991).

10.2.8 Markov blanket

There has been considerable interest over the past decade in the use of a Markov blanket as
a method of feature subset selection as part of a filter method. The Markov blanket of the
target variable (the class variable) contains a minimal set of variables. All other variables are
conditionally independent of the target variable given the variables in the Markov blanket.
Many algorithms for Markov blanket construction have been developed [see Fu and Desmarais
(2010) for a review of Markov blanket based feature selection]. Once learnt, the features may
be used in a general classifier, or the structure of the Markov blanket exploited in classifier
design.

We present the basic IAMB (Incremental Association Markov Blanket) algorithm. It has
the advantage that it is simple to implement and predicts a minimal set of features. There have
been several developments to address data efficiency issues (e.g. Fast-IAMB: Yaramakala and
Margaritis, 2005).

The IAMB algorithm (see Algorithm 10.3) consists of two phases – growing and shrinking.
During the growing phase, the features that have a strong dependency with the class variable are
identified. The dependency is measured using conditional mutual information. The conditional

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

460 FEATURE SELECTION AND EXTRACTION

mutual information is the expected value of the mutual information of two variables given the
third and is given by

MI(X,Y |Z = z) =
∑

z

p(z)
∑

x

∑
y

p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)
)

or

MI(X,Y |Z = z) =
∑

x

∑
y

∑
z

p(x, y, z) log

(
p(x, y, z)

p(x|z)p(y|z)p(z)

)

which is the Kullback–Leibler divergence, KL(p(x, y, z)|p(x|z)p(y|z)p(z)).
The variable with the strongest dependency is tested to see whether it is conditionally inde-

pendent of the class variable given the current Markov blanket using the procedure CondInd()
(there are a number of parametric and nonparametric tests for conditional independence
for continuous and categorical variables; Agresti, 1990). If it is not, the Markov blanket is
incremented.

The shrinking stage considers each variable, v, in the learnt Markov blanket in turn and
removes those that are conditionally independent of the target variable given the variables in
the Markov blanket with variable v removed. This shrinking step is necessary to remove false
positives (variables that are redundant) from the grown Markov blanket.

The IAMB algorithm has a sound theory, it is simple to implement, but some of the
variants proposed achieve better performance on data efficiency (FAST-IAMB: Yaramakala
and Margaritis, 2005; parallel-IAMB: Aliferis et al., 2002).

10.2.9 Stability of feature selection

We have reviewed many approaches to feature subset selection. However, the different algo-
rithms proposed do not necessarily produce the same ranking of features for a given dataset.
Even for a single method, different feature subsets (each giving similar predictive accuracy)
may be identified on different random subsamplings of the data. Such an effect is partic-
ularly noticeable for datasets where the number of features greatly exceeds the number of
patterns (as in problems involving microarray data). Robustness, or stability, of a feature
selection method is the variation in feature subsets, delivered by a feature selection method,
due to small changes in the dataset. High reproducibility of features may be as important as
high classification accuracy, particularly where interpretation of the output by human experts
is required.

10.2.9.1 Measuring stability

A stability measure, st, is defined in terms of a similarity between pairs of feature subsets
(Saeys et al., 2008)

st = 2
∑k−1

i=1

∑k
j=i+1 S(fi, f j)

k(k − 1)

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

FEATURE SELECTION 461

where k is the number of feature subsets; fi is the output of the ith feature selection method
(or the output of a feature selection method applied to the ith subset of the data, 1 ≤ i ≤ k);
and S(fi, f j) is a similarity between the outputs fi and f j . These outputs may be a feature
subset, a set of weights for the features or a ranking of the features.

There is a variety of similarity measures (see the review by He and Yu, 2010) defined for
feature selection that produce as outputs sets of features, feature weightings or ranking of the
features. We give an example of each type.

Feature subsets
Here fi is a subset of the original features. The Jaccard coefficient is

S(fi, f j) = | fi ∩ f j|
| fi ∪ f j|

the ratio of the number of features common to subsets fi and f j to the total number of features
in subsets fi and f j .

Weights
We now take fi to be a set of weightings for all of the features resulting from the ith feature
selection method. The correlation coefficient is

S(fi, f j) =
∑

l

(
f l
i − μ fi

) (
f l

j − μ f j

)
√∑

l

(
f l
i − μ fi

)2 (
f l

j − μ f j

)2

where f l
i is the weighting on feature l for feature selection method i and μ fi

is the mean value.

Rank orderings
The Spearman rank correlation coefficient is

S(fi, f j) = 1 − 6
∑

l

(
f l
i − f l

j

)2
N
(
N2 − 1

)

where f l
i is the rank of feature l for feature selection method i.

10.2.9.2 Robust feature selection techniques

The stability measures above have been used to assess the stability of individual feature se-
lection methods. Ensemble methods of feature selection, where feature subsets from different
feature selection algorithms are combined, have been found to provide a robust approach.
Stability of feature selection to variations in the training set has been investigated by Kalousis
et al. (2005). Bayesian model averaging for gene selection and classification of microarray
data (investigating robust approaches to feature selection) has been assessed by Yeung et al.
(2005) (see also Abeel et al., 2010). See Chapter 8 on ensemble methods.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

462 FEATURE SELECTION AND EXTRACTION

10.2.10 Example application study

The problem
The application involves intrusion detection in mobile ad hoc networks (Wang et al., 2005).

Summary
The purpose of this study was to investigate techniques for reducing the number of features
collected by each node in a network with limited capacity. The aim is to use the features
to detect patterns of well-known attacks or normal patterns of behaviour in order to detect
potential attacks (as anomalies).

The data
The features comprise a combination of packet types, flow directions and sampling periods.
Overall there are 150 features, but 25 were considered in the study. There were 200 patterns.

The model
The data were modelled using a Bayesian network, from which a Markov blanket was
extracted. This is not the most efficient approach since the entire Bayesian network is not
required – only the Markov blanket of the target node.

Training procedure
The approach taken was to start with a random structure for the Bayesian network and to
identify neighbours of the structure by adding or deleting an edge. A Minimum Description
Length score (see Chapter 13) was evaluated for each neighbour and the current network
updated if the score is above that of the current structure. A Markov blanket was extracted
from the final structure and the variables used in a classifier algorithm (decision trees and
Bayesian network) provided by the WEKA (Witten and Frank, 2005) software. The procedure
was run several times and a 10-fold cross-validation used to estimate performance of four
classifiers: two classifier types and two feature set sizes (25 and 4, the number of feature
selected by the Markov blanket algorithm).

Results
Four features were selected using the Markov blanket approach and the performance of the
classifiers using the four features was similar to, but not quite so good as, the performance
using all 25 features.

10.2.11 Further developments

Developments of the floating search methods to adaptive floating search algorithms that
determine the number of forward (adding) or backward (removing) steps dynamically as the
algorithm proceeds are proposed by Somol et al. (1999). Other approaches include node
pruning in neural networks and methods based on modelling the class densities as finite
mixtures of a special type (Pudil et al., 1995).

There is a growing trend towards ensemble methods – combining classifiers based on
different feature subsets – as these have demonstrated improved robustness and increased
predictive performance. Instead of choosing the one particular feature selection method and
accepting its best outcome as the final subset, the results of different methods can be combined.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 463

Alternatively, different solutions produced by a single method can be combined using Bayesian
model averaging (see Chapter 8).

10.2.12 Summary

Feature selection is the process of selecting from the original features (or variables) those
features that are important for classification, removing irrelevant and redundant variables. A
feature selection criterion, J, is defined on subsets of the features and we seek that combination
of features for which J is maximised.

In this section we have described some statistical pattern recognition approaches to feature
selection, both optimal and suboptimal techniques for maximising J. Some of the techniques
(filter approaches) are independent of a specific classifier, but others integrate feature selection
with a classification model (wrapper and embedded models). Integrating with a classifier is
an additional computational burden if the classifier is complex. Different feature sets may be
obtained for different classifiers.

Generally there is a trade-off between algorithms that are computationally feasible, but
not optimal, and those that are optimal or close to optimal but are computationally complex
even for moderate feature set sizes. Studies of the floating methods suggest that these offer
close to optimal performance at an acceptable cost.

Ensemble methods offer improved robustness and are considered in Chapter 8.

10.3 Linear feature extraction

Feature extraction is the transformation of the original data (using all variables) to a dataset
with a reduced number of variables.

In the problem of feature selection covered in the previous section, the aim is to select
those variables that contain the most discriminatory information. Alternatively, we may wish
to limit the number of measurements we make, perhaps on grounds of cost, or we may want
to remove redundant or irrelevant information to obtain a reduced complexity classifier.

In feature extraction, all available variables are used and the data are transformed (using a
linear or nonlinear transformation) to a reduced dimension space. Thus, the aim is to replace
the original variables by a smaller set of underlying variables. There are several reasons for
performing feature extraction:

1. to reduce the bandwidth of the input data (with the resulting improvements in speed
and reductions in data requirements);

2. to provide a relevant set of features for a classifier, resulting in improved performance,
particularly from simple classifiers;

3. to reduce redundancy;

4. to recover new meaningful underlying variables or features that describe the data,
leading to greater understanding of the data generation process;

5. to produce a low-dimensional representation (ideally in two dimensions) with minimum
loss of information so that the data may easily be viewed and relationships and structure
in the data identified.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

464 FEATURE SELECTION AND EXTRACTION

The techniques covered in this section are data adaptive. The transformations of the original
features are dependent on the dataset. Thus we exclude from our treatment preprocessing of
the data by fixed linear transformations – the discrete Fourier transform or the discrete cosine
transform – and multi-resolution analyses such as the discrete wavelet transform. These are
important transformations, particularly for preprocessing signals and images [for a treatment
of these transformations, see Nixon and Aquado (2008) and Gonzalez and Woods (2008)].

The methods described here are to be found in the literature on a diverse range of topics.
Many are techniques of exploratory data analysis described in the textbooks on multivariate
analysis. Sometimes referred to as geometric methods or methods of ordination, they make no
assumption about the existence of groups or clusters in the data. They have found application
in a wide range of subjects including ecology, agricultural science, biology and psychology.
Geometric methods are sometimes further categorised as being variable-directed in that they
are primarily concerned with relationships between variables, or individual-directed which
are primarily concerned with relationships between individuals.

In the pattern recognition literature, the data transformation techniques are termed feature
selection in the transformed space or feature extraction and the techniques may be supervised
(make use of class label information) or unsupervised. They may be based on the optimisation
of a class separability measure, such as those described in the previous section.

10.3.1 Principal components analysis

10.3.1.1 Introduction

Principal components analysis originated in work by Pearson (1901). It is the purpose of
principal components analysis to derive new variables (in decreasing order of importance)
that are linear combinations of the original variables and are uncorrelated. Geometrically,
principal components analysis can be thought of as a rotation of the axes of the original
coordinate system to a new set of orthogonal axes that are ordered in terms of the amount of
variation of the original data they account for.

One of the reasons for performing a principal components analysis is to find a smaller
group of underlying variables that describe the data. In order to do this, we hope that the
first few variables or components will account for most of the variation in the original data.
However, it does not follow that we will be able to assign an interpretation to these new
variables.

Principal components analysis is a variable-directed technique. It makes no assumptions
about the existence or otherwise of groupings within the data and so is described as an
unsupervised feature extraction technique.

So far, our discussion has been purely descriptive. We have introduced many terms
without proper definition. There are several ways in which principal components analysis can
be described mathematically, but let us leave aside the mathematics for the time being and
continue with a geometrical derivation. We must necessarily confine our illustrations to two
dimensions, but nevertheless we shall be able to define most of the attendant terminology and
consider some of the problems of a principal components analysis.

In Figure 10.8 are plotted a dozen objects, with the x and y values for each point in the
figure representing measurements on each of the two variables. They could represent the
height and weight of a group of individuals, for example, in which case one variable would

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 465

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

y

x

��

��
�

�

�

� �
�

�

�

Figure 10.8 Principal components line of best fit.

be measured in metres or centimetres or inches and the other variable in grams or pounds. So
the units of measurement may differ.

The problem we want to solve is: What is the best straight line through this set of points?
Before we can answer, we must clarify what we mean by best. If we consider the variable x
to be an input variable and y a dependent variable so that we wish to calculate the expected
value of y given x, E[y|x], then the best (in a least squares sense) regression line of y on x

y = mx + c

is the line for which the sum of the square distances of points from the line is a minimum, and
the distance of a point from the line is the vertical distance.

If y were the regressor and x the dependent variable, then the linear regression line is the
line for which the sum of squares of horizontal distances of points from the line is a minimum.
Of course, this gives a different solution [a good illustration of the two linear regressions on
a bivariate distribution is given in Stuart and Ord (1991)].

So we have two lines of best fit and a point to note is that changing the scale of the variables
does not alter the predicted values. If the scale of x is compressed or expanded, the slope of
the line changes but the predicted value of y does not alter. Principal components analysis
produces a single best line and the constraint that it satisfies is that the sum of the squares of
the perpendicular distances from the sample points to the line is a minimum (Figure 10.8).

A standardisation procedure that is often carried out (and almost certainly if the variables
are measured in different units) is to make the variance of each variable unity. Thus the data
are transformed to new axes, centred at the centroid of the data sample and in coordinates
defined in terms of units of standard deviation. The principal component line of best fit is not
invariant to changes of scale.

The variable defined by the line of best fit is the first principal component. The second
principal component is the variable defined by the line that is orthogonal with the first and so
it is uniquely defined in our two-dimension example. In a problem with higher-dimensional

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

466 FEATURE SELECTION AND EXTRACTION

data, it is the variable defined by the vector orthogonal to the line of best fit of the first principal
component that, together with the line of best fit, defines a plane of best fit, i.e. the plane for
which the sum of squares of perpendicular distances of points from the plane is a minimum.
Successive principal components are defined in a similar way.

Another way of looking at principal components (which we shall derive more formally
in Section 10.3.1) is in terms of the variance of the data. If we were to project the data in
Figure 10.8 on to the first principal axis (that is, the vector defining the first principal com-
ponent), then the variation in the direction of the first principal component is proportional to
the sum of the squares of the distances from the second principal axis. Similarly, the variance
along the second principal axis is proportional to the sum of the squares of the perpendicular
distances from the first principal axis. Now, since the total sum of squares is a constant, then
minimising the sum of squared distances from a given line is the same as maximising the sum
of squares from its perpendicular or, by the above, maximising the variance in the direction of
the line. This is another way of deriving principal components: find the direction that accounts
for as much of the variance as possible (the direction along which the variance is a maximum);
the second principal component is defined by the direction orthogonal to the first for which
the variance is a maximum, and so on. The variances are the principal values.

Principal components analysis produces an orthogonal coordinate system in which the axes
are ordered in terms of the amount of variance in the original data for which the corresponding
principal components account. If the first few principal components account for most of the
variation, then these may be used to describe the data, thus leading to a reduced-dimension
representation. It may be possible to interpret the new components as something meaning-
ful in terms of the original variables, but in practice the new components will be difficult
to interpret.

10.3.1.2 Derivation of principal components

There are at least three ways in which we can approach the problem of deriving a set of
principal components. Let x1, . . . , xp be our set of original variables and let ξ i, i = 1, . . . , p,
be linear combinations of these variables

ξi =
p∑

j=1

aijx j

or

ξ = AT x

where ξ and x are vectors of random variables and A is the matrix of coefficients (the columns
of A are the vectors ai with jth component aij). Then

1. We may seek the orthogonal transformation A yielding new variables ξ j that have
stationary values of their variance. This approach, due to Hotelling (1933), is the one
that we choose to present in more detail below.

2. We may seek the orthogonal transformation that gives uncorrelated variables ξ j.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 467

3. We may consider the problem geometrically and find the line for which the sum
of squares of perpendicular distances is a minimum; then the plane of best fit and
so on. We used this geometric approach in our two-dimensional illustration above
(Pearson, 1901).

Consider the first variable ξ 1:

ξ1 =
p∑

j=1

a1 jx j

We choose a1 = (a11, a12, . . . , a1p)
T to maximise the variance of ξ 1, subject to the constraint

aT
1 a1 = |a1|2 = 1. The variance of ξ 1 is

var (ξ1) = E
[
ξ 2

1

]− E [ξ1]2

= E
[
aT

1 xxT a1
]− E
[
aT

1 x
]

E
[
xT a1
]

= aT
1

(
E
[
xxT
]− E [x] E

[
xT
])

a1

= aT
1 �a1

where � is the covariance matrix of x and E[.] denotes expectation. Finding the stationary
value of aT

1 �a1 subject to the constraint aT
1 a1 = 1 is equivalent to finding the unconditional

stationary value of

f (a1) = aT
1 �a1 − νaT

1 a1

where ν is a Lagrange multiplier. (The method of Lagrange multipliers can be found in most
textbooks on mathematical methods; Wylie and Barrett, 1995.) Differentiating with respect
to each of the components of a1 in turn and equating to zero gives

�a1 − νa1 = 0

For a nontrivial solution for a1 (that is, a solution other than the null vector), a1 must be an
eigenvector of � with ν an eigenvalue. Now � has p eigenvalues λ1, . . . , λp, not all necessarily
distinct nor all nonzero, but they can be ordered so that λ1 ≥ λ2 ≥ . . . ≥λp ≥ 0. We must chose
one of these for the value of ν. Now, since the variance of ξ1 is

aT
1 �a1 = νaT

1 a1

= ν

and we wish to maximise this variance, then we choose ν to be the largest eigenvalue λ1, and
a1 is the corresponding eigenvector. This eigenvector will not be unique if the value of ν is a
repeated root of the characteristic equation

|� − νI| = 0

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

468 FEATURE SELECTION AND EXTRACTION

The variable ξ 1 is the first principal component and has the largest variance of any linear
function of the original variables x1, . . . , xp.

The second principal component, ξ2 = aT
2 x, is obtained by choosing the coefficients a2i, i

= 1, . . . , p, so that the variance of ξ 2 is maximised subject to the constraint |a2| = 1 and that
ξ 2 is uncorrelated with the first principal component ξ 1. This second constraint implies

E[ξ2ξ1] − E[ξ2]E[ξ1] = 0

or

aT
2 �a1 = 0 (10.15)

and since a1 is an eigenvector of �, this is equivalent to aT
2 a1 = 0, i.e. a2 is orthogonal to a1.

Using the method of Lagrange’s undetermined multipliers again, we seek the uncon-
strained maximisation of

aT
2 �a2 − μaT

2 a2 − ηaT
2 a1

Differentiating with respect to the components of a2 and equating to zero gives

2�a2 − 2μa2 − ηa1 = 0 (10.16)

Multiplying by aT
1 gives

2aT
1 �a2 − η = 0

since aT
1 a2 = 0. Also, by Equation (10.15), aT

2 �a1 = aT
1 �a2 = 0, therefore η = 0. Equation

(10.16) becomes

�a2 = μa2

Thus, a2 is also an eigenvector of �, orthogonal to a1. Since we are seeking to maximise the
variance, it must be the eigenvector corresponding to the largest of the remaining eigenvalues,
that is the second largest eigenvalue overall.

We may continue this approach, with the kth principal component ξk = aT
k x, where ak is

the eigenvector corresponding to the kth largest eigenvalue of � and variance equal to the kth
largest eigenvalue.

If some eigenvalues are equal, the solution for the eigenvectors is not unique, but it is
always possible to find an orthonormal set of eigenvectors for a real symmetric matrix with
eigenvalues ≥ 0.

In matrix notation,

ξ = AT x (10.17)

where A = [a1| . . . |ap], the matrix whose columns are the eigenvectors of �.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 469

So now we know how to determine the principal components – by performing an eigen-
vector decomposition of the symmetric positive definite matrix �, and using the eigenvectors
as coefficients in the linear combination of the original variables. But how do we determine a
reduced-dimension representation of some given data? Let us consider the variance.

The sum of the variances of the principal components is given by

p∑
i=1

var(ξi) =
p∑

i=1

λi

the sum of the eigenvalues of the covariance matrix �, equal to the total variance of the
original variables. We can then say that the first k principal components account for

k∑
i=1

λi

/
p∑

i=1

λi

of the total variance.
We can now consider a mapping to a reduced dimension by specifying that the new

components must account for at least a fraction d of the total variance. The value of d would
be specified by the user. We then choose k so that

k∑
i=1

λi ≥ d
p∑

i=1

λi ≥
k−1∑
i=1

λi

and transform the data to

ξk = AT
k x

where ξk = (ξ1, . . . , ξk)
T and Ak = [a1| . . . |ak] is a p × k matrix. Choosing a value of d

between 70% and 90% preserves most of the information in x (Jolliffe, 1986). Jackson (1991)
recommends against the use of this procedure: it is difficult to choose an appropriate value
for d – it is very much problem-specific.

An alternative approach is to examine the eigenvalue spectrum and see if there is a
point where the values fall sharply before levelling off at small values (the ‘scree’ test). We
retain those principal components corresponding to the eigenvalues before the cut-off point
or ‘elbow’ (Figure 10.9).

However, on occasion the eigenvalues drift downwards with no obvious cutting point and
the first few eigenvalues account for only a small proportion of the variance.

It is very difficult to determine the ‘right’ number of components and most tests are for
limited special cases and assume multivariate normality. Jackson (1991) describes a range of
procedures and reports the results of several comparative studies.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

470 FEATURE SELECTION AND EXTRACTION

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12

�

�

� � � � � � � � � �

Figure 10.9 Eigenvalue spectrum: a plot of the ordered eigenvalues against eigenvalue
number, with an ‘elbow’ at the third eigenvalue.

10.3.1.3 Remarks

Sampling
The derivation of principal components above has assumed that the covariance matrix � is
known. In most practical problems, we shall know the sample covariance matrix estimated
from a set of sample vectors. We can use the sample covariance matrix to calculate principal
components and take these as estimates of the eigenvectors of the covariance matrix �.
Note also, as far as deriving a reduced-dimension representation is concerned, the process is
distribution-free – a mathematical method with no underlying statistical model. Therefore,
unless we are prepared to assume some model for the data, it is difficult to obtain results on
how good the estimates of the principal components are.

Standardisation
The principal components are dependent on the scales used to measure the original variables.
Even if the units used to measure the variables are the same, if one of the variables has a range
of values that greatly exceeds the others, then we expect the first principal component to lie
in the direction of this axis. If the units of each variable differ (for example, height, weight),
then the principal components will depend on whether the height is measured in feet, inches
of centimetres, etc. This does not occur in regression (which is independent of scale) but it
does in principal components analysis in which we are minimising a perpendicular distance
from a point to a line, plane, etc. and right angles do not change to right angles under changes
of scale. The practical solution to this problem is to standardise the data so that the variables
have equal range. A common form of standardisation is to transform the data to have zero
mean, unit variance so that we find the principal components from the correlation matrix. This
gives equal importance to the original variables. We recommend that all data are standardised
to zero mean, unit variance. Other forms of standardisation are possible; for example, the
data may be transformed logarithmically before a principal components analysis – Baxter

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 471

(1995) compares several approaches. The standardisation applied to training data should also
be applied to test data.

Mean correction
Equation (10.17) relates the principal components ξ to the observed random vector x. In
general ξ will not have zero mean. In order for the principal components to have zero mean,4

they should be defined as

ξ = AT (x − μ) (10.18)

for mean μ. In practice μ is the sample mean, m.

Approximation of data samples
We have seen that in order to represent data in a reduced dimension, we retain only the first
few principal components (the number is usually determined by the data). Thus, a data vector
x is projected on to the first r (say) eigenvectors of the sample covariance matrix giving

ξr = AT
r (x − μ) (10.19)

where Ar = [a1| . . . |ar] is the p × r matrix whose columns are the first r eigenvectors of the
sample covariance matrix and ξr is used to denote the measurements on variables ξ 1, . . . , ξ r

(the first r principal components).
In representing a data point as a point in a reduced dimension, there is usually an error

involved and it is of interest to know what the point ξr corresponds to in the original space.
The variable ξ is related to x by Equation (10.18) (AT = A−1), giving

x = Aξ + μ

If ξ = (ξr, 0)T , a vector with its first r components equal to ξr and remaining equal to zero,
then the point corresponding to ξr, namely xr, is

xr = A
(

ξr

0

)
+ μ

= Arξr + μ

and by Equation (10.19)

xr = ArAT
r (x − μ) + μ

The transformation ArAT
r is of rank r and maps the original data distribution to a distribution

that lies in an r-dimensional subspace (or on a manifold of dimension r) in R
p. The vector xr is

the position the point x maps down to, given in the original coordinate system (the projection

4 The zero-mean condition on the principal components will be satisfied if the recommended standardisation is
performed.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

472 FEATURE SELECTION AND EXTRACTION

•x

xr

ξ1ξ2

μ1 x1 xr1

μ2

x2

xr2

Figure 10.10 Reconstruction from projections: x is approximated by xr using the first
principal component.

of x on to the space defined by the first r principal components). This is illustrated in Figure
10.10 for a projection of a two-dimensional point onto its first principal component.

Singular value decomposition
The right singular vectors of a matrix Z are the eigenvectors of ZT Z (Figure 5.4). The sample
covariance matrix (unbiased estimate) can be written in such a form

1

n − 1

n∑
i=1

(xi − m)(xi − m)T = 1

n − 1
X̃

T
X̃

where X̃ = X − 1mT , X is the n × p data matrix, m is the sample mean and 1 is an n-
dimensional vector of ones. Therefore, if we define

Z = 1√
n − 1

X̃ = 1√
n − 1

(X − 1mT)

then the right singular vectors of Z are the eigenvectors of the covariance matrix and the
singular values are standard deviations of the principal components. Furthermore, setting

Z = 1√
n − 1

X̃D−1 = 1√
n − 1

(X − 1mT)D−1

where D is a p × p diagonal matrix with Dii equal to the square root of the variance of the
original variables, then the right singular vectors of Z are the eigenvectors of the correlation
matrix. Thus, given a data matrix, it is not necessary to form the sample covariance matrix in
order to determine the principal components.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 473

If the singular value decomposition of X − 1mT is USVT , where U = [u1| . . . |up], S =
Diag(σ1, . . . , σp) and V = [v1| . . . |vp], then the n × r matrix Zr, defined by

Zr = Ur�rVT
r + 1mT

where Ur = [u1| . . . |ur], Sr = diag(σ1, . . . , σr) and V r = [v1| . . . |vr], is the projection of the
original data points on to the hyperplane spanned by the first r principal components and
passing through the mean.

Selection of components
There have been many methods proposed for the selection of components in a principal
components analysis. There is no single best method as the strategy to adopt will depend
on the objectives of the analysis: the set of components that gives a good fit to the data will
differ from that which provides good discrimination. Ferré (1995) and Jackson (1993) provide
comparative studies. Jackson finds the broken stick method one of the most promising, and
simple to implement: observed eigenvectors are considered interpretable if their eigenvalues
exceed a threshold based on random data; the kth eigenvector is retained if its eigenvalue
λk exceeds

∑p
i=k(1/i). Prakash and Murty (1995) consider a genetic algorithm approach to

the selection of components for discrimination. Thus, they calculate principal components as
normal, but rather than taking the top k components, a subset from the full set is selected.
However, probably the most common approach is the percentage of variance method, retaining
eigenvalues that account for approximately 90% of the variance. Another rule of thumb is to
retain those eigenvectors with eigenvalues greater than the average (greater than unity for a
correlation matrix). For a descriptive analysis, Ferré recommends a rule of thumb method.
However, if we do use another more complex approach then we must ask ourselves why
are we performing a principal components analysis in the first place? There is no guarantee
that a subset of the variables derived will be better for discrimination than a subset of the
original variables.

Interpretation
The first few principal components are the most important ones, but it may be very difficult to
ascribe meaning to the components. One way this may be done is to consider the eigenvector
corresponding to a particular component and select those variables for which the coefficients
in the eigenvector are relatively large in magnitude. Then a purely subjective analysis takes
place in which the user tries to see what these variables have in common.

An alternative approach is to use an algorithm for orthogonal rotation of axes such as the
varimax algorithm (Kaiser, 1958, 1959). This rotates the given set of principal axes so that the
variation of the squared loadings5 for a given component is large. This is achieved by making
the loadings large on some variables and small on others, though unfortunately it does not
necessarily lead to more easily interpretable principal components. Jackson (1991) considers
techniques for the interpretation of principal components, including rotation methods.

5 The loadings are the component values: the weights applied to the original variables.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

474 FEATURE SELECTION AND EXTRACTION

x1

x2

ξ1

ξ2

• •
•

•
•

•
•
• •

• ••

••
••

••

�
�

�
�

�

��

�
�

�

�

��
�
�
�
�
�

Figure 10.11 Two-group data and the principal axes.

10.3.1.4 Discussion

Principal components analysis is often the first stage in a data analysis and is used to reduce
the dimensionality of the data while retaining as much as possible of the variation present in
the original dataset.

Principal components analysis takes no account of groups within the data (i.e. it is unsu-
pervised). Although separate groups may emerge as a result of projecting data to a reduced
dimension, this is not always the case and dimension reduction may obscure the existence of
separate groups.

Figure 10.11 illustrates a dataset in two dimensions with three separate groups and the
principal component directions. Projection onto the first eigenvector will remove group separa-
tion while projection onto the second retains group separation. Therefore, although dimension
reduction may be necessary, the space spanned by the vectors associated with the first few
principal components will not necessarily be the best for discrimination.

10.3.1.5 Summary

The stages in performing a principal components analysis are:

1. Form the sample covariance matrix or standardise the data by forming the correlation
matrix.

2. Perform an eigendecomposition of the correlation matrix.

OR

1. Standardise the data matrix.

2. Perform a singular value decomposition of the standardised data matrix.

For a reduced-dimension representation of the data, project the data onto the first m
eigenvectors, where for example m is chosen using a criterion based on the proportion of
variance accounted for.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 475

10.3.2 Karhunen–Loève transformation

The Karhunen–Loève transformation is, in one of its most basic forms, identical to principal
components analysis. It is included here because there are variants of the method, occurring
in the pattern recognition literature under the general heading of Karhunen–Loève expansion,
that incorporate class information in a way in which principal components analysis does not.

The Karhunen–Loève expansion was originally developed for representing a nonperiodic
random process as a series of orthogonal functions with uncorrelated coefficients. If x(t) is a
random process on [0, T], then x(t) may be expanded as

x(t) =
∞∑

n=1

xnφn(t) (10.20)

where xn are random variables and the basis functions φ are deterministic functions of time
satisfying

∫ T

0
φn(t)φ

∗
m(t) = δmn

where φ∗
m is the complex conjugate of φm. Define a correlation function

R(t, s) = E
[
x(t)x∗(s)

]

= E

[∑
n

∑
m

xnx∗
mφn(t)φ

∗
m(s)

]

=
∑

n

∑
m

φn(t)φ
∗
m(s)E

[
xnx∗

m

]

If the coefficients are uncorrelated (E[xnx∗
m] = σ 2

n δmn) then

R(t, s) =
∑

m

σ 2
mφm(t)φ∗

m(s)

and multiplying by φn(s) and integrating gives

∫
R(t, s)φn(s)ds = σ 2

n φn(t)

Thus, the functions φn are the eigenfunctions of the integral equation, with kernel R(t, s) and
eigenvalues σ 2

n . We shall not develop the continuous Karhunen–Loève expansion here but
proceed straightaway to the discrete case.

If the functions are uniformly sampled, with p samples, then (10.20) becomes

x =
∞∑

n=1

xnφn (10.21)

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

476 FEATURE SELECTION AND EXTRACTION

and the integral equation becomes

Rφk = σ 2
k φk

where R is now the p × p matrix with (i, j) element Rij = E[x(i)x∗(j)]. The above equation
has only p distinct solutions for φ and so the summation in (10.21) must be truncated to p.
The eigenvectors of R are termed the Karhunen–Loève coordinate axes (Devijver and Kittler,
1982).

Apart from the fact that we have assumed zero mean for the random variable x, this deriva-
tion is identical to that for principal components. Other ways of deriving the Karhunen–Loève
coordinate axes are given in the literature, but these correspond to other views of principal
components analysis, and so the end result is the same.

In the pattern recognition literature various methods for linearly transforming data to
a reduced dimension space defined by eigenvectors of a matrix of second-order statistical
moments have been proposed under the umbrella term ‘Karhunen–Loève expansion’. These
methods could equally be referred to using the term ‘generalised principal components’ or
something similar.

The properties of the Karhunen–Loève expansion are identical to those of the principal
components analysis. It produces a set of mutually uncorrelated components, and dimension-
ality reduction can be achieved by selecting those components with the largest variances.
There are many variants of the basic method that incorporate class information or that use
different criteria for selecting features.

10.3.2.1 KL1. SELFIC (self-featuring information-compression)

In this procedure, class labels are not used and the Karhunen–Loève feature transformation
matrix is A = [a1| . . . |ap], where a j are the eigenvectors of the sample covariance matrix, �̂,
associated with the largest eigenvalues (Watanabe, 1985),

�̂ai = λiai

and λ1 ≥ . . . ≥ λp.
This is identical to principal components analysis and is appropriate when class labels are

unavailable (unsupervised learning).

10.3.2.2 KL2. Within-class information

If class information is available for the data, then second-order statistical moments can be
calculated in a number of different ways. This leads to different Karhunen–Loève coordinate
systems. Chien and Fu (1967) propose using the average within-class covariance matrix, SW ,
as the basis of the transformation. The feature transformation matrix, A, is again the matrix
of eigenvectors of SW associated with the largest eigenvalues.

10.3.2.3 KL3. Discrimination information contained in the means

Again, the feature space is constructed from eigenvectors of the averaged within-class covari-
ance matrix, but discriminatory information contained in the class means is used to select the

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 477

subset of features that will be used in further classification studies (Devijver and Kittler, 1982).
For each feature (with eigenvector a j of SW and corresponding eigenvalue λj) the quantity

Jj = aT
j SBa j

λ j
,

where SB is the between-class scatter matrix, is evaluated and the coordinate axes arranged in
descending order of Jj.

10.3.2.4 KL4. Discrimination information contained in the variances

Another means of ordering the feature vectors (eigenvectors a j of SW) is to use the discrimina-
tory information contained in class variances (Kittler and Young, 1973). There are situations
where class mean information is not sufficient to separate the classes and the measure given
here uses the dispersion of class-conditional variances. The variance of feature j in the ith
class weighted by the prior probability of class ωi is given by

λij = p(ωi)aT
j �̂ia j

where �̂i is the sample covariance matrix of class ωi, and defining λj =
∑C

i=1λij then a
discriminatory measure based on the logarithmic entropy function is

Hj = −
C∑

i=1

λij

λ j
log

(
λij

λ j

)

The axes giving low entropy values are selected for discrimination.
A further measure that uses the variances is

Jj =
C∏

i=1

λij

λ j

Both of the above measures reach their maximum when the factors λij/λj are identical, in
which case there is no discriminatory information.

10.3.2.5 KL5. Compression of discriminatory information contained in class means

In the method KL3, the Karhunen–Loève coordinate axes are determined by the eigenvectors
of the averaged within-class covariance matrix and the features that are used to represent
these data in a reduced-dimension space are determined by ordering the eigenvectors in
terms of descending Jj. The quantity Jj is a measure used to represent the discriminatory
information contained in the class means. This discriminatory information could be spread
over all Karhunen–Loève axes and it is difficult to choose an optimum dimension for the
transformed feature space from the values of Jj alone.

The approach considered here (Kittler and Young, 1973) recognises the fact that in a
C-class problem, the class means lie in a space of dimension at most C − 1, and seeks to find
a transformation to a space of at most C − 1 giving uncorrelated features.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

478 FEATURE SELECTION AND EXTRACTION

This is performed in two stages. First of all, a transformation is found that transforms the
data to a space in which the averaged within-class covariance matrix is diagonal. This means
that the features in the transformed space are uncorrelated, but also any further orthonormal
transformation will still produce uncorrelated features for which the class-centralised vectors
are decorrelated.

If SW is the average within-class covariance matrix in the original data space, then the
transformation that decorrelates the class-centralised vectors is Y = UT X , where U is the
matrix of eigenvectors of SW and the average within-class covariance matrix in the transformed
space is

S′
W = UT SWU = �

where � = Diag(λ1, . . . , λn) is the diagonal matrix of variances of the transformed features
(the eigenvalues of SW). If the rank of SW is less than p (equal to r, say), then the first stage of
dimension reduction is to transform to the r-dimensional space by the transformation UT

r X ,
Ur = [u1| . . . |ur], so that

S′
W = UT

r SWUr = �r

where �r = Diag(λ1, . . . , λr). If we wish the within-class covariance matrix to be invariant to
further orthogonal transformations, then it should be the identity matrix. This can be achieved

by the transformation Y = �
− 1

2
r UT

r X so that

S′
W = �

− 1
2

r UT
r SWUr�

− 1
2

r = I

This is the first stage of dimension reduction, and is illustrated in Figure 10.12.
It transforms the data so that the average within-class covariance matrix in the new space

is the identity matrix. In the new space the between-class covariance matrix, S′
B, is given by

S′
B = �

− 1
2

r UT
r SBUr�

− 1
2

r

→

x1

x2

y1

y2

Figure 10.12 Illustration of the first stage of dimension reduction for four groups represented

by contours xT �̂
−1
i x = constant.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 479

where SB is the between-class covariance matrix in the data space. The second stage of the
transformation is to compress the class mean information, i.e. find the orthogonal transforma-
tion that transforms the class mean vectors to a reduced dimension. This transformation, V ,
is determined by the eigenvectors of S′

B

S′
BV = V�̃

where �̃ = Diag(λ̃1, . . . , λ̃r) is the matrix of eigenvalues of S′
B. There are at most C − 1

nonzero eigenvalues and so the final transformation is Z = VT
ν Y where Vν = [v1| . . . |vν] and

ν is the rank of S′
B. The optimal feature extractor is therefore

Z = AT X

where the p × ν linear transformation A is given by

AT = VT
ν �

− 1
2

r UT
r

In this transformed space

S′′
W = VT

ν S′
WVν = VT

ν V ν = I

S′′
B = VT

ν S′
BVν = �̃υ

where �̃ν = diag(λ̃1, . . . , λ̃ν). Thus, the transformation makes the average within-class co-
variance matrix equal to the identity and the between-class covariance matrix equal to a
diagonal matrix (see Figure 10.13).

Usually, all C − 1 features are selected, but these can be ordered according to the magnitude
of λ̃i and those with the largest eigenvalues selected. The linear transformation can be found
by performing two eigenvector decompositions, first of SW and then of S′

B, but an alternative
approach based on a QR factorisation can be used (Crownover, 1991).

This two-stage process gives a geometric interpretation of linear discriminant analysis
described in Chapter 5. The feature vectors (columns of the matrix A) can be shown to be
eigenvectors of the generalised symmetric eigenvector equation (Devijver and Kittler, 1982)

SBa = λSW a

z1

z2

Figure 10.13 Second stage of dimension reduction: orthogonal rotation and projection to
diagonalise the between-class covariance matrix.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

480 FEATURE SELECTION AND EXTRACTION

The first stage of the transformation is simply a rotation of the coordinate axes followed
by a scaling (assuming that SW is full rank). The second stage comprises a projection of the
data onto the hyperplane defined by the class means in this transformed space (of dimension
at most C − 1), followed by a rotation of the axes. If we are to use all C − 1 coordinates
subsequently in a classifier, then this final rotation is irrelevant since any classifier that we
construct should be independent of an orthogonal rotation of the axes. Any set of orthogonal
axes within the space spanned by the eigenvectors of S′

B with nonzero eigenvalues could be
used. We could simply orthogonalise the vectors m′

1 − m′, . . . , m′
C−1 − m′ where m′

i is the
mean of class ωi in the space defined by the first transformation and m′ is the overall mean.
However, if we wish to obtain a reduced-dimension display of the data, then it is necessary to
perform an eigendecomposition of S′

B to obtain a set of coordinate axes that can be ordered
using the values of λ̃i, the eigenvalues of S′

B.

10.3.2.6 Example

Figures 10.14 and 10.15 give two-dimensional projections for simulated oil pipeline data
(Bishop, 1998). This synthetic dataset models nonintrusive measurements on a pipe-line
transporting a mixture of oil, water and gas. The flow in the pipe takes one out of three possible
configurations: horizontally stratified, nested annular or homogeneous mixture flow. The data
lie in a 12-dimensional measurement space. Figure 10.15 shows that the Karhunen–Loève
transformation, KL5, separates the three classes into (approximately) three spherical clusters.
The principal components projection (Figure 10.14) does not separate the classes, but retains
some of the structure [for example, class 3 (�) comprises several subgroups].

-4

-3

-2

-1

0

1

2

3

-8 -6 -4 -2 0 2 4 6 8

Figure 10.14 Projection onto the first two principal components of three classes of flow
(stratified, annular and homogeneous multiphase configurations) for the oil pipeline data.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 481

-3

-2

-1

0

1

2

3

4

-5 -4 -3 -2 -1 0 1 2 3 4

Figure 10.15 Projection (KL5) onto the two linear discriminant directions of three
classes of flow (stratified, annular and homogeneous multiphase configurations) for the oil
pipeline data.

10.3.2.7 Discussion

All of the above methods have certain features in common. All produce a linear transforma-
tion to a reduced-dimension space. The transformations are determined using an eigenvector
decomposition of a matrix of second-order statistical moments and produce features or com-
ponents in the new space that are uncorrelated. The features in the new space can be ordered
using a measure of discriminability (in the case of labelled data) or approximation error. These
methods are summarised in Table 10.7.

We could add to this list the method of common principal components (Flury, 1988) that
also determines a coordinate system using matrices of second-order statistical moments. A
reduced-dimension representation of the data could be achieved by ordering the principal
components using a measure like Hj or Jj in Table 10.7.

The final method (KL5), derived from a geometric argument, produces a transformation
that is identical to the linear discriminant transformation (see Chapter 5), obtained by max-
imising a discriminability criterion. It makes no distributional assumptions, but a nearest class
mean type rule will be optimal if normal distributions are assumed for the classes.

10.3.3 Example application study

The problem
This application involves monitoring changes in land use for planners and government officials
(Li and Yeh, 1998).

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

482 FEATURE SELECTION AND EXTRACTION

Table 10.7 Summary of linear transformation methods
of feature extraction.

Method

Eigenvector
decomposition

matrix Ordering function

KL1 (PCA) �̂ λj

KL2 SW λj

KL3 SW aT
j SBa j/λ j

KL4 – (a) SW Hj = −
C∑

i=1

λij

λ j
log

(
λij

λ j

)

KL4 – (b) SW Jj =
C∏

i=1

λij

λ j

KL5 SW , SB λj

Summary
The application of remote sensing to inventory land resources and to evaluate the impacts of
urban developments is addressed. Remote sensing is considered as a fast and efficient means
of assessing such developments when detailed ‘ground truth’ data are unavailable. The aim is
to determine the type, amount and location of land use change.

The data
The data consist of satellite images, measured in five wavebands, from two images of the same
region measured 5 years apart. A 10-dimensional feature vector is constructed (consisting of
pixel measurements in the five wavebands over the two images) and data gathered over the
whole region.

The model
A standard principal components analysis is performed.

Training procedure
Each variable is standardised to zero mean and unit variance and a principal components
analysis performed. The first four principal components account to 97% of the variance.
The data are projected on to the subspace characterised by the principal components and
subregions (identified from a compressed principal components analysis image) labelled
manually according to land use change (16 classes of land use, determined by field data).

10.3.4 Further developments

There are various generalisations of the basic linear approaches to feature extraction described
in this section. Common principal components analysis (Flury, 1988), is a generalisation

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

LINEAR FEATURE EXTRACTION 483

of principal components analysis to the multigroup situation. The common principal
components model assumes that the covariance matrices of each group or class, �i, can
be written

�i = β�iβ
T (10.22)

where �i = Diag(λi1, . . . , λip), the diagonal matrix of eigenvalues of the ith group. Thus, the
eigenvectors β are common between groups, but the �i are different.

There have been several developments to nonlinear principal components analysis
each taking a particular feature of the linear methods and generalising it. The work de-
scribed by Gifi (1990) applies primarily to categorical data. Other extensions are those of
principal curves (Hastie and Stuetzle, 1989; Tibshirani, 1992), and nonlinear principal com-
ponents based on radial basis functions (Webb, 1996) and kernel functions (Schölkopf et al.,
1999). There are more efficient calculations of principal components if the feature dimen-
sionality is much larger than the number of samples (see the work on eigenfaces; Turk and
Pentland, 1991).

Approaches to principal components analysis have been developed for data that may
be considered as curves (Ramsay and Dalzell, 1991; Rice and Silverman, 1991; Silverman,
1995). Principal components for categorical data and functions is discussed by Jackson (1991)
who also describes robust procedures.

Independent components analysis (Comon, 1994; Hyvärinen and Oja, 2000) aims to find a
linear representation of non-Gaussian data so that the components are statistically independent
(or as independent as possible). This is a stronger condition than the uncorrelated variables
condition of principal components analysis (they are equivalent for Gaussian random variables
only). A linear latent variable model is assumed

x = As

where x are the observations, A is a mixing matrix and s is the vector of latent variables. Given
T realisations of x, the problem is to estimate the mixing matrix A and the corresponding
realisations of s, under the assumption that the components, si, are statistically independent.
This technique has found widespread application to problems in signal analysis (medical,
financial), data compression, image processing and telecommunications.

10.3.5 Summary

The procedures described in this section construct linear transformations based on matrices
of first- and second-order statistics:

1. principal components analysis – an unsupervised method based on a correlation or
covariance matrix;

2. Karhunen–Loève transformation – an umbrella term to cover transformations based on
within and between-class covariance matrices.

Algorithms for their implementation are readily available.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

484 FEATURE SELECTION AND EXTRACTION

10.4 Multidimensional scaling

Multidimensional scaling (MDS) is a term that is applied to a class of techniques that analyses a
matrix of distances or dissimilarities (the proximity matrix) in order to produce a representation
of the data points in a reduced-dimension space (termed the representation space).

All of the methods of data reduction presented in this chapter so far have analysed the
n × p data matrix X or the sample covariance or correlation matrix. Thus MDS differs in the
form of the data matrix on which it operates – it is an individual-directed method. Of course,
given a data matrix, we could construct a dissimilarity matrix (provided we define a suitable
measure of dissimilarity between objects) and then proceed with an analysis using MDS
techniques. However, data often arise already in the form of dissimilarities and so there is no
recourse to the other techniques. Also, in the methods previously discussed, the data-reducing
transformation derived has, in each case, been a linear transformation. We shall see that some
forms of multidimensional scaling permit a nonlinear data-reducing transformation (if indeed
we do have access to data samples rather than proximities).

There are many types of MDS, but all address the same basic problem: Given an n × n
matrix of dissimilarities and a distance measure (usually Euclidean) find a configuration of n
points x1, . . . , xn in the reduced dimension space R

e (e < p) so that the distance between a
pair of points is close in some sense to the dissimilarity between the points. All methods must
find the coordinates of the points and the dimension of the space, e. Two basic types of MDS
are metric and nonmetric MDS. Metric MDS assumes that the data are quantitative and metric
MDS procedures assume a functional relationship between the interpoint distances and the
given dissimilarities. Nonmetric MDS assumes that the data are qualitative, having perhaps
ordinal significance and nonmetric MDS procedures produce configurations that attempt to
maintain the rank order of the dissimilarities.

Metric MDS appears to have been introduced into the pattern recognition literature by
Sammon (1969). It has been developed to incorporate class information and has also been
used to provide nonlinear transformations for dimension reduction for feature extraction.

We begin our discussion with a description of one form of metric MDS, namely
classical scaling.

10.4.1 Classical scaling

Given a set of n points in p-dimensional space, x1, . . . , xn, it is straightforward to calculate the
Euclidean distance between each pair of points. Classical scaling (or principal coordinates
analysis) is concerned with the converse problem: Given a matrix of distances, which we
assume are Euclidean, how can we determine the coordinates of a set of points in a dimension
e (also to be determined from the analysis)? This is achieved via a decomposition of the n ×
n matrix T , the between-individual sums of squares and products matrix

T = XXT (10.23)

where X = [x1, . . . , xn]T is the n × p matrix of coordinates. The distance between two
individuals i and j is

d2
ij = Tii + Tjj − 2Tij (10.24)

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

MULTIDIMENSIONAL SCALING 485

where

Tij =
p∑

k=1

xikxjk

If we impose the constraint that the centroid of the points xi, i = 1, . . . , n, is at the origin,
then Equation (10.24) may be inverted to express the elements of the matrix T in terms of the
dissimilarity matrix giving

Tij = −1

2

[
d2

ij − d2
i. − d2

. j + d2
..

]
(10.25)

where

d2
i. = 1

n

n∑
j=1

d2
ij; d2

. j = 1

n

n∑
i=1

d2
ij; d2

.. = 1

n2

n∑
i=1

n∑
j=1

d2
ij

Equation (10.25) allows us to construct T from a given n × n dissimilarity matrix D (assuming
that the dissimilarities are Euclidean distances). All we need to do now is to factorise the matrix
T to make it of the form (10.23). Since it is a real symmetric matrix, T can be written in the
form

T = U�UT

where the columns of U are the eigenvectors of T and � is a diagonal matrix of eigenvalues,
λ1, . . . , λn. Therefore we take

X = U�
1
2

as our matrix of coordinates. If the matrix of dissimilarities is indeed a matrix of Euclidean
distances between points in R

p, then the eigenvalues may be ordered

λ1 ≥ . . . ≥ λn = 0; λi = 0, i = p + 1, . . . , n

If we are seeking a representation in a reduced dimension then we would use only those
eigenvectors associated with the largest eigenvalues. Methods for choosing the number of
eigenvalues were discussed in relation to principal components analysis. Briefly, we choose
the number r so that

r−1∑
i=1

λi < k
n∑

i=1

λi <

r∑
i=1

λi

for some prespecified threshold, k (0 < k < 1); or use the ‘scree test’.
Then we take

X = [u1| . . . |ur]Diag
(
λ

1
2
1 . . . λ

1
2
r

)
= Ur�

1
2
r

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

486 FEATURE SELECTION AND EXTRACTION

as the n × r matrix of coordinates, where �r is the r × r diagonal matrix with diagonal
elements λi, i = 1, . . . , r.

If the dissimilarities are not Euclidean distances, then T is not necessarily positive semidef-
inite and there may be negative eigenvalues. Again we may choose the eigenvectors associated
with the largest eigenvalues. If the negative eigenvalues are small then this may still lead to
a useful representation of the data. In general, the smallest of the set of largest eigenvalues
retained should be larger than the magnitude of the most negative eigenvalue. If there is a
large number of negative eigenvalues, or some are large in magnitude, then classical scaling
may be inappropriate. However, classical scaling appears to be robust to departures from
Euclidean distance.

If we were to start with a set of data (rather than a matrix of dissimilarities) and seek a
reduced-dimension representation of it using the classical scaling approach (by first forming a
dissimilarity matrix and carrying out the procedure above), then the reduced-dimension repre-
sentation is exactly the same as carrying out a principal components analysis and calculating
the component scores, the transformed variable values corresponding to a particular pattern,
(provided we have chosen Euclidean distance as our measure of dissimilarity). Thus, there is
no point in carrying out classical scaling and a principal components analysis on a dataset.

10.4.2 Metric MDS

Classical scaling is one particular form of metric MDS in which an objective function measur-
ing the discrepancy between the given dissimilarities, δij, and the derived distances in R

e, dij,
is optimised. The derived distances depend on the coordinates of the samples that we wish to
find. There are many forms that the objective function may take. For example, minimisation
of the objective function

∑
1≤ j<i≤n

(
δ2

ij − d2
ij

)

yields a projection on to the first e principal components if δij are exactly Euclidean distances.
There are other measures of divergence between the sets {δij} and {dij} and the major MDS
packages are not consistent in the criterion optimised (Dillon and Goldstein, 1984). One
particular measure is

S =
∑

ij

aij(δij − dij)
2 (10.26)

for weighting factors aij. Taking

aij =
⎛
⎝∑

ij

d2
ij

⎞
⎠

−1

gives
√

S as similar to Kruskal’s stress (Kruskal, 1964a, b), defined in the following section
[Equation (10.29)]. There are other forms for the aij (Sammon, 1969; Koontz and Fukunaga,
1972; de Leeuw and Heiser, 1977; Niemann and Weiss, 1979). The stress is invariant under

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

MULTIDIMENSIONAL SCALING 487

rigid transformations of the derived configuration (translations, rotations and reflections) and
also to uniform stretching and shrinking.

A more general form of (10.26) is

S =
∑

ij

aij(φ(δij) − dij)
2 (10.27)

where φ is a member of a predefined class of functions; for example, the class of all linear
functions, giving

S =
∑

ij

aij(a + bδij − dij)
2 (10.28)

for parameters a and b. In general, there is no analytic solution for the coordinates of the points
in the representation space. Minimisation of (10.27) can proceed by an alternating least-
squares approach [see Gifi (1990)] for further applications of the alternating least squares
principle]; that is, by alternating minimisation over φ and the coordinates. In the linear
regression example (10.28), we would minimise with respect to a and b, for a given initial set
of coordinates (and hence the derived distances dij). Then, keeping a and b fixed, minimise
with respect to the coordinates of the data points. This process is repeated until convergence.

The expression (10.27) may be normalised by a function τ 2(φ, X), that is a function
of both the coordinates and the function φ. Choices for τ 2 are discussed by de Leeuw and
Heiser (1977).

In psychology, in particular, the measures of dissimilarity that arise have ordinal signif-
icance at best: their numerical values have little meaning and we are interested only in their
order. We can say that one stimulus is larger than another, without being able to attach a
numerical value to it. In this case, a choice for the function φ above is one that belongs to
the class of monotone functions. This is the basis of nonmetric multidimensional scaling or
ordinal scaling.

10.4.3 Ordinal scaling

Ordinal scaling or nonmetric MDS is a method of finding a configuration of points for which
the rank ordering of the interpoint distance is close to the ranking of the values of the given
dissimilarities.

In contrast to classical scaling, there is no analytic solution for the configuration of points
in ordinal scaling. Further, the procedure is iterative and requires an initial configuration for
the points to be specified. Several initial configurations may be tried before an acceptable final
solution is achieved.

The desired requirement that the ordering of the distances in the derived configuration is
the same as that of the given dissimilarities is of course equivalent to saying that the distances
are a monotonic function of the dissimilarities. Figure 10.16 gives a plot of distances dij

(obtained from a classical scaling analysis) against dissimilarities δij for the British town data
given in Table 10.8. The numbers in the table are the distances in miles between 10 towns in
Britain along recommended routes.

The relationship is clearly not exactly monotonic, though on the whole, the larger the
dissimilarity the larger the distance. In ordinal scaling, the coordinates of the points in the

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

488 FEATURE SELECTION AND EXTRACTION

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400 450

D
is

ta
nc

e,
d

ij

Dissimilarity, δij

•

•
•

•

•
•

•
••

•

•
••

•

•

•

•

•

•

••
•

•

•

•

•
•

•
•

••
•

•
•
•

•

•
••

•

•
•

••

•

Figure 10.16 Distances versus dissimilarities for the British town data.

representation space are adjusted so as to minimise a cost function that is a measure of the
degree of deviation from monotonicity of the relationship between dij and δij. It may not be
possible to obtain a final solution that is perfectly monotonic but the final ordering on the dijs
should be ‘as close as possible’ to that of the δijs.

To find a configuration that satisfies the monotonicity requirement, we must first of all
specify a definition of monotonicity. Two possible definitions are:
Primary monotone condition

δrs < δij ⇒ d̂rs ≤ d̂ij

Secondary monotone condition

δrs ≤ δij ⇒ d̂rs ≤ d̂ij

Table 10.8 Dissimilarities between 10 towns in the British Isles (measured as distances in
miles along recommended routes).

London (LON) 0.0
Birmingham (B) 111 0.0
Cambridge (C) 55 101 0.0
Edinburgh (E) 372 290 330 0.0
Hull (H) 171 123 124 225 0.0
Lincoln (LIN) 133 85 86 254 39 0.0
Manchester (M) 184 81 155 213 96 84 0.0
Norwich (N) 112 161 62 360 144 106 185 0.0
Scarborough (SCA) 214 163 167 194 43 81 105 187 0.0
Southampton (SOU) 77 128 130 418 223 185 208 190 266 0.0

LON B C E H LIN M N SCA SOU

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

MULTIDIMENSIONAL SCALING 489

�
�

�

�

�

�
�

�

δrs δ

drs

d

d̂rs

Figure 10.17 Least-squares monotone regression line.

where d̂rs is the point on the fitting line (see Figure 10.17) corresponding to δrs. The d̂rs are
termed the disparities or the pseudo-distances. The difference between these two conditions
is the way in which ties between the δs are treated. In the secondary monotone condition, if
δrs = δij then d̂rs = d̂ij, whereas in the primary condition there is no constraint on d̂rs and
d̂ij if δrs = δij: d̂rs and d̂ij are allowed to differ (which would give rise to vertical lines in
Figure 10.17). The secondary condition is usually regarded as too restrictive, often leading to
convergence problems.

Given the above definition, we can define a goodness of fit as

Sq =
∑
i< j

(dij − d̂ij)
2

and minimising gives the primary (or secondary) least-squares monotone regression line. (In
fact, it is not a line, only being defined at points δij.)

An example of a least-squares monotone regression is given in Figure 10.17. The least-
squares condition ensures that the sum of squares of vertical displacements from the line is a
minimum. Practically, this means that for sections of the data where d is actually a monotonic
function of δ then the line passes through the points. If there is a decrease, the value taken is
the mean of a set of samples.

The quantity Sq is a measure of the deviation from monotonicity, but it is not invariant to
uniform dilation of the geometric configuration. This can be removed by normalisation and
the normalised stress, given by

S =
√√√√
∑

i< j(dij − d̂ij)2

∑
i< j d2

ij

(10.29)

used as the measure of fit. (In some texts the square root factor is omitted in the definition.)
Since S is a differentiable function of the desired coordinates, we use a nonlinear optimi-

sation scheme (Press et al., 1992) which requires an initial configuration of data points to be
specified. In practice, it has been found that some of the more sophisticated methods do not
work so well as steepest descents (Chatfield and Collins, 1980).

The initial configuration of data points could be chosen randomly, or as the result of a
principal coordinates analysis (classical scaling). Of course, there is no guarantee of finding

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

490 FEATURE SELECTION AND EXTRACTION

the global minimum of S and the algorithm may get trapped in poor local minima. Several
initial configurations may be considered before an acceptable value of the minimum stress
is achieved.

In the algorithm, a value of the dimension of the representation space, e, is required. This
is unknown in general and several values may be tried before a ‘low’ value of the stress is
obtained. The minimum stress depends on n (the dimension of the dissimilarity matrix) and
e and it is not possible to apply tests of significance to see if the ‘true’ dimension has been
found (this may not exist). As with principal components analysis, we may plot the stress as
a function of dimension and see if there is a change in the slope (elbow in the graph). If we
do this, we may find that the stress may not decrease as the dimension increases, because of
the problem of finding poor local minima. However, it can be made to do so by initialising
the solution for dimension e by that obtained in dimension e − 1 (extra coordinates of zero
are added).

The summations in the expression for the stress are over all pairwise distances. If the
dissimilarity matrix is asymmetric we may include both the pairs (i, j) and (j, i) in the
summation. Alternatively, we may carry out ordinal scaling on the symmetric matrix of
dissimilarities with

δ∗
rs = δ∗

sr = 1

2
(δrs + δsr)

Missing values in δij can be accommodated by removing the corresponding indices from the
summation in estimating the stress (10.29).

10.4.4 Algorithms

Most implementations of MDS algorithms use standard gradient methods. There is some
evidence that sophisticated nonlinear optimisation schemes do not work so well (Chatfield and
Collins, 1980). Siedlecki et al. (1988) report that steepest descents out-performed conjugate
gradients on a metric MDS optimisation problem, but better performance was given by the
coordinate descent procedure of Niemann and Weiss (1979).

One approach to minimising the objective function, S, is to use the principle of majorisation
(de Leeuw and Heiser, 1977; Heiser, 1991, 1994) as part of the alternating least-squares
process. Given the current values of the coordinates, say θ t, an upper bound, W(θ t, θ), for
the criterion function is defined. It is usually a quadratic form with a single minimum as a
function of the coordinates θ . It has the property that W(θ t, θ) is equal to the value of the
objective function at θ t and greater than it everywhere else. Minimising W(θ t, θ) with respect
to θ yields a value θ t + 1 at which the objective function is lower. A new majorising function
W(θ t + 1, θ) is defined and the process repeated (Figure 10.18).

This generates a sequence of estimates {θ t} for which the objective function decreases
and converges to a local minimum.

All algorithms start with an initial configuration and converge to a local minimum. It has
been reported that the secondary definition of monotonicity is more likely to get trapped in
poor local minima than the primary definition (Gordon, 1999). We recommend that you repeat
your experiments for several starting configurations.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

MULTIDIMENSIONAL SCALING 491

S

θθtθt+1θt+2

W (θt+1, θ)

W (θt, θ)

Figure 10.18 Illustration of iterative majorisation principle: minimisation of S(θ) is achieved
through successive minimisations of the majorisation functions, W.

10.4.5 MDS for feature extraction

There are several obstacles in applying MDS to the pattern recognition problem of feature
extraction that we are addressing in this chapter. The first is that usually we are not presented
with an n × n matrix of dissimilarities, but with an n × p matrix of observations. Although
in itself this is not a problem since we can form a dissimilarity matrix using some suitable
measure (e.g. Euclidean distance), the number of patterns n can be very large (in some cases
thousands). The storage of an n × n matrix may present a problem. Further, the number of
adjustable parameters is n′ = e × n where e is the dimension of the derived coordinates.
This may prohibit the use of some nonlinear optimisation methods, particularly those of the
quasi-Newton type which either calculate, or iteratively build up, an approximation to the
inverse Hessian matrix of size n′ × n′ = e2n2.

Even if these problems can be overcome, MDS does not readily define a transformation
that, given a new data sample x ∈ R

p, produces a result y ∈ R
e. Further calculation is required.

One approach to this problem is to regard the transformed coordinates y as a nonlinear
parametrised function of the data variables

y = f (x; θ)

for parameters, θ . In this case,

dij = ∣∣ f (xi; θ) − f (x j; θ)
∣∣

δij = ∣∣xi − x j

∣∣

and we may minimise the criterion function, for example (10.26), with respect to the param-
eters, θ , of f rather than with respect to the coordinates of the data points in the transformed
space. This is termed multidimensional scaling by transformation. Thus the number of pa-
rameters can be substantially reduced. Once the iteration has converged, the function f can be

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

492 FEATURE SELECTION AND EXTRACTION

used to calculate the coordinates in R
e for any new data sample x. One approach is to model

f as a linear combination of fixed basis functions such as a radial basis function network
and determine the network weights using iterative majorisation, a scheme that optimises the
objective function without gradient calculation (Webb, 1995).

A modification to the distance term, δ, is to augment it with a supervised quantity giving
a distance

(1 − α)δij + αsij (10.30)

where 0 < α < 1 and sij is a separation between objects using labels associated with the data.
For example, sij, may represent a class separability term: how separable are the classes to
which patterns xi and x j belong? A difficulty is the specification of the parameter α.

10.4.6 Example application study

The problem
The application involves an exploratory data analysis to investigate relationships between
research assessment ratings of UK higher education institutions (Lowe and Tipping, 1996).

Summary
Several methods of feature extraction, both linear and nonlinear, were applied to high-
dimensional data records from the 1992 UK Research Assessment Exercise and projections
to two dimensions produced.

The data
Institutions supply information on research activities within different subjects in the form of
quantitative indicators of their research activity, such as the number of active researchers,
postgraduate students, values of grants and numbers of publications. Together with some
qualitative data (example publications), this forms part of the data input to committees which
provide a research rating, on a scale of 1–5. There are over 4000 records for all subjects, but
the analysis concentrated on three subjects: physics, chemistry and biological sciences.

Preprocessing included the removal of redundant and repeated variables, accumulating
indicators that were given for a number of years and standardisation of variables. The training
set consisted of 217 patterns each with 80 variables.

The model
Several models were assessed. These included a principal components analysis, an MDS (met-
ric) [termed a Sammon mapping by Lowe and Tipping (1996)] and an MDS by transformation
modelled as a radial basis function network.

Training procedure
For the MDS by transformation, the dissimilarity was augmented with a subjective quantity
as in (10.30) where sij is a separation between objects based on the subjective research rating.

Since the objective function is no longer quadratic (as commonly used in the radial basis
function classification model; Chapter 6), an analytic matrix inversion routine cannot be
used for the weights of the radial basis function. A conjugate gradients nonlinear function
minimisation routine was used to minimise the stress criterion.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

APPLICATION STUDIES 493

10.4.7 Further developments

Within the pattern recognition literature, there have been several attempts to use MDS tech-
niques for feature extraction both for exploratory data analysis and classification purposes
(Sammon, 1969; also see comments by Kruskal, 1971; Koontz and Fukunaga, 1972; Cox and
Ferry, 1993).

Approaches that model the nonlinear dimension-reducing transformation as a radial basis
function network are described by Webb (1995) and Lowe and Tipping (1996). Mao and Jain
(1995) model the transformation as a multilayer perceptron. A comparative study of neural
network feature extraction methods was carried out by Lerner et al. (1999).

10.4.8 Summary

Multidimensional scaling is a name given to a range of techniques that analyse dissimilarity
matrices and produce coordinates of points in a ‘low’ dimension. Three approaches to MDS
have been presented:

Classical scaling
This assumes that the dissimilarity matrix is Euclidean though it has been shown to be
robust if there are small departures from this condition. An eigenvector decomposition of
the dissimilarity matrix is performed and the resulting set of coordinates is identical to the
principal components analysis scores (to within an orthogonal transformation) if indeed the
dissimilarity matrix is a matrix of Euclidean distances. Therefore, in this case, there would be
nothing to be gained over a principal components analysis in using this technique as a method
of feature extraction, given an n × p data matrix X .

Metric scaling
This method regards the coordinates of the points in the derived space as parameters of a stress
function that is minimised. This method allows nonlinear reductions in dimensionality. The
procedure assumes a functional relationship between the interpoint distances and the given
dissimilarities.

Nonmetric scaling
As with metric scaling, a criterion function (stress) is minimised but the procedure assumes
that the data are qualitative, having perhaps ordinal significance at best.

10.5 Application studies

There are very many applications of feature selection methods (and indeed, feature selection
methods will have been employed in many of the other application studies considered in this
book). Recent examples include the following are:

� Bioinformatics: for example, sequence analysis, microarray analysis and mass spectra
analysis. Microarray data are characterised by thousands of genes and small sample
sizes (Ahmad et al., 2008; see review by Saeys et al., 2007).

� Text classification (Forman, 2003; Liu and Yu, 2005).

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

494 FEATURE SELECTION AND EXTRACTION

� Image retrieval, customer relationship management, intrusion detection and genomic
analysis (Liu and Yu, 2005).

� ‘Upcoming domains’ (Saeys et al., 2007) include single nucleotide polymorphism
analysis, text and literature analysis.

Feature extraction application studies include:

� EEG. Jobert et al. (1994) use principal components analysis to produce a two-
dimensional representation of spectral data (sleep electroencephalogram – EEG) to
view time-dependent variation.

� Positron emission tomography. Pedersen et al. (1994) use principal components analysis
for data visualisation purposes on dynamic PET images to enhance clinically interesting
information.

� Remote sensing. Eklundh and Singh (1993) compare principal components analysis
using correlation and covariance matrices in the analysis of satellite remote sensing
data. The correlation matrix gives improvement to the signal-to-noise ratio.

� Calibration of near-infrared spectra (Oman et al., 1993).

� Structure–activity relationships. Darwish et al. (1994) apply principal components
analysis (14 variables, nine compounds) in a study to investigate the inhibitory effect
of benzine derivatives.

� Target classification. Liu et al. (1994) use principal components analysis for feature
extraction in a classification study of materials design.

� Face recognition. Principal components analysis has been used in several studies on
face recognition to produce ‘eigenfaces’. The weights that characterise the expansion of
a given facial image in terms of these eigenfaces are features used for face recognition
and classification (see the review by Chellappa et al., 1995).

� Speech. Pinkowski (1997) uses principal components analysis for feature extraction on
a speaker-dependent dataset consisting of spectrograms of 80 sounds representing 20
speaker-dependent words containing English semivowels.

Applications of MDS and Sammon mappings include:

� Medical. Ratcliffe et al. (1995) use MDS to recover three-dimensional localisation
of sonomicrometry transducer elements glued to excised and living ovine hearts. The
inter-element distances were measured by the sonomicrometry elements by sequentially
activating a single array element followed by eight receiver elements (thus giving inter-
transducer distances).

� Bacterial classification. Bonde (1976) uses nonmetric MDS to produce two- and
three-dimensional plots of groups of organisms (using a steepest descent optimisa-
tion scheme).

� Chemical vapour analysis. For a potential application of an ‘artificial nose’ (an array of
14 chemical sensors) to atmosphere pollution monitoring, cosmetics, food and defence
applications, Lowe (1993) considers an MDS approach to feature extraction, where the
dissimilarity matrix is determined by class (concentration of the substance).

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

RECOMMENDATIONS 495

10.6 Summary and discussion

In this chapter we have considered a variety of techniques for mapping data to a reduced dimen-
sion. There are many more that we have not covered, and we have tried to point to the literature
where some of these may be found. A comprehensive account of data transformation tech-
niques requires a volume in itself and in this chapter we have only been able to consider some of
the more popular multivariate methods. In common with the following chapter on clustering,
many of the techniques are used as part of data preprocessing in an exploratory data analysis.

The techniques vary in their complexity – both from mathematical ease of understanding
and numerical ease of implementation points of view. Most methods of feature extraction
produce linear transformations, but nonmetric MDS is nonlinear. Some use class information,
others are unsupervised, although there are both variants of the Karhunen–Loève transfor-
mation. Some techniques, although producing a linear transformation, require the use of a
nonlinear optimisation procedure to find the parameters. Others are based on eigenvector
decomposition routines, perhaps performed iteratively.

To some extent, the separation of the classifier design into two processes of feature
extraction and classification is artificial, but there are many reasons, some of which were
enumerated in Section 10.3, why dimension reduction may be advisable.

Some methods of feature selection (wrapper/embedded methods) are tied to classifier
type whilst others (filter approaches) are independent of a specific classifies and the main
conclusions that can be drawn from the feature selection review are as follows:

� Filter methods are the most computationally efficient.

� Feature selection methods tied to classifier type (wrapper/embedded methods) offer
improved performance over filter methods.

� Embedded methods, where feature selection is integral to model selection, are likely to
provide optimal performance.

� It is important to handle irrelevance and redundancy. Therefore, a multivariate approach
is required.

� Cross-validation should be performed as part of the feature selection process.

� Model averaging provides a robust solution.

10.7 Recommendations

If explanation is required of the variables that are used in a classifier, then a feature selection
process, as opposed to a feature extraction process, is recommended for dimension reduction.
For feature selection, the probabilistic criteria for estimating class separability are complicated,
involving estimation of probability density functions and their numerical integration. Even
the simple error rate measure is not easy to evaluate for nonparametric density functions.
Therefore, we recommend using the following:

� The parametric form of the probabilistic distance measures assumes normal distribu-
tions. These have the advantage for feature selection that the value of the criteria for a

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

496 FEATURE SELECTION AND EXTRACTION

given set of features may be used in the evaluation of the criteria when an additional
feature is included. This reduces the amount of computation in some of the feature set
search algorithms.

� The interclass distance measures, J1 to J4 [Equations (10.5), (10.6), (10.7) and (10.8)].

� Use an embedded or wrapper method (with error rate estimation). Wrapper and embed-
ded methods of feature selection are optimised for the classifier type and offer improved
performance.

� Implement feature selection within the cross-validation loop, where a robust method of
classifier design, incorporating cross-validation, is being implemented.

� Combine feature selection methods. Typical feature selection methods ignore model
uncertainty and select a single best feature set for use in classifier design. Model
uncertainty can be handled by averaging over multiple models (that use potentially
overlapping subsets of features).

Which algorithms should you employ for feature extraction? Whatever your problem, always
start with the simplest approach which for feature extraction is, in our view, a principal
components analysis of your data. This will tell you whether your data lie on a linear subspace
in the space spanned by the variables and a projection on to the first two principal components,
and displaying your data may reveal some interesting and unexpected structure.

It is recommended to apply principal components analysis to standardised data for feature
extraction, and to consider it particularly when dimensionality is high. Use a simple heuristic
to determine the number of principal components to use, in the first instance. For class-labelled
data, use linear discriminant analysis (KL5) for a reduced-dimension representation.

If you believe there to be nonlinear structure in the data, then techniques based on MDS
(for example, MDS by transformation) are straightforward to implement. Try several starting
conditions for the parameters.

10.8 Notes and references

A comprehensive review of developments in feature selection is covered in the books by Liu
and Motoda (2007) and Guyon et al. (2006) [see also Guyon (2008) and Saeys et al. (2007)].
For a review of filter methods see Duch (2004). For feature selection for classification, see
Dash and Liu (1997).

The branch and bound method (referred to as complete search in this chapter) has been used
in many areas of statistics (Hand, 1981b). It was originally proposed for feature subset selection
by Narendra and Fukunaga (1977) and receives a comprehensive treatment by Devijver and
Kittler (1982) and Fukunaga (1990). Hamamoto et al. (1990) evaluate the branch and bound
algorithm using a recognition rate measure that does not satisfy the monotonicity condition.
Krusińska (1988) describes a semioptimal branch and bound algorithm for feature selection
in mixed variable discrimination.

Stepwise procedures have been considered by many authors: Whitney (1971) for the
sequential forward selection algorithm; Michael and Lin (1973) for the basis of the plus l –
take away r algorithm (the l–r algorithm); and Stearns (1976) for the l–r algorithm.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

EXERCISES 497

Floating search methods were introduced by Pudil et al. [1994b; see also Pudil et al.
(1994a) for their assessment with nonmonotonic criterion functions and Kudo and Sklansky
(2000) for a comparative study]. Error-rate-based procedures are described by McLachlan
(1992a). Ganeshanandam and Krzanowski (1989) also use error rate as the selection criterion.
Within the context of regression, the book by Miller (1990) gives very good accounts of
variable selection.

Many of the standard feature extraction techniques may be found in most textbooks on
multivariate analysis. Descriptions (with minimal mathematics) may be found in Reyment
et al. (1984, chapter 3) and Clifford and Stephenson (1975, chapter 13).

Thorough treatments of principal components analysis are given in the books by Jolliffe
(1986) and Jackson (1991), the latter providing a practical approach and giving many worked
examples and illustrations. Common principal components and related methods are described
in the book by Flury (1988).

Multidimensional scaling is described in textbooks on multivariate analysis (Chatfield
and Collins, 1980; Dillon and Goldstein, 1984) and more detailed treatments are given in
the books by Schiffman et al. (1981) and Jackson (1991). Cox and Cox (1994) provide an
advanced treatment, with details of some of the specialised procedures. An extensive treatment
of nonmetric MDS can be found in the collection of articles edited by Lingoes et al. (1979).
There are many computer packages available for performing scaling. The features of some of
these are given by Dillon and Goldstein (1984) and Jackson (1991).

Many of the techniques described in this chapter are available in standard statistical
software packages.

Exercises

Numerical routines for matrix operations, including eigendecomposition, can be found in
many numerical packages. Press et al. (1992) give descriptions of algorithms.

1. Consider the divergence,

JD =
∫

(p(x|ω1) − p(x|ω2))log

(
p(x|ω1)

p(x|ω2)

)
dx

where x = (x1, . . . , xp)
T . Show that under conditions of independence, JD may be ex-

pressed as

JD =
p∑

j=1

Jj(x j)

2. Suppose the p-variate random variable x has covariance matrix � with eigenvalues {λi}
and orthonormal eigenvectors {ai}. Show that the identity matrix is given by

I = a1aT
1 + · · · + apaT

p

and that

� = λ1a1aT
1 + · · · + λpapaT

p

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

498 FEATURE SELECTION AND EXTRACTION

The latter result is called the spectral decomposition of � (Chatfield and Collins, 1980).

3. Given a set of n measurements on p variables, describe the stages in performing a principal
components analysis for dimension reduction.

4. Let X1 and X2 be two random variables with covariance matrix

� =
[

9
√

6√
6 4

]

Obtain the principal components. What is the percentage of total variance explained by
each component?

5. Athletic records for 55 countries comprise measurements made on eight running events.
These are the country’s record times for: (1) 100 m (s); (2) 200 m (s); (3) 400 m (s);
800 m (min); (5) 1500 m (min); (6) 5000 m (min); (7) 10 000 m (min); (8) marathon
(min).

Describe how a principal components analysis may be used to obtain a two-
dimensional representation of the data.

The results of a principal components analysis are shown below (Everitt and Dunn,
1991). Interpret the first two principal components.

PC1 × λ1 PC2 × λ2

100 m 0.82 0.50
200 m 0.86 0.41
400 m 0.92 0.21
800 m 0.87 0.15
1500 m 0.94 −0.16
5000 m 0.93 −0.30
10 000 m 0.94 −0.31
Marathon 0.87 −0.42
Eigenvalue 6.41 0.89

What is the percentage of the total variance explained by the first principal component?
State any assumptions you make.

6. Four measurements are made on each of a random sample of 500 animals. The first three
variables were different linear dimensions, measured in centimetres, while the fourth
variable was the weight of the animal measured in grammes. The sample covariance
matrix was calculated and its four eigenvalues were found to be 14.1, 4.3, 1.2 and 0.4.
The eigenvectors corresponding to the first and second eigenvalues were:

uT
1 = [0.39, 0.42, 0.44, 0.69]

uT
2 = [0.40, 0.39, 0.42, −0.72]

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

EXERCISES 499

Comment on the use of the sample covariance matrix for the principal components
analysis for these data. What is the percentage of variance in the original data accounted
for by the first two principal components? Describe the results.

Suppose the data were stored by recording the eigenvalues and eigenvectors together
with the 500 values of the first and second principal components and the mean values
for the original variables. Show how to reconstruct the original covariance matrix and an
approximation to the original data (Chatfield and Collins, 1980).

7. Given that

S =
[

S̃ y
yT skk

]

and assuming that S̃
−1

is known, verify that S−1 is given by (10.12). Conversely, with S
given by the above and assuming that S−1 is known,

S−1 =
[

A c
cT b

]

show that the inverse of S̃ (the inverse of S after the removal of a feature) can be written
as

S̃
−1 = A − 1

b
ccT

8. For a given symmetric matrix S of known inverse (of the above form) and symmetric
matrix T , verify (10.14), where T̃ is the submatrix of T after the removal of a feature.
Hence, show that the feature extraction criterion Tr(S−1

W SB), where SW and SB are the
within and between-class covariance matrices, satisfies the monotonicity property.

9. How could you use floating search methods for radial basis function centre selection?
What are the possible advantages and disadvantages of such methods compared with
random selection or k-means, for example?

10. Suppose we take classification rate using a nearest class mean classifier as our feature
selection criterion. Show by considering the two distributions,

p(x|ω1) =
{

1 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1
0 otherwise

p(x|ω2) =
{

1 1 ≤ x1 ≤ 2, −0.5 ≤ x2 ≤ 0.5
0 otherwise

where x = (x1, x2)
T , that classification rate does not satisfy the monotonicity property.

11. Derive the relationship (10.25) expressing the elements of the sum of squares and products
matrix in terms of the elements of the dissimilarity matrix from (10.24) and the definition
of Tij and zero-mean data.

P1: OTA/XYZ P2: ABC
JWST102-c10 JWST102-Webb September 6, 2011 21:47 Printer Name: Yet to Come

500 FEATURE SELECTION AND EXTRACTION

12. Given n p-dimensional measurements (in the n × p data matrix X , zero mean, p < n) show
that a low-dimensional representation in r < p dimensions obtained by constructing the
sums of squares and products matrix, T = XXT , and performing a principal coordinates
analysis, results in the same projection as principal components (to within an orthogonal
transformation).

13. For two classes normally distributed, N(μ1,�) and N(μ2, �) with common covariance
matrix, �, show that the divergence

JD(ω1, ω2) =
∫

[p(x|ω1) − p(x|ω2)]log

{
p(x|ω1)

p(x|ω2)

}
dx

is given by

(μ2 − μ1)
T �−1(μ2 − μ1)

the Mahalanobis distance.

14. Describe how multidimensional scaling solutions that optimise stress can always be
constructed that result in a decrease of stress with increasing dimension of the represen-
tation space.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

11

Clustering

Clustering methods are used for data exploration and to provide prototypes for use in supervised
classifiers. Methods that operate both on dissimilarity matrices and feature vector measurements
on individuals are described, each implicitly imposing its own structure on the data. Mixtures
explicitly model the data structure. Spectral clustering methods exploit the eigenstructure of a
similarity matrix to perform clustering.

11.1 Introduction

Cluster analysis is the grouping of individuals in a population in order to discover structure
in the data. In some sense, we would like the individuals within a group to be close or similar
to one another, but dissimilar from individuals in other groups.

Clustering is fundamentally a collection of methods of data exploration. One often uses a
method to see if natural groupings are present in the data. If groupings do emerge, these may be
named and their properties summarised. For example, if the clusters are compact, then it may
be sufficient for some purposes to reduce the information on the original dataset to information
about a small number of groups, in some cases representing a group of individuals by a single
pattern. The results of a cluster analysis may produce identifiable structure that can be used
to generate hypotheses (to be tested on a separate dataset) to account for the observed data.

It is difficult to give a universal definition of the term ‘cluster’. All of the methods
described in this chapter can produce a partition of the dataset – a division of the dataset
into mutually nonoverlapping groups. However, different methods will often yield different
groupings since each implicitly imposes a structure on the data. Also, the techniques will
produce groupings even when there is no ‘natural’ grouping in the data. The term ‘dissection’
is used when the data consist of a single homogeneous population that one wishes to partition.
Clustering techniques may be used to obtain dissections, but the user must be aware that
a structure is being imposed on the data that may not be present. This does not matter in
some applications.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

502 CLUSTERING

Before attempting a classification, it is important to understand the problem you are
wishing to address. Different classifications, with consequently different interpretations, can
be imposed on a sample and the choice of variables is very important. For example, there
are different ways in which books may be grouped on your bookshelf – by subject mat-
ter or by size – and different classifications will result from the use of different variables.
Each classification may be important in different circumstances, depending on the prob-
lem under consideration. Once you understand your problem and data, you must choose
your method carefully. An inappropriate match of method to data can give results that
are misleading.

There is a vast literature on clustering. Some of the more useful texts are given in Sec-
tion 11.11. There is a wide range of application areas, sometimes with conflicting terminology.
This has led to methods being rediscovered in different fields of study. Much of the early
work was in the fields of biology and zoology, but clustering methods have also been applied
in the fields of psychology, archaeology, linguistics and signal processing.

The topics discussed in this chapter are:

1. Hierarchical methods: methods that derive a clustering from a given dissimilarity
matrix.

2. Quick partitions: methods for obtaining a partition as an initialisation to more elaborate
approaches.

3. Mixture models: models that express the probability density function as a sum of
component densities.

4. Sum-of-squares methods: methods that minimise a sum-of-squares error criterion, in-
cluding k-means, fuzzy k-means, vector quantisation and stochastic vector quantisation.

5. Spectral clustering: methods that use the eigenvectors of a graph Laplacian to embed
the data into a space that captures the underlying structure.

6. Cluster validity: addressing the problem of model selection.

11.2 Hierarchical methods

Hierarchical clustering procedures are the most commonly used means for summarising
data structure. A hierarchical tree is a nested set of partitions represented by a tree diagram
or dendrogram (Figure 11.1). Sectioning a tree at a particular level produces a partition
into g disjoint groups. If two groups are chosen from different partitions (the results of
partitioning at different levels) then either the groups are disjoint or one group wholly contains
the other.

An example of a hierarchical classification is the classification of the animal kingdom.
Each species belongs to a series of nested clusters of increasing size with a decreasing number
of common characteristics. In producing a tree diagram like that in Figure 11.1, it is necessary
to order the points so that branches do not cross. This ordering is somewhat arbitrary, but does
not alter the structure of the tree, only its appearance. There is a numerical value associated
with each position up the tree where branches join. This is a measure of the distance or
dissimilarity between two merged clusters. There are many different measures of distances
between clusters and these give rise to different hierarchical structures, as we shall see in

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

HIERARCHICAL METHODS 503

Figure 11.1 Dendrogram.

later sections of this chapter. Sectioning a tree partitions the data into a number of clusters of
comparable homogeneity (as measured by the clustering criterion).

There are several different algorithms for finding a hierarchical tree. An agglomerative
algorithm begins with n subclusters, each containing a single data point and at each stage
merges the two most similar groups to form a new cluster, thus reducing the number of
clusters by one. The algorithm proceeds until all the data fall within a single cluster. A
divisive algorithm operates by successively splitting groups beginning with a single group
and continuing until there are n groups, each of a single individual. Generally, divisive
algorithms are computationally inefficient (except where most of the variables are binary
attribute variables).

From the tree diagram, a new set of distances between individuals may be defined with
the distance between individual i and individual j being the distance between the two groups
that contain them, when these two groups are amalgamated (i.e. the distance level of the
lowest link joining them). Thus, the procedure for finding a tree diagram may be viewed as
a transformation of the original set of dissimilarities dij to a new set d̂i j where d̂i j satisfy the
ultrametric inequality

d̂i j ≤ max(d̂ik, d̂ jk) for all objects i, j, k

This means that the distances between three groups can be used to define a triangle that is
either equilateral or isosceles (either the three distances are the same or two are equal and
the third smaller – see Figure 11.1, for example). A transformation D : d → d̂ is termed an
ultrametric transformation. All of the methods in this section produce a clustering from a
given dissimilarity matrix.

11.2.1 Single-link method

The single-link method is one of the oldest methods of cluster analysis. It is defined as follows.
Two objects a and b belong to the same single-link cluster at level d if there exists a chain of
intermediate objects i1, . . . , im − 1 linking them such that all the distances

dik,ik+1 ≤ d for k = 0, . . . , m − 1

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

504 CLUSTERING

where i0 = a and im = b. The single-link groups for the data of Figure 11.1 for a threshold of d
= 2.0, 3.0 and 5.0 are {(1, 2), (5, 6), (3), (4)}, {(1, 2, 3), (5, 6), (4)} and {(1, 2, 3, 5, 6), (4)}.

We shall illustrate the method by example with an agglomerative algorithm in which,
at each stage of the algorithm, the closest two groups are fused to form a new group
where the distance between two groups, A and B, is the distance between their closest
members, i.e.

dAB = min
i∈A, j∈B

di j (11.1)

Consider the dissimilarity matrix for each pair of objects in a set comprising six individuals:

1 2 3 4 5 6
1 0 4 13 24 12 8
2 0 10 22 11 10
3 0 7 3 9
4 0 6 18
5 0 8.5
6 0

The closest two groups (which contain a single object each at this stage) are those containing
the individuals 3 and 5. These are fused to form a new group {3, 5} and the distances between
this new group and the remaining groups calculated according to Equation (11.1) so that
d1, (3, 5) = min{d13, d15} = 12; d2, (3, 5) = min{d23, d25} = 10, d4, (3, 5) = 6, d6, (3, 5) = 8.5
giving the new dissimilarity matrix:

1 2 (3, 5) 4 6
1 0 4 12 24 8
2 0 10 22 10

(3, 5) 0 6 8.5
4 0 18
6 0

The closest two groups now are those containing objects 1 and 2; therefore these are fused to
form a new group (1, 2). We now have four clusters (1, 2), (3, 5), 4 and 6. The distance between
the new group and the other three clusters is calculated: d(1, 2)(3, 5) = min{d13, d23, d15, d25}
= 10; d(1, 2)4 = min{d14, d24} = 22; d(1, 2)6 = min{d16, d26} = 8. The new dissimilarity
matrix is:

(1, 2) (3, 5) 4 6
(1, 2) 0 10 22 8
(3, 5) 0 6 8.5

4 0 18
6 0

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

HIERARCHICAL METHODS 505

Figure 11.2 Single-link dendrogram.

The closest two groups are now those containing 4 and (3, 5). These are fused to form (3, 4, 5)
and a new dissimilarity matrix calculated. This is shown with the result of fusing the next
two groups:

(1, 2) (3, 4, 5) 6
(1, 2) 0 10 8

(3, 4, 5) 0 8.5
6 0

(1, 2, 6) (3, 4, 5)

(1, 2, 6) 0 8.5
(3, 4, 5) 0

The single-link dendrogram is given in Figure 11.2.
The above agglomerative algorithm for a single-link method illustrates the fact that it

takes only a single link to join two distinct groups and that the distance between two groups
is the distance of their closest neighbours. Hence the alternative name of nearest-neighbour
method. A consequence of this joining together by a single link is that some groups can
become elongated with some distant points, having little in common, being grouped together
because there is a chain of intermediate objects. This drawback of chaining is illustrated in
Figures 11.3 and 11.4.

x1

x 2

Figure 11.3 Illustration of chaining with the single-link method.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

506 CLUSTERING

x1

x 2

Figure 11.4 Single-link three-group solution for the data of Figure 11.3.

Figure 11.3 shows a distribution of data samples. Figure 11.4 shows the single-link three-
group solution for the data in Figure 11.3. These groups do not correspond to those suggested
by the data in Figure 11.3.

There are many algorithms for finding a single-link tree. Some are agglomerative, like the
procedure described above, some are divisive; some are based on an ultrametric transforma-
tion and others generate the single-link tree via the minimum spanning tree1 [see Rohlf (1982)
for a review of algorithms]. The algorithms vary in their computational efficiency, storage re-
quirements and ease of implementation. Sibson’s (1973) algorithm uses the property that only
local changes in the reduced dissimilarity result when two clusters are merged and it has been
extended to the complete-link method discussed in the following section. It has computational
requirements O(n2), for n objects. More time-efficient algorithms are possible if knowledge
of the metric properties of the space in which the data lie is taken into account. In such cir-
cumstances, it is not necessary to compute all dissimilarity coefficients. Also, preprocessing
the data to facilitate searches for nearest neighbours can reduce computational complexity.

11.2.2 Complete-link method

In the complete-link or furthest-neighbour method the distance between two groups A and B
is the distance between the two furthest points, one taken from each group

dAB = max
i∈A, j∈B

di j

In the example used to illustrate the single-link method, the second stage dissimilarity matrix
(after merging the closest groups 3 and 5 using the complete-link rule above) becomes:

1 2 (3, 5) 4 6
1 0 4 13 24 8
2 0 11 22 10

(3, 5) 0 7 9
4 0 18
6 0

The final complete-link dendrogram is shown in Figure 11.5.

1 The minimum spanning tree is the tree connecting all data points such that the sum of the distances between
pairs of points joined by a branch of the tree is a minimum.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

HIERARCHICAL METHODS 507

Figure 11.5 Complete-link dendrogram.

At each stage, the closest groups are merged of course. The difference between this method
and the single-link method is the measure of distance between groups. The groups found by
sectioning the complete-link dendrogram at level h have the property that dij < h for all
members in the group. The method concentrates on the internal cohesion of groups in contrast
to the single-link method, which seeks isolated groups. Sectioning a single-link dendrogram
at a level h gives groups with the property that they are separated from each other by at least
a ‘distance’ h.

Defays (1977) provides an algorithm for the complete-link method using the same repre-
sentation as Sibson. It should be noted that the algorithm is sensitive to the ordering of the
data, and consequently has several solutions. Thus it provides only an approximate complete
link clustering.

11.2.3 Sum-of-squares method

The sum-of-squares method is appropriate for the clustering of points in Euclidean space.
The aim is to minimise the total within-group sum of squares. Ward’s hierarchical clustering
method (Ward, 1963) uses an agglomerative algorithm to produce a set of hierarchically
nested partitions that can be represented by a dendrogram. However, the optimal sum-of-
squares partitions for different numbers of groups are not necessarily hierarchically nested.
Thus Ward’s algorithm is suboptimal.

At each stage of the algorithm, the two groups that produce the smallest increase in the
total within-group sum of squares are amalgamated. The dissimilarity between two groups
is defined to be the increase in the total sum of squares that would result if they were
amalgamated. The updating formula for the dissimilarity matrix is

di+ j,k = nk + ni

nk + ni + n j
dik + nk + nj

nk + ni + nj
d jk − nk

nk + ni + nj
di j

where di + j, k is the distance between the amalgamated groups i + j and the group k and ni is
the number of objects in group i. Initially, each group contains a single object and the element
of the dissimilarity matrix, dij, is the squared Euclidean distance between the ith and the jth
object (Everitt et al., 2011).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

508 CLUSTERING

11.2.4 General agglomerative algorithm

Many agglomerative algorithms for producing hierarchical trees can be expressed as a special
case of a single algorithm. The algorithms differ in the way that the dissimilarity matrix
is updated. The Lance–Williams recurrence formula expresses the dissimilarity between a
cluster k and the cluster formed by joining i and j as

di+ j,k = aidik + ajd jk + bdi j + c|dik − djk|

where ai, b and c are parameters that, if chosen appropriately, will give an agglomerative
algorithm for implementing some of the more commonly used methods (Table 11.1).

Centroid distance
This defines the distance between two clusters to be the distance between the cluster means
or (centroids).

Median distance
When a small cluster is joined to a larger one, the centroid of the result will be close to the
centroid of the larger cluster. For some problems this may be a disadvantage. This measure
attempts to overcome this by defining the distance between two clusters to be the distance
between the medians of the clusters.

Group average link
In the group average method, the distance between two clusters is defined to be the average
of the dissimilarities between all pairs of individuals, one from each group

dAB = 1

nin j

∑
i∈A, j∈B

di j

11.2.5 Properties of a hierarchical classification

What desirable properties should a hierarchical clustering method possess? It is difficult
to write down a set of properties on which everyone will agree. What might be a set of

Table 11.1 Special cases of the general agglomerative algorithm.

ai b c

Single link 1
2 0 − 1

2

Complete link 1
2 0 1

2

Centroid ni
ni+n j

− nin j

(ni+nj)2 0

Median 1
2 − 1

4 0

Group average link ni
ni+n j

0 0

Ward’s method ni+nk
ni+nj+nk

− nk
ni+n j+nk

0

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

HIERARCHICAL METHODS 509

commonsense properties to one person may be the extreme position of another. Jardine and
Sibson (1971) suggest a set of six mathematical conditions that an ultrametric transformation
should satisfy; for example, that the results of the method should not depend on the labelling
of the data. They show that the single-link method is the only one to satisfy all their conditions
and recommend this method of clustering. However, this method has its drawbacks (as do all
methods) which has led people to question the plausibility of the set of conditions proposed
by Jardine and Sibson. We shall not list the conditions here but refer to Jardine and Sibson
(1971) and Williams et al. (1971) for further discussion.

11.2.6 Example application study

The problem
This application involves the analysis of microarray gene expression data of Toxoplasma
gondii (Gautam et al., 2010). Toxoplasma gondii is a parasite that can infect a wide range of
warm-blooded animals, including humans, and develop into a chronic infection that cannot
be eliminated by currently used drugs. The aim of the study is to find out new possible drug
targets (key molecules) through microarray data analysis.

The data
Microarray data were provided by the Stanford Microarray Database. The data were filtered
to 327 genes for analysis.

The model
The assumption is that if the expression of one gene is similar to another, then it is likely that
they are related in function. Thus, a method for grouping expression data is implemented.
A hierarchical clustering method was implemented (the complete-link method) and results
compared with k-means clustering (Section 11.5).

Results
For the Toxoplasma gondii dataset, five main clusters were identified using the complete-link
method. One particular cluster was identified as important for further investigation since it
included surface antigens (SAGs), known to be important. Most of the SAG gene family
members present in this cluster were also present in a single cluster produced by the k-means
clustering algorithm. The study identified some possible drug targets for the treatment of
toxoplasmosis, since the genes have an important role in the immune system.

11.2.7 Summary

The concept of having a hierarchy of nested clusters was developed primarily in the biological
field and may be inappropriate to model the structure in some data. Each hierarchical method
imposes its own structure on the data. The single-link method seeks isolated clusters, but
is generally not favoured, even though it is the only one satisfying the conditions proposed
by Jardine and Sibson. It is subject to the chaining effect, which can result in long straggly
groups. This may be useful in some circumstances if the clusters sought are not homogeneous,
but it can mean that distinct groups are not resolved because of intermediate points present
between the groups. The group average, complete-link and Ward’s method tend to concentrate
on internal cohesion, producing homogeneous, compact (often spherical) groups.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

510 CLUSTERING

The centroid and median methods may lead to inversions (a reduction in the dissimilarity
between an object and a cluster when the cluster increases in size) which make the den-
drogram difficult to interpret. Also, ties in the dissimilarities may lead to multiple solutions
(nonuniqueness) of which the user should be aware (Morgan and Ray, 1995).

Hierarchical agglomerative methods are one of the most common clustering techniques
employed. Divisive algorithms are less popular, but efficient algorithms have been proposed,
based on recursive partitioning of the cluster with largest diameter (Guénoche et al., 1991).

11.3 Quick partitions

Many of the techniques described subsequently in this chapter are implemented by algorithms
that require an initial partition of the data. The normal mixture methods require initial estimates
of means and covariance matrices. These could be sample-based estimates derived from an
initial partition. The k-means algorithm also requires an initial set of means. Hierarchical
vector quantisation (see Section 11.5.3) requires initial estimates of the code vectors. In
the context of discrimination, radial basis functions, introduced in Chapter 4, require initial
estimates for ‘centres’. These could be derived using the quick partition methods of this
section or be the result of a more principled clustering approach (which in turn may need to
be initialised).

Let us suppose that we have a set of n data samples and we wish to find an initial partition
into k groups, or to find k seed vectors. We can always find a seed vector, given a group
of objects, by taking the group mean. Also, we can partition a set, given k vectors, using
a nearest-neighbour assignment rule. There are many heuristic partition methods. We shall
consider a few of them.

Random k selection
We wish to have k different vectors, so we select one randomly from the whole dataset,
the another from the remaining n − 1 samples in the dataset, and so on. In a supervised
classification problem, these vectors should be spread across all classes ideally.

Variable division
Choose a single variable. This may be selected from one of the measured variables or be a
linear combination of variables; for example, the first principal component. Divide it into k
equal intervals that span the range of the variable. The data are partitioned according to which
bin they fall in and k seed vectors are found from the means of each group.

Leader algorithm
The leader cluster algorithm (Hartigan, 1975; Späth, 1980) partitions a dataset such that for
each group there is a leader object and all other objects within the group are within a distance
T of the leading example.

Figure 11.6 illustrates a partition in two dimensions. The first data point, A, is taken as
the centre of the first group. Successive data points are examined. If they fall inside the circle
centred at A of radius T then they are assigned to group 1. The first data sample examined to
fall outside the circle, say at B, is taken as the leader of the second group. Further data points
are examined to see if they fall within the first two clusters. The first one to fall outside, say
at C, is taken as the centre of the third cluster and so on.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

MIXTURE MODELS 511

A

CB

T •

••
•

•

•
•

•

•
•

•

Figure 11.6 Leader clustering.

Points to note about the algorithm:

1. All cluster centres are at least a distance T from each other.

2. It is fast, requiring only one pass through the dataset.

3. It can be applied to a given dissimilarity matrix.

4. It is dependent on the ordering of the dataset. The first point is always a cluster leader.
Also, initial clusters tend to be larger than later ones.

5. The distance T is specified, not the number of clusters.

11.4 Mixture models

11.4.1 Model description

In the mixture method of clustering, each different group in the population is assumed to
be described by a different probability distribution. These different probability distributions
may belong to the same family but differ in the values they take for the parameters of
the distribution. Alternatively, the population may comprise sums of different component
densities (for modelling different effects such as a signal and noise). The population is said
to be described by a finite mixture distribution of the form

p(x) =
g∑

i=1

πi p(x; θi)

where π i are the mixing proportions (
∑g

i=1 πi = 1) and p(x; θi) is a p-dimensional probability
function depending on a parameter vector θi. There are three sets of parameters to estimate:
the values of π i, the components of the vectors θi and the value of g, the number of groups in
the population.

Many forms of mixture distributions have been considered and there are many methods
for estimating their parameters. An example of a mixture distribution for continuous variables
is the mixture of normal distributions

p(x) =
g∑

i=1

πi p(x;�i,μi)

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

512 CLUSTERING

where μi and �i are the means and covariance matrices of a multivariate normal distribution
(see Section 2.3.1). A mixture for binary variables is

p(x) =
g∑

i=1

πi p(x; θi)

where

p(x; θ j) =
p∏

l=1

θ
xl
jl (1 − θ jl)

1−xl

is the multivariate Bernoulli density. The value of θ jl is the probability that variable l in the
jth group is unity.

Maximum likelihood procedures for estimating the parameters of normal mixture dis-
tributions were given in Chapter 2. Other examples of continuous and discrete mixture
distributions, and methods of parameter estimation, can be found in Everitt and Hand (1981)
and Titterington et al. 1985). Also, in some applications, variables are often of a mixed type –
both continuous and discrete.

The usual approach to clustering using finite mixture distributions is first of all to specify
the form of the component distributions, p(x, θi). Then the number of clusters, g, is prescribed.
The parameters of the model are now estimated and the objects are grouped on the basis of
their estimated posterior probabilities of group membership; that is the object x is assigned to
group i if

πi p(x; θi) ≥ π j p(x; θ j) for all j �= i, j = 1, . . . , g

Clustering using a normal mixture model may be achieved by using the EM algorithm
described in Chapter 2, to which we refer for further details.

The main difficulty with the method of mixtures concerns the number of components, g
(see Chapter 2). This is the question of model selection we return to many times in this book.
Many algorithms require g to be specified before the remaining parameters can be estimated.
Several test statistics have been put forward. Many apply to special cases such as assessing
the question as to whether or not the data come from a single component distribution or a
two-component mixture. However, others have been proposed based on likelihood ratio tests
(Everitt and Hand, 1981, chapter 5; Titterington et al., 1985, chapter 5).

Another problem with a mixture model approach is that there may be many local minima
of the likelihood function and several initial configurations may have to be tried before a
satisfactory clustering is produced. In any case, it is worthwhile trying several initialisations,
since agreement between the resulting classifications lends more weight to the chosen solution.

11.4.2 Example application study

The problem
This application considers clustering of gene expression data for gene function discovery
(Dai et al., 2009). The assumption is that genes having similar expression patterns should

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 513

have similar cellular functions. Therefore, a clustering approach is developed to cluster
gene profiles.

Summary
The study develops a model for data arising from multiple sources. It is applied to real data
providing biologically plausible results.

The data
Real and simulated datasets were used to assess the approach. The real data comprised mouse
protein DNA binding data and gene expression data. There were 1775 genes in both datasets,
which were filtered to provide 673 genes for analysis.

The model
An approach based on mixture models is developed. The mixture components are modelled
as a product of two independent terms. That is, if x = [yT , zT]T , then

p(x) = p(y)p(z)

and p(y) is a Gaussian distribution and p(z) is a beta distribution.
The motivation for this is that the observation x arises from two data sources, each

generated from a different probability distribution.

Training procedure
The model parameters were determined by maximising the likelihood using the EM algorithm
(see Chapter 2). Three forms of EM algorithm are considered: the standard EM algorithm, an
approximated EM and a hybrid EM. The latter two approaches were developed to reduce the
computational requirement.

Four model selection criteria (to determine the number of mixture components) were
assessed: Akaike Information Criterion (AIC); a modified AIC (AIC3); the Bayesian Infor-
mation Criterion (BIC); and the integrated classification likelihood-BIC (ICL-BIC).

Results
The approach yielded more biologically plausible results, independent of the model selection
criteria, than using simpler mixture models. Three important groups of genes were identified.

11.5 Sum-of-squares methods

Sum-of-squares methods find a partition of the data that maximises a predefined clustering
criterion based on the within-class and between-class scatter matrices. The methods differ in
the choice of clustering criterion optimised and the optimisation procedure adopted. However,
the problem all methods seek to solve is: Given a set of n data samples, partition the data
into g clusters so that the clustering criterion is optimised.

Most methods are suboptimal. Computational requirements prohibit optimal schemes,
even for moderate values of n. Therefore we require methods that, although producing a
suboptimal partition, give a value of the clustering criterion that is not much worse than the
optimal one. First of all, let us consider the various criteria that have been proposed.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

514 CLUSTERING

11.5.1 Clustering criteria

Let the n data samples be x1, . . . , xn. The sample covariance matrix, �̂, is given by

�̂ = 1

n

n∑
i=1

(xi − m)(xi − m)T

where m = 1
n

∑n
i=1 xi, the sample mean. Let there be g clusters. The within-class scatter

matrix or pooled within-group scatter matrix is

SW = 1

n

g∑
j=1

n∑
i=1

z ji(xi − m j)(xi − m j)
T ,

the sum of the sums of squares and cross-products (scatter) matrices over the g groups, where
zji = 1 if xi ∈ group j, 0 otherwise, m j = 1

n j

∑n
i=1 z jixi is the mean of cluster j and nj =∑n

i=1zji, the number in cluster j. The between-class scatter matrix is

SB = �̂ − SW =
g∑

j=1

nj

n
(m j − m)(m j − m)T

and describes the scatter of the cluster means about the total mean.
The most popular optimisation criteria are based on univariate functions of the above

matrices and are similar to the criteria given in Chapter 10 on feature selection and extraction.
The two areas of clustering and feature selection are very much related. In clustering we are
seeking clusters that are internally cohesive but isolated from other clusters. We do not know
the number of clusters. In feature selection or extraction, we have labelled data from a known
number of groups or classes and we seek a transformation that makes the classes distinct.
Therefore one that transforms the data into isolated clusters will achieve this.

1. Minimisation of Tr(SW)

The trace of SW is the sum of the diagonal elements

Tr(SW) = 1

n

g∑
j=1

n∑
i=1

zi j|xi − m j|2

= 1

n

g∑
j=1

Sj

where Sj = ∑n
i=1 z ji|xi − m j|2, the within-group sum of squares for group j. Thus, the min-

imisation of Tr(SW) is equivalent to minimising the total within-group sum of squares about
the g centroids. Clustering methods that minimise this quantity are sometimes referred to
as sum-of-squares or minimum-variance methods. They tend to produce clusters that are
hyperspherical in shape. The criterion is not invariant to the scale of the axes and usually
some form of standardisation of the data must be performed prior to application of the
method. Alternatively, criteria that are not invariant to linear transformations of the data may
be employed.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 515

•
•

•
•

•

•

•

•

Figure 11.7 Example of effects of scaling in clustering.

2. Minimisation of |SW |/|�̂|
This criterion is invariant to nonsingular linear transformations of the data. For a given
dataset, it is equivalent to finding the partition of the data that minimises |SW | (the matrix �̂

is independent of the partition).

3. Maximisation of Tr(S−1
W SB)

This is a generalisation of the sum-of-squares method in that the clusters are no longer
hyperspherical, but hyperellipsoidal. It is equivalent to minimising the sum of squares under
the Mahalanobis metric. It is also invariant to nonsingular transformations of the data.

4. Minimisation of Tr(�̂
−1

SW)

This is identical to minimising the sum of squares for data that have been normalised to make
the total scatter matrix equal to the identity.

Note that the two examples in Figure 11.7 would be clustered differently by the sum-
of-squares method (criterion 1 above). However, since they only differ from each other by
a linear transformation, they must both be local optima of a criterion invariant to linear
transformations. Thus, it is not necessarily an advantage to use a method that is invariant to
linear transformations of the data since structure may be lost. The final solution will depend
very much on the initial assignment of points to clusters.

11.5.2 Clustering algorithms

The problem we are addressing is one in combinatorial optimisation. We seek a nontrivial
partition of n objects into g groups for which the chosen criterion is optimised. However, to
find the optimum partition requires the examination of every possible partition. The number
of nontrivial partitions of n objects into g groups is

1

g!

g∑
i=1

(−1)g−i

(
g
i

)
in

with the final term in the summation being most significant if n � g. This increases rapidly
with the number of objects. For example, there are 259 − 1 ≈ 6 × 1017 partitions of 60 objects
into two groups. This makes exhaustive enumeration of all possible subsets infeasible. In fact,

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

516 CLUSTERING

even the branch and bound procedure described in Chapter 10 is impractical for moderate
values of n. Therefore, suboptimal solutions must be derived.

We now describe some of the more popular approaches. Many of the procedures require
initial partitions of the data, from which group means may be calculated, or initial estimates
of group means (from which an initial partition may be deduced using a nearest-class-mean
rule). These were discussed in Section 11.3.

11.5.2.1 k-means

The aim of the k-means (which also goes by the names of the c-means or iterative relocation or
basic ISODATA) algorithm is to partition the data into k clusters so that the within-group sum
of squares (criterion 1) is minimised. The simplest form of the k-means algorithm is based on
alternating two procedures. The first is one of assignment of objects to groups. An object is
usually assigned to the group to whose mean it is closest in the Euclidean sense. The second
procedure is the calculation of new group means based on the assignments. The process
terminates when no movement of an object to another group will reduce the within-group
sum of squares. Let us illustrate with a very simple example.

Consider the two-dimensional data shown in Figure 11.8. Let us set k = 2 and choose
two vectors from the dataset as initial cluster mean vectors. Those selected are points 5 and
6. We now cycle through the dataset and allocate individuals to groups A and B represented
by the initial vectors 5 and 6 respectively. Individuals 1, 2, 3, 4 and 5 are allocated to A and
individual 6 to B. New means are calculated and the within-group sum of squares is evaluated,
giving 6.4. The results of this iteration are summarised in Table 11.2.

The process is now repeated, using the new mean vectors as the reference vectors. This
time, individuals 1, 2, 3, and 4 are allocated to group A and 5 and 6 to group B. The within-
group sum-of-squares has now decreased to 4.0. A third iteration produces no change in the
within-group sum-of-squares.

The iterative procedure of allocating objects to groups on a nearest-group-mean basis,
followed by recalculation of group means, gives the version of the k-means called HMEANS
by Späth (1980). It is also termed Forgy’s method or the basic ISODATA method.

There are two main problems with HMEANS. It may lead to empty groups and it may
lead to a partition for which the sum-square error could be reduced by moving an individual
from one group to another. Thus the partition of the data by HMEANS is not necessarily one

� � �

� � �

x1

x 2

Figure 11.8 Data to illustrate the k-means procedure.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 517

Table 11.2 Summary of k-means iterations.

Group A Group B

Step Membership Means Membership Means Tr(W)

1 1, 2, 3, 4, 5 (1.6, 0.4) 6 (4.0, 1.0) 6.4
2 1, 2, 3, 4 (1.25, 0.25) 5, 6 (3.5, 1.0) 4.0
3 1, 2, 3, 4 (1.25, 0.25) 5, 6 (3.5, 1.0) 4.0

for which the within-group sum of squares is a minimum [see Selim and Ismail (1984a) for a
treatment of the convergence of this algorithm].

For example, in Figure 11.9 four data points and two groups are illustrated. The means
are at positions (1.0, 0.0) and (3.0, 1.0), with a sum-square error of 4.0. Repeated iterations
of the algorithm HMEANS will not alter that allocation. However, if we allocate object 2 to
the group containing objects 3 and 4, the means are now at (0.0, 0.0) and (8/3, 2/3), and the
sum-square error is reduced to 10/3. This suggests an iterative procedure that cycles through
the data points and allocates each to a group for which the within-group sum of squares is
reduced the most. Allocation takes place on a sample-by-sample basis, rather than after a pass
through the entire dataset. An individual xi (in group l) is assigned to group r if

nl

nl − 1
d2

il >
nr

nr + 1
d2

ir

where dil is the distance to the lth centroid and nl is the number in group l. The greatest
decrease in the sum-square error is achieved by choosing the group for which nrd2

ir/(nr + 1)
is a minimum. This is the basis of the k-means algorithm.

There are many variants of the k-means algorithm to improve efficiency of the algorithm in
terms of computing time and of achieving smaller error. Some algorithms allow new clusters
to be created and existing ones deleted during the iterations. Others may move an object to
another cluster on the basis of the best improvement in the objective function. Alternatively,
the first encountered improvement during the pass through the dataset could be used.

� • �

� • �

x1

x 2

Figure 11.9 Data to illustrate the k-means local optimum.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

518 CLUSTERING

11.5.2.2 Nonlinear optimisation

The within-groups sum-of-squares criterion may be written in the form

Tr(SW) = 1

n

n∑
i=1

g∑
k=1

zki

p∑
j=1

(xi j − mk j)
2 (11.2)

where xij is the jth coordinate of the ith point (i = 1, . . . , n; j = 1, . . . , p); mkj is the jth
coordinate of the mean of the kth group and zki = 1 if the ith point belongs to the kth group
and 0 otherwise. The mean quantities mkj may be written as

mk j =
∑n

i=1 zkixi j∑n
i=1 zki

(11.3)

To obtain an optimal partition, we must find the values of zki (either 0 or 1) for which the
expression (11.2) is a minimum.

The approach of Gordon and Henderson (1977) is to regard the g × n matrix Z with (ij)
element zij as consisting of real-valued quantities (as opposed to binary quantities) with the
property

g∑
k=1

zki = 1 and zki ≥ 0 (i = 1, . . . , n; k = 1, . . . , g) (11.4)

Minimisation of the expression (11.2) with respect to zki, (i = 1, . . . , n; k = 1, . . . , g), subject
to the constraints above, yields a final solution for Z with elements that are all 0 or 1 (even
though they are not constrained to be binary-valued). Therefore we can obtain a partition by
minimising (11.2) subject to the constraints (11.4) and assigning objects to groups on the
basis of the values zik. Thus, mkj is not equal to a group mean until the iteration has converged.

The problem can be transformed to one of unconstrained optimisation by writing zji as

z ji = exp(ν ji)∑g
k=1 exp(νki)

(j = 1, . . . , g; i = 1, . . . , n)

that is, we regard Tr{SW } as a nonlinear function of parameters νki, i = 1, . . . , n; k =
1, . . . , g, and seek a minimum of Tr{SW (ν)}. Other forms of transformation to unconstrained
optimisation are possible. However, for the particular form given above, the gradient of
Tr{SW (ν)} with respect to νab has the simple form

∂Tr{SW (ν)}
∂νab

= 1

n

g∑
k=1

zkb(δka − zab)|xb − mk|2 (11.5)

where δka = 0, k �= a and 1 otherwise. There are many nonlinear optimisation schemes
that can be used. The parameters ν ij must be given initial values. Gordon and Henderson
(1977) suggest choosing an initial set of random values zji uniformly distributed in the range
[1, 1 + a] and scaled so that their sum is unity. A value of about 2 is suggested for the
parameter a. Then ν ji is initialised to ν ji = log(zji).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 519

11.5.2.3 Fuzzy k-means

The partitioning methods described so far in this chapter have the property that each object
belongs to one group only, though the mixture model can be regarded as providing degrees
of cluster membership. Indeed, the early work on fuzzy clustering was closely related to
multivariate mixture models. The basic idea of the fuzzy clustering method is that patterns are
allowed to belong to all clusters with different degrees of membership. The first generalisation
of the k-means algorithm was presented by Dunn (1974). The fuzzy k-means (or fuzzy c-means)
algorithm attempts to find a solution for parameters yji (i = 1, . . . , n; j = 1, . . . , g) for which

Jr =
n∑

i=1

g∑
j=1

yr
ji|xi − m j|2 (11.6)

is minimised subject to the constraints

g∑
j=1

yi j = 1 1 ≤ i ≤ n

y ji ≥ 0 i = 1, . . . , n; j = 1, . . . , g

The parameter yji represents the degree of association or membership function of the ith
pattern or object with the jth group. In the above expression (11.6), r is a scalar termed the
weighting exponent which controls the ‘fuzziness’ of the resulting clusters (r ≥ 1) and m j is
the ‘centroid’ of the jth group

m j =
∑n

i=1 yr
jixi∑n

i=1 yr
ji

(11.7)

A value of r = 1 gives the same problem as the nonlinear optimisation scheme presented
earlier. In that case, we know that a minimum of (11.6) gives values for the yji that are either
0 or 1.

The basic algorithm is iterative and can be stated as follows (Bezdek, 1981):

1. Select r (1 < r < ∞); initialise the membership function values yji, i = 1, . . . , n; j =
1, . . . , g.

2. Compute the cluster centres m j, j = 1, . . . , g, according to (11.7).

3. Compute the distances dij, i = 1, . . . , n; j = 1, . . . , g, where di j = |xi − m j|.
4. Compute the membership function according to

If dil = 0 for some l, yli = 1, and y ji = 0, for all j �= l

otherwise y ji = 1
∑g

k=1

(
di j

dik

) 2
r−1

5. If not converged, go to step 2.

As r → 1, this algorithm tends to the basic k-means algorithm. Improvements to this basic
algorithm, resulting in faster convergence, are described by Kamel and Selim (1994).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

520 CLUSTERING

Several stopping rules have been proposed (Ismail, 1988). One is to terminate the algorithm
when the relative change in the centroid values becomes small; that is, terminate when

Dz

=

⎧⎨
⎩

g∑
j=1

|m j(k) − m j(k − 1)|2
⎫⎬
⎭

1
2

< ε

where m j(k) is the value of the jth centroid on the kth iteration and ε is a user-specified
threshold. Alternative stopping rules are based on changes in the membership function values,
yji, or the cost function, Jr. Another condition based on the local optimality of the cost function
is given by Selim and Ismail (1986). It is proposed to stop when

max
1≤i≤n

αi < ε

where

αi = max
1≤ j≤g

yr−1
ji |xi − m j|2 − min

1≤ j≤g
yr−1

ji |xi − m j|2

since at a local minimum, αi = 0, i = 1, . . . , n.

11.5.2.4 Complete search

Complete search of the space of partitions of n objects into g groups is impractical for all but
very small datasets. The branch and bound method (described in a feature subset selection
context in Chapter 10) is one approach for finding the partition that results in the minimum
value of the clustering criterion, without exhaustive enumeration. Nevertheless, it may still
be impractical. Koontz et al. (1975) have developed an approach that extends the range of
problems to which branch and bound can be applied. The criterion they seek to minimise
is Tr{SW }. Their approach is to divide the dataset into 2m independent sets. The branch and
bound method is applied to each set separately and then sets are combined in pairs (to give
2m − 1 sets) and the branch and bound method applied to each of these combined sets, using
the results obtained from the branch and bound application to the constituent parts. This is
continued until the branch and bound procedure is applied to the entire set. This hierarchical
approach results in a considerable saving in computer time.

Other approaches based on global optimisation algorithms such as simulated annealing
have also been proposed. Simulated annealing is a stochastic relaxation technique in which
a randomly selected perturbation to the current configuration is accepted or rejected prob-
abilistically. Selim and Al-Sultan (1991) apply the method to the minimisation of Tr{SW }.
Generally, the method is slow, but it can lead to effective solutions.

11.5.3 Vector quantisation

Vector quantisation is not a method of producing clusters or partitions of a dataset but rather an
application of many of the clustering algorithms already presented. Indeed, many clustering
techniques have been rediscovered in the vector quantisation literature. On the other hand,
there are some important algorithms in the vector quantisation literature that are not found in
the standard texts on clustering. This section is included in the section on optimisation methods

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 521

x y(x) y x′(y) x′

Figure 11.10 The encoding–decoding operation in vector quantisation.

since in vector quantisation a distortion measure (often, but by no means exclusively, based
on the Euclidean distance) is optimised during training. A comprehensive and very readable
account of the fundamentals of vector quantisation is given by Gersho and Gray (1992).

Vector quantisation is the encoding of a p-dimensional vector x as one from a codebook
of g vectors, z1, . . . , zg, termed the code vectors or the codewords. The purpose of vector
quantisation is primarily to perform data compression. A vector quantiser consists of two
components: an encoder and a decoder (Figure 11.10).

The encoder maps an input vector x to a scalar variable, y, taking discrete values 1, . . . , g.
After transmission of the index, y, the inverse operation of reproducing an approximation x′ to
the original vector takes place. This is termed decoding and is a mapping from the index setI =
{1, . . . , g} to the codebook C = {z1, . . . , zg}. Codebook design is the problem of determining
the codebook entries given a set of training samples. From a clustering point of view, we
may regard the problem of codebook design as one of clustering the data and then choosing a
representative vector for each cluster. These vectors could be cluster means for example and
they form the entries in the codebook. They are indexed by integer values. Then the code vector
for a given input vector x is the representative vector, say z of the cluster to which x belongs.
Membership of a cluster may be determined on a nearest-to-cluster-mean basis. The distortion
or error in approximation is then d(x, z), the distance between x and z (Figure 11.11).

The problem in vector quantisation is to find a set of codebook vectors that characterise a
dataset. This is achieved by choosing the set of vectors for which a distortion measure between
an input vector, x, and its quantised vector, x′, is minimised. Many distortion measures have
been proposed, the most common being based on the square error measure giving average
distortion, D2,

D2 =
∫

p(x)d(x, x′)dx

=
∫

p(x)
∥∥x′(y(x)) − x

∥∥2
dx (11.8)

∗

∗ ∗

∗

∗
∗ ∗

∗

∗

∗

∗
∗

∗
∗ ∗

∗∗

∗
∗∗
∗

∗

∗ ∗
∗ ∗•

•

z2

z1

x

Figure 11.11 Vector quantisation distortion for two code vectors. The reconstruction of x
after encoding and decoding is z2, the nearest code vector. The distortion is d(x, z2).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

522 CLUSTERING

Table 11.3 Some distortion measures used in vector quantisation.

Type of norm d(x, x′)

L2, Euclidean |x′ − x|
Lν {∑p

i=1 |x′ − x|ν} 1
ν

Minkowski max
1≤i≤p

|x′
i − xi|

Quadratic (for positive definite
symmetric B)

(x′ − x)T B(x′ − x)

where p(x) is the probability density function over samples x used to train the vector quantiser
and ‖.‖ denotes the norm of a vector. Other distortion measures are given in Table 11.3.

For a finite number of training samples, x1, . . . , xn, we may write the distortion as

D =
g∑

j=1

∑
xi∈Sj

d(xi, z j)

where Sj is the set of training vectors for which y(x) = j, i.e. those that map onto the jth code
vector, z j. For a given set of code vectors z j, the partition that minimises the average distortion
is constructed by mapping each xi to the z j for which d(xi, z j) is a minimum over all z j – i.e.
choosing the minimum distortion or nearest-neighbour code vector. Alternatively, for a given
partition the code vector of a set Sj, z j, is defined to be the vector for which

∑
xi∈S j

d(u, xi)

is a minimum with respect to u. This vector is called the centroid (for the square error measure
it is the mean of the vectors xi).

This suggests an iterative algorithm for a vector quantiser:

1. Initialise the code vectors.

2. Given a set of code vectors, determine the minimum distortion partition.

3. Find the optimal set of code vectors for a given partition.

4. If the algorithm has not converged, then go to step 2.

This is clearly a variant of the k-means algorithms given earlier. It is identical to the basic
k-means algorithm provided that the distortion measure used is the square error distortion
since all the training vectors are considered at each iteration rather than making an adjustment
of code vectors by considering each in turn. This is known as the generalised Lloyd algorithm
in the vector quantisation literature (Gersho and Gray, 1992) or the LBG algorithm in the data
compression literature. One of the main differences between the LBG algorithm and some of
the k-means implementations is the method of initialisation of the centroid vectors. The LBG
algorithm (Linde et al., 1980) given below starts with a one-level quantiser (a single cluster)
and after obtaining a solution for the code vector z, ‘splits’ the vector z into two close vectors

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 523

Figure 11.12 LBG algorithm illustration. z denotes the group centroid; z1 and z2 denote the
code vectors for a two-level quantiser.

that are used as seed vectors for a two-level quantiser. This is run until convergence and a
solution is obtained for the two-level quantiser. Then these two codewords are split to give
four seed vectors for a four-level quantiser. The process is repeated so that finally quantisers
of 1, 2, 4, . . . , N levels are obtained (Figure 11.12). The steps in the algorithm are:

1. Initialise a code vector z1 to be the group mean; initialise ε.

2. Given a set of m code vectors, ‘split’ each vector zi to form 2m vectors, zi + ε and
zi − ε. Set m = 2m; relabel the code vectors as x′

i, i = 1, . . . , m.

3. Given the set of code vectors, determine the minimum distortion partition.

4. Find the optimal set of code vectors for a given partition.

5. Repeat steps 3 and 4 until convergence.

6. If m �= N, the desired number of levels, go to step 2.

Although it appears that all we have achieved with the introduction of vector quantisation in
this chapter is yet another version of the k-means algorithm, the vector quantisation framework
allows us to introduce two important concepts: that of tree-structured codebook search that
reduces the search complexity in vector quantisation and that of topographic mappings in
which a topology is imposed on the code vectors.

11.5.3.1 Tree-structured vector quantisation

Tree-structured vector quantisation is a way of structuring the codebook in order to reduce
the amount of computation required in the encoding operation. It is a special case of the
classification trees or decision trees discussed in a discrimination context in Chapter 7. Here
we shall consider fixed-rate coding, in which there are the same number of bits used to
represent each code vector. Variable-rate coding, which allows pruning of the tree, will not
be addressed. Pruning methods for classification trees are described in Chapter 7, and in the
vector quantisation context by Gersho and Gray (1992).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

524 CLUSTERING

•

•

∗ x

�

�

� �

�•

Figure 11.13 Tree-structured vector quantisation.

We shall begin our description of tree-structured vector quantisation with a simple binary
tree example. The first stage in the design procedure is to run the k-means algorithm on the
entire dataset to partition the set into two parts. This leads to two code vectors (the means of
each cluster) (Figure 11.13).

Each group is considered in turn and the k-means algorithm applied to each group,
partitioning each group into two parts again. This second stage then produces four code
vectors and four associated clusters. The mth stage produces 2m code vectors. The total
number of code vectors produced in an m-stage design algorithm is

∑m
i=12i = 2m + 1 − 2.

This process produces a hierarchical clustering in which two clusters are disjoint or one wholly
contains the other.

Encoding of a given vector, x, proceeds by starting at the root of the tree (labelled A0 in Fig-
ure 11.14) and comparing x with each of the two level 1 code vectors, identifying the nearest.

We then proceed along the branch to A1 and compare the vector x with the two code
vectors at this level which were generated from members of the training set in this group.
Thus there are m comparisons in an m-stage encoder. This compares with 2m code vectors at
the final level. Tree-structured vector quantisation may not be optimal in the sense that the

A0

A1

x

Figure 11.14 Tree-structured vector quantisation tree.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 525

nearest neighbour of the final level code vectors is not necessarily found (the final partition
in Figure 11.13 does not consist of nearest-neighbour regions). However, the code has the
property that it is a progressively closer approximation as it is generated and the method can
lead to a considerable saving in encoding time.

11.5.3.2 Self-organising feature maps

Self-organising feature maps are a special kind of vector quantisation in which there is
an ordering or topology imposed on the code vectors. The aim of self-organisation is to
represent high-dimensional data as a low-dimensional array of numbers (usually a one- or
two-dimensional array) that captures the structure in the original data. Distinct clusters of data
points in the data space will map to distinct clusters of code vectors in the array, although
the converse is not necessarily true: separated clusters in the array do not necessarily imply
separated clusters of data points in the original data. In some ways, self-organising feature
maps may be regarded as a method of exploratory data analysis in keeping with those described
in Chapter 10. The basic algorithm has the k-means algorithm as a special case.

Figures 11.15 and 11.16 illustrate the results of the self-organising feature map algorithm
applied to data in two dimensions.

� In Figure 11.15, 50 data samples are distributed in three groups in two dimensions and
we have used a self-organisation process to obtain a set of nine ordered cluster centres in
one dimension. By a set of ordered cluster centres we mean that centre zi is close in some
sense to zi−1 and zi+1. In the k-means algorithm, the order that the centres are stored in
the computer is quite arbitrary and depends on the initialisation of the procedure.

� In Figure 11.16, the data (not shown) comprise 500 samples drawn from a uniform
distribution over a square ([−1 ≤ x1, x2 ≤ 1]) and do not lie on (or close to) a
one-dimensional manifold in the two-dimensional space. Again, we have imposed a
one-dimensional topology on the cluster centres, which are joined by straight lines. In
this case, we have obtained a space-filling curve.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

��
�������

+
+ ++++

++++++
+

+

+

+
++ + ++

+
+

+++
++
++++

+ ++ + ++++
+++ +

++
+++

+

x1

x 2

Figure 11.15 Topographic mapping. Adjacent cluster centres () in the stored array of code
vectors are joined.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

526 CLUSTERING

-1

0

1

-1 0 1

x 2

x1

Figure 11.16 Topographic mapping for data uniformly distributed over a square. Thirty-
three centres are determined and adjacent cluster centres in the stored array are joined.

In Figures 11.15 and 11.16, a transformation to a reduced dimension is achieved using a
topographic mapping in which there is an ordering on the cluster centres. Each point in
the data space is mapped to the ordered index of its nearest cluster centre. The mapping is
nonlinear, and for purposes of illustration we considered mappings to one dimension only. If
the data do lie on a reduced-dimension manifold within a high-dimensional space, then it is
possible for topographic mappings to capture the structure in the data and present it in a form
that may aid interpretation. In a supervised classification problem, it is possible to label each
cluster centre with a class label according to the majority of the objects for which that cluster
centre is the nearest. Of course we can do this even if there were no ordering on the cluster
centres, but the ordering does allow the relationships between classes (according to decision
boundaries) to be viewed easily.

The algorithm for determining the cluster centres may take many forms. The basic ap-
proach is to cycle through the dataset and adjust the cluster centres in the neighbourhood
(suitably defined) of each data point. The algorithm is often presented as a function of
time, where time refers to the number of presentations of a data sample. One algorithm is
as follows:

1. Decide on the topology of the cluster centres (code vectors). Initialise α, the neigh-
bourhood and the cluster centres z1, . . . , zN .

2. Repeat until convergence:

(a) Select a data sample x (one of the training samples), find the closest centre: let
dj∗ = min

j
(d j) where

dj = |x − z j| j = 1, . . . , N

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 527

(b) Update the code vectors in the neighbourhood, N j∗ of code vector z j∗

z(t + 1) = z(t) + α(t)(x(t) − z(t)) for all centres z ∈ N j∗

where α is a learning rate that decreases with iteration number, t (0 ≤ α ≤ 1).

(c) Decrease the neighbourhood and the learning parameter, α.

In order to apply the algorithm, an initial set of code vectors, the learning rate α(t) and the
change with t of the neighbourhoods must be chosen.

Definition of topology
The choice of topology of the cluster centres requires some prior knowledge of the data
structure. For example, if you suspect circular topology in your data, then the topology of
your cluster centres should reflect this. Alternatively, if you wish to map your data onto a
two-dimensional surface, then a regular lattice structure for the code vectors may be sufficient.

Learning rate
The learning rate, α, is a slowly decreasing function of t. It is suggested by Kohonen (1989)
that it could be a linear function of t, stopping when α reaches 0, but there are no hard and fast
rules for choosing α(t). It could be linear, inversely proportional to t or exponential. Haykin
(1994) describes two phases: the ordering phase, of about 1000 iterations, when α starts close
to unity and decreases, but remains above 0.1; and the convergence phase when α decreases
further and is maintained at a small value – 0.01 or less – for typically thousands of iterations.

Initialisation of code vectors
Code vectors zi are initialised to m + εi where m is the sample mean and εi is a vector of small
random values.

Decreasing the neighbourhood
The topological neighbourhood N j of a code vector z j is itself a function of t and decreases
as the number of iterations proceeds. Initially, the neighbourhood may cover most of the code
vectors (z j−r, . . . , z j−1, z j+1, . . . , z j+r for large r), but towards the end of the iterations, it
covers the nearest (topological) neighbours, z j−1 and z j+1 only. Finally it shrinks to zero. The
problem is how to initialise the neighbourhood and how to reduce it as a function of t. During
the ordering phase, the neighbourhood is decreased to cover only a few neighbours.

An alternative approach proposed by Luttrell (1989) is to fix the neighbourhood size and
to start off with a few code vectors. The algorithm is run until convergence, and then the
number of vectors is increased by adding vectors intermediate to those already calculated.
The process is repeated and continued until a mapping of the desired size has been grown.
Although the neighbourhood size is fixed, it starts off by covering a large area (since there
are few centres) and the physical extent is reduced as the mapping grows. Specifically, given
a data sample x, if the nearest neighbour is z∗, then all code vectors z in the neighbourhood of
z∗ are updated according to

z → z + π(z, z∗)(x − z) (11.9)

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

528 CLUSTERING

where π (> 0) is a function that depends on the position of z in the neighbourhood of z∗. For
example, with a one-dimensional topology, we may take

π(z, z∗) =
{

0.1 for z = z∗

0.01 for z a topographic neighbour of z∗

The Luttrell algorithm for a one-dimensional topographic mapping is as follows:

1. Initialise two code vectors, z1 and z2; set m = 2. Define the neighbourhood function π ;
set the number of updates per code vector, u.

2. Repeat until the distortion is small enough or the maximum number of code vectors is
reached:

(a) For j = 1 to m × u do

� Sample from the dataset x1, . . . , xn, say x.

� Determine the nearest-neighbour code vector, say z∗.

� Update the code vectors according to: z → z + π(z, z∗)(x − z).

(b) Define 2m − 2 new code vectors (z1 remains unaltered): for j = m − 1 down to 1
do

� z2 j+1 = z j+1

� z2 j = z j + z j+1

2
(c) Set m = 2m − 1.

Topographic mappings have received widespread use as a means of exploratory data analysis
(Kraaijveld et al., 1992; Roberts and Tarassenko, 1992). They have also been misused and
applied when the ordering of the resulting cluster centres is irrelevant in any subsequent data
analysis and a simple k-means approach could have been adopted. An assessment of the
method and its relationship to other methods of multivariate analysis is provided by Murtagh
and Hernández-Pajares (1995). Luttrell (1989) has derived the basic learning algorithm from
a vector quantisation approach assuming a minimum distortion (Euclidean) and a robustness
to noise on the codes. This puts the approach on a firmer mathematical footing. Also, the
requirement for ordered cluster centres is demonstrated for a hierarchical vector quantiser.

11.5.3.3 Learning vector quantisation

Vector quantisation or clustering (in the sense of partitioning a dataset, not seeking meaningful
groupings of objects) is often performed as a preprocessor to supervised classification. There
are several ways in which vector quantisers or self-organising maps have been used with
labelled training data. In the radar target classification example of Luttrell (1995), each class
is modelled separately using a self-organising map. Test data are classified by comparing each
pattern with the prototype patterns in each of the self-organising maps (codebook entries) and
classifying on a nearest-neighbour rule basis.

An alternative approach that uses vector quantisers in a supervised way is to model the
whole of the training data with a single vector quantiser (rather than each class separately).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUM-OF-SQUARES METHODS 529

Each training pattern is assigned to the nearest code vector, which is then labelled with the
class of the majority of the patterns assigned to it. A test pattern is then classified using a
nearest-neighbour rule using the labelled codebook entries.

Learning vector quantisation is a supervised generalisation of vector quantisation that
takes account of class labels in the training process. The basic algorithm is as follows:

1. Initialise cluster centres (or code vectors), z1, . . . , zN , and labels of cluster centres,
ω1, . . . , ωN .

2. Select a sample x from the training dataset with associated class ωx and find the closest
centre: let d j∗ = min

j
(dj) where

dj = |x − z j| j = 1, . . . , N

with corresponding centre z j∗ and class ω j∗ .

3. If ωx = ω j∗ then update the nearest vector, z j∗ , according to

z j∗ (t + 1) = z j∗ (t) + α(t)(x(t) − z j∗ (t))

where 0 < αt < 1 and decreases with t, starting at ≈ 0.1.

4. If ωx �= ω j∗ then update the nearest vector, z j∗ , according to

z j∗ (t + 1) = z j∗ (t) − α(t)(x(t) − z j∗ (t))

5. Go to step 1 and repeat until several passes have been made through the dataset.

Correct classification of a pattern in the dataset leads to a refinement of the codeword in the
direction of the pattern. Incorrect classification leads to a movement of the codeword away
from the training pattern.

11.5.3.4 Stochastic vector quantisation

Stochastic vector quantisation (Luttrell, 1999) is a generalisation of the standard approach in
which an input vector, x, is encoded as a vector of code indices, y, (rather than as a single code
index) that are stochastically sampled from a probability distribution p(y|x) that depends
on the input vector, x. The decoding operation that produces a reconstruction, x′, is also
probabilistic, with x′ being a sample drawn from p(x|y) given by

p(x|y) = p(y|x)p(x)∫
p(y|z)p(z)dz

(11.10)

One of the key factors motivating the development of the stochastic vector quantisation
approach is that of scalability to high dimensions. A problem with standard vector quanti-
sation is that the codebook grows exponentially in size as the dimensionality of the input
vector is increased, assuming that the contribution to the reconstruction error from each
dimension is held constant. This means that such vector quantisers are not appropriate for
encoding extremely high-dimensional input vectors, such as images. An advantage of using

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

530 CLUSTERING

the stochastic approach is that it automates the process of splitting high-dimensional input
vectors into low-dimensional blocks before encoding them, because minimising the mean
Euclidean reconstruction error can encourage different stochastically sampled code indices to
become associated with different input subspaces.

11.5.4 Example application study

The problem
This application involves a study into the detection of breast lesions in magnetic resonance
imaging (MRI) imagery and the discrimination of malignant breast lesions from benign lesions
(Lee et al., 2007).

Summary
A k-means algorithm (Section 11.5.2) was applied to measured data obtained from a set of
MRI images. The approach appeared to be useful, in detecting heterogeneous patterns within
a malignant tumour, but failed when malignant lesions presented patterns similar to benign
tumours. It was concluded that morphological analysis is required.

The data
The data comprised a set of five MRI breast images from each of 13 patients. For each patient,
signal measurements were made on a voxel-by-voxel basis from the malignant tumour area.
The total number of patterns was 1735; each pattern was five-dimensional.

The model
A k-means clustering approach was adopted.

Training procedure
Classification was achieved by labelling cluster centroids and a pattern from a random set of
images assigned to the nearest reference centroid.

Results
The results showed that it is not possible to discriminate between benign and malignant lesions
using the presented approach. There are two possible reasons:

� Further features, for example generated through a morphological analysis, are required.

� A supervised approach is likely to offer improved performance rather than using an
unsupervised approach with a postprocessing stage that labels the centroid vectors with
class labels.

11.5.5 Further developments

Procedures for reducing the computational load of the k-means algorithm are discussed by
Venkateswarlu and Raju (1992). Further developments of k-means procedures to other metric
spaces (with l1 and l∞ norms) are described by Bobrowski and Bezdek (1991). Juan and Vidal
(1994) propose a fast k-means algorithm (based on the approximating and eliminating search
algorithm, AESA) for the case when data arise in the form of a dissimilarity. That is, the data

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SPECTRAL CLUSTERING 531

cannot be represented in a suitable vector space (without performing a multidimensional
scaling procedure), though the dissimilarity between points is available. Termed the
k-centroids procedure, it determines the ‘most centred sample’ as a centroid of a cluster.
Popescu-Borodin (2008) develops a fast k-means algorithm for the quantisation of still im-
ages (see also Chen et al., 2008).

There have been many developments of the basic fuzzy clustering approach and many
algorithms have been proposed. Sequential approaches are described by de Màntaras and
Aguilar-Martı́n (1985). In ‘semi fuzzy’ or ‘soft’ clustering (Selim and Ismail, 1984b; Ismail,
1988) patterns are considered to belong to some, though not necessarily all, clusters. In
thresholded fuzzy clustering (Kamel and Selim, 1991) membership values below a threshold
are set to zero, with the remaining being normalised and an approach that performs a fuzzy
classification with prior assumptions on the number of clusters is reported by Gath and
Geva (1989). Developments of the fuzzy clustering approach to data arising in the form of
dissimilarity matrices are described by Hathaway and Bezdek (1994).

11.5.6 Summary

The techniques described in this section minimise a square error objective function. The
k-means procedure is a special case of all of the techniques. It is widely used in pattern
recognition, forming the basis for many supervised classification techniques. It produces a
‘crisp’ coding of the data in that a pattern belongs to one cluster only.

Fuzzy k-means is a development that allows a pattern to belong to more than one cluster.
This is controlled by a membership function. The clusters resulting from a fuzzy k-means
approach are softly overlapping, in general, with the degree of overlap controlled by a user-
specified parameter. The learning procedure determines the partition.

The vector quantisation approaches are application driven. The aim is to produce a crisp
coding and algorithms such as tree-structured vector quantisation are motivated by the need
for fast coding. Self-organising feature maps produce an ordered coding.

11.6 Spectral clustering

In Section 11.2 we examined approaches to cluster analysis that exploited the structure of
a (dis-)similarity matrix to produce a clustering. In Section 11.5, the k-means algorithm
and variants for clustering patterns in a high-dimensional space was presented. Spectral
clustering refers to a class of techniques that brings together these two concepts by exploiting
the eigenstructure of a similarity matrix, or other matrices derived from it, to partition a set
of patterns into disjoint clusters such that patterns in the same cluster have high similarity
and patterns in different clusters have low similarity. It is a heuristic that often works well in
practice.

11.6.1 Elementary graph theory

Many complex datasets arise as a result of interactions between entities of various kinds.
For example, social networks of interactions between people; networks of computers; online
purchasing between people and vendors. The use of pattern recognition techniques to anal-
yse such transactional data is considered further in Chapter 12. Such complex data can be

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

532 CLUSTERING

Figure 11.17 Undirected graph illustration with its adjacency matrix.

represented using the mathematical concept of a graph with nodes representing entities of
interest (people, computers, shops) and the edges a transaction (email message, purchase, tele-
phone call) between those nodes. Spectral clustering also exploits some results from graph
theory and therefore here we introduce some basic graph theory notation.

A graph, G, comprises a set of vertices (or nodes) and edges, G = {V , E}. The structure
of the graph is described by the adjacency matrix, A, where (also, see Section 12.2)

Ai j = 1 if node i and node j are connected

Ai j = 0 if node i and node j are not connected

Figure 11.17 gives an illustration of a graph and its adjacency matrix. The graph may be
directed (the edges are directed from one node to an other) or undirected (there is no direction
associated with the edge between two nodes). For undirected graphs, the adjacency matrix is
symmetrical. In addition, there may be weights associated with the edges in a graph. These
weights may represent the degree of interaction between nodes (for example, amount of email
traffic between two computers, or level of purchasing from an online shop) and may change
with time. In this case, the binary adjacency matrix is replaced by a (time-varying) weighted
adjacency matrix.

The graph Laplacian is defined in terms of the adjacency matrix as

L = D − A

where D is a diagonal matrix, D = Diag(d1, . . . , dn), where

di =
n∑

j=1

Ai j

which, for a binary adjacency matrix, is the degree of vertex i. The (unnormalised graph)
Laplacian has the following properties:

1. L is symmetric and positive semi-definite.

2. All eigenvalues are real and non-negative. The smallest eigenvalue is zero. Thus the
eigenvalues can be ordered:

λn ≥ λn−1 ≥ · · · ≥ λ1 = 0

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SPECTRAL CLUSTERING 533

Figure 11.18 Graph with disjointed components.

3. The multiplicity of the eigenvalue with value 0 is equal to the number of connected
components of the graph. The corresponding eigenvectors provide indicator vectors to
show which component a given node belongs to. For example, for the graph shown in
Figure 11.18, the eigenvalue λ = 0 of the Laplacian has multiplicity 3, indicating three
separate components. The corresponding eigenvectors are shown in Table 11.4. The
table shows that nodes 1, 2, 3, 4 and 5 form one component; nodes 6, 7 and 8 form a
second; and nodes 9, 10, 11, 12 and 13 form a third. Thus, the rows of the eigenvector
matrix provide an indication of which group a node belongs to.

This definition extends to a weighted adjacency matrix, for which a normalised graph Lapla-
cian is defined (see Section 11.6.5). The rows of the eigenvectors corresponding to zero
eigenvalues can be used to identify disjoint components.

Table 11.4 Eigenvectors v1, v2, v3 corresponding to
the eigenvalue λ = 0 for the graph of Figure 11.18

v1 v2 v3

1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1
5 0 0 1
6 0 1 0
7 0 1 0
8 0 1 0
9 1 0 0

10 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

534 CLUSTERING

11.6.2 Similarity matrices

In order to apply the results of graph theory to clustering, we first define the weights on the
edge between two nodes to be a measure of similarity between the nodes. This may be defined
in several ways (von Luxburg, 2007). We assume that we have a set of patterns, {x1, . . . , xn},
and we wish to define a weighted adjacency matrix, A, where Ai j = s(xi, x j), and s(x, y) is a
measure of similarity between patterns x and y.

ε-neighbourhood
Here, edges are drawn between nodes i and j when the distance between the corresponding
patterns, xi and x j is less than a specified value, ε. Thus

s(x, y) =
{

1 |x − y| < ε

0 |x − y| ≥ ε

Fully connected graph
Each node is connected to every other node with an edge weight that is the similarity of the
patterns associated with each of the nodes. There are different definitions of a similarity func-
tion, s(x, y). For example, the Gaussian similarity function for modelling local neighbourhood
relationships is given by

s(x, y) = exp

(
−|x − y|2

2σ 2

)
(11.11)

for parameter σ controlling the width of the neighbourhood. The weight on an edge connecting
node i to node j is Ai j = s(xi, x j).

k-nearest neighbour
There are two basic models. The first is the k-nearest-neighbour graph:

Ai j =
⎧⎨
⎩

s(xi, x j) xi is one of the k nearest neighbours of x j

OR x j is one of the k nearest neighbours of xI

0 otherwise

In this model, node i is connected to node j if node j is one of the k-nearest neighbours of
node i or node i is one of the k-nearest neighbours of node j. The weight on the edge is the
similarity between the patterns associated with the nodes.

The second model, the mutual k-nearest-neighbour graph is described by the weighted
adjacency matrix:

Ai j =
⎧⎨
⎩

s(xi, x j) xi is one of the k nearest neighbours of x j

AND x j is one of the k nearest neighbours of xI

0 otherwise

11.6.3 Application to clustering

We have seen that the graph Laplacian can be used to group nodes in a graph through the
analysis of the eigenvectors corresponding to the λ = 0 eigenvalues: nodes in the same graph

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SPECTRAL CLUSTERING 535

component are grouped together; nodes in disjoint components are not. This is also the case
for a Laplacian constructed from a weighted adjacency matrix.

This suggests an approach to clustering patterns:

1. Construct a matrix of similarities between patterns;

2. Construct the graph Laplacian based on such a matrix of similarities;

3. Analyse the eigenvectors corresponding to the smallest eigenvalues. In general, there
will not be completely disjoint components, but components that are ‘almost disjoint’.
In this case, the smallest eigenvalues will not be zero.

11.6.4 Spectral clustering algorithm

The basic spectral clustering algorithm is given in Algorithm 11.1. Step one constructs a
similarity matrix. There are several ways of constructing this given patterns. It may be
a simple transformation of a distance between patterns, or one of the measures given in
Section 11.6.2. Given this similarity matrix, the graph Laplacian is calculated. Step 3 calculates
the eigenvectors and eigenvalues of the Laplacian. Only the eigenvectors corresponding to
the k lowest eigenvalues are required. These are then used to define an n × k data matrix, V.
The final step is to use a k-means algorithm (Section 11.5) to apply to the n k-dimensional
patterns defined by the rows.

Figure 11.19 shows the results of a spectral clustering applied to some points in two
dimensions. A Gaussian similarity function was used [Equation (11.11)]. Points in different
clusters are labelled with different symbols.

11.6.5 Forms of graph Laplacian

For a weighted adjacency matrix, a normalised graph Laplacian is used (see Section 12.2). A
symmetric form (Ng et al., 2002) is given by

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2

Algorithm 11.1 Spectral clustering.

1. Form a matrix, S, of similarities, using a definition of similarity between patterns, such as
those given in Section 11.6.2.

2. Compute the graph Laplacian from the similarity matrix.

3. Perform an eigendecomposition of the Laplacian, selecting the n × k matrix of eigenvectors,
V = [v1, . . . , vk], corresponding to the k smallest eigenvalues.

4. Perform the k-means algorithm on the n k-dimensional patterns corresponding to the rows
of the eigenvector matrix to cluster the patterns into k clusters.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

536 CLUSTERING

–3 –2 –1 1 2 3
X1

0.5

1

1.5

2

2.5

3

3.5

X2

Figure 11.19 Clustering of points in two dimensions: a value of k = 3 was taken. Points in
different clusters are highlighted by different symbols.

A nonsymmetric form (proposed by Shi and Malik, 2000) is

Lnonsym = D−1L = I − D−1A

These normalised forms have the following properties:

1. The normalised Laplacians are positive semidefinite.

2. All eigenvalues are real and non-negative. The smallest eigenvalue is zero. Thus the
eigenvalues can be ordered:

λn ≥ λn−1 ≥ · · · ≥ λ1 = 0

3. The multiplicity of the eigenvalue with value 0 is equal to the number of connected
components of the graph. For Lnonsym, the eigenspace is spanned by eigenvectors of the
form 1i, where the vector has a ‘1’ in the jth position if node j is in component i and
zero otherwise. The eigenvectors of Lsym are D−11i.

4. The eigenvectors, v, and eigenvalues, λ, of Lnonsym satisfy the generalised symmetric
eigenvector equation Lv = λDv.

A clustering algorithm for a normalised graph Laplacian, Lnonsym, is given in Algorithm 11.2.

11.6.6 Example application study

The problem
This application involves recovering signals from a linear mixture using partial knowledge
of the mixing process and the signals (blind signal separation) using a spectral clustering
approach (Bach and Jordan, 2006). This is applied to the problem of one-microphone blind
source separation of speech.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SPECTRAL CLUSTERING 537

Algorithm 11.2 Spectral clustering for normalised Laplacian, Lnonsym.

1. Form a matrix, S, of similarities, using a definition of similarity between patterns, such as
those given in Section 11.6.2.

2. Compute the graph Laplacian from the similarity matrix.

3. Solve the generalised symmetric eigenvector equation

Lv = λDv

and select the n × k matrix of eigenvectors, V = [v1, . . . , vk], corresponding to the k
smallest eigenvalues.

4. Perform the k-means algorithm on the n k-dimensional patterns corresponding to the rows
of the eigenvector matrix to cluster the patterns into k clusters.

Summary
Blind signal separation is a problem that occurs in many fields, such as radar signal processing,
speech processing and imaging. An extreme case is when there is only one sensor and two
or more signals to estimate. The aim of this study was to separate speech mixtures from
a single microphone without specific speaker models. A cost function is derived with the
feature that minimisation with respect to the partition of the data leads to a spectral clustering
algorithm. Alternatively, for labelled training data (i.e. the partition is known), minimising
with respect to the (parameters of a) similarity matrix produces an algorithm for learning the
similarity matrix.

The data
The training data comprise speech from four male and female speakers of duration 3 s. For
testing, mixes of speakers different from those in the training data were used.

The model
The speech separation problem is formulated as a segmentation problem in the time-frequency
plane (speech is represented as a spectrogram). There are many methods for segmenting image-
like data, but speech segments have their own characteristics and therefore speech-specific
features are derived. These features are used to define parametrised similarity matrices.

Training procedure
There are two stages to deriving a partition of a spectrogram. The first is to use labelled training
data from datasets of known partitions to learn the parameters of the similarity matrix. The
next stage uses these parameters in an algorithm to cluster previously unseen datasets.

Results
The study showed that a mixture of two English speakers could be successfully demixed, with
the segmentation algorithm producing audible signals of reasonable quality.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

538 CLUSTERING

11.6.7 Further developments

Developments include approaches to address the application of spectral clustering for large
datasets. Spectral clustering requires the computation of the eigenvectors of an n × n matrix,
which is an operation of the order of n3. Therefore, it is infeasible for problems where n is
very large. A fast approximate spectral clustering approach is described by Yan et al. (2009).
An approach for online applications, in which the spectral clustering is updated for small
changes in the dataset, is presented by Ning et al. (2007). Zare et al. (2010) describe a data
reduction method, whereby the original data are sampled to produce a smaller set, which is
then clustered.

11.6.8 Summary

Spectral clustering uses the eigenvectors of a graph Laplacian for embedding the data into
a space that captures the underlying structure. It requires the calculation of the smallest k
eigenvectors of an n × n matrix. The clusters that the approach produces are not always
convex sets (as in k-means), but there are several parameters to be set. These include the
parameters of the similarity function (ε for ε-neighbourhood, σ for fully connected graph, k
for k nearest neighbour) as well as the form of the graph Laplacian. The normalised form,
Lnonsym is recommended by von Luxburg (2007).

11.7 Cluster validity

11.7.1 Introduction

Cluster validity is the procedure by which the results of a clustering are evaluated. A clustering
algorithm will partition a dataset of objects even if there are no natural clusters within the
data. Different clustering methods (or the same method with different parameter settings) may
produce very different classifications. How do we know whether the structure is a property
of the dataset and not imposed by the particular method that we have chosen? This is the
problem of cluster validity, which is one that is full of difficulties and rarely straightforward.
In some applications of clustering techniques we may not be concerned with groupings in
the dataset. For example, in vector quantisation we may be concerned with the average
distortion in reconstructing the original data or in the performance of any subsequent analysis
technique. This may be measured by the error rate in a discrimination problem or diagnostic
performance in image reconstruction (see the examples in the following section). In these
situations, clustering is simply a means of obtaining a partition, not to discover structure in
the data.

Yet, if we are concerned with discovering groupings within a dataset, how do we validate
the clustering? For two-dimensional data, the user can easily verify the result visually. For
higher-dimensional data, a simple approach is to view the clustering in a low-dimensional
representation of the data. Linear and nonlinear data projection methods have been discussed
in Chapter 10. Alternatively, we may perform several analyses using different clustering
methods and compare the resulting classifications to see whether the derived structure is an
artifact of a particular method. More formal procedures may also be applied and we discuss
some approaches in this section.

There are three approaches to cluster validity based on three types of clustering criteria:

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

CLUSTER VALIDITY 539

Internal criteria
The clustering results are evaluated in terms of quantities that involve the dataset; for example,
the dissimilarity matrix.

External criteria
The clustering is evaluated using information that was not used in performing the clustering;
for example, a user-specified structure.

Relative criteria
These are criteria to evaluate a clustering by comparing it with that produced by different
algorithms (or the same algorithm with different parameters).

The first two cluster validity approaches are based on statistical tests using models for
different types of a priori structure. The approach based on relative criteria aims to find the
best clustering scheme according to a defined metric.

11.7.2 Statistical tests

11.7.2.1 Hypothesis testing

Internal and external criteria approaches are based on statistical hypothesis testing in which the
null hypothesis, H0, concerns the randomness of the data and the test statistic, q, is calculated
using the given dataset. In many cases, the probability density function of the test statistic
under the given hypothesis is unknown. A sample-based approach is adopted whereby the
probability density function is calculated from samples obtained via a Monte Carlo approach.

11.7.2.2 Monte Carlo

For a one-sided test (in which a high value of the test statistic means evidence against the null
hypothesis – a right-sided test), we seek the probability that extreme values of the statistic
occur by chance under the null hypothesis,

Pr(q ≥ Q|H0)

where Q is the observed value of the test statistic on the dataset.
In a Monte Carlo approach, sample datasets, Xi, i = 1, . . . , r, are generated and the value

of q calculated for each dataset, to produce a set of sample values, {qi, i = 1, . . . , r}. If the
significance level is ρ, then the decision is

Reject the null hypothesis if q is greater than (1 − ρ)r of the values, qi.

Similarly, for a left-sided test. For a two-sided test, for which the significance level is

Pr(|q| ≥ Q)

then the decision is

Reject the null hypothesis if q is greater than (1 − ρ/2)r of the values, qi or if q
is less than (ρ/2)r of the values, qi.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

540 CLUSTERING

11.7.2.3 Null models

Gordon (1999) identifies five types of null model associated with pattern or dissimilarity
matrices for the complete absence of structure in a dataset (see also Gordon 1994b, 1996a).

� Poisson model (Bock, 1985) or random position hypothesis (Jain and Dubes, 1988).
Objects are represented as points uniformly distributed in some region A of the
p-dimensional data space. The main problem with this model is the specification of
A. Standard definitions include the unit hypercube and the hypersphere.

� Unimodal model (Bock, 1985). The variables have a unimodal distribution. The diffi-
culty here is the specification of this density function. Standard definitions include a
spherical multivariate normal.

� Random permutation model. In this model, the entries in each column of an n × p data
matrix, X, are independently permuted giving (n!) p − 1 essentially different matrices,
each regarded as equally likely.

� Random dissimilarity matrix (Ling, 1973) or random graph hypothesis (Jain and Dubes,
1988). This is based on data arising in the form of dissimilarities. The elements of the
(lower triangle of the) dissimilarity matrix are ranked in random order, all orderings
being regarded as equally likely. Viewed as a graph, with the nodes representing patterns
and the values on the edges representing dissimilarities between patterns, the edges
below a specified threshold are inserted into the graph in random order. One of the
problems with this model is that if objects i and j are close (dij is small), you would
expect dik and djk to have similar ranks for each object k, but such correlation is not
accounted for.

� Random labels model (Jain and Dubes, 1988). This assumes that all possible permuta-
tions of the labels associated with each pattern (obtained as a result of a clustering) are
equally likely. The observed value of the test statistic is compared with the distribution
obtained by randomly permuting the labels.

11.7.3 Absence of class structure

Tests for the absence of class structure address the question:

Are the data x1, . . . , xn sampled from a homogeneous population?

Thus, the null hypothesis is a statement about the randomness of the data. There have been
many test statistics proposed (for a review see Gordon, 1998).

For the Poisson model, example test statistics are:

� the number of interpoint distances less than a specified threshold;

� the largest nearest-neighbour distance within a set of objects.

For the random dissimilarity matrix model, example test statistics include:

� the minimum number of edges required to connect a random graph (the number of
edges before the graph comprises a single component);

� the number of components in the graph when it contains a specified number of edges.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

CLUSTER VALIDITY 541

11.7.4 Validity of individual clusters

Determining whether individual clusters are valid requires the specification of properties of a
cluster that an ideal cluster is expected to possess. Such properties of a cluster will be dataset
dependent. An alternative approach is to define a statistic and examine its distribution under
some null model that the data does not have class structure. This is the approach we present
here. The question we address is:

Is a cluster C (of size c) defined by

C = {i : di j < dik for all j ∈ C, k /∈ C}

a valid cluster?

Gordon (1999) describes a Monte Carlo approach to individual cluster validation based on a
U statistic:

Ui jkl =
⎧⎨
⎩

0 if di j < dkl
1
2 if di j = dkl

1 if di j > dkl

and

U =
∑

(i, j)∈W

∑
(k,l)∈B

Ui jkl

for subsets W and B of ordered pairs (i, j) ∈ W and (k, l) ∈ B. W is taken to be those pairs
where objects i and j both belong to the cluster C and B comprises pairs where one element
belongs to C and the other does not.

The basic algorithm is defined as follows:

1. Evaluate U for the cluster C; denote it by U∗.

2. Generate a random n × p pattern matrix and cluster it using the same algorithm used
to produce C.

3. Calculate U(k) for each cluster of size k (k = 2, . . . , n − 1) (arising through the
partitioning of a dendrogram, for example). If there is more than one of a given size,
select one of that size randomly.

4. Repeat steps 2 and 3 until there are (m − 1) values of U(k) for each value of k.

5. If U∗ is less than the jth smallest value of U(c), the null hypothesis of randomness is
rejected at the 100(j/m)% level of significance.

Note that the values of U(k) are independent of the dataset.
Gordon takes m = 100 and evaluates the above approach under both the Poisson and

unimodal (spherical multivariate normal) models. The clusterings using Ward’s method are
assessed on four datasets. Results for the approach are encouraging. Further refinements could
include the use of other test statistics and developments of the null models.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

542 CLUSTERING

11.7.5 Hierarchical clustering

Here we address the question of the internal validation of a hierarchical clustering:

Is the hierarchical clustering an accurate summary of the data?

The cophenetic correlation coefficient is a measure of the agreement between a set of dissim-
ilarities and a hierarchical classification derived from the data. It is the correlation between
the dissimilarities, dij, and the ultrametric distances, d̂i j

∑
i< j

(
di j − d̄

) (
d̂i j − ¯̂d

)

[∑
i< j

(
di j − d̄

)2 ∑
i< j

(
d̂i j − ¯̂d

)2
] 1

2

It is a measure of how well the hierarchical classification represented by the dendrogram
preserves inter-point distances.

The distribution of this statistic is difficult to calculate and a Monte Carlo approach under
a Poisson null model, for example, may be adopted.

11.7.6 Validation of individual clusterings

Here we address the validation of an individual clustering, not a hierarchical clustering,
produced by a clustering algorithm. The question we ask is:

Is the clustering, C, of data into m clusters consistent with information in the
dataset X?

Define an n × n matrix Y:

Yi j =
{

1 xi and x j belong to different clusters
0 otherwise

Then, the statistic,

(D,Y) = 1

M

N−1∑
i=1

N∑
j=i+1

di jYi j (11.12)

or the normalised statistic, ̂,

̂(D,Y) = 1

M

∑N−1
i=1

∑N
j=i+1

(
di j − μD

) (
Yi j − μY

)

σDσY
(11.13)

is used to measure the agreement between the dissimilarity matrix, D, and the matrix Y , where
μD and μY are the means and σ D and σ Y are the standard deviations of the D and Y matrix
elements and M = N(N − 1)/2.

A Monte Carlo approach under the Poisson null model may be taken. For each dataset
generated, the clustering algorithm that was used to produce the clustering C is applied to the
dataset, X, and the statistic calculated. The decision to reject, or not, the null hypothesis at a
given significant level, is based on the distribution of the statistics.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

CLUSTER VALIDITY 543

11.7.7 Partitions

The questions we seek to address here are those requiring external validation tests and are of
the form:

Does the clustering produced by an algorithm agree with an externally prescribed
partition?

Does the proximity matrix of X agree with a predetermined partition?

The approach adopted is the standard one: define statistics that measure the degree to which a
partition agrees with either a clustering or a proximity matrix and use a Monte Carlo approach
for the estimation of the probability density function of the statistic. Denoting the clustering
by C = {C1, . . . ,Cm} and the independent partition by P = {P1, . . . , Ps} (Theodoridis and
Koutroumbas, 2009), and introducing the quantities a, b, c and d as

a is the number of pairs of pattern vectors that belong to the same cluster in C and
to the same group in P
b is the number of pairs of pattern vectors that belong to the same cluster in C and
to different groups in P
c is the number of pairs of pattern vectors that belong to different clusters in C
and to the same group in P
d is the number of pairs of pattern vectors that belong to different clusters in C
and to different groups in P

then the total number of distinct pairs is M = a + b + c + d and we define the following
statistics:

Rand

R = (a + d)/M

Jaccard

J = a/ (a + b + c)

Both statistics have the property that they lie between 0 and 1 and the larger their value
then the closer the agreement between C and P .

The and ̂ statistics may also be used. Defining Xij = 1 if the patterns xi and x j are in
the same cluster in C and zero otherwise; and Yij = 1 if the patterns xi and x j are in the same
group in P and zero otherwise, then (X, Y) and ̂(X,Y) have the property that the larger the
magnitude the closer the agreement between C and P .

11.7.8 Relative criteria

Relative criteria are used to compare the results of different clustering algorithms and seek to
address the question:

Which clustering, out of a set produced by applying a clustering algorithm with
different parameter values to a dataset X, best fits the data, X?

The basis of the approach is the definition of a validity index.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

544 CLUSTERING

11.7.8.1 Validity indices

Dunn and Dunn-like indices
The Dunn index is defined as

D = min
i=1,...,g

⎧⎨
⎩ min

j=i+1,...,g

⎛
⎝ d

(
Ci,Cj

)

max
k=1,...,g

(diam (Ck))

⎞
⎠

⎫⎬
⎭

where d
(
Ci,Cj

) = min
x∈Ci,y∈Cj

{d(x, y)} is the distance between two clusters defined as the

minimum interpoint distance, with the members of the pair coming from different clusters;
and diam (Ci) = max

x,y∈Ci

{d(x, y)} is the cluster diameter. It is large for compact and well-

separated clusters.
The Dunn index can be sensitive to noise (the cluster diameter can be large in a noisy

environment). Variations have been proposed using different definitions of cluster distance
and cluster diameter that are more robust to noise.

Davies–Bouldin index
The Davies–Bouldin index for a clustering of g clusters is defined as

DB = 1

g

g∑
i=1

Ri

where

Ri = max
j=1,...,g, j �=i

(
Ri j

)

and Rij is a measure of within-cluster spread to between-cluster distance given by

Ri j = si + s j

di j

where dij is the distance between two clusters, defined as the distance between the cluster
centroids, vi, and si is a measure of the spread of cluster Ci

di j = d(vi, v j), si = 1

‖Ci‖
∑
x∈Ci

d(x, vi)

and ‖Ci‖ is the number of patterns in cluster Ci. The Davies–Bouldin index measures average
of the similarity between a cluster and its most similar one. Small values of the index are
indicative of compact and separated clusters.

� statistic
The statistic and its normalised form, ̂, given by Equations (11.12) and (11.13), can be
used to measure the relationship between the dissimilarity matrix, D, and the matrix Q, whose
(i, j) element is the distance between the cluster centres to which patterns xi and x j belong.

Qi j = d
(
vci , vci

)

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

CLUSTER VALIDITY 545

where ci is the index of the cluster that contains the pattern xi. Large values are an indication
of compact clusters.

Hierarchical clustering indices
In assessing particular hierarchical schemes we must consider how well the structure in the
original data can be described by a dendrogram. However, since the structure in the data is
not known (this is precisely what we are trying to determine) and since each clustering is
simply a method of exploratory data analysis that imposes its own structure on the data, this
is a difficult question to address. One approach is to examine various measures of distortion.
Many measures have been proposed [see, for example, Cormack (1971) for a summary].
They are based on differences between the dissimilarity matrix d and d∗, the ultrametric
dissimilarity coefficient, where d∗

ij is the distance between the groups containing i and j
when the groups are amalgamated. Jardine and Sibson (1971) propose several goodness of fit
criteria. One scale-free measure of classifiability is defined by

�1 =
∑

i< j |di j − d∗
i j|∑

i< j di j

Small values of �1 are indicative that the data are amenable to the classification method that
produced d∗.

There are many other measures of distortion, both for hierarchical and nonhierarchical
schemes. Milligan (1981) performed an extensive Monte Carlo study of thirty internal criterion
measures applied to the results of hierarchical clusterings, although the results may also apply
to nonhierarchical methods.

11.7.9 Choosing the number of clusters

The problem of deciding how many clusters are present in the data is one common to all
clustering methods. If we regard the number of clusters, g, as a model parameter then the
cluster validity indices may be used to compare the value of the index function for different
values of g. Plotting the validity index against g, there may be a value for g for which a
significant local change in the index occurs. When applied to hierarchical schemes, these
procedures for determining the number of clusters g are sometimes referred to as stopping
rules. Many intuitive schemes have been proposed for hierarchical methods; for example, we
may look at the plot of fusion level against the number of groups, g (Figure 11.20), and look
for a flattening of the curve showing that little improvement in the description of the data
structure is to be gained above a particular value of g. Defining αj, j = 0, . . . , n − 1, to be the
fusion level corresponding to the stage with n − j clusters, Mojena (1977) proposes a stopping
rule that selects the number of groups as g where αn − g is the lowest value of α for which

αn−g > α + ksα

where α and sα are the mean and the unbiased standard deviation of the fusion levels α; k is
a constant, suggested by Mojena to be in the range 2.75–3.5.

Milligan and Cooper (1985) examine thirty procedures applied to classifications of datasets
containing 2, 3, 4, or 5 distinct nonoverlapping clusters by four hierarchical schemes. They

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

546 CLUSTERING

�

� � � � � � � � � � �

Figure 11.20 Fusion level against the number of clusters.

find that Mojena’s rule performs poorly with only two groups present in the data and the best
performance is for 3, 4 or 5 groups with a value of k of 1.25. One of the better criteria that
Milligan and Cooper (1985) assess is that of Calinski and Harabasz (1974). The number of
groups is taken to be the value of g that corresponds to the maximum of C, given by

C = Tr(SB)

Tr(SW)

(
n − g

g − 1

)

This is evaluated further by Atlas and Overall (1994) who compare it with a split-sample
replication rule of Overall and Magee (1992). This gave improved performance over the
Calinski and Harabasz criterion.

Dubes (1987) also reports the results of a Monte Carlo study on the effectiveness of two
internal criterion measures in determining the number of clusters. Jain and Moreau (1987)
propose a method to estimate the number of clusters in a dataset using the bootstrap technique.
A clustering criterion based on the within and between-group scatter matrices (developing a
criterion of Davies and Bouldin, 1979) is proposed and the k-means and three hierarchical
algorithms are assessed. The basic method of determining the number of clusters using a
bootstrap approach can be used with any cluster method.

Several authors have considered the problem of testing for the number of components of
a normal mixture (see Chapter 2). Ismail (1988) reports the results of cluster validity studies
within the context of soft clustering and lists nine validity functionals that provide useful tools
in determining cluster structure (see also Pal and Bezdek, 1995).

It is not reasonable to expect a single statistic to be suitable for all problems in cluster
validity. Many different factors are involved and since clustering is essentially a method of
exploratory data analysis, we should not put too much emphasis on the results of a single
classification, but perform several clusterings using different algorithms and measures of fit.

11.8 Application studies

Applications of hierarchical methods of cluster analysis include the following:

� Flight monitoring. Eddy et al. (1996) consider single-link clustering of large datasets
(more than 40 000 observations) of high-dimensional data relating to aircraft flights
over the USA.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

APPLICATION STUDIES 547

� Clinical data. D’Andrea et al. (1994) apply the nearest centroid method to data relating
to adult children of alcoholics.

� In a comparative study of seven methods of hierarchical cluster analysis on 20 datasets,
Morgan and Ray (1995) examine the extent of inversions in dendrograms and
nonuniqueness. They conclude that inversions are expected to be encountered and
recommend against the use of the median and centroid methods. Also, nonuniqueness
is a real possibility for many datasets.

The k-means clustering approach is widely used as a preprocessor to supervised classification
to reduce the number of prototypes:

� Coal petrography. In a study to classify the different constituents (macerals) of coal
(Mukherjee et al., 1994), the k-means algorithm was applied to training images (training
vectors consist of RGB level values) to determine four clusters (identified as one of
known types – vitrinite, inertinite, exinite and background). These clusters are labelled
and test images are classified using the labelled training vectors.

� Crop classification. Conway et al. (1991) use a k-means algorithm to segment synthetic
aperture radar images as part of a study into crop classification. k-means is used to
identify sets of image regions that share similar attributes prior to labelling. Data were
gathered from a field of five known crop types and could be clearly separated into two
clusters – one containing the broad-leaved crops and the other the narrow-leaved crops.

k-means is also used for image and speech coding applications (see below).

Examples of fuzzy c-means applications are:

� Medical diagnosis. Li et al. (1993) use a fuzzy c-means algorithm for image segmen-
tation in a study on automatic classification and tissue labelling of two-dimensional
magnetic resonance human brain images.

� Acoustic quality control. Meier et al. (1994) describe the application of fuzzy c-means
to cluster six-dimensional feature vectors as part of a quality control system of ceramic
tiles. The signals are derived by hitting the tiles and digitising and filtering the recorded
signal. The resulting classes are interpreted as good or bad tiles.

� Water quality. Mukherjee et al. (1995) compared fuzzy c-means with two alternative
approaches to image segmentation in a study to identify and count bacterial colonies
from images.

See also the survey on fuzzy clustering by Yang (1993) for further references to applications
of fuzzy c-means.

Bayesian approaches to mixture modelling:

� Some applications of mixture models are given in Chapter 2. Dellaportas (1998) con-
siders the application of mixture modelling to the classification of neolithic ground
stone tools. A Bayesian methodology is adopted and developed in three main ways to
apply to data (147 measurements on four variables) consisting of variables of mixed
type – continuous and categorical; to handle missing values and measurement errors
(errors in variables) in the continuous variables. Gibbs sampling is used to generate

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

548 CLUSTERING

samples from the posterior densities of interest and classification to one of two classes
is based on the mean of the indicator variable, zi. After a ‘burn-in’ of 4000 iterations,
4000 further samples were used as the basis for posterior inference.

Examples of self-organising feature map applications include:

� Engineering applications. Kohonen et al. (1996) review the self-organising map algo-
rithm and describe several engineering applications including fault detection, process
analysis and monitoring, computer vision, speech recognition, robotic control and in
the area of telecommunications.

� Human protein analysis. Ferrán et al. (1994) use a self-organising map to cluster
protein sequences into families. Using 1758 human protein sequences, they cluster
using two-dimensional maps of various sizes and label the nodes in the grid using
proteins belonging to known sequences.

� Radar target classification. Stewart et al. (1994) develop a self-organising map and a
learning vector quantisation approach to radar target classification using turntable data
of four target types. The data consist of 33-dimensional feature vectors (33 range gates)
and 36 000 patterns per target were used. Performance as a function of the number of
cluster centres is reported with the learning vector quantisation performance better than
a simplistic nearest-neighbour algorithm.

� Fingerprint classification. Halici and Ongun (1996), in a study on automatic fingerprint
classification, use a self-organising map, and one modified by preprocessing the feature
vectors by combining them with ‘certainty’ vectors that encode uncertainties in the
fingerprint images. Results show an improvement on previous studies using a multilayer
perceptron on a database of size 2000.

Sum-of-squares method application:

� Language disorder. Powell et al. (1979) use a normal mixture approach and a sum-of-
squares method in a study of 86 aphasic cases referred to a speech therapy unit. Four
groups are found, which are labelled as severe, high–moderate, low–moderate and mild
aphasia.

Vector quantisation has been widely applied as a preprocessor in many studies:

� Speech recognition. Zhang et al. (1994) assess three different vector quantisers (in-
cluding the LBG algorithm and an algorithm based on normal mixture modelling) as
preprocessors for a hidden Markov model based recogniser in a small speech recogni-
tion problem. They found that the normal mixture model gave the best performance of
the subsequent classifier. See also Bergh et al. (1985).

� Medical diagnosis. Cosman et al. (1993) assess the quality of tree-structured vector
quantisation images by the diagnostic performance of radiologists in a study on lung
tumour and lymphadenopathy identification. Initial results suggest that a 12 bits per
pixel (bpp) computerised tomography chest scan image can be compressed to between
1 bpp and 2 bpp with no significant change in diagnostic accuracy: subjective quality
seems to degrade sooner than diagnostic accuracy falls off.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

SUMMARY AND DISCUSSION 549

� Speaker recognition. Speaker recognition approaches are reviewed by Furui (1997).
Vector quantisation methods are used to compress the training data and produce
codebooks of representative feature vectors characterising speaker-specific features.
A codebook is generated for each speaker by clustering training feature vectors. At the
speaker recognition stage, an input utterance is quantised using the codebook of each
speaker and recognition performed by assigning the utterance to the speaker whose
codebook produces minimum distortion. A tutorial on vector quantisation for speech
coding is given by Makhoul et al. (1985).

Spectral clustering applications include the following:

� Analysis of flow cytometry (measurements of microscopic particles in a fluid) data.
Zare et al. (2010) develop a modification of the spectral clustering approach to large
datasets and apply it to flow cytometry data as an example of data containing potentially
hundreds of thousands of data points.

� Monitoring blog communities. Ning et al. (2007) develop an incremental algorithm that
extends the existing offline spectral clustering algorithms to evolving data such as that
occurring in the real-time monitoring of the evolving communities of blogs and their
links.

� Tissue classification (Crum, 2009).

� Language analysis. Brew and Schulte im Walde (2002) apply spectral methods to the
clustering of German verbs. The distance between two ‘verb frames’ is calculated using
different measures and transformed to a similarity matrix using a Gaussian similarity
function [Equation (11.11)]. The clustering solution gave as good alignment with the
distance measure as a ‘gold standard’ human solution.

11.9 Summary and discussion

In this chapter we have covered a wide range of techniques for partitioning a dataset. This
has included approaches based on cluster analysis methods and vector quantisation methods.
Although both approaches have much in common – they both produce a dissection of a given
dataset – there are differences. In cluster analysis, we tend to look for ‘natural’ groupings
in the data that may be labelled in terms of the subject matter of the data. In contrast,
the vector quantisation methods are developed to optimise some appropriate criterion from
communication theory. One area of common ground we have discussed in this chapter is that
of optimisation methods with specific implementations in terms of the k-means algorithm in
cluster analysis and the LBG algorithm in vector quantisation.

As far as cluster analysis or classification is concerned, there is no single best technique.
Different clustering methods can yield different results and some methods will fail to detect
obvious clusters. The reason for this is that each method implicitly forces a structure on the
given data. For example, the sum-of-squares methods will tend to produce hyperspherical
clusters. Also, the fact that there is a wide range of available methods partly stems from the
lack of a single definition of the word cluster. There is no universal agreement as to what
constitutes a cluster and so a single definition is insufficient.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

550 CLUSTERING

A further difficulty with cluster analysis is in deciding the number of clusters present. This
is a tradeoff between parsimony and some measure of increase in within-cluster homogeneity.
This problem is partly due to the difficulty in deciding what a cluster actually is and partly
because clustering algorithms tend to produce clusters even when applied to random data.

Both of the above difficulties may be overcome to some degree by considering several
possible classifications or comparing classifications on each half of a dataset (McIntyre and
Blashfield, 1980; Breckenridge, 1989). The interpretation of these is more important than
a rigid inference of the number of groups. But which methods should we employ? There
are advantages and disadvantages of all the approaches we have described. The optimisation
methods tend to require a large amount of computer time (and consequently may be infeasible
for large datasets, though this is becoming less critical these days). Of the hierarchical methods,
the single link is preferred by many users. It is the only one to satisfy the Jardine–Sibson
conditions, yet with noisy data it can join separate clusters (chaining effect). It is also invariant
under monotone transformations of the dissimilarity measure. Ward’s method is also popular.
The centroid and median methods should be avoided since inversions may make the resulting
classification difficult to interpret.

There are several aspects of cluster analysis that we have mentioned only briefly in this
chapter and we must refer the reader to the literature on cluster analysis for further details.
An important problem is the choice of technique for mixed mode data (i.e. containing both
numerical and categorical measurements). Everitt and Merette (1990) (see also Everitt, 1988)
propose a finite mixture model approach for clustering mixed mode data, but computational
considerations may mean that it is not practically viable when the datasets contain a large
number of categorical variables.

The techniques described in this chapter all apply to the clustering of objects. However,
there may be some situations where clustering of variables, or simultaneous clustering of
objects and variables, is required. In clustering of variables, we seek subsets of variables that
are so highly correlated that each can be replaced by any one of the subset, or perhaps a (linear
or nonlinear) combination of the members. Many of the techniques described in this chapter
can be applied to the clustering of variables and therefore we require a measure of similarity
or dissimilarity between variables. Of course, techniques for feature extraction (for example,
principal components analysis) perform this process.

Another point to reiterate about cluster analysis is that it is essentially an exploratory
method of multivariate data analysis providing a description of the measurements. Once a
solution or interpretation has been obtained then the investigator must re-examine and assess
the dataset. This may allow further hypotheses (perhaps concerning the variables used in the
study, the measures of dissimilarity and the choice of technique) to be generated. These may
be tested on a new sample of individuals.

Both cluster analysis and vector quantisation are means of reducing a large amount of
data to a form in which it is either easier to describe or represent in a machine. Clustering of
data may be performed prior to supervised classification. For example, the number of stored
prototypes in a k-nearest-neighbour classifier may be reduced by a clustering procedure. The
new prototypes are the cluster means, and the class of the new prototype is decided on a
majority basis of the members of the cluster. A development of this approach that adjusts the
decision surface by modifying the prototypes is learning vector quantisation (Kohonen, 1989).

Self-organising maps may be viewed as a form of constrained classification: clustering in
which there is some form of constraint on the solution. In this particular case, the constraint
is an ordering on the cluster centres. Other forms of constraint may be that objects within a

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

RECOMMENDATIONS 551

cluster are required to comprise a spatially contiguous set of objects (for example, in some
texture segmentation applications). This is an example of contiguity constrained clustering
[Murtagh, 1992; Gordon, 1999; see also Murtagh (1995), for an application to the outputs of
the self-organising map]. Other forms of constraint may be on the topology of the dendrogram
or the size or composition of the classes. We refer to Gordon (1996b) for a review.

Spectral clustering has become a popular method in recent years. It is simple to implement
and methods to overcome its computational burden when applied to large datasets have been
developed (Ning et al., 2007; Yan et al., 2009).

Gordon (1994, 1996a) provides reviews of approaches to cluster validation; see also Bock
(1989), Jain and Dubes (1988), Theodoridis and Koutroumbas (2009) and the papers by
Kovács et al. (2006) and Halkidi et al. (2001).

11.10 Recommendations

There is a large number of techniques to choose from and the availability of computer packages
means that analyses can be readily performed. Nevertheless, there are some general guidelines
to follow when carrying out a classification.

1. Detect and remove outliers. Many clustering techniques are sensitive to the presence
of outliers. Therefore, some of the techniques discussed in Chapter 13 should be used
to detect and possibly remove these outliers.

2. Plot the data in two dimensions if possible in order to understand structure in the data.
It might be helpful to use the first two principal components (see Chapter 10).

3. Carry out any preprocessing of the data. This may include a reduction in the number
of variables or standardisation of the variables to zero mean and unit variance.

4. If the data are not in the form of a dissimilarity matrix then a dissimilarity measure
must be chosen (for some techniques) and a dissimilarity matrix formed.

5. Choose an appropriate technique. Of the hierarchical methods, some studies favour the
use of the group average link method, but the single-link method gives solutions that
are invariant to a monotone transformation measure. The single-link method is the only
one to satisfy all the conditions laid down by Jardine and Sibson (1971) and is their
preferred method. We recommend against the use of the centroid and median methods
since inversions are likely to arise.

6. Evaluate the method. Assess the results of the clustering method you have employed.
How do the clusters differ? We recommend that you split the dataset into two parts and
compare the results of clustering on each subset. Similar results would suggest that
useful structure has been found. Also, use several methods and compare results. With
many of the methods some parameters must be specified and it is worthwhile carrying
out clustering over a range of parameter values to assess stability.

7. In using vector quantisation as a preprocessor for a supervised classification problem,
model each class separately rather than model the whole dataset and label the resulting
codewords.

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

552 CLUSTERING

8. Spectral clustering should be considered when clusters may not be compact/concave.

9. If you require some representative prototypes, we recommend using the k-means
algorithm.

Finally, we reiterate that cluster analysis is usually the first stage in an analysis and unques-
tioning acceptance of the results of clustering is extremely unwise.

11.11 Notes and references

There is a vast literature on cluster analysis. A very good starting point is the book by Everitt
et al. (2011). Now in its fifth edition, this book is a mainly nonmathematical account of the
most common clustering techniques, together with their advantages and disadvantages. The
practical advice is supported by several empirical investigations. Another good introduction
to methods and assessments of classification is the book by Gordon (1999). McLachlan and
Basford (1988) discuss the mixture model approach to clustering in some detail.

Of the review papers, that by Cormack (1971) is worth reading and provides a good sum-
mary of the methods and problems of cluster analysis. The article by Diday and Simon (1976)
gives a more mathematical treatment of the methods, together with descriptive algorithms for
their implementation.

Several books have an orientation towards biological and ecological matters. Jardine and
Sibson (1971) give a mathematical treatment. The book by Sneath and Sokal (1973) is a
comprehensive account of cluster analysis and the biological problems to which it can be ap-
plied. The book by Clifford and Stephenson (1975) is a nonmathematical general introduction
to the ideas and principles of numerical classification and data analysis, though it does not
cover many of the approaches described in this chapter, concentrating on hierarchical classi-
ficatory procedures. The book by Jain and Dubes (1988) has a pattern recognition emphasis.
McLachlan (1992b) reviews cluster analysis in medical research.

A more specialist book is that of Zupan (1982). This monograph is concerned with the
problem of implementing hierarchical techniques on large datasets.

The literature on fuzzy techniques in cluster analysis is reviewed by Bezdek and Pal
(1992). This book contains a collection of some of the important papers on fuzzy models for
pattern recognition, including cluster analysis and supervised classifier design, together with
fairly extensive bibliographies. A survey of fuzzy clustering and its applications is provided
by Yang (1993). An interesting probabilistic perspective of fuzzy methods is provided by
Laviolette et al. (1995).

Tutorials and surveys of self-organising maps are given by Kohonen (1990, 1997),
Kohonen et al. (1996) and Ritter et al. (1992).

There are various books on techniques for implementing methods, which give algorithms
in the form of FORTRAN code, or pseudo-code. The books by Anderberg (1973), Hartigan
(1975), Späth (1980) and Jambu and Lebeaux (1983) all provide a description of a clustering
algorithm, FORTRAN source code and a supporting mathematical treatment, sometimes with
case studies. The book by Murtagh (1985) covers more recent developments and is also
concerned with implementation on parallel machines.

An introduction to spectral clustering is provided by von Luxburg (2007), Spielman and
Teng (1996) and Chung (1997).

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

EXERCISES 553

Exercises

Dataset 1: Generate n = 500 samples (xi, yi), i = 1, . . . , n, according to

xi = i

n
π + nx

yi = sin

(
i

n
π

)
+ ny

where nx and ny are normally distributed with mean 0.0 and variance 0.01.
Dataset 2: Generate n samples from a multivariate normal (p variables) of diagonal

covariance matrix σ 2I, σ 2 = 1 and zero mean. Take n = 40, p = 2.
Dataset 3: This consists of data comprising two classes: class ω1 is distributed as

0.5N((0, 0), I) + 0.5N((2, 2), I) and class ω2 ∼ N((2, 0), I) (generate 500 samples for train-
ing and test sets, p(ω1) = p(ω2) = 0.5).

1. Is the square of the Euclidean distance a metric? Does it matter for any clustering
algorithm?

2. Observations on six variables are made for seven groups of canines and given in Table 11.5
(Manly, 1986; Krzanowski and Marriott, 1994). Construct a dissimilarity matrix using
Euclidean distance after standardising each variable to unit variance. Carry out a single-
link cluster analysis.

3. Compare the single-link method of clustering with k-means, discussing computational
requirements, storage, and applicability of the methods.

4. A mixture of two normals divided by a normal density having the same mean and variance
as the mixed density is always bimodal. Prove this for the univariate case.

5. Implement a k-means algorithm and test it on two-dimensional normally distributed data
(dataset 2 with n = 500). Also, use the algorithm within a tree-structured vector quantiser
and compare the two methods.

6. Using dataset 1, code the data using the Luttrell self-organising feature map algorithm
(Section 11.5.3). Plot the positions of the centres for various numbers of code vectors.

Table 11.5 Data on mean mandible measurements (from Manly, 1986).

Group x1 x2 x3 x4 x5 x6

Modern Thai dog 9.7 21.0 19.4 7.7 32.0 36.5
Golden jackal 8.1 16.7 18.3 7.0 30.3 32.9
Chinese wolf 13.5 27.3 26.8 10.6 41.9 48.1
Indian wolf 11.5 24.3 24.5 9.3 40.0 44.6
Cuon 10.7 23.5 21.4 8.5 28.8 37.6
Dingo 9.6 22.6 21.1 8.3 34.4 43.1
Prehistoric dog 10.3 22.1 19.1 8.1 32.3 35.0

P1: OTA/XYZ P2: ABC
JWST102-c11 JWST102-Webb August 29, 2011 9:27 Printer Name: Yet to Come

554 CLUSTERING

Compute the average distortion as a function of the number of code vectors. How would
you modify the algorithm for data having circular topology?

7. Using dataset 1, construct a tree-structured vector quantiser, partitioning the clusters with
the largest sum-square error at each stage. Compute the average distortion.

8. Using dataset 2, cluster the data using Ward’s method and Euclidean distance. Using
Gordon’s approach for identifying genuine clusters (unimodal null model), how many
clusters are valid at the 5% level of significance?

9. Implement a learning vector quantisation algorithm on dataset 3. Plot performance as a
function of the number of cluster centres. What would be the advantages and disadvantages
of using the resulting cluster centres as centres in a radial basis function network?

10. Show that the single-link dendrogram is invariant to a nonlinear monotone transformation
of the dissimilarities.

11. For a distance between two clusters A and B of objects given by dAB = |mA − mb|2, where
mA is the mean of the objects in cluster A, show that the formula expressing the distance
between a cluster k and a cluster formed by joining i and j is

di+ j,k = ni

ni + nj
dik + nj

ni + nj
d jk − nin j

(ni + n j)2
di j

where there are ni objects in group i. This is the update rule for the centroid method.

12. Show that, if the number of clusters in a clustering is m and the number of groups in a
partition is s and s �= m, the Rand and Jaccard coefficients (Section 11.7.7) are less than 1.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

12

Complex networks

Complex networks can be used to describe the behaviour of a wide range of systems of
importance in nature and society. These include social networks describing the pattern of contact
between groups of people, biological networks (for example, the food web and the network of
protein–protein interactions characterising a cell) and computer networks such as the Internet.
Datasets from these domains differ from those considered elsewhere in this book. They are not
‘flat’ (measurements on a fixed set of variables for a set of individuals), but comprise measure-
ments that describe the relationship between individuals (often pairs of individuals) and can
be represented using the mathematical concept of a graph. Analysis of the data is undertaken
to understand network structure, including determining the presence of groups or communities,
finding patterns in the network structure and the identification of anomalous behaviour. This chap-
ter presents a brief introduction to complex networks and introduces the topics of community
detection and link prediction.

12.1 Introduction

Complex networks is the name given to a multidisciplinary area, bringing together concepts
from physics, mathematics and statistics, computer science and the social sciences, that relates
to interactions between individual entities or groups of individuals. It is an area of research
that has been of increasing importance over the past decade or so, as data acquisition systems
have enabled large datasets of real networks to be gathered. These datasets differ from those
we have used in this book to develop supervised or unsupervised classifiers: they are not
simply measurements on a fixed set of features for a given number of individuals where the
aim has been to determine a rule to classify unknown patterns using the dataset to train the rule
(supervised classification); or to discover groups in the data (unsupervised classification or
clustering). Rather, these datasets comprise measurements on the interactions between (often,

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

556 COMPLEX NETWORKS

but not exclusively) pairs of individuals. Examples of networks that arise through interactions
or transactions between individuals are (Albert and Barabási, 2002; Newman, 2003):

� the Internet – a network of routers and computers connected by physical wires;

� the World Wide Web – a network of pages, accessible over the Internet;

� social networks – a network of people, or groups of people, linked by friendships,
business relationships and family ties;

� online transactions network – a network of shoppers and the Internet sites that they
purchase from;

� telephone call network – a network of telephone company subscribers linked by the
calls they make to each other;

� the cell – a network of protein–protein interactions characterising a cell;

� citation network – a network of articles, with a link from article A to article B if article
A cites article B.

Investigations to understand such networks – their structure, growth and dynamics – has led
to their description using the mathematical concept of a graph (introduced in Chapter 11),
where the nodes in the graph represent individual entities (for example, people, computers, web
pages, articles), which are joined if there is an interaction between them. An example is shown
in Figure 12.1, which displays a social network of frequent associations between dolphins in
a community living off Doubtful Sound, New Zealand (Lusseau and Newman, 2004).

TSN83
TR88TR120

Shmuddel

Zipfel
Bumper

Thumper

SN4SN63

StripesWhitetip

Fork

SMN5

Scabs
Hook

Grin

SN9

TR99

Jonah

MN83

Trigger

Vau

Cross
Five

Haecksel

MN60

CCL

Zap

Double

SN100

Oscar

DN63

Beescratch

Number1

Mus

Notch

MN23

Quasi

Jet

FeatherGallatin

SN90

DN21Web

UpbangKnit

SN89PL
TR77

Beak

SN96
Fish

Kringel

Topless

Wave

TR82

DN16 Ripplefluke

Zig

MN105

TSN103

Patchback

Figure 12.1 An undirected social network of frequent associations between 62 dolphins in
a community living off Doubtful Sound, New Zealand (Lusseau and Newman, 2004).

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

INTRODUCTION 557

12.1.1 Characteristics

The datasets describing the networks above typically have the following characteristics:

� Large size. Networks can have millions, if not billions, of nodes, particularly some social
networks and the World Wide Web. Graphical displays can be difficult, if not impossible,
to interpret. Automatic procedures are required to discover structure in the data.

� Sparseness. The networks are sparse, most nodes having few connections to other nodes.

� Weighted edges. The connections between nodes are often weighted. These weights
describe the degree of interaction between the nodes. For example, these weights could
describe the amount of email traffic between people, the cost of an Internet purchase or
the length of a telephone call.

� Temporal dependence of weights. The strength of a connection between nodes is time
varying: weights change with time as friendships form, purchases are made or people
work together on a project.

� Growing/shrinking network. Nodes join and leave a network at different times, as new
Internet sites are created and old ones deleted, or as new social groups develop. Thus,
most networks are dynamic.

� Attributed graphs. Associated with each node may be a set of attributes or features (for
example, the age of a person, gender, location, qualifications). The nodes may belong
to different classes (purchaser and vendor) and edges may exist only between nodes of
different classes.1 Similarly, there may be features associated with the links between
nodes (for example, the type of purchase from an online store).

More generally, the datasets may be described by a hypergraph, a generalisation of a graph
where the edges connect any number of vertices. A hypergraph has many of the properties
above, but we restrict our treatment to edges connecting two nodes.

12.1.2 Properties

There are some properties of real-world networks that are common to networks of different
types. Here we summarise three common properties.

12.1.2.1 The small-world effect

The small-world effect refers to the property that in most, often large, networks, pairs of
vertices are often connected by a short pathlength, where the pathlength between two vertices
is the number of edges along the shortest path. The most popular example of this is the
study by Milgram (1967), who investigated the distribution of pathlengths in an acquaintance
network, where two individuals are connected if they were on first name terms with each
other. The average separation between any two individuals was six, leading to the concept of
‘six degrees of separation’.

1 A bipartite graph is a graph where the nodes belong to one of two classes and there are no edges joining nodes
of the same class.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

558 COMPLEX NETWORKS

Defining dij to be the shortest distance between node i and node j in an undirected network
(i.e. the geodesic2 distance), then the mean geodesic distance is given by

l = 1
1
2 n(n + 1)

∑
i≥ j

dij (12.1)

l is often quite small – much smaller than the number of nodes in the network. If there are
separate components in the network – parts of the network that are disconnected from other
parts – then dij will not be defined for some pairs of nodes. Therefore, the mean geodesic is
modified to be the mean distance between nodes for which a connecting path exists.

An alternative measure is the harmonic mean, defined by

l−1 = 1
1
2 n(n + 1)

∑
i≥ j

d−1
ij (12.2)

The implications of the small-world effect are that the spread of information can be very
rapid: for a rumour or a virus hoax, or for a disease to spread.

12.1.2.2 Clustering

In social networks, groups or communities form according to factors such as the interests, age
or occupation of the members. This tendency to form communities (groups of nodes with a
high degree of within group connectivity and a low between-group connectivity) is not only a
property of social networks and the identification of communities in networks is an important
research topic.

The degree to which nodes in a network cluster together to form a community can be
quantified by the clustering coefficient. For a node i with ki neighbours, then the ratio of the
number of edges between the neighbours, Ei, to the maximum number of edges,

Ci = Ei
1
2 ki(ki − 1)

is a measure of the clustering of node i. The clustering of the whole network is the average

C = 1

n

n∑
i=1

Ei
1
2 ki(ki − 1)

Albert and Barabási (2002) provide several alternative definitions.

12.1.2.3 Degree distributions

Nodes in a network have different numbers of connections to other nodes – the node degree.
The distribution of node degree, is denoted by P(k), the probability that a randomly selected

2 The geodesic is the shortest path between two nodes in a network.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

INTRODUCTION 559

node has degree k. For a random graph,3 the distribution of node degree is binomial, or Poisson
in the limit of a large graph. However, for most large networks, the degree distribution deviates
significantly from Poisson, particularly in the tail of the distribution. There is a long tail –
there are nodes whose values of the degree are far greater than the mean. For many real-world
networks, the distributions are found to follow a power law in their tails

P(k) ∝ k−α

for some exponent α. Networks with power law degree distributions are referred to as scale-
free networks.

12.1.2.4 Other properties

There are other properties of real-world networks that are explored in many studies. These
include:

� Network resilience – the robustness of the network to the removal of nodes from the
network (or the removal of the means by which two adjacent nodes communicate,
leading to the removal of an edge).

� Mixing patterns – the pattern of links between nodes of different types.

� Degree correlations – the correlation between the degree of neighbouring nodes. (Are
high degree nodes preferentially attached to other high degree nodes, or low degree
nodes?)

Newman (2003) discusses these and others in detail.

12.1.3 Questions to address

There are many questions that have been posed of datasets that may be represented graphically
as a network. Some of these are of a more exploratory nature, relating to the structure of the
network, particularly when the network is difficult to visualise graphically due to its large size.
Others are more application specific. Listed below are some of the properties of a network
that we may wish to discover.

� Anomalous nodes. Do any of the nodes have an unusual pattern of behaviour? They
may have a particularly high degree or have a pattern of connectivity to other nodes
that is unusual. Alternatively, the temporal behaviour of the node may be unusual. The
behaviour of a node may change with time (for example, the rate of interaction with
neighbouring nodes), resulting in behaviour that is different from past behaviour.

� Significant edges. These are connections between two nodes whose presence is vital to
the network’s function.

� Anomalous edges. These are edges, or communication channels between nodes, that
are striking by their presence (or, alternatively, an edge may be absent where one is
expected).

3 This is a graph in which edges are placed randomly – an edge between nodes occurs with a specified probability, p.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

560 COMPLEX NETWORKS

� Influential nodes. These are nodes whose removal results in a significant change in
network behaviour. For example, an influential node may be the only common node to
two communities. Its removal causes the communities to become disjointed and hence
lack a communication route between them.

� Central nodes. Which nodes are the most central? These are nodes that communicate
with many others. Which nodes are outliers, with few connections, or connections to
others for a short period of time only?

� Community structure. This is the clustering of nodes into groups or communities
for which there is high inter-community connectivity and low between-community
connectivity.

� Community evolution. How the community structure changes with time – the addition
or removal of nodes or edges, the change in the strength of connection between nodes –
may be of interest for some applications.

12.1.4 Descriptive features

What features should we use to describe the complex networks described by datasets of
transactions between individuals? This depends on the questions that we are seeking to
address, just as in the supervised classification of objects the features employed are (ideally)
those important for discrimination. For very large networks, for which the structure is difficult
to ascertain from a graphical display, the questions may be more exploratory in nature about the
structure of the network. Examples of features that we may measure on the complete network
include the degree distribution, network clustering coefficient and the network diameter (the
largest geodesic distance between two nodes).

In other cases, the question may be more specifically about particular nodes or nodes of
a characteristic type: we may seek nodes with certain characteristics. This is a supervised
problem, where the characteristics are specified by the user or learnt from a design set.
Features characterising individual nodes or groups of nodes include centrality measures,4

node clustering coefficient and community structure measures (size, diameter, community
clustering coefficient – see Section 12.3.1).

12.1.5 Outline

The topics of this chapter lie at the intersection of the research areas of theory and algorithms
for the analysis of graphs and pattern recognition. There are broadly two main themes within
this area:

1. the use of graph-based methods in pattern recognition applications;

2. the application of data analysis methods of the type described in this book to data
comprising measurements of interactions between entities.

4 A centrality measure describes the importance of nodes in a network [see Section 12.2; for their application in
social networks, see Wasserman and Faust (1994)].

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

MATHEMATICS OF NETWORKS 561

The focus of this chapter is on the latter theme: what patterns (structure) are present in the
network? How can we find it? The former theme is addressed in the book by Marchette
(2004). We exclude from our treatment important topics such as methods for the analysis of
time evolving networks (dynamic graphs) and the development of network models (random
graphs and developments). Section 12.8 provides references to more extensive treatments of
complex networks.

12.2 Mathematics of networks

A network may be represented mathematically as a graph, G = {V, E}, comprising a set of
nodes or vertices, V = {v1, . . . , vn}, and a set of edges, E = {e1, . . . , em}, where each edge,
ej, is a pair of vertices

e j = {
vj1, vj2

}

where vj1 �= vj2 and vj1, vj2 ∈ V.
For a graph G = {V , E}, the neighbours of a node v ∈ V are those nodes connected to v

by an edge e ∈ E.

12.2.1 Graph matrices

The structure of the graph is described by the symmetric n × n adjacency matrix, A, where

Aij =
{

1 if vi and vj are connected by an edge
0 otherwise

A directed graph (Figure 12.2) is one in which the direction of the edges is important (for
example, a graph of email traffic between employees of a company where the direction is

Figure 12.2 A directed graph in which some of the edges are unidirectional and some
bidirectional.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

562 COMPLEX NETWORKS

from sender to recipient), the adjacency matrix is not symmetric and

Aij =
{

1 if there is an edge from vj to vi

0 otherwise

The graph Laplacian is the difference between the adjacency matrix, A, and the diagonal
degree matrix, D

L = D − A (12.3)

i.e.

Lij =
{

ki i = j
−Aij i �= j

where ki is the number of edges connected to node i. There are two common forms of
normalised graph Laplacian (see Chapter 11); the symmetric form,

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2 (12.4)

and the nonsymmetric form,

Lnonsym = D−1L = I − D−1A (12.5)

These normalised forms have the properties:

1. The normalised Laplacians are positive semidefinite.

2. All eigenvalues are real and non-negative. The smallest eigenvalue is zero.

3. The multiplicity of the eigenvalue with value 0 is equal to the number of connected
components of the graph.

4. The eigenvectors, v, and eigenvalues, λ, of Lnonsym satisfy the generalised symmetric
eigenvector equation Lv = λDv.

The definition of all Laplacian matrices may be extended to weighted adjacency matrices in
a straightforward manner.

12.2.2 Connectivity

A network is connected if there is a path from every node in the network to every other
node. Disconnected networks have separate components, where a component is a connected
group of nodes that has the property that it is not part of a larger component. There is no path
between nodes in different components.

12.2.3 Distance measures

The geodesic distance between two nodes is the length of the shortest path between them,
where the pathlength between two nodes is the number of edges traversed in going from one

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

MATHEMATICS OF NETWORKS 563

node to the other. For disconnected graphs, the geodesic distance between nodes in separate
components cannot be calculated and is conventionally taken to be infinity.

The maximum geodesic distance between any pair of nodes in a connected graph is the
graph diameter.

12.2.4 Weighted networks

Many networks are weighted – they have strengths associated with the edges connecting pairs
of nodes. For example, the rate of email traffic between two friends; the cost of a purchase by
a buyer from an online store. Weighted networks may be represented by a weighted adjacency
matrix,

Aij =
{

weight of connection between vj and vi

0 if no connection

Weights are usually non-negative; the larger the value of a weight on an edge then the closer
are the two nodes.

12.2.5 Centrality measures

Degree centrality
The degree of a node is the number of neighbours of that node. The degree of node vi, ki, is
expressed in terms of the adjacency matrix as

ki =
n∑

j=1

Aij

The degree matrix, D, is the diagonal matrix of degrees, D = Diag[k1, . . . , kn]. For a directed
network, each node has an in-degree and an out-degree, corresponding to the number of
incoming or outgoing edges.

Betweenness centrality
For a given node, v, the betweenness centrality is a measure of how many geodesic paths from
different pairs of nodes in the network pass through v. Defining σ st as the number of shortest
paths between node s and node t, and σ st(v) as the number of those shortest paths that pass
through node v [for many pairs of nodes in real-world networks, σ st = 1 and σ st(v) = 0 or 1,
i.e. the single shortest path either excludes v or includes 1], then the normalised betweenness
centrality for node v (for an undirected graph) is given by

CB(v) = 2

(n − 1)(n − 2)

∑
all pairs s,t

σst (v)

σst
(12.6)

where (n − 1)(n − 2)/2 is the number of pairs of vertices not including v.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

564 COMPLEX NETWORKS

Eigenvector centrality
The components of the eigenvector of the adjacency matrix corresponding to the largest
eigenvalue are used as centrality indices. The centrality of a node is proportional to the sum
of the centralities of the nodes to which it is connected. Thus, a node is more ‘important’ if
its neighbours are important. Let x denote the vector of centralities, then we may express this
statement as

xi = λ−1
n∑

j=1

Aijx j i = 1, . . . , n

for a constant of proportionality λ−1, or

Ax = λx

The eigenvector corresponding to the largest eigenvalue has the property that its components
are all positive (by the Perron–Frobenius theorem which states that a real matrix with pos-
itive entries has the largest real eigenvalue whose corresponding eigenvector has positive
components).

This definition of eigenvector centrality extends to weighted adjacency matrices.

Closeness centrality
The closeness centrality is a measure of the distance of a node to the other nodes in the
network. Denoting the geodesic distance between a node i and a node j by dg(i, j), then the
closeness of the node i to other nodes in the network is defined as the reciprocal of the sum
of the geodesic distances

Cl (i) = 1∑
j

dg(i, j)
(12.7)

12.2.6 Random graphs

A random graph is one in which the number of vertices, the number of edges and the
placement of those edges are determined in some random manner. The simplest model and
one widely studied is due to Erdös and Rényi (1959, 1960) and denoted Gn, p. Each edge
occurs independently with probability p. The probability pk that a vertex has degree exactly k
is given by the Binomial distribution

pk =
(

n − 1
k

)
pk(1 − p)n−1−k

For n � kz, where z is the average degree of a vertex, (n − 1)p, then

pk = zke−z

k!

which is the Poisson distribution.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

COMMUNITY DETECTION 565

12.3 Community detection

Detecting the presence of communities – clusters of nodes with a high intracluster connectivity
and a low intercluster connectivity – is important in many application areas such as protein
discovery, marketing, sociology, security and others where a graphical representation of the
data is a natural one. The identification of high order structures in the data provides insights
into the network’s organisation leading, for example, to the discovery of functionally related
proteins, groups of people sharing common interests or potential markets for new products.
The term graph clustering is also used to refer to the task of grouping vertices in a graph,
taking account of graph structure.

In this section, we review some of the approaches for identifying communities in a
network, both global approaches that use the entire vertex set and local approaches that use a
particular node as a seed to identify a local community.

12.3.1 Clustering methods

Many of the techniques of cluster analysis, described in Chapter 11, may be applied to discover
communities in networks.

12.3.1.1 Hierarchical methods

Hierarchical clustering algorithms are often based on the analysis of a matrix of similarities
or dissimilarities between pairs of objects. Therefore, since we seek to group vertices with
high similarity, we require a measure of inter-node similarity or dissimilarity between each
pair of vertices. A similarity measure, sij, can often be converted to a dissimilarity, dij, by
dij = k − sij, for some constant k.

Similarity measures may be structural (they take account of the patterns of connections
of the nodes) or attribute-based (they use the properties of the nodes). Structural similarity
indices may be classified into three broad categories (Lü and Zhou, 2010):

� Local indices. These use the properties of the network in the vicinity of the two nodes
whose similarity is required.

� Global indices. These use the complete adjacency matrix or weighted adjacency matrix.

� Quasi-local indices. These use the network in the neighbourhood of the two nodes, but
with a ‘broader horizon’ than local indices.

Tables 12.1 and 12.2 list some of the local and global indices. Further measures and an
evaluation in the context of link prediction (see Section 12.4) are given by Lü and Zhou (2010).

Hierarchical methods require some measure of the dissimilarity between groups or clusters
of nodes: for example, the single link method takes the distance between a node and a cluster
as the smallest distance between the node and any member of the cluster; the complete link
method uses the greatest distance between a node and any member of the cluster as the
distance between a node and a cluster (see Chapter 11). Different algorithms, and different
measures of (dis-)similarity will lead to the identification of different community structure.
Some networks do exhibit hierarchical structure, but a hierarchical algorithm may impose

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

566 COMPLEX NETWORKS

Table 12.1 Similarity measures for graph vertices.

Local measures

|�(i) ∩ �(j)| Common neighbours. �(i) is the set of neighbours of
vertex i. This measures the size of the overlap between
the neighbourhood of vertex i and the neighbourhood of
j. Many local measures are variants of this

|�(i) ∩ �(j)|
|�(i) ∪ �(j)| Jaccard index

|�(i) ∩ �(j)|√
kik j

Salton index. ki is the degree of node i

∑
k(Aik − μi)(Ajk − μ j)

nσiσ j
Correlation between rows of the adjacency matrix;

μi = 1
n

∑
j Aij; σi =

√∑
j(Aij − μi)2/n

Global measures

(I − βA)−1 − I Katz index. I is the identity matrix, A the adjacency matrix
and β a decay factor. This measures a weighted sum of
all paths connecting pairs of vertices

1

L†
ii + L†

jj − 2L†
ij

Average commute time. L†
ij are the components of the

pseudo-inverse of the Laplacian. This is proportional to
the reciprocal of the average number of steps by a
random walker in moving between the two nodes

Proximity, measured using
random walk with restart
ri =
p
(
1 − (1 − p)PT

)−1
ei

Random walk with restart. A particle is considered to
start at node i and move to its neighbours with probability
proportional to the edge weights from node i. At each
step, the particle may return to node i with some restart
probability p. The proximity of node j from node i is
defined as the steady-state probability, rij, that the particle
will be on node j. ei is the unit vector with 1 in the ith
position and 0 elsewhere; Pij = 1/ki if nodes i and j are
connected

Table 12.2 Dissimilarity measures for graph vertices.

Geodesic distance The length of the shortest path between two nodes

dij =
√∑

k �=i, j

(
Aik − Ajk

)2
Two vertices are structurally equivalent if they

have the same neighbours

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

COMMUNITY DETECTION 567

artificial structure in some cases. Single nodes connected to a community can often remain
isolated, rather than part of the community to which they are joined.

12.3.1.2 k-medoids method

The graph k-medoids algorithm is the community detection algorithm corresponding to the
k-means clustering algorithm (Chapter 11). It has the disadvantage compared with the hier-
archical approach in that it requires the specification of the number of communities, k. The
algorithm proceeds by initialising the communities by randomly selecting k seed nodes. All
nodes are then assigned to the cluster of the nearest seed node (measured in geodesic distance).
Since the geodesic distance is an integer (there is an integer number of steps between nodes),
there may be several seed nodes at the same distance from a given node, v. In this case, v is
assigned randomly to one of the nearest seed nodes. The next step is to calculate the closeness
centrality for each node in each cluster. The closeness centrality of a cluster is a measure
of the distance of a node to the other nodes in the cluster. If node i is in cluster k and we
denote the geodesic distance between a node i and a node j by dg(i, j), then the closeness of
the node i to other nodes in its cluster is defined as the reciprocal of the sum of the geodesic
distances

Cl (i) = 1∑
j∈ cluster k

dg(i, j)
(12.8)

This is a generalisation of the network closeness centrality given by Equation (12.7).
The new community centre nodes are those with the smallest closeness centrality in each

cluster. The procedure iterates until a stable solution is obtained. This may not be convergence,
since the random nature of the assignment of nodes to clusters in the case of equal geodesic
distances can result in some instability. Therefore, the algorithm may be considered stable
when there is less than x% change in the number of cluster medoids. Rattigan et al. (2007)
suggest a value of x of between 1 and 3.

The algorithm is summarised in Algorithm 12.1.

Algorithm 12.1 k-medoids algorithm.

1. Initialise set of vertices as seeds for cluster centres.

2. Assign nodes to the cluster of the nearest cluster centre (using geodesic distance – ties are
resolved randomly).

3. For each cluster, calculate a new set of cluster centres. These are the nodes in each cluster
with the lowest value of closeness [Equation (12.8)].

4. If the algorithm has stabilised, exit, otherwise go to step 2.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

568 COMPLEX NETWORKS

12.3.1.3 Spectral methods

The algorithm for a spectral clustering approach to community detection in networks is based
on an eigendecomposition of the graph Laplacian and is given by Algorithms 11.1 and 11.2.
There are three forms for the Laplacian that may be employed: the unnormalised form,
L = D − A [Equation (12.3)] and its normalised variants, Lsym [Equation (12.4)] and Lnonsym

[Equation (12.5)]. If the nodes degrees are similar, then the results of spectral clustering are
similar for the unnormalised and normalised forms of the Laplacian. However, if there is a
large variation in node degree, the normalised forms are more reliable with the nonsymmetric
form, Lnonsym, preferred (Fortunato, 2010).

12.3.2 Girvan–Newman algorithm

The betweenness centrality of a node is a measure of the influence of the node in a network
and is defined as the number of shortest paths that run through the node [Equation (12.6)
gives a normalised version and allows for multiple shortest paths]. Girvan and Newman
(2002; Newman and Girvan, 2004) generalise this concept and define edge betweenness as
the number of shortest paths between vertices that run along a particular edge.

The basic idea is that for a network consisting of several communities, loosely connected
by a few edges, then the shortest paths between nodes in different communities must run along
these edges. Hence, they will have a high edge betweenness and can be identified (Figure 12.3)
and removed, revealing the underlying community structure of the network.

The algorithm is an example of a divisive approach: beginning with a complete network
and removing edges one at a time (Algorithm 12.2). It can be computationally expensive for
large networks.

8

5
6

7

4

0

1

2

3

Figure 12.3 A network of two communities (nodes 0–4 and nodes 5–8), where the thickness
of the line joining nodes is proportional to the edge betweenness. The line between nodes 4
and 5 is on all paths between nodes in the two different communities and so it has a high edge
betweenness.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

COMMUNITY DETECTION 569

Algorithm 12.2 Girvan–Newman divisive algorithm for partitioning networks into
communities.

1. For all edges in the network, calculate the betweenness.

2. Remove the edge with the largest value of betweenness.

3. Recalculate the edge betweenness for the edges affected by the removal.

4. Repeat from step 2 until no edges remain.

Newman and Girvan (2004) develop the approach further by considering alternative
definitions of edge betweenness.

1. Geodesic edge betweenness – based on the number of shortest paths that run along an
edge (as in Figure 12.3).

2. Random walk betweenness – based on the number of times that a random walk between
a pair of vertices passes along a particular edge.

3. Current flow betweenness – based on the current flow in a circuit with a resistor placed
on each edge.

Separate communities may not emerge until several edges have been removed, but the al-
gorithms always produce a partition of the network into a nested set of communities, which
may be represented in the form of a dendrogram. However, the choice of the best set of com-
munities to describe the network structure requires a measure of the quality of community
structure. Girvan and Newman (2002) define a quantity termed modularity, and select the
structure with the largest value of modularity.

Consider the division of a network with vertex set V into k communities, V1, . . . , Vk

(
⋃k

i=1 Vk = V). Define A(S, T) as

A(S, T) =
∑

i∈S, j∈T

Aij

the number of edges between the two communities S and T . Then the modularity, Q, is
defined as

Q =
k∑

i=1

[
A(Vi,Vi)

A(V,V)
−

(
A(Vi,V)

A(V,V)

)2
]

(12.9)

where the first term in brackets in the summation, A(Vi,Vi)

A(V,V)
, is the fraction of edges that connect

vertices within community Vi; the term A(Vi,V)

A(V,V)
is the the fraction of edges that connect to

vertices in community Vi.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

570 COMPLEX NETWORKS

Equation (12.9) may be simplified to

Q = 1

2m

n∑
i=1

n∑
j=1

(
Aij − kik j

2m

)
δ(Ci,Cj) (12.10)

where ki is the degree of node i, m is the number of edges in the network, Ci is the community
to which node i belongs and δ(Ci, Cj) = 1 if nodes i and j are in the same community.

Q has the property that it is bounded below by 0, when the number of within-community
edges is no better than random. The maximum is attained when Q = 1, indicating strong
community structure.

12.3.3 Modularity approaches

Girvan and Newman (2002) introduced modularity as a community quality measure to be
used as a stopping criterion for their divisive algorithm (Algorithm 12.2), with high values
of modularity indicating good partitions of the network into communities. More recently,
there has been a class of community detection algorithms proposed that attempt to maximise
modularity directly. Even for moderately sized graphs, there is a large number of ways of
partitioning the graph and so exhaustive optimisation of modularity is not feasible. Therefore,
approximate methods have been proposed [see Fortunato (2010) for a review].

Here, we present an approach due to Newman (2006) based on the eigendecomposition
of a modularity matrix, B, defined by

Bij = Aij − kik j

2m

where Aij are the components of the adjacency matrix and ki is the degree of the ith node; m
is the number of edges. For the partition of the network into two components, we define an
index vector, s, with components

si =
{+1 if vertex i belongs to group 1

−1 if vertex i belongs to group 2

Then the modularity [Equation (12.10)] may be written as

Q = 1

4m
sT Bs (12.11)

Maximising Q subject to a normalisation constraint on the vector s (sT s = n) gives s propor-
tional to u1, the eigenvector of B corresponding to the largest eigenvalue.5 However, there is a
further restriction on the vector s: its components are constrained to be ±1, which means that s

5 The eigenvectors, ui, of the n × n real symmetric matrix B are orthogonal; the eigenvalues, λi, are real and can
be positive or negative. They can be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

COMMUNITY DETECTION 571

cannot usually be taken to be u1. Newman and Girvan (2004) report that a good approximation
that works well is achieved by setting

si =
{+1 if u1i ≥ 0

−1 if u1i < 0

The simplest approach for generalising this method to more than two communities is through
repeated division of the communities discovered into two, whereby each of the two commu-
nities is split separately and the modularity (computed from the full adjacency matrix of the
original graph) calculated. If a partition of a ‘parent’ community into two ‘child’ communi-
ties fails to increase the modularity, then the original parent community is retained. Repeated
subdivision is not an optimal approach for finding a set of communities, but works well
in practice.

A modularity maximisation algorithm will partition the network into communities, but
a high value of modularity is not necessarily a good indicator of community structure. The
modularity maximum is an indicator of structure only if it is appreciably larger than the
modularity maximum of random graphs of the same size and the same expected degree
sequence 6 (Fortunato, 2010).

12.3.4 Local modularity

The approaches to community detection presented above are global in that they require
knowledge of the entire structure of the network. For large graphs, such approaches become
computationally demanding, if not infeasible. However, we may still wish to discover local
structure in a particular region of a network, of the communities surrounding a given ver-
tex; for example, the social network of a particular individual. This requirement has led to
the development of methods for identifying local community structure in the vicinity of a
seed node.

Clauset (2005) introduces a definition of local modularity as a measure of local com-
munity structure. Suppose that we have a subset, C, of a graph and we have complete
knowledge of the connections of all the nodes in C. Some of the nodes in C will be con-
nected only to nodes within C; others will be connected to nodes outside C about which we
have imperfect knowledge. Denote this set of vertices external to C but connected to C by U
(Figure 12.4). Within the set C, there is a set of boundary nodes, B, which have at least one
connection to nodes in U . The local modularity, R, is defined as

R = I

T

where T is the number of edges with one or more endpoints in B and I is the number of those
edges with neither endpoint in U (T = 12 and I = 7 in Figure 12.4). Thus, R is the fraction of
boundary edges internal to the set C and is a measure of the sharpness of the boundary.

The steps of the Clauset algorithm are given in Algorithm 12.3. Initially, the seed node v0 (a
node about which we wish to discover further information regarding community membership)
is placed in C and its neighbours in U . At each step, the members of U are examined and the

6 The degree sequence of an undirected graph is the monotonic, nonincreasing sequence of its vertex degrees.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

572 COMPLEX NETWORKS

C U

V

B

Figure 12.4 Regions of a network for the definition of local modularity. The two nodes on
the right-hand side do not belong to U until the node v is added to C.

node, v, that produces the largest increase in R (or the smallest decrease, since R may decrease
with the addition of a node to C) is added to the set C (and the set B if v is a boundary node
of the new set C). Newly discovered nodes (the neighbours of v not already in C) are added to
U (Figure 12.4). The algorithm produces a function, R(t), the modularity of the community
centred on v0 at time step t and a corresponding set of nested communities. Local peaks in
R(t) are examined for potential community boundaries.

Algorithm 12.3 Clauset local modularity algorithm for finding nested community structure
around node v0.

Specify a value for k, the maximum community size. Specify v0.

1. Add v0 to C.

2. Add the neighbours of v0 to the set U .

3. Set B = v0.

4. While |C| < k do

(a) For each vj ∈ U compute the change in R, denoted 	Rj, if v j were to be added to C.

(b) Find the vj for which 	Rj is a maximum.

(c) Add that vj to C and its new neighbours to U .

(d) Update R and the set B.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

COMMUNITY DETECTION 573

12.3.5 Clique percolation

The algorithms presented in previous sections have sought to partition a network into disjoint
communities, or to find isolated communities within a network: each vertex is assigned to
a single community. The communities discovered do not overlap (apart for the case where
a community is a complete subset of another in a hierarchical approach). In many practical
situations, this assumption is unrealistic. Real communities do overlap: a person may belong
to a community of colleagues at work, a member of a local sports group and be one of the
parents of children at a local school. These communities may share several members. In this
section, we consider an approach for detecting overlapping communities.

The clique percolation method (CPM) was proposed by Palla et al. (2005a). We begin
with the following definitions:

k-clique: a complete (i.e. fully connected) subgraph with k vertices (Figure 12.5).

k-clique adjacency: two k-cliques are adjacent if they share k − 1 vertices (i.e. they differ
by a singe node). Adjacent 4-cliques are shown in Figure 12.6.

k-clique community: the largest connected subgraph obtained by the union of adjacent k-
cliques. There are two overlapping 4-clique communities in the network of Figure 12.6,
one comprising 6 vertices and the second 7 vertices.

The stages in finding the k-clique community are first to find the maximal cliques (the
cliques that are not subgraphs of larger cliques) and to construct the nc × nc clique-clique
overlap matrix whose (i, j) component is the number of vertices shared by clique i and clique
j. For k-clique community detection, the elements of the matrix less than k − 1 are set to
zero, and the remaining entries analysed to find connected components [Palla et al. (2005b)
for further details].

0 3

5

10

8

11

9
6

4

2

1 7

Figure 12.5 A network with two groups of 3-cliques (triangles) highlighted. One group
(black nodes 1, 2 and 4) contains a single 3-clique; the second group (grey nodes 7, 8, 9, 10
and 11) contains three adjacent 3-cliques.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

574 COMPLEX NETWORKS

13

12 2
0

1

113

4

7

9

10

6

8

5

Figure 12.6 Two overlapping groups of adjacent 4-cliques. One group contains the 4-cliques
(0, 1, 2, 3), (0, 2, 3, 5) and (2, 3, 4, 5); the second contains the 4-cliques (4, 5, 6, 7), (4, 6, 7,
10), (6, 7, 8, 10) and (6, 7, 9, 10).

Development of CPM to directed and weighted graphs is described by Farkas et al. (2007)
and Palla et al. (2007). Downloadable software is provided by Adamcsek et al. (2006).

12.3.6 Example application study

The problem
The application involves the identification of communities and subcommunities within a
dolphin population living off the coast of New Zealand (Lusseau and Newman, 2004).

Summary
The aim is to investigate the social structure in an animal society to gain a better understanding
in order to help better manage the population. Community detection algorithms were employed
to identify groups and subgroups and the key individuals.

The data
Observations of 62 bottlenose dolphins were made over a 7-year period from 1994 to 2001.
The data were represented as a network, with nodes in the network being individual dolphins
and the edges representing statistically significant frequent associations between dolphin pairs.

The approach
The network was dissected using the Girvan–Newman community detection algorithm based
on the calculation of edge betweenness. The relationship between members of the subcom-
munities and between subcommunities was examined with the aim of understanding how
the subcommunities arise. The sex of the dolphins appeared to play an important role in the
definition of subcommunities.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

LINK PREDICTION 575

Results
Two communities and four subcommunities were identified. Betweenness centrality was used
to identify ‘boundary individuals’ who act as links between subcommunities and appear
important to the social cohesion of the group.

12.3.7 Further developments

The approaches presented have largely been described in the context of undirected and
unweighted networks. Development to directed, weighted (including networks with both
positive and negative weights) and bipartite networks have been addressed by a number of
authors including Yook et al. (2001) and Leicht and Newman (2008).

Alternative approaches, based on probabilistic models have been considered by Newman
and Leicht (2007) (mixture models) and Lusseau et al. (2008) (incorporating uncertainty).

The computational issues, particularly for divisive algorithms, have been addressed by
Rattigan et al. (2007) and Tyler et al. (2003).

The significance of community structure (that is, could the structure discovered have
arisen by chance?) is reviewed by Fortunato (2010). Related to this is the model selection –
how many communities are there in a network? A Bayesian approach is presented by Hofman
and Wiggins (2008).

12.3.8 Summary

The techniques described in this section aim to find community structure within complex net-
works using structural information. With appropriate definitions of similarity or dissimilarity,
many of the techniques of cluster analysis can be exploited, including hierarchical and spectral
methods. A measure of the quality of community structure is modularity, and techniques that
maximise modularity directly have been developed.

The application of such approaches to very large graphs raises computational issues, and
a local modularity approach that attempts to discover the community surrounding a node
of interest has been presented. Finally, the clique percolation method was introduced as an
example of an approach for detecting overlapping clusters. Fortunato (2010) and Schaeffer
(2007) provide thorough reviews of approaches to community detection.

12.4 Link prediction

Link prediction is the problem of predicting a link between two nodes in a network based on
the existing observed links in the network and the properties of the nodes. Reasons for link
prediction include (Lü and Zhou, 2010):

� to extract missing information. This may occur in cases when not all links are observed
due to incomplete data collection mechanisms.

� to identify anomalous interactions. There may be links between individuals in a social
network, for example, that may be unusual or unexpected.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

576 COMPLEX NETWORKS

� to evaluate models of network evolution. Here, link prediction is used to predict the
future occurrence of links in an evolving network and the metrics on link prediction
accuracy used to assess the performance of different models.

Link prediction may be used in many diverse application areas. Examples include:

� Social networks – predicting friendships.

� Marketing – identifying potential markets for products.

� Security – predicting anomalous links.

12.4.1 Approaches to link prediction

One of the approaches to link prediction is to view the problem as one in binary classification.
The two classes comprise pairs of nodes that are linked and pairs of nodes that are not linked,
taken from a network at time t, or sampled from part of a larger network. Attributes of these
pairs of nodes are used as inputs to a classifier which is then tested on the network at a later
time or on an unseen part of a large network. One of the difficulties with a classification
approach is that there is a very large class skew, with many more examples of nonlinked pairs,
and this imbalance grows as a network evolves and becomes larger. This can lead to poor
model performance with the prior probability of a link usually being very small.

Another approach is to calculate the area under the receiver operating characteristic (ROC)
curve (AUC, see Chapter 9) based on thresholds applied to node similarity or proximity indices.
This measure is independent of the degree of class skew.

12.4.1.1 Similarity-based approaches

This approach requires a measure of similarity between pairs of nodes. It could be a structural
index, defined globally or locally (Table 12.1), or one that takes account of node attributes.
Let E be the set of edges in the network and U be the set of all n(n − 1)/2 possible edges, so
that the missing links are in the set U − E.

Independent train and test set
A training set, ET, is randomly selected from E. This defines a graph which is used to calculate
the similarity between pairs of nodes in E − ET (edges) and U − E (the missing links). These
similarities are ranked (low value to high) to produce a list of edges, together with their
similarity and set label,

{
(i, j), sij, ωij

}

where sij is the similarity between node i and node j and ωij is the class label for the pair (i, j)
(either edge or no edge).

Cross-validation
The set of edges, E, is randomly partitioned into k (for example, a value of 10) subsets.
k − 1 subsets are used as training data and the similarity calculated on the pairs of edges in
the remaining set and on a subset of U − E (also partitioned into k subsets). This is repeated

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

LINK PREDICTION 577

Algorithm 12.4 Link prediction using an independent train and test set.

1. Select a subset of edges, ET, from the set E.

2. Calculate the similarity between all pairs of nodes defined by the edges in the sets E − ET

and U − E using the graph defined by the set of edges in ET.

3. Rank all edges based on the similarity.

4. For a given threshold, s, calculate the proportion of edges in E − ET greater than the
threshold [and denoted by E(s)] and the proportion in U − E greater than the threshold
[denoted by U(s)].

5. Plot E(s) against U(s) as s varies and calculate the area under the curve.

Algorithm 12.5 Link prediction with cross-validation assessment.

1. Partition the set of edges, E, into k subsets, El, l = 1, . . . , k. Partition the set U − E into k
subsets, Ul, l = 1, . . . , k.

2. For l = 1, . . . , k

� Calculate the similarity between all pairs or nodes in the subsets El and Ul using the
graph defined by the set of edges in remaining subsets Ei, i �= l.

3. Rank all edges based on the similarity.

4. For a given threshold, s, calculate the proportion of edges in E − ET greater than the
threshold [and denoted by E(s)] and the proportion in U − E greater than the threshold
[denoted by U(s)].

5. Plot E(s) against U(s) as s varies and calculate the area under the curve.

for each set of k − 1 subsets in turn. This again produces an ordered list of pairs of nodes,
with similarity and label.

Area under the ROC curve (AUC)
For a given threshold value for the similarity, s, the proportion of members in the test set or the
cross-validation set with similarity greater than the threshold is plotted against the proportion
in the set U − E that is greater than the threshold, as the threshold, s, is varied. This produces
an ROC curve (see Algorithms 12.4 and 12.5). The AUC is a measure calculated from it that
is independent of class skew (see Chapter 9). If the similarity is a monotonic function of the
probability that an edge is present7 given the pair of nodes, then this approach produces the
ROC of the Bayesian classifier without explicitly calculating probability density functions.

7 That is, the greater the similarity then the greater the probability that an edge is present (or is likely to be present
as the network evolves).

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

578 COMPLEX NETWORKS

12.4.2 Example application study

The problem
This application involves the detection of anomalous email as an example of a security
informatics application, where it is important to detect unusual communication patterns in
various channels of communication (Huang and Zeng, 2006).

Summary
An email communication anomaly detection framework is evaluated that is based on the
development of probabilistic models of email traffic in directed and weighted networks.
These models are then used to identify anomalous email traffic.

The data
The data comprise the Enron email corpus, a large-scale email collection from a real or-
ganisation over a period of more than three and a half years (Shetty and Adibi, 2005). The
dataset contained 252 759 emails from 151 Enron employees. Only emails between these 151
employees were considered (emails to/from contacts outside this set were excluded).

The approach
Preprocessing reduced the dataset to 40 489 emails. Data in the time periods t − 1, t − 2, . . . ,
t − g were used to make a prediction on possible email communications (i.e. possible links)
in the time period t. The time periods were taken to be 1 week duration. For the data, a
directed and weighted graph describing the email traffic between individuals was generated.
Three link prediction approaches, adapted to handle weighted and directed networks, were
implemented:

� Preferential attachment – based on sender degree and recipient degree.

� Spreading activation – this uses the idea that if there is a link A → B and B → C, then
A → C might be likely.

� Generative model – a probabilistic process is assumed to generate the data and its
parameters are estimated using the EM algorithm.

Emails of the previous 8 weeks (i.e. g = 8) were used to predict the links of the current week.

Results
The generative model gave a better fit to that data than the other two models: individuals
sending emails to a large number of senders do not necessarily send to people who themselves
either send or receive a large number of emails (preferential attachment assumption); the
transitivity property – if A sends to B and B sends to C then A sends to C (spreading
activation) – is not prominent in emails. For the generative model, there were weeks when
there was a significant departure of data from the prediction. Further investigation revealed
unusual email patterns in those weeks.

12.4.3 Further developments

Link prediction is an active area of research within a broader area of link data mining (Getoor
and Diehl, 2005) and only a simple approach based on a measure of similarity in unweighted

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

SUMMARY AND DISCUSSION 579

and undirected networks has been presented in this section. Further approaches include
the extension of similarity measures to directed and weighted networks, the development
of methods to predict both the presence of an edge and the weight on the edge and the
development of probabilistic models.

12.5 Application studies

Examples of application studies of community detection algorithms include:

� a study of a network of mobile phone users (Palla et al., 2007) using the clique
percolation method;

� identification of protein complexes and functional modules in molecular networks
(Spirin and Mirny, 2003);

� hierarchical decomposition of metabolic networks (Holme et al., 2003), using a modi-
fication of the Girvan–Newman algorithm for bipartite networks;

� understanding scientific communication in the citation patterns of journals (Rosvall and
Bergstrom, 2008);

� analysis of the bidding behaviour of users on eBay using a community detection
algorithm that maximises modularity (Jin et al., 2007);

� identification of community structure in the networks of committee and subcommittee
assignments in the United States House of Representatives using methods of hierarchical
clustering and quantifying using modularity (Porter et al., 2007).

12.6 Summary and discussion

There are many datasets that arise through interactions between pairs or groups of individuals.
Data of this type can be represented using the mathematical concept of a graph where the
nodes represent individuals (people, computers, shops, purchasers, telephone subscribers,
web sites, and so on) and the edges in the graph relate to some ’transaction’ between them
(purchase, telephone call, email, meeting, for example). The networks from which the graphs
are abstracted are dynamic – the number of nodes and the degree of interaction between them
change with time. This chapter has reviewed the properties of such networks and focused on
the application of data analysis methods to the data arising from the networks. In particular,
two main areas of interest have been presented: community detection, which largely employs
unsupervised pattern recognition techniques to discover communities in networks; and link
prediction, which is supervised. Modelling the dynamics of evolving networks is outside the
scope of this chapter.

Complex networks is an area where there have been many developments over the past
decade and is currently receiving considerable research attention. There is great scope to apply
the tools of statistical pattern recognition to this domain.

P1: OTA/XYZ P2: ABC
JWST102-c12 JWST102-Webb August 19, 2011 22:8 Printer Name: Yet to Come

580 COMPLEX NETWORKS

12.7 Recommendations

For community detection, many of the methods of cluster analysis may be employed given
suitable definitions of the similarity between individuals.

� Hierarchical methods are a good starting point. They are straightforward to implement
using the similarity measures of Table 12.1. Spectral methods have achieved success
and fast implementations developed for large networks.

� If the community in the vicinity of a specific node is required, and it is not possible
to analyse the complete graph due to its large size, than a local method should be
considered (Clauset, 2005).

� For overlapping clusters, clique percolation is a popular method.

12.8 Notes and references

Good introductions to complex networks are provided in the books by Newman (2010) and
Easley and Kleinberg (2010); see also the reviews by Albert and Barabási (2002) and the
graph mining review by Chakrabarti and Faloutsos (2006). Within the context of community
detection, a recent extensive review is that of Fortunato (2010); see also Schaeffer (2007). A
survey of link prediction in complex networks is provided by Lü and Zhou (2010).

Exercises

1. Show that the modularity defined by Equation (12.9) can be written in the form given by
Equation (12.10).

2. Derive the solution for s that maximises the modularity Q [Equation (12.11)] as proportional
to the largest eigenvector of B.

3. Show that the vector (1, 1, . . . , 1) is an eigenvector of the graph Laplacian. What is the
corresponding eigenvalue?

4. Show that the normalised graph Laplacians [Equations (12.4) and (12.5)] are positive
semidefinite.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

13

Additional topics

Issues in classifier design are addressed. The first concerns model selection – choosing the
appropriate type and complexity of classifier. The second concerns problems with data – mixed
variables, outliers and missing values. Finally, the Vapnik-Chervonenkis dimension, a measure
of the capacity of a learning algorithm, is introduced. This can provide guidance on classifier
design.

13.1 Model selection

In many areas of pattern recognition we are faced with the problem of model selection; that is,
how complex should we allow our model to be, measured perhaps in terms of the number of
free parameters to estimate? The optimum complexity of the model depends on the quantity
and the quality of the training data. If we choose a model that is too complex, then we may
be able to model the training data very well (and also any noise on the training data), but
it is likely to have poor generalisation performance on unseen data, drawn from the same
distribution as the training set was drawn from (thus the model over-fits the data). If the model
is not complex enough, then it may fail to model structure in the data adequately. Model
selection is inherently a part of the process of determining optimum model parameters. In
this case, the complexity of the model is a parameter to determine. As a consequence, many
model selection procedures are based on optimising a criterion that penalises a goodness of
fit measure by a model complexity measure.

The problem of model selection arises with many of the techniques described in this book.
Some examples are:

1. How many components in a mixture model should be chosen to model the data ade-
quately? (Chapter 2)

2. How is the optimum tree structure found in a decision-tree approach to discrimination?
This is an example in determining an appropriate number of basis functions in an

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

582 ADDITIONAL TOPICS

expansion, where the basis functions in this case are hyperrectangles, with sides parallel
to the coordinate axes. (Chapter 7)

3. How many hidden units do we take in a multilayer perceptron, or centres in a radial
basis function network? (Chapter 6)

4. How many features do we select on our model? (Chapter 10)

5. How many clusters describe the dataset? (Chapter 11)

In this section, we give some general procedures that have been widely used for model
selection within classification problems. Anders and Korn (1999) examine model selection
procedures in the context of neural networks, comparing five strategies in a simulation study.

13.1.1 Separate training and test sets

In the separate training and test set approach, both training and test sets are used for model
selection. A test set used in this way is often termed the validation set. The training set is used
to optimise a goodness of fit criterion and the performance recorded on the validation set. As
the complexity of the model is increased, it is expected that performance on the training set
will improve (as measured in terms of the goodness of fit criterion), while the performance
on the validation set will begin to deteriorate beyond a certain model complexity.

This is one approach used for the classification and regression tree training models
(Breiman et al., 1984). However, the preferred approach is to grow a large tree to over-
fit the data, and prune it back until the performance on a separate validation set fails to
improve. A similar approach may be taken for neural network models (Reed, 1993).

The separate training and validation set procedure may also be used as part of the optimi-
sation process for a model of a given complexity, particularly when the optimisation process
is carried out iteratively, as in a nonlinear optimisation scheme. The values of the parameters
of the model are chosen, not as the ones that minimise the given criterion on the training set,
but those for which the validation set performance is best. Thus, as training proceeds, the
performance on the validation set is monitored (by evaluating the goodness of fit criterion
using the validation data) and training is terminated when the validation set performance
begins to deteriorate.

Note that in this case the validation set is not an independent test set that may be used
for error rate estimation. It is part of the training data. A third dataset is required for an
independent estimate of the error rate.

13.1.2 Cross-validation

Cross-validation as a method of error rate estimation was described in Chapter 9. It is a simple
idea. The dataset of size n samples is partitioned into two parts. The model parameters are
estimated using one set (by minimising some optimisation criterion) and the goodness-of-
fit criterion evaluated on the second set. The usual version of cross-validation is the simple
leave-one-out method in which the second set consists of a single sample. The cross-validation
estimate of the goodness-of-fit criterion, CV, is then the average over all possible training sets
of size n − 1.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

MODEL SELECTION 583

As a means of determining an appropriate model, the cross-validation error is calculated
for each member of the family of candidate models, {Mk, k = 1, . . . , K}, and the model Mk̂
chosen where

CV(k̂) ≤ CV(k) for all k

Cross-validation tends to over-fit when selecting a correct model; that is, it chooses an over-
complex model for the dataset. There is some evidence that multifold cross-validation, when
d > 1 samples are deleted from the training set, does better than simple leave-one-out cross-
validation for model selection purposes (Zhang, 1993). Using cross-validation to select a
classification method is discussed further by Schaffer (1993).

13.1.3 The Bayesian viewpoint

In the Bayesian approach, prior knowledge about models, Mk, and parameters, θk, is incorpo-
rated into the model-selection process. Given a dataset X , the distribution of the models may
be written using Bayes’ theorem as

p (Mk|X) ∝ p (X|Mk) p (Mk)

= p (Mk)

∫
p (X|Mk, θk) p (θk|Mk) dθk

and we are therefore required to specify a prior distribution p(Mk, θk). If a single model is
required, we may choose Mk̂ where

p(Mk̂|X) ≥ p(Mk|X) for all k

However, in a Bayesian approach, all models are considered. Over-complex models are
penalised since their ability to model a wide range of datasets (through their complexity)
results in the assignment of low likelihood to any single dataset. This effect is referred to as
Occam’s razor. Additionally, the prior model probabilities p(M) can provide a regularisation
effect, penalising over-complex models. Model averaging as an approach to handling model
uncertainty was discussed in Chapter 8 as an example of ensemble methods.

13.1.4 Akaike’s Information Criterion

Akaike (1973, 1974, 1977, 1981, 1985) used ideas from information theory to suggest a model
selection criterion. A good introduction to the general principles is given by Bozdogan (1987;
see also Sclove, 1987).

Suppose that we have a family of candidate models {Mk, k = 1, . . . , K}, with the kth model
depending on a parameter vector θk = (θk,1, . . . , θk,ε(k))

T , where ε(k) is the number of free
parameters of model k. Then the information criterion proposed by Akaike (AIC) is given by

AIC(k) = −2log[L(θ̂k)] + 2ε(k) (13.1)

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

584 ADDITIONAL TOPICS

where θ̂k is the maximum likelihood estimate of θk, L[.] is the likelihood function, and the
model Mk is chosen as that model, Mk̂, where

AIC(k̂) ≤ AIC(k) for all k

Equation (13.1) represents the unbiased estimate of minus twice the expected log likelihood,

−2E[log(p(Xn|θk))]

where Xn is the set of observations {x1, . . . , xn}, characterised by p(x|θ).
There are a number of difficulties in applying (13.1) in practice. The main problem is that

the correction for the bias of the log-likelihood, ε(k), is only valid asymptotically. Various
other corrections have been proposed that have the same asymptotic performance, but different
finite sample performance.

13.1.5 Minimum description length

The minimum description length (MDL) is another way to incorporate model complexity in
an information criterion. This is illustrated in Figure 13.1. Person A and Person B are given a
dataset X, a set of measurements xi on n individuals. Person A is also given the class labels zi

of each pattern and develops a classification model or Theory, T , to summarise the relationship
between x and z.

Person A now wants to transmit to Person B the class labels of the patterns, xi. Person A
could transmit the set of labels of all the patterns, or transmit the model in a compact form.
However, the model may not be perfect, so if he/she transmits the model, he/she must also
transmit information concerning those data samples xi incorrectly labelled by the model.

If the cost of encoding the model is L(M) and the cost of encoding the training set given the
model is L(X|M) (i.e. the cost of encoding the mislabelled patterns), then the total description
length is

L(M) + L(X |M)

Person A Person B

Pattern Class

Model, M, and
error description

Pattern Class

?

?

?

x1 z1

z2

zn

x2

.

.

.

.

xn

x1

x2

.

.

.

.

xn

Figure 13.1 Minimum description length principle.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

MISSING DATA 585

The MDL principle states that we seek the model that minimises the total description
length.

A difficulty is in encoding the model in the most efficient way. It depends on the shared
knowledge of the people A and B. Encoding the errors is usually more straightforward, but
there are sophisticated ways of encoding errors (which reduces the need for a model). For
further details, see Grünwald (2007).

13.2 Missing data

Many classification techniques assume that we have a set of observations with measurements
made on each of p variables. However, missing values are common. For example, question-
naires may be returned incomplete; in an archaeological study, it may not be possible to
make a complete set of measurements on an artifact because of missing parts; in a medical
problem, a complete set of measurements may not be made on a patient, perhaps owing to
forgetfulness by the physician or being prevented by the medical condition of the patient.

How missing data are handled depends on a number of factors: how much is missing; why
data are missing; whether the missing values can be recovered; are values missing in both the
design and test set? There are several approaches to this problem.

1. We may omit all incomplete vectors from our analysis. This may be acceptable in
some circumstances, but not if there are many observations with missing values. For
example, in the head injury study of Titterington et al. (1981) referred to in Chapter 2,
206 out of the 500 training patterns and 199 out of the 500 test patterns have at least
one observation missing. Neglecting an observation because perhaps one out of 100
variables has not been measured means that we are throwing away potentially useful
information for classifier design. Also, in an incomplete observation, it may be that the
variables that have been measured are the important ones for classification anyway.

2. We may use all the available information. The way that we would do this depends
on the analysis that we are performing. In estimating means and covariances, we
would use only those observations for which measurements have been made on the
relevant variables. Thus, the estimates would be made on different numbers of samples.
This can give poor results and may lead to covariance matrices that are not positive
definite. Other approaches must be used to estimate principal components when data
are missing (Jackson, 1991). In clustering, we would use a similarity measure that takes
missing values into account. In density estimation using an independence assumption,
the marginal density estimates will be based on different numbers of samples.

3. We may substitute for the missing values and proceed with our analysis as if we had a
complete dataset.

There are many approaches to missing value estimation, varying in sophistication and
computational complexity.

The simplest and perhaps the crudest method is to substitute mean values of the cor-
responding components. This has been used in many studies. In a supervised classification
problem, class means may be substituted for the missing values in the training set and
the sample mean for the missing values in the test set since in this case we do not know
the class.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

586 ADDITIONAL TOPICS

A thorough treatment of missing data in statistical analysis is given by Little and Rubin
(1987). A review in the context of regression is given by Little (1992) and a discussion in the
classification context by Liu et al. (1997).

13.3 Outlier detection and robust procedures

We now consider the problem of detecting outliers in multivariate data. This is one of the aims
of robust statistics. Outliers are observations that are not consistent with the rest of the data.
They may be genuine observations [termed discordant observations by Beckman and Cook
(1983)] that are surprising to the investigator. Perhaps they may be the most valuable, indicat-
ing certain structure in the data that shows deviations from normality. Alternatively, outliers
may be contaminants, errors caused by copying and transferring the data. In this situation, it
may be possible to examine the original data source and correct for any transcription errors.

In both of the above cases, it is important to detect the outliers and to treat them appropri-
ately. Many of the techniques we have discussed in this book are sensitive to outlying values.
If the observations are atypical on a single variable, it may be possible to apply univariate
outlier detection methods to the variable. Outliers in multivariate observations can be difficult
to detect, particularly when there are several outliers present. A classical procedure is to
compute the Mahalanobis distance for each sample xi (i = 1, . . . , n)

Di =
{
(xi − m)T �̂

−1
(xi − m)

} 1
2

where m is the sample mean and �̂ the sample covariance matrix. Outliers may be identified
as those samples yielding large values of the Mahalanobis distance. This approach suffers
from two problems in practice:

1. Masking. Multiple outliers in a cluster will distort m and �̂, attracting m and inflating
�̂ in their direction, thus giving lower values for the Mahalanobis distance.

2. Swamping. This refers to the effect that a cluster of outliers may have on some obser-
vations that are consistent with the majority. The cluster could cause the covariance
matrix to be distorted so that high values of D are found for observations that are not
outliers.

One way of overcoming these problems is to use robust estimates for the mean and covari-
ance matrices. Different estimators have different breakdown points, the fraction of outliers
that they can tolerate. Rousseeuw (1985) has proposed a minimum volume ellipsoid (MVE)
estimator that has a high breakdown point of approximately 50%. It can be computationally
expensive, but approximate algorithms have been proposed.

Outlier detection and robust procedures have represented an important area of research,
investigated extensively in the statistical literature. Chapter 1 of Hampel et al. (1986) gives
a good introduction and background of robust procedures. Robust estimates of mean and
covariance matrices are reviewed by Rocke and Woodruff (1997); further procedures for the
detection of outliers in the presence of appreciable masking are given by Atkinson and Mulira
(1993). Krusińska (1988) reviews robust methods within the context of discrimination.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

MIXED CONTINUOUS AND DISCRETE VARIABLES 587

13.4 Mixed continuous and discrete variables

In many areas of pattern recognition involving multivariate data, the variables may be of mixed
type, comprising perhaps continuous, ordered categorical, unordered categorical and binary
variables. If the discrete variable is ordered, and it is important to retain this information, then
the simplest approach is to treat the variable as continuous and to use a technique developed
for multivariate continuous data. Alternatively, a categorical variable with k states can be
coded as k − 1 dummy binary variables. All take the value zero except the jth if the observed
categorical variable is in the jth state, j = 1, . . . , k − 1. All are zero if the variable is in the kth
state. This allows some of the techniques developed for mixtures of binary and continuous
variables to be used (with some modifications, since not all combinations of binary variables
are observable).

The above approaches attempt to distort the data to fit the model. Alternatively, we may
apply existing methods to mixed variable data with little or no modification. These include

1. nearest-neighbour methods (Chapter 4) with a suitable choice of metric;

2. independence models where each univariate density estimate is chosen to be appropriate
for the particular variable (Chapter 4);

3. kernel methods using product kernels, where the choice of kernel depends on the
variable type (Chapter 4);

4. dependence tree models and Bayesian networks where the conditional densities are
modelled appropriately (Chapter 4);

5. recursive partitioning methods such as CART and MARS (Chapter 7);

6. rule induction approaches (Chapter 7).

The location model, introduced by Olkin and Tate (1961), was developed specifically with
mixed variables in mind and applied to a two-class discriminant analysis problem by Chang
and Afifi (1974). Consider the problem of classifying a vector v which may be partitioned
into two parts, v = (zT, yT)T , where z is a vector of r binary variables and y is a vector of p
continuous variables. The random vector z gives rise to 2r different cells. We may order the
cells such that, given a measurement z, the cell number of z, cell(z), is given by

cell(z) = 1 +
r∑

i=1

zi2
i−1

The location model assumes a multivariate normal distribution for y, whose mean depends on
the state of z and the class from which v is drawn. It also assumes that the covariance matrix
is the same for both classes and for all states. Thus, given a measurement (z, y) such that
m = cell(z), the probability density for class ωj (j = 1, 2) is

p(y|z) = 1

(2π)p/2|�|exp

{
−1

2

(
y − mm

j

)T
�−1

(
y − mm

j

)}

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

588 ADDITIONAL TOPICS

Thus, the means of the distribution depend on z and the class. Then, if the probability of
observing z in cell m for class ωj is pjm, then v may be assigned to ω1 if

(
mm

1 − mm
2

)T
�−1

(
y − 1

2

(
mm

1 + mm
2

)) ≥ log(p2m/p1m)

The maximum likelihood estimates for the parameters pjm, mm
j and � are

p̂jm = njm

n

m̂m
j =

n∑
i=1

νim j
1

njm
yi

� = 1

n

2∑
j=1

k∑
m=1

n∑
i=1

νim j
(
yi − m̂m

j

) (
yi − m̂m

j

)T

where vimj = 1 if yi is in cell m of class ωj, 0 otherwise; and njm is the number of observations
in cell m of class ωj equal to

∑
iν imj.

If the sample size n is very large relative to the number of cells, then these naı̈ve esti-
mates may be sufficient. However, in practice there will be too many parameters to estimate.
Some of the cells may not be populated giving poor estimates for p̂ jm and no estimates
for m̂m

j . There have been several developments of the basic approach. For a review see
Krzanowski (1993).

13.5 Structural risk minimisation and the
Vapnik-Chervonenkis dimension

13.5.1 Bounds on the expected risk

There are general bounds in statistical learning theory (Vapnik, 1998) that govern the rela-
tionship between the capacity of a learning system and its performance and thus can provide
some guidance in the design of such systems.

We assume that we have a training set of independently and identically distributed samples,
{(xi, yi), i = 1, . . . , n} drawn from a distribution p(x, y). We wish to learn a mapping x → y
and we have a set of possible functions (classifiers) indexed by parameters α, namely f (x;α).
A particular choice for α results in a particular classifier or trained machine. We would like
to choose α to minimise the classification error. We assume a two-class problem. If yi takes
the value +1 for patterns in class ω1 and −1 for patterns in class ω2, then the expected value
of the test error (the true error – see Chapter 9) is

R(α) = 1

2

∫
|y − f (x;α)| p(x, y)dxdy

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

STRUCTURAL RISK MINIMISATION AND THE VC DIMENSION 589

This is sometimes termed the expected risk (note that differs from the definition of risk in
Chapter 1). This is not known in general, but we may estimate it based on a training set, to
give the empirical risk,

RK (α) = 1

2n

n∑
i=1

|yi − f (xi;α)|

For any value of η, 0 ≤ η ≤ 1, then the following bound of statistical learning theory holds
(Vapnik, 1998)

R(α) ≤ RK +
√

h(log(2n/h) + 1) − log(η/4)

n
(13.2)

with probability 1 − η, where h is a non-negative integer called the Vapnik–Chervonenkis
(VC) dimension. The first term on the right-hand side of the inequality above depends on the
particular function f chosen by the training procedure. The second term, the VC confidence,
depends on the class of functions.

13.5.2 The VC dimension

The VC dimension is a property of the set of functions f (x;α). If a given set of m points can
be labelled in all possible 2m ways using the functions f (x;α), then the set of points is said
to be shattered by the set of functions. That is, for any labelling of the set of points, there is a
function f (x;α) that correctly classifies the patterns.

The VC dimension of a set of functions is defined as the maximum number of training
points that can be shattered. Note that if the VC dimension is m, then there is at least one set
of m points that can be shattered, but not necessarily every set of m points can be shattered.
For example, if f (x;α) is the set of all lines in the plane, then every set of two points can be
shattered, and most sets of three (Figure 13.2), but no sets of four points can be shattered by
a linear model. Thus the VC dimension is 3. More generally, the VC dimension of a set of
hyperplanes in r-dimensional Euclidean space is r + 1.

The inequality (13.2) shows that the risk may be controlled through a balance of optimising
a fit to the data and the capacity of functions used in learning. In practice, we would consider
sets of models, f , with each set of a fixed VC dimension. For each set, minimise the empirical

Figure 13.2 Shattering three points in two dimensions. There are 23 = 8 possible labellings.

P1: QTA/XYZ P2: ABC

JWST102-c13 JWST102-Webb August 19, 2011 22:23 Printer Name: Yet to Come

590 ADDITIONAL TOPICS

risk and choose the model over all sets for which the sum of the empirical risk and VC
confidence is a minimum. However, the inequality (13.2) is only a guide. There may be
models with equal empirical risk but with different VC dimensions. The one with higher VC
dimension does not necessarily have poorer performance. A nearest-neighbour classifier has
zero empirical risk (any labelling of a set of points will be correctly classified) and infinite
VC dimension.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

References

S. Abe. Support Vector Machines for Pattern Classification. Springer, second edition, 2010.

T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and Y. Saeys. Robust biomarker identification for
cancer diagnosis with ensemble feature selection methods. Bioinformatics, 26(3):392–398, 2010.

I.S. Abramson. On bandwidth variation in kernel estimates – a square root law. The Annals of Statistics,
10:1217–1223, 1982.

Y.S. Abu-Mostafa, A.F. Atiya, M. Magdon-Ismail, and H. White, editors. IEEE Transactions on Neural
Networks, 12(4): 2001. Special issue on ‘Neural Networks in Financial Engineering’.

B. Adamcsek, G. Palla, I.J. Farkas, I. Derényi, and T. Vicsek. CFinder: locating cliques and overlapping
modules in biological networks. Bioinformatics, 22(8):1021–1023, 2006.

N.M. Adams and D.J. Hand. Comparing classifiers when the misallocation costs are uncertain. Pattern
Recognition, 32:1139–1147, 1999.

N.M. Adams and D.J. Hand. Improving the practice of classifier performance assessment. Neural
Computation, 12:305–311, 2000.

W. Adler and B. Lausen. Bootstrap estimated true and false positive rates and ROC curves. Computational
Statistics and Data Analysis, 53:718–729, 2009.

S. Aeberhard, D. Coomans, and O. de Vel. Improvements to the classification performance of RDA.
Chemometrics, 7:99–115, 1993.

S. Aeberhard, D. Coomans, and O. de Vel. Comparative analysis of statistical pattern recognition
methods in high dimensional settings. Pattern Recognition, 27(8):1065–1077, 1994.

A. Agresti. Categorical Data Analysis. Wiley Series in Probability and Mathematical Statistics. John
Wiley & Sons, Ltd, 1990.

F.K. Ahmad, N. Md. Norwawi, S. Denis and N.H. Othman. A review of feature selection techniques via
gene expression profiles – in International Symposium on Information Technology, pages 1–7, 2008.

J. Aitchison, J.D.F. Habbema, and J.W. Kay. A critical comparison of two methods of statistical dis-
crimination. Applied Statistics, 26:15–25, 1977.

H. Akaike. Information theory and an extension of the maximum likelihood principle. In B.N. Petrov
and B.F. Csaki, editors, Second International Symposium on Information Theory, pages 267–281.
Academiai Kiado, 1973.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19:716–723, 1974.

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

592 REFERENCES

H. Akaike. On entropy maximisation principle. In P.R. Krishnaiah, editor, Proceedings of the Symposium
on Applications of Statistics, pages 27–47. North Holland, 1977.

H. Akaike. Likelihood of a model and information criteria. Journal of Econometrics, 16:3–14, 1981.

H. Akaike. Prediction and entropy. In A.C. Atkinson and S.E. Fienberg, editors, A Celebration of
Statistics, pages 1–24. Springer-Verlag, 1985.

M. Al-Alaoui. A new weighted generalized inverse algorithm for pattern recognition. IEEE Transactions
on Computers, 26(10):1009–1017, 1977.

M. Aladjem. Parametric and nonparametric linear mappings of multidimensional data. Pattern Recog-
nition, 24(6):543–553, 1991.

M. Aladjem and I. Dinstein. Linear mappings of local data structures. Pattern Recognition Letters,
13:153–159, 1992.

A. Albert and E. Lesaffre. Multiple group logistic discrimination. Computers and Mathematics with
Applications, 12A(2):209–224, 1986.

J. Albert. Bayesian Computation with R. Springer, 2009.

R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Review of Modern Physics,
74(1):47–97, 2002.

C. Aliferis, I. Tsamardinos, and A. Statnikov. Large-scale feature selection using Markov blanket
induction for the prediction of protein-drug binding. Technical Report DSL TR-02-06, Department
of Biomedical Informatics, Vanderbilt University, Nashville, 2002.

M.K.S. Alsmadi, K.B. Omar, and S.A. Noah. Back propagation algorithm: the best algorithm among the
multi-layer perceptron algorithm. IJCSNS International Journal of Computer Science and Network
Security, 9(4):378–383, 2009.

M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

U. Anders and O. Korn. Model selection in neural networks. Neural Networks, 12:309–323, 1999.

J.A. Anderson. Diagnosis by logistic discriminant function: further practical problems and results.
Applied Statistics, 23:397–404, 1974.

J.A. Anderson. Logistic discrimination. In P.R. Krishnaiah and L.N. Kanal, editors, Handbook of
Statistics, volume 2, pages 169–191. North Holland, 1982.

J.J. Anderson. Normal mixtures and the number of clusters problem. Computational Statistics Quarterly,
2:3–14, 1985.

H.C. Andrews. Introduction to Mathematical Techniques in Pattern Recognition. Wiley Interscience,
1972.

C. Andrieu, N. De Freitas, and Doucet A. Robust full Bayesian learning for radial basis networks. Neural
Computation, 13(10):2359–2407, 2001.

C. Andrieu and A. Doucet. Joint Bayesian model selection and estimation of noisy sinusoids via
reversible jump MCMC. IEEE Transactions on Signal Processing, 47(10):2667–2676, 1999.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society Series B, 72(3):269–342, 2010.

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18(4):343–373,
2008.

S.P. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan. An introduction to MCMC for machine learning.
Machine Learning, 50:5–43, 2003.

A. Annest, R.E. Bumgarner, A.E. Raftery, and K.Y. Yeung. Iterative Bayesian model averaging: a method
for the application of survival analysis to high-dimensional microarray data. BMC Bioinformatics,
10(1):72, 2009.

C. Apté, R. Sasisekharan, S. Seshadri, and S.M. Weiss. Case studies of high-dimensional classification.
Journal of Applied Intelligence, 4:269–281, 1994.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 593

M.S. Arulampalam, S. Maskell, Gordon N., and T. Clapp. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

T. Ashikaga and P.C. Chang. Robustness of Fisher’s linear discriminant function under two-component
mixed normal models. Journal of the American Statistical Association, 76:676–680, 1981.

A.C. Atkinson and H.-M. Mulira. The stalactite plot for the detection of multivariate outliers. Statistics
and Computing, 3:27–35, 1993.

L. Atlas, J. Connor, D. Park, M. El-Sharkawi, R. Marks, A. Lippman, R. Cole, and Y. Muthusamy.
A performance comparison of trained multilayer perceptrons and trained classification trees. In
Proceedings of the 1989 IEEE Conference on Systems, Man and Cybernetics, pages 915–920. IEEE,
1989.

R.S. Atlas and J.E. Overall. Comparative evaluation of two superior stopping rules for hierarchical
cluster analysis. Psychometrika, 59(4):581–591, 1994.

H. Attias. A variational Bayesian framework for graphical models. Advances in Neural Information
Processing Systems, 12:209–215, 2000.

G.A. Babich and O.I. Camps. Weighted Parzen windows for pattern classification. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(5):567–570, 1996.

F.R. Bach and M.I. Jordan. Learning spectral clustering, with application to speech segmentation.
Journal of Machine Learning Research, 7:1963–2001, 2006.

C. Bahlmann, B. Haasdonk, and H. Burkhardt. On-line handwriting recognition with support vector
machines – a kernel approach. In Proceedings of the 8th International Workshop on Frontiers in
Handwriting Recognition (IWFHR’02), pages 49–54. IEEE, 2002.

M. Bahrololum and M. Khaleghi. Anomaly intrusion detection system using Gaussian mixture model.
In Third International Conference on Convergence and Hybrid Information Technology, pages
1162–1167. IEEE, 2008.

F. Bajramovic, F. Mattern, N. Butko, and J. Denzler. A comparison of nearest neighbor search algorithms
for generic object recognition. In Proceedings of ACIVS 2006, pages 1186–1197. Springer–Verlag,
2006.

N. Balakrishnan and K. Subrahmaniam. Robustness to nonnormality of the linear discriminant function:
mixtures of normal distributions. Communications in Statistics – Theory and Methods, 14(2):465–478,
1985.

L. Bao, T. Gneiting, E.P. Grimit, P. Guttorp, and A.E. Raftery. Bias correction and Bayesian model aver-
aging for ensemble forecasts of surface wind direction. Monthly Weather Review, 138(5):1811–1821,
2010.

M. Barreno, A.A. Cárdenas, and J.D. Tygar. Optimal ROC curve for a combination of classifiers.
In Advances in Neural Information Processing Systems (NIPS), pages 57–64. The MIT Press,
2008.

A.R. Barron and R.L. Barron. Statistical learning networks: a unifying view. In E.J. Wegman, D.T.
Gantz, and J.J. Miller, editors, Symposium on the Interface: Statistics and Computing Science, pages
192–203. American Statistical Association, 1988.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: bagging, boosting
and variants. Machine Learning, 36:105–139, 1999.

C. Bavoux, G. Burneleau, and V. Bretagnolle. Gender determination in the Western marsh harrier
(Circus aeruginosus) using morphometrics and discriminant analysis. The Journal of Raptor Re-
search, 40(1):57–64, 2006.

M.J. Baxter. Standardisation and transformation in principal component analysis with applications to
archaeometry. Applied Statistics, 4(4):513–527, 1995.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

594 REFERENCES

M.J. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, The Gatsby
Computational Neuroscience Unit, University College London, 2003.

M.A. Beaumont, J.-M. Cornuet, J.M. Marin, and C.P. Robert. Adaptivity for ABC algorithms: the
ABC-PMC scheme. Biometrika, 96(4):983–990, 2009.

M.A. Beaumont, W. Zhang, and D.J. Balding. Approximate Bayesian computation in population genet-
ics. Genetics, 162:2025–2035, 2002.

R.J. Beckman and R.D. Cook. Outlier s. Technometrics, 25(2):119–163, 1983.

M.D. Bedworth, L. Bottou, J.S. Bridle, F. Fallside, L. Flynn, F. Fogelman, K.M. Ponting, and R.W.
Prager. Comparison of neural and conventional classifiers on a speech recognition problem. In IEE
International Conference on Artificial Neural Networks, pages 86–89. IEEE, 1989.

Y. Bengio, J.M. Buhmann, M. Embrechts, and J.M. Zurada, editors. IEEE Transactions on Neu-
ral Networks, 11(3): 2000. Special issue on ‘Neural Networks for Data Mining and Knowledge
Discovery’.

R. Benmokhtar and B. Huet. Classifier fusion: combination methods for semantic indexing in video
content. In Artificial Neural Networks – ICANN 2006, volume 4132 of Lecture Notes in Computer
Science, pages 65–74. Springer, 2006.

H. Bensmail and G. Celeux. Regularized Gaussian discriminant analysis through eigenvalue decompo-
sition. Journal of the American Statistical Association, 91:1743–1748, 1996.

S.S. Bentow. A Markov Chain Monte Carlo Method for Approximating 2-Way Contingency Tables with
Applications in the Stability Analysis of Ecological Ordination. PhD thesis, University of California,
Los Angeles, 1999.

A.F. Bergh, F.K. Soong, and L.R. Rabiner. Incorporation of temporal structure into a vector-quantization-
based preprocessor for speaker-independent, isolated-word recognition. AT&T Technical Journal,
64(5):1047–1063, 1985.

J.M. Bernardo and A.F.M. Smith. Bayesian Theory. John Wiley & Sons, Ltd, 1994.

V.J. Berrocal, A.E. Raftery, and T. Gneiting. Combining spatial statistical and ensemble information in
probabilistic weather forecasts. Monthly Weather Review, 135(4):1386–1402, 2007.

J. Besag. Markov chain Monte Carlo for statistical inference. Working Paper, Centre for Statistics and
the Social Sciences, University of Washington, USA, 2000.

J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, 1981.

J.C. Bezdek and S.K. Pal, editors. Fuzzy Models for Pattern Recognition. Methods that Search for
Structure in Data. IEEE Press, 1992.

N. Bhatia and Vandana. Survey of nearest neighbor techniques. International Journal of Computer
Science and Information Security, 8(2):302–305, 2010.

C.M. Bishop. Curvature-driven smoothing: a learning algorithm for feedforward networks. IEEE Trans-
actions on Neural Networks, 4(5):882–884, 1993.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

C.M. Bishop. Variational principal components. In Proceedings of the Ninth International Conference
on Artificial Neural Networks, ICANN’99, pages 505–514. IEEE, 1999.

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

C.M. Bishop, M. Svensén, and C.K.I. Williams. GTM: the generative topographic mapping. Neural
Computation, 10:215–234, 1998.

P. Bladon, P.S. Day, T. Hughes, and P. Stanley. High-level fusion using Bayesian networks: applications
in command and control. Information Fusion for Command Support, Meeting Proceedings RTO-MP-
IST-055, 2006.

J.L. Blue, G.T. Candela, P.J. Grother, R. Chellappa, and C.L. Wilson. Evaluation of pattern classifiers
for fingerprint and OCR applications. Pattern Recognition, 27(4):485–501, 1994.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 595

L. Bobrowski and J.C. Bezdek. c-means clustering with the l1 and l∞ norms. IEEE Transactions on
Systems, Man, and Cybernetics, 21(3):545–554, 1991.

H.H. Bock. On some significance tests in cluster analysis. Journal of Classification, 2:77–108, 1985.

H.H. Bock. Probabilistic aspects in cluster analysis. In O. Opitz, editor, Conceptual and Numerical
Analysis of Data, pages 12–44. Springer-Verlag, 1989.

G.J. Bonde. Kruskal’s non-metric multidimensional scaling – applied in the classification of bacteria.
In J. Gordesch and P. Naeve, editors, Proceedings in Computational Statistics, pages 443–449.
Physica-Verlag, 1976.

J.G. Booth and P. Hall. Monte Carlo approximation and the iterated bootstrap. Biometrika,
81(2):331–340, 1994.

P. Borini and R.C. Guimarães. Noninvasive classification of liver disease in asymptomatic and
oligosymptomatic male alcoholics. Brazilian Journal of Medical and Biological Research,
36:1367–1373, 2003.

Z.I. Botev, J.F. Grotowski, and D.P. Kroese. Kernel density estimation via diffusion. The Annals of
Statistics, 38(5):2916–2957, 2010.

C. Bouveyron, C. Brunet, and V. Vigneron. Classification of high-dimensional data for cervical cancer
detection. In M. Verleysen, editor, Proceedings of ESANN 2009, European Symposium on Artificial
Neural Networks – Advances in Computational Intelligence and Learning, pages 361–366, 2009.

A.W. Bowman. A comparative study of some kernel-based nonparametric density estimators. Journal
of Statistical Computation and Simulation, 21:313–327, 1985.

H. Bozdogan. Model selection and Akaike’s information criterion (AIC): the general theory and its
analytical extensions. Psychometrika, 52(3):345–370, 1987.

H. Bozdogan. Choosing the number of component clusters in the mixture-model using a new informa-
tional complexity criterion of the inverse-Fisher information matrix. In O. Optiz, B. Lausen, and R.
kia, editors, Information and Classification, pages 40–54. Springer-Verlag, 1992, 1993.

A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30(7):1145–1159, 1997.

J.N. Breckenridge. Replicating cluster analysis: method, consistency, and validity. Multivariate Behav-
ioral Research, 24(32):147–161, 1989.

L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman and J.H. Friedman. Discussion on article by Loh and Vanichsetakul: ‘Tree-structured
classification via generalized discriminant analysis’. Journal of the American Statistical Association,
83:715–727, 1988.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth
International Group, 1984.

L. Breiman, W. Meisel, and E. Purcell. Variable kernel estimates of multivariate densities. Technometrics,
19(2):135–144, 1977.

R.P. Brent. Fast training algorithms for multilayer neural nets. IEEE Transactions on Neural Networks,
2(3):346–354, 1991.

C. Brew and S. Schulte im Walde. Spectral clustering for German verbs. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 117–124. Association for
Computational Linguistics, 2002.

F.Z. Brill, D.E. Brown, and W.N. Martin. Fast genetic selection of features for neural network classifiers.
IEEE Transactions on Neural Networks, 3(2):324–328, 1992.

S.P. Brooks. Markov chain Monte Carlo method and its application. The Statistician, 7:69–100, 1998.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

596 REFERENCES

D.S. Broomhead and D. Lowe. Multi-variable functional interpolation and adaptive networks. Complex
Systems, 2(3):269–303, 1988.

D.E. Brown, V. Corruble, and C.L. Pittard. A comparison of decision tree classifiers with backpropa-
gation neural networks for multimodal classification problems. Pattern Recognition, 26(6):953–961,
1993.

M. Brown, H.G. Lewis, and S.R. Gunn. Linear spectral mixture models and support vector machines
for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2346–2360, 2000.

P.J. Brown. Measurement, Regression, and Calibration. Clarendon Press, 1993.

P.J. Brown, M. Vannucci, and T. Fearn. Bayes model averaging with selection of regressors. Journal of
the Royal Statistical Society Series B, 64(3): 519–536, 2002.

S.B. Bull and A. Donner. The efficiency of multinomial logistic regression compared with multiple
group discriminant analysis. Journal of the American Statistical Association, 82:1118–1121, 1987.

W.L. Buntine. Learning classification trees. Statistics and Computing, 2:63–73, 1992.

W.L. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Transactions
on Knowledge and Data Engineering, 8(2):195–210, 1996.

W.L. Buntine and A.S. Weigend. Bayesian back-propagation. Complex Systems, 5:603–643, 1991.

R. Burbidge, M. Trotter, B. Buxton, and S. Holden. Drug design by machine learning: support vector
machines for pharmaceutical data analysis. Computers and Chemistry, 26:5–14, 2001.

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowl-
edge Discovery, 2:121–167, 1998.

P.R. Burrell and B.O. Folarin. The impact of neural networks in finance. Neural Computing and
Applications, 6:193–200, 1997.

L.J. Buturović. Improving k-nearest neighbor density and error estimates. Pattern Recognition,
26(4):611–616, 1993.

R.B. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics,
3:1–27, 1974.

B. Cao, D. Zhan, and X. Wu. Application of SVM in financial research. In Proceedings of 2009
International Joint Conference on Computational Sciences and Optimization, pages 507–511. IEEE,
2009.

L. Cao and F.E.H. Tay. Financial forecasting using support vector machines. Neural Computing and
Applications, 10:184–192, 2001.

R. Cao, A. Cuevas, and W.G. Manteiga. A comparative study of several smoothing methods in density
estimation. Computational Statistics and Data Analysis, 17:153–176, 1994.

G. Casella and E.I. George. Explaining the Gibbs sampler. The American Statistician, 46(3):167–174,
1992.

G. Casella and C.P. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):81–94, 1996.

G.C. Cawley and N.L.C Talbot. Sparse Bayesian learning and the relevance multi-layer perceptron
network. In International Joint Conference on Neural Networks (IJCNN-2005), pages 1320–1324.
IEEE, 2005.

G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions.
Computational Statistics and Data Analysis, 14:315–332, 1992.

G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition,
28(5):781–793, 1995.

G. Celeux and A. Mkhadri. Discrete regularized discriminant analysis. Statistics and Computing,
2(3):143–151, 1992.

G. Celeux and G. Soromenho. An entropy criterion for assessing the number of clusters in a mixture
model. Journal of Classification, 13:195–212, 1996.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 597

N.N. C̆encov. Evaluation of an unknown distribution density from observations. Soviet Math.,
3:1559–1562, 1962.

S. Chainey, L. Tompson, and S. Uhlig. The utility of hotspot mapping for predicting spatial patterns of
crime. Security Journal, 21:4–28, 2008.

Z. Chair and P.R. Varshney. Optimal data fusion in multiple sensor detection systems. IEEE Transactions
on Aerospace and Electronic Systems, 22:98–101, 1986.

D. Chakrabarti and C. Faloutsos. Graph mining: laws, generators, and algorithms. ACM Computing
Surveys, 38(1): Article no. 2, 2006.

C.-W.J. Chan, C. Huang, and R. DeFries. Enhanced algorithm performance for land cover classification
from remotely sensed data using bagging and boosting. IEEE Transactions on Geoscience and Remote
Sensing, 39(3):693–695, 2001.

C.-Y. Chang. Dynamic programming as applied to feature subset selection in a pattern recognition
system. IEEE Transactions on Systems, Man and Cybernetics, 3(2):166–171, 1973.

C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

E.I. Chang and R.P. Lippmann. Using genetic algorithms to improve pattern classification performance.
In R.P. Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural Information Pro-
cessing Systems, volume 3, pages 797–803. Morgan Kaufmann, 1991.

E.I. Chang and R.P. Lippmann. A boundary hunting radial basis function classifier which allocates
centers constructively. In S.J. Hanson, J.D. Cowan, and C.L. Giles, editors, Advances in Neural
Information Processing Systems, volume 5, pages 139–146. Morgan Kaufmann, 1993.

P.C. Chang and A.A. Afifi. Classification based in dichotomous and continuous variables. Journal of the
American Statistical Association, 69:336–339, 1974.

C. Chatfield and A.J. Collins. Introduction to Multivariate Analysis. Chapman and Hall, 1980.

V. Chatzis, A.G. Borş, and I. Pitas. Multimodal decision-level fusion for person authentication. IEEE
Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 29(6):674–680,
1999.

R. Chellappa, K. Fukushima, A.K. Katsaggelos, S.-Y. Kung, Y. LeCun, N.M. Nasrabadi, and T. Poggio,
editors. IEEE Transactions on Image Processing, 7(8): 1998. Special issue on ‘Applications of
Artificial Neural Networks to Image Processing’.

R. Chellappa, C.L. Wilson, and S. Sirohey. Human and machine recognition of faces: a survey. Pro-
ceedings of the IEEE, 83(5):705–740, 1995.

C.H. Chen. Statistical Pattern Recognition. Hayden Book Co., 1973.

J. Chen, H. Huang, S. Tian, and Y. Qu. Feature selection for text classification with naı̈ve Bayes. Expert
Systems with Applications, 36:5432–5435, 2009.

J.S. Chen and E.K. Walton. Comparison of two target classification schemes. IEEE Transactions on
Aerospace and Electronic Systems, 22(1):15–22, 1986.

K. Chen, L. Xu, and H. Chi. Improved learning algorithms for mixture of experts in multiclass classifi-
cation. Neural Networks, 12:1229–1252, 1999.

L.-F. Chen, H.-Y.M. Liao, M.-T Ko, J.-C. Lin, and G.-J. Yu. A new LDA-based face recognition system
which can solve the small sample size problem. Pattern Recognition, 33:1713–1726, 2000.

M.-H. Chen, Q.-M. Shao, and J.G. Ibrahim. Monte Carlo Methods in Bayesian Computation. Springer
Series in Statistics. Springer, 2000.

S. Chen, E.S. Chng, and K. Alkadhimi. Regularised orthogonal least squares algorithm for constructing
radial basis function networks. International Journal of Control, 64(5):829–837, 1996.

S. Chen, C.F.N. Cowan, and P.M. Grant. Orthogonal least squares learning algorithm for radial basis
function networks. IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

598 REFERENCES

S. Chen, P.M. Grant, and C.F.N. Cowan. Orthogonal least-squares algorithm for training multioutput
radial basis function networks. IEE Proceedings, Part F, 139(6):378–384, 1992.

S. Chen, S. Gunn, and C.J. Harris. Decision feedback equaliser design using support vector machines.
IEE Proceedings on Vision, Image and Signal Processing, 147(3):213–219, 2000.

T. Chen and H. Chen. Approximation capability to functions of several variables, nonlinear functionals,
and operators by radial basis function neural networks. IEEE Transactions on Neural Networks,
6(4):904–910, 1995.

T.-W. Chen, Y.-L. Chen, and S.Y. Chen. Fast image segmentation based on k-means clustering with
histograms in HSV color space. In IEEE 10th Workshop on Multimedia Signal Processing, pages
322–325. IEEE, 2008.

X. Chen, X. Liu, and Y. Jia. Discriminative structure selection method of Gaussian mixture models with
its application to handwritten digit recognition. Neurocomputing, 74:954–961, 2011.

B. Cheng and D.M. Titterington. Neural networks: a review from a statistical perspective (with discus-
sion). Statistical Science, 9(1):2–54, 1994.

Y.-Q. Cheng, Y.-M. Zhuang, and J.-Y. Yang. Optimal Fisher discriminant analysis using rank decompo-
sition. Pattern Recognition, 25(1):101–111, 1992.

M.R. Chernick, V.K. Murthy, and C.D. Nealy. Application of bootstrap and other resampling techniques:
evaluation of classifier performance. Pattern Recognition Letters, 3:167–178, 1985.

S. Chib and E. Greenberg. Understanding the Metropolis–Hastings algorithm. The American Statistician,
49(4):327–335, 1995.

Y.T. Chien and K.S. Fu. On the generalized Karhunen–Loève expansion. IEEE Transactions on Infor-
mation Theory, 13:518–520, 1967.

E.F. Chinganda and K. Subrahmaniam. Robustness of the linear discriminant function to nonnormality:
Johnson’s system. Journal of Statistical Planning and Inference, 3:69–77, 1979.

S.C. Chiou and R.S. Tsay. A copula-based approach to option pricing and risk assessment. Journal of
Data Science, 6:273–301, 2008.

P.A. Chou. Optimal partitioning for classification and regression trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(4):340–354, 1991.

C.K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory,
16(1):41–46, 1970.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14(3):462–467, 1968.

M.-Y. Chow, editor. IEEE Transactions on Industrial Electronics, 40(2): 1993. Special issue on ‘Appli-
cations of Intelligent Systems to Industrial Electronics’.

F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Mathematics.
Conference Board of the Mathematical Sciences, 1997.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261–283, 1989.

A. Clauset. Finding local community structure in networks. Physical Review E, 72(2):026132, 2005.

R.T. Clemen and T. Reilly. Correlations and copulas for decision and risk analysis. Management Science,
45:208–224, 1999.

H.T. Clifford and W. Stephenson. An Introduction to Numerical Classification. Academic Press, 1975.

W.W. Cohen. Fast effective rule induction. In Proceedings of the Twelth International Conference on
Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

P. Comon. Independent component analysis, a new concept? Signal Processing, 36:287–314, 1994.

A.G. Constantinides, S. Haykin, Y.H. Hu, J.-N. Hwang, S. Katagiri, S.-Y. Kung, and T.A. Poggio,
editors. IEEE Transactions on Signal Processing, 45(11): 1997. Special issue an ‘Neural Networks
for Signal Processing’.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 599

J.A. Conway, L.M.J. Brown, N.J. Veck, and R.A. Cordey. A model-based system for crop classification
from radar imagery. GEC Journal of Research, 9(1):46–54, 1991.

G.F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9:309–347, 1992.

K.D. Copsey and A.R. Webb. Bayesian approach to mixture models for discrimination. In F.J. Ferri,
J.M. Iñesta, A. Amin, and P. Pudil, editors, Advances in Pattern Recognition, volume 1876 of Lecture
Notes in Computer Science, pages 491–500. Springer, 2000.

K.D. Copsey and A.R. Webb. Bayesian networks for incorporation of contextual information in target
recognition systems. In T. Caelli, A. Amin, R.P.W. Duin, D. de Ridder, and M. Kamel, editors,
Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, pages
709–717. Springer, 2002.

A. Corduneanu and C. M. Bishop. Variational Bayesian model selection for mixture distributions. In
Proceedings of the 8th International Conference on Artificial Intelligence and Statistics, pages 27–34.
Morgan Kaufmann, 2001.

R.M. Cormack. A review of classification (with discussion). Journal of the Royal Statistical Society
Series A, 134:321–367, 1971.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.

P.C. Cosman, C. Tseng, R.M. Gray, R.A. Olshen, L.E. Moses, H.C. Davidson, C.J. Bergin, and E.A.
Riskin. Tree-structured vector quantization of CT chest scans: image quality and diagnostic accuracy.
IEEE Transactions on Medical Imaging, 12(4):727–739, 1993.

R. Courant and D. Hilbert. Methods of Mathematical Physics. John Wiley & Sons, Ltd, 1959.

T.M. Cover and P.E. Hart. Nearest neighbour pattern classification. IEEE Transactions on Information
Theory, 13:21–27, 1967.

R.G. Cowell, A.P. Dawid, T. Hutchinson, and D.J. Spiegelhalter. A Bayesian expert system for the
analysis of an adverse drug reaction. Artificial Intelligence in Medicine, 3:257–270, 1991.

M.K. Cowles and B.P. Carlin. Markov chain Monte Carlo convergence diagnostics: a comparative
review. Journal of the American Statistical Association, 91(434):883–904, 1996.

T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and Hall, 1994.

T.F. Cox and G. Ferry. Discriminant analysis using non-metric multidimensional scaling. Pattern Recog-
nition, 26(1):145–153, 1993.

T.F. Cox and K.F. Pearce. A robust logistic discrimination model. Statistics and Computing, 7:155–161,
1997.

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik,
31:317–403, 1979.

S.L. Crawford. Extensions to the CART algorithm. International Journal of Man Machine Studies,
31:197–217, 1989.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University
Press, 2000.

R.M. Crownover. A least squares approach to linear discriminant analysis. SIAM Journal on Scientific
and Statistical Computing, 12(3):595–606, 1991.

W.R. Crum. Spectral clustering and label fusion for 3D tissue classification: Sensitivity and consistency
analysis. Annals of the British Machine Vision Association, 6:1–12, 2009.

S.P. Curram and J. Mingers. Neural networks, decision tree induction and discriminant analysis: an
empirical comparison. Journal of the Operational Research Society, 45(4):440–450, 1994.

X. Dai, T. Erkkilä, O. Yli-Harja, and H. Lähdesmäki. A joint finite mixture model for cluster-
ing genes from independent Gaussian and beta distributed data. BMC Bioinformatics, 10(1):165,
2009.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

600 REFERENCES

L.M. D’Andrea, G.L. Fisher, and T.C. Harrison. Cluster analysis of adult children of alcoholics. The
International Journal of Addictions, 29(5):565–582, 1994.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009.

Y. Darwish, T. Cserháti, and E. Forgács. Use of principal component analysis and cluster analysis
in quantitative structure-activity relationships: a comparative study. Chemometrics and Intelligent
Laboratory Systems, 24:169–176, 1994.

B.V. Dasarathy. NN concepts and techniques. an introductory survey. In B.V. Dasarathy, editor, Nearest
Neighbour Norms: NN Pattern Classification Techniques, pages 1–30. IEEE Computer Society Press,
1991.

B.V. Dasarathy. Minimal consistent set (MCS) identification for nearest neighbour decision systems
design. IEEE Transactions on Systems, Man, and Cybernetics, 24(3):511–517, 1994a.

B.V. Dasarathy. Decision Fusion. IEEE Computer Society Press, 1994b.

M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis, 1:131–156, 1997.

D.L. Davies and D. Bouldin. A cluster separation measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1:224–227, 1979.

A.C. Davison and P. Hall. On the bias and variability of bootstrap and cross-validation estimates of error
rate in discrimination problems. Biometrika, 79:279–284, 1992.

A.C. Davison, D.V. Hinkley, and E. Schechtman. Efficient bootstrap simulation. Biometrika,
73(3):555–556, 1986.

M. Davy, C. Doncarli, and J.-Y. Tourneret. Classification of chirp signals using hierarchical Bayesian
learning and MCMC methods. IEEE Transactions on Signal Processing, 50(2): 377–388, 2002.

B.M. Dawant and C. Garbay, editors. IEEE Transactions on Biomedical Engineering, 46(10): 1999.
Special topic section on ‘Biomedical Data Fusion’.

N.E. Day and D.F. Kerridge. A general maximum likelihood discriminant. Biometrics, 23:313–323,
1967.

D. Defays. An efficient algorithm for a complete link method. The Computer Journal, 20(4):364–366,
1977.

J.G. De Gooijer, B.K. Ray, and K. Horst. Forecasting exchange rates using TSMARS. Journal of
International Money and Finance, 17(3):513–534, 1998.

J. de Leeuw and W.J. Heiser. Convergence of correction matrix algorithms for multidimensional scaling.
In J.C. Lingoes, editor, Geometric Representations of Relational Data, pages 735–752. Mathesis
Press, 1977.

P. Dellaportas. Bayesian classification of neolithic tools. Applied Statistics, 47(2):279–297, 1998.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical
Society Series B, 68(3):411–436, 2006.

R.L. de Màntaras and J. Aguilar-Martı́n. Self-learning pattern classification using a sequential clustering
technique. Pattern Recognition, 18(3/4):271–277, 1985.

S. Demarta and A.J. McNeil. The t copula and related copulas. International Statistical Review,
73:111–129, 2005.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society Series B, 39:1–38, 1977.

D.G.T. Denison, B.K. Mallick, and A.F.M. Smith. A Bayesian CART algorithm. Biometrika,
85(2):363–377, 1998a.

D.G.T. Denison, B.K. Mallick, and A.F.M. Smith. Bayesian MARS. Statistics and Computing,
8:337–346, 1998b.

L. De Raedt, P. Frasconi, K. Kersting, and S.H. Muggleton, editors. Probabilistic Inductive Logic
Programming. Springer, 2008.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 601

T. Deselaers, G. Heigold, and H. Ney. Speech recognition with state-based nearest neighbour classifiers.
Interspeech 2007 Conference, Antwerp, Belgium, 2007.

De Vel, A. Anderson, M. Corney, and G. Mohay. Mining e-mail content for author identification
forensics. SIGMOD Record, 30(4):55–64, 2001.

P.A. Devijver. Relationships between statistical risks and the least-mean-square error criterion in pattern
recognition. In Proceedings of the First International Joint Conference on Pattern Recognition, pages
139–148. 1973.

P.A. Devijver and J. Kittler. Pattern Recognition, A Statistical Approach. Prentice-Hall, Inc., 1982.

L. Devroye. Non-uniform Random Variate Generation. Springer-Verlag, 1986.

L. Devroye and L. Györfi. Nonparametric Density Estimation. The L1 View. John Wiley & Sons, Ltd,
1985.

E. Diday and J.C. Simon. Clustering analysis. In K.S. Fu, editor, Digital Pattern Recognition, pages
47–94. Springer-Verlag, 1976.

X. Didelot, R.G. Everitt, A.M. Johansen, and D.J. Lawson. Likelihood-free estimation of model evidence.
Bayesian Analysis, 6:49–76, 2011.

J. Diederich. Authorship attribution with support vector machines. Applied Intelligence, Special Issue:
Neural Networks and Machine Learning for Natural Language Processing, 19(1-2):109–123, 2006.

T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms.
Neural Computation, 10:1895–1923, 1998.

P.J. Diggle and P. Hall. The selection of terms in an orthogonal series density estimator. Journal of the
American Statistical Association, 81:230–233, 1986.

T. Dillon, P. Arabshahi, and R.J. Marks, editors. IEEE Transactions on Neural Networks, volume 8(4).
1997. Special issue on ‘Everyday Applications of Neural Networks’.

W.R. Dillon and M. Goldstein. Multivariate Analysis Methods and Applications. John Wiley & Sons,
Ltd, 1984.

A. Djouadi and E. Bouktache. A fast algorithm for the nearest-neighbor classifier. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(3):277–282, 1997.

P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss.
Machine Learning, 29:103–130, 1997.

R.D. Dony and S. Haykin. Neural network approaches to image compression. Proceedings of the IEEE,
83(2):288–303, 1995.

G. Doppelhofer. Model averaging. In L. Blune and S. Durkauf, editors, The New Palgrave Dictionary
of Economics. Palgrave Macmillan, second edition, 2007.

M. Dorey and P. Joubert. Modelling copulas: an overview. The Staple Inn Actuarial Society, 2007.

A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, 2001.

D.C. Dracopoulos and P.L. Rosin, editors. Neural Computing and Applications, 7(3): 1998. Special
issue on ‘Machine Vision Using Neural Networks’.

K.C. Drake, Y. Kim, T.Y. Kim, and O.D. Johnson. Comparison of polynomial network and model-based
target recognition. In Proceedings of SPIE, volume 2333, pages 2–11. SPIE, 1994.

H. Drucker and Y. Le Cun. Improving generalization performance using double backpropagation. IEEE
Transactions on Neural Networks, 3(6):991–997, 1992.

R.C. Dubes. How many clusters are best? – an experiment. Pattern Recognition, 20(6):645–663, 1987.

A. Dubrawski. A framework for evaluating predictive capability of classifiers using receiver operating
characteristic (ROC) approach: a brief introduction. Technical Report, Auton Laboratory, Carnegie
Mellon University, 2004.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

602 REFERENCES

W. Duch. Filter methods. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction:
Foundations and Applications, pages 89–118. Springer, 2004.

J. Duchene and S. Leclercq. An optimal transformation for discriminant analysis and principal com-
ponent analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):978–983,
1988.

J. Duchon. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques
minces. RAIRO Analyse Numérique, 10(12):5–12, 1976.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, Ltd, second edition,
2001.

S.A. Dudani. The distance-weighted k-nearest-neighbour rule. IEEE Transactions on Systems, Man and
Cybernetics, 6(4):325–327, 1976.

D. Duffy, B. Yuhas, A. Jain, and A. Buja. Empirical comparisons of neural networks and statistical
methods for classification and regression. In B. Yuhas and N. Ansari, editors, Neural Networks in
Telecommunications, pages 325–349. Kluwer Academic, 1994.

R.P.W. Duin. On the choice of smoothing parameters for Parzen estimators of probability density
functions. IEEE Transactions on Computers, 25:1175–1179, 1976.

R.P.W. Duin. A note on comparing classifiers. Pattern Recognition Letters, 17:529–536, 1996.

J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated
clusters. Journal of Cybernetics, 3(3):32–57, 1974.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected
World. Cambridge University Press, 2010.

J.E. Eck, S. Chainey, J.G. Cameron, M. Leitner, and R.E. Wilson. Mapping crime: understanding hot
spots. US Department of Justice, National Institute of Justice Special Report, August 2005.

W.F. Eddy, A. Mockus, and S. Oue. Approximate single linkage cluster analysis of large data sets in
high-dimensional spaces. Computational Statistics and Data Analysis, 23:29–43, 1996.

B. Efron. Bootstrap methods: another look at the jackknife. Annals of Statistics, 7:1–26, 1979.

B. Efron. The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied
Mathematics, 1982.

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the
American Statistical Association, 78:316–331, 1983.

B. Efron. More efficient bootstrap computations. Journal of the American Statistical Association,
85:79–89, 1990.

B. Efron and R.J. Tibshirani. Bootstrap methods for standard errors, confidence intervals, and other
measures of statistical accuracy (with discussion). Statistical Science, 1:54–77, 1986.

L. Eklundh and A. Singh. A comparative analysis of standardised and unstandardised principal com-
ponents analysis in remote sensing. International Journal of Remote Sensing, 14(7):1359–1370,
1993.

A. Elgammal, R. Duraiswami, D. Harwood, and L.S. Davis. Background and foreground modeling
using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE,
90(7):1151–1163, 2002.

M. El-Telbany, M. Warda, and M. El-Borahy. Mining the classification rules for Egyptian rice diseases.
The International Arab Journal of Information Technology, 3(4):303–307, 2006.

J. Elzinga and D.W. Hearn. The minimum covering sphere problem. Management Science, 19(1):96–104,
1972.

P. Embrechts, F. Lindskog, and A. McNeil. Modelling dependence with copulas and applications
to risk management. Technical Report, Department of Mathematics ETHZ, Zurich, September
2001.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 603

G.G. Enas and S.C. Choi. Choice of the smoothing parameter and efficiency of k-nearest neighbor
classification. Computers and Mathematics with Applications, 12A(2):235–244, 1986.

P. Erdös and A. Rényi. On random graphs. I. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

P. Erdös and A. Rényi. On the evolution of random graphs. Publications of the Mathematical Institute
of the Hungarian Academy of Sciences, 5:17–61, 1960.

F. Esposito, D. Malerba, and G. Semeraro. A comparative analysis of methods for pruning de-
cision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):476–491,
1997.

B.S. Everitt. A Monte Carlo investigation of the likelihood ratio test for the number of components in a
mixture of normal distributions. Multivariate Behavioral Research, 16:171–180, 1981.

B.S. Everitt. A finite mixture model for the clustering of mixed-mode data. Statistics and Probability
Letters, 6:305–309, 1988.

B.S. Everitt and G. Dunn. Applied Multivariate Data Analysis. Edward Arnold, 1991.

B.S. Everitt and D.J. Hand. Finite Mixture Distributions. Chapman and Hall, 1981.

B.S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Edward Arnold, fourth edition, 2001.

B.S. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster Analysis. Wiley-Blackwell, fiifth edition, 2011.

B.S. Everitt and C. Merette. The clustering of mixed-mode data: a comparison of possible approaches.
Journal of Applied Statistics, 17:283–297, 1990.

R.G. Everitt and R.H. Glendinning. A statistical approach to the problem of restoring damaged and
contaminated images. Pattern Recognition, 42(1):115–125, 2009.

R.M. Everson and J.E. Fieldsend. Multi-class ROC analysis from a multi-objective optimisation per-
spective. Pattern Recognition Letters, 27(8):918–927, 2006.

J.A. Falconer, B.J. Naughton, D.D. Dunlop, E.J. Roth, D.C. Strasser, and J.M. Sinacore. Predicting
stroke in patient rehabilitation outcome using a classification tree approach. Archives of Physical
Medicine and Rehabilitation, 75:619–625, 1994.

T.H. Falk, H. Shatkay, and W.-Y. Chan. Breast cancer prognosis via Gaussian mixture regression. In
Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE 2006),
pages 987–990. IEEE, 2006.

R.-E. Fan, P.-H. Chen, and Lin C.-J. Working set selection using second order information for training
support vector machines. Journal of Machine Learning Research, 6:1889–1918, 2005.

A. Faragó and G. Lugosi. Strong universal consistency of neural network classifiers. IEEE Transactions
on Information Theory, 39(4):1146–1151, 1993.

I. Farkas, D. Ábel, G. Palla, and T. Vicsek. Weighted network modules. New Journal of Physics, 9(6):180,
2007.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

C. Feng and D. Michie. Machine learning of rules and trees. In D. Michie, D.J. Spiegelhalter, and C.C.
Taylor, editors, Machine Learning, Neural and Statistical Classification, pages 50–83. Ellis Horwood,
1994.

J. Fernández de Cañete and A.B. Bulsari, editors. Neural Computing and Applications, 9(3): 2000.
Special issue on ‘Neural Networks in Process Engineering’.

E.A. Ferrán, B. Pflugfelder, and P. Ferrara. Self-organized neural maps of human protein sequences.
Protein Science, 3:507–521, 1994.

L. Ferré. Selection of components in principal components analysis: a comparison of methods. Compu-
tational Statistics and Data Analysis, 19:669–682, 1995.

C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of performance measures
for classification. Pattern Recognition Letters, 30:27–38, 2009.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

604 REFERENCES

C. Ferri, J. Hernández-Orallo, and M.A. Salido. Volume under the ROC surface for multi-class problems.
In Machine Learning: ECML 2003, volume 2837 of Lecture Notes in Computer Science, pages
108–120. Springer, 2003.

F.J. Ferri, J.V. Albert, and E. Vidal. Considerations about sample-size sensitivity of a family of nearest-
neighbor rules. IEEE Transactions on Systems, Man and Cybernetics, 29(4):667–672, 1999.

F.J. Ferri and E. Vidal. Small sample size effects in the use of editing techniques. In Proceed-
ings of the 11th IAPR International Conference on Pattern Recognition, pages 607–610. IEEE,
1992a.

F.J. Ferri and E. Vidal. Colour image segmentation and labeling through multiedit-condensing. Pattern
Recognition Letters, 13:561–568, 1992b.

J.E. Fieldsend and R.M. Everson. Formulation and comparison of multi-class ROC surfaces. In Pro-
ceedings of the ICML 2005 Workshop on ROC Analysis in Machine Learning, pages 41–48. 2005.

G.M. Fitzmaurice, W.J. Krzanowski, and D.J. Hand. A Monte Carlo study of the 632 bootstrap estimator
of error rate. Journal of Classification, 8:239–250, 1991.

P.A. Flach and S. Wu. Repairing concavities in ROC curves. In Proceedings of the 19th International
Joint Conference on Artificial intelligence, pages 702–707. Morgan Kaufmann, 2005.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Ltd, 1988.

B. Flury. A hierarchy of relationships between covariance matrices. In A.K. Gupta, editor, Advances in
Multivariate Analysis. D. Reidel Publishing Co., 1987.

B. Flury. Common Principal Components and Related Multivariate Models. John Wiley & Sons, Ltd,
1988.

D.H. Foley and J.W. Sammon. An optimal set of discriminant vectors. IEEE Transactions on Computers,
24(3):281–289, 1975.

G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of
Machine Learning Research, 3:1289–1305, 2003.

S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010.

C. Fraley, A.E. Raftery, and T. Gneiting. Calibrating multimodal forecast ensembles with exchangeable
and missing members using Bayesian model averaging. Monthly Weather Review, 138(1):190–202,
2010.

C. Fraley, A.E. Raftery, T. Gneiting, and J.M. Sloughter. ensembleBMA: an R package for probabilistic
forecasting using ensembles and Bayesian model averaging. Technical Report 516R, Department of
Statistics, University of Washington, 2009.

E.W. Frees and E.A. Valdez. Understanding relationships using copulas. North American Actuarial
Journal, 2(1):1–25, 1998.

S. French and J.Q. Smith. The Practice of Bayesian Analysis. Arnold, 1997.

Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings of the 13th
International Conference on Machine Learning, pages 256–285. Morgan Kaufman, 1996.

Y. Freund and R. Schapire. A short introduction to boosting. Journal of the Japanese Society for Artificial
Intelligence, 14(5):771–780, 1999.

M.A. Friedl, C.E. Brodley, and A.H. Strahler. Maximising land cover classification accuracies produced
by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote
Sensing, 37(2):969–977, 1999.

J.H. Friedman. Exploratory projection pursuit. Journal of the American Statistical Association,
82:249–266, 1987.

J.H. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association,
84:165–175, 1989.

J.H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19(1):1–141, 1991.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 605

J.H. Friedman. Estimating functions of mixed ordinal and categorical variables using adaptive splines.
In S. Morgenthaler, E.M.D. Ronchetti, and W.A. Stahel, editors, New Directions in Statistical Data
Analysis and Robustness, pages 73–113. Birkhäuser-Verlag, 1993.

J.H. Friedman. Flexible metric nearest neighbor classification. Report, Department of Statistics, Stanford
University, CA, 1994.

J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

J.H. Friedman, T.J. Hastie, and R.J. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of Statistics, 28(2): 337–407, 1998.

J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American Statistical Asso-
ciation, 76:817–823, 1981.

J.H. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit density estimation. Journal of the
American Statistical Association, 79:599–608, 1984.

J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE
Transactions on Computers, 23(9):881–889, 1974.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning,
29:131–163, 1997.

N. Friedman and D. Koller. Being Bayesian about Bayesian network structure: a Bayesian approach to
structure discovery in Bayesian networks. Machine Learning, 50(1–2):95–125, 2003.

H. Fröhlich and A. Zell. Efficient parameter selection for support vector machines in classification and
regression via model-based global optimization. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN), pages 1431–1438. IEEE, 2005.

K.S. Fu. Sequential Methods in Pattern Recognition and Machine Learning. Academic Press, 1968.

S. Fu and M.C. Desmarais. Markov blanket based feature selection: a review of past decade. In S.I. Ao,
L. Gelman, D.W.L. Hukins, A. Hunter, and A.M. Korsunsky, editors, In Proceedings of the World
Congress on Engineering, volume 1, pages 302–308. Newswood Ltd, 2010.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, Inc., second edition,
1990.

K. Fukunaga and T.E. Flick. An optimal global nearest neighbour metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:314–318, 1984.

K. Fukunaga and R.R. Hayes. The reduced Parzen classifier. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(4):423–425, 1989a.

K. Fukunaga and R.R. Hayes. Estimation of classifier performance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(10):1087–1101, 1989b.

K. Fukunaga and D.M. Hummels. Bias of nearest neighbor error estimates. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 9(1):103–112, 1987a.

K. Fukunaga and D.M. Hummels. Bayes error estimation using Parzen and k-nn procedures. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 9(5):634–643, 1987b.

K. Fukunaga and D.M. Hummels. Leave-one-out procedures for nonparametric error estimates. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(4):421–423, 1989.

K. Fukunaga and D.L. Kessell. Estimation of classification error. IEEE Transactions on Computers,
20:1521–1527, 1971.

K. Fukunaga and P.M. Narendra. A branch and bound algorithm for computing k-nearest neighbors.
IEEE Transactions on Computers, 24(7):750–753, 1975.

T.S. Furey, N. Vristianini, N. Duffy, D.W. Bednarski, M. Schummer, and D. Haussler. Support vector
machine classification and validation of cancer tissue samples using microarray expression data.
Bioinformatics, 16(10):906–914, 2000.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

606 REFERENCES

S. Furui. Recent advances in speaker recognition. Pattern Recognition Letters, 18:859–872, 1997.

D. Gamerman and H.F. Lopes. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Infer-
ence. Texts in Statistical Science. Chapman and Hall/CRC, second edition, 2006.

S. Ganeshanandam and W.J. Krzanowski. On selecting variables and assessing their performance in
linear discriminant analysis. Australian Journal of Statistics, 31(3):433–447, 1989.

I. Gath and A.B. Geva. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(7):773–781, 1989.

B. Gautam, P. Katara, S. Singh, and R. Farmer. Drug target identification using gene expression microar-
ray data of Toxoplasma gondii. International Journal of Biometrics and Bioinformatics, 4(3):113–124,
2010.

S. Geisser. Posterior odds for multivariate normal classifications. Journal of the Royal Statistical Society
Series B, 26:69–76, 1964.

A.E. Gelfand. Gibbs sampling. Journal of the American Statistical Association, 95:1300–1304, 2000.

A.E. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating marginal densities. Journal
of the American Statistical Association, 85:398–409, 1990.

S.B. Gelfand and E.J. Delp. On tree structured classifiers. In I.K. Sethi and A.K. Jain, editors, Artifi-
cial Neural Networks and Statistical Pattern Recognition, pages 51–70. North Holland Publishing
Company, 1991.

A. Gelman. Implementing and monitoring convergence. In W.R. Gilks, S. Richardson, and D.J. Spiegel-
halter, editors, Markov Chain Monte Carlo in Practice, pages 131–143. Chapman and Hall, 1996.

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC,
second edition, 2004.

A. Gersho and R.M. Gray. Vector Quantization and Signal Compression. Kluwer Academic, 1992.

L. Getoor and C.P. Diehl. Link mining: a survey. SIGKDD Explorations Newsletter, 7(2):3–12, 2005.

L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. The MIT Press, 2007.

J. Geweke. Bayesian inference in econometric models using Monte Carlo integration. Econometrica,
57(6):1317–1339, 1989.

Z. Ghahramani and M.J. Beal. Variational inference for Bayesian mixtures of factors analysers. Advances
in Neural Information Processing Systems, 12:449–455, 1999.

Z. Ghahramani and H.-C. Kim. Bayesian model combination. Technical Report, Gatsby Computational
Neuroscience Unit, University College London, 2003.

F. Giacinto, G. Roli and L. Bruzzone. Combination of neural and statistical algorithms for supervised
classification of remote-sensing images. Pattern Recognition Letters, 21:385–397, 2000.

J.M. Gibbons, G.M. Cox, A.T.A. Wood, J. Craigon, S.J. Ramider, D. Tarsikono, and N.M.T. Crout.
Applying (Baysian) model averaging to mechanistic models: an example and comparison of methods.
Environmental Modelling and Software, 23(8):973–985, 2008.

A. Gifi. Nonlinear Multivariate Analysis. John Wiley & Sons, Ltd, 1990.

W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice.
Chapman and Hall, 1996.

F. Gini. Optimal multiple level decision fusion with distributed sensors. IEEE Transaction on Aerospace
and Electronic Systems, 33(3):1037–1041, 1997.

M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceedings
of the National Academy of Sciences of the United States of America, 99(12):7821–7826, 2002.

G. Glonek, T. Staniford, M. Rumsewicz, O. Mazonka, J. McMahon, D. Fletcher, and M. Jokic. Range
safety application of kernel density estimation. Technical Report Defence Science and Technology
Organisation, Australia, DSTO-TR-2292, 2010.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 607

F. Glover. Tabu search – Part I. ORSA Journal on Computing, 1(3):190–206, 1989.

F. Glover. Tabu search – Part II. ORSA Journal on Computing, 2(1):4–32, 1990.

D.E. Goldberg. Generic Algorithms in Search, Optimization and Machine Learning. Addison Wesley,
1989.

G.H. Golub, M. Heath, and G. Wahba. Generalised cross-validation as a method of choosing a good
ridge parameter. Technometrics, 21:215–223, 1979.

R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson Education, third edition, 2008.

R.M. Goodman and P. Smyth. Decision tree design using information theory. Knowledge Acquisition,
2:1–19, 1990.

A.D. Gordon. Clustering algorithms and cluster validity. In P. Dirschedl and R. Ostermann, editors,
Computational Statistics, pages 497–512. Physica-Verlag, 1994.

A.D. Gordon. Null models in cluster validation. In W. Gaul and D. Pfeifer, editors, From Data to
Knowledge: Theoretical and Practical Aspects of Classification, Data Analysis and Knowledge
Organization, pages 32–44. Springer-Verlag, 1996a.

A.D. Gordon. A survey of constrained classification. Computational Statistics and Data Analysis,
21:17–29, 1996b.

A.D. Gordon. Cluster validation. In C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock, and
Y. Baba, editors, Data Science, Classification, and Related Methods, pages 22–39. Springer-Verlag,
1998.

A.D. Gordon. Classification. Chapman and Hall, second edition, 1999.

A.D. Gordon and J.T. Henderson. An algorithm for Euclidean sum of squares classification. Biometrics,
33:355–362, 1977.

N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings-F, 140(2):107–113, 1993.

P.J. Green. Reversible jump MCMC computation and Bayesian model determination. Biometrika,
82:711–732, 1995.

P.J. Green and B.W. Silverman. Nonlinear Regression and Generalized Linear Models. A Roughness
Penalty Approach. Chapman and Hall, 1994.

T. Greene and W. Rayens. Partially pooled covariance estimation in discriminant analysis. Communica-
tions in Statistics, 18(10):3679–3702, 1989.

A. Grelaud, C.P. Robert, J.-M. Marin, F. Rodolphe, and J.-F. Taly. ABC likelihood-free methods for
model choice in Gibbs random fields. Bayesian Analysis, 4(2):317–336, 2009.

P.D. Grünwald, editor. The Minimum Description Length Principle. The MIT Press, 2007.

A. Guénoche, P. Hansen, and B. Jaumard. Efficient algorithms for divisive hierarchical clustering with
the diameter criterion. Journal of Classification, 8:5–30, 1991.

Y. Guo, T. Hastie, and R. Tibshirani. Regularized discriminant analysis and its application in microarrays.
Biostatistics, 8(1):86–100, 2007.

I. Guyon. Practical feature selection: from correlation to causality. In F. Fogelman-Soulié, D. Perrotta,
J. Pislorski, and R. Steinberger, editors, Mining Massive Data Sets for Security, pages 27–43. IOS
Press, 2008.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction. Foundations and Applica-
tions. Springer, 2006.

I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives good error rate estimates?
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):52–64, 1998.

I. Guyon and D.G. Stork. Linear discriminant and support vector classifiers. In A. Smola, P. Bartlett, B.
Schölkopf, and C. Schuurmans, editors, Large Margin Classifiers, pages 147–169. The MIT Press,
1999.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

608 REFERENCES

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support
vector machines. Machine Learning, 46:389–422, 2002.

Z. Haikun, W. Liguang, and Z. Weican. Kernel density estimation applied to tropical cyclones genesis
in Northwestern Pacific. 2009 International Conference on Environmental Science and Information
Application Technology, 2009.

K.O. Hajian-Tilaki, J.A. Hanley, L. Joseph, and J.-P. Collett. A comparison of parametric and non-
parametric approaches to ROC analysis of quantitative diagnostic tests. Medical Decision Making,
17(1):94–102, 1997a.

K.O. Hajian-Tilaki, J.A. Hanley, L. Joseph, and J.-P. Collett. Extension of receiver operating charac-
teristic analysis to data concerning multiple signal detection. Academic Radiololy, 4(3):222–229,
1997b.

U. Halici and G. Ongun. Fingerprint classification through self-organising feature maps modified to
treat uncertainties. Proceedings of the IEEE, 84(10):1497–5112, 1996.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. Journal of Intelligent
Information Systems, 17(2/3):107–145, 2001.

P. Hall. The Bootstrap and Edgeworth Expansion. Springer-Verlag, 1992.

P. Hall, T.-C. Hu, and J.S. Marron. Improved variable window kernel estimates of probability densities.
Annals of Statistics, 23(1):1–10, 1995.

Y. Hamamoto, Y. Fujimoto, and S. Tomita. On the estimation of a covariance matrix in designing Parzen
classifiers. Pattern Recognition, 29(10):1751–1759, 1996.

Y. Hamamoto, T. Kanaoka, and S. Tomita. On a theoretical comparison between the orthonormal
discriminant vector method and discriminant analysis. Pattern Recognition, 26(12):1863–1867,
1993.

Y. Hamamoto, Y. Matsuura, T. Kanaoka, and S. Tomita. A note on the orthonormal discriminant vector
method for feature extraction. Pattern Recognition, 24(7):681–684, 1991.

Y. Hamamoto, S. Uchimura, Y. Matsuura, T. Kanaoka, and S. Tomita. Evaluation of the branch and
bound algorithm for feature selection. Pattern Recognition Letters, 11:453–456, 1990.

Y. Hamamoto, S. Uchimura, and S. Tomita. A bootstrap technique for nearest neighbor classifier design.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):73–79, 1997.

F.R. Hampel, E.M. Ronchetti, P.J. Rousseuw, and W.A. Stahel. Robust Statistics. The Approach Based
on Influence Functions. John Wiley & Sons, Ltd, 1986.

E.-H. Han, G. Karypis, and V. Kumar. Text categorisation using weight adjusted k-nearest neighbor
classification. In Advances in Knowledge Discovery and Data Mining, volume 2035 of Lecture Notes
in Computer Science, pages 53–65. Springer, 2001.

J. Han and M. Kamber. Data Mining. Concepts and Techniques. Morgan Kaufmann, second edition,
2006.

L. Han, Y. Wang, and S.H. Bryant. Developing and validating predictive decision tree models from
mining chemical structure fingerprints and high-throughput screening data in pubchem. BMC Bioin-
formatics, 9(1):401, 2008.

D.J. Hand. Discrimination and Classification. John Wiley & Sons, Ltd, 1981a.

D.J. Hand. Branch and bound in statistical data analysis. The Statistician, 30:1–13, 1981b.

D.J. Hand. Kernel Discriminant Analysis. Research Studies Press, Herts, UK, 1982.

D.J. Hand. Recent advances in error rate estimation. Pattern Recognition Letters, 4:335–346, 1986b.

D.J. Hand. Statistical methods in diagnosis. Statistical Methods in Medical Research, 1(1):49–67, 1992.

D.J. Hard. Assessing classification rules. Journal of Applied Statistics, 21(3): 3–16, 1994.

D.J. Hand. Construction and Assessment of Classification Rules. John Wiley & Sons, Ltd, 1997.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 609

D.J. Hand. Classifier technology and the illusion of progress (with discussion). Statistical Science,
21(1):1–29, 2006.

D.J. Hand, N.M. Adams, and M.G. Kelly. Multiple classifier systems based on interpretable linear
classifiers. In J. Kittler and F. Roli, editors, Proceedings of the 2001 Workshop on Multiple Classifiers
Systems, pages 136–147. Springer-Verlag, 2001.

D.J. Hand and B.G. Batchelor. Experiments on the edited condensed nearest neighbour rule. Information
Sciences, 14:171–180, 1978.

D.J. Hand and R.J. Till. A simple generalisation of the area under the ROC curve for multiple class
classification problems. Machine Learning, 45:171–186, 2001.

D.J. Hand and K. Yu. Idiot’s Bayes – not so stupid after all? International Statistical Review,
69(3):385–398, 2001.

P.L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12:993–1001, 1990.

L.S. Harkins, J.M. Sirel, P.J. McKay, R.C. Wylie, D.M. Titterington, and R.M. Rowan. Discriminant
analysis of macrocytic red cells. Clinical and Laboratory Haematology, 16:225–234, 1994.

C.J. Harris, A. Bailey, and T.J. Dodd. Multi-sensor data fusion in defence and aerospace. The Aeronau-
tical Journal, 102:229–244, 1997.

J.D. Hart. On the choice of a truncation point in Fourier series density estimation. Journal of Statistical
Computation and Simulation, 21:95–116, 1985.

P.E. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14:515–516,
1968.

J.A. Hartigan. Clustering Algorithms. John Wiley & Sons, Ltd, 1975.

V. Hasselblad. Estimation of parameters for a mixture of normal distributions. Technometrics, 8:431–444,
1966.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularisation path for the support vector
machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbour classification. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(6):607–616, 1996.

T.J. Hastie, A. Buja, and R.J. Tibshirani. Penalized discriminant analysis. Annals of Statistics,
23(1):73–102, 1995.

T.J. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical Association,
84:502–516, 1989.

T.J. Hastie and R.J. Tibshirani. Discriminant analysis by Gaussian mixtures. Journal of the Royal
Statistical Society Series B, 58(1):155–176, 1996.

T.J. Hastie, R.J. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal scoring. Journal of
the American Statistical Association, 89:1255–1270, 1994.

T.J. Hastie, R.J. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2001.

R.J. Hathaway and J.C. Bezdek. Nerf c-means: non-Euclidean relational fuzzy clustering. Pattern
Recognition, 27(3):429–437, 1994.

S. Haykin. Neural Networks. A Comprehensive Foundation. Macmillan College Publishing Inc., 1994.

S. Haykin, W. Stehwien, C. Deng, P. Weber, and R. Mann. Classification of radar clutter in an air traffic
control environment. Proceedings of the IEEE, 79(6):742–772, 1991.

Z. He and W. Yu. Stable feature selection for biomarker discovery. Computational Biology and Chem-
istry, 34(4):215–225, 2010.

D. Heath, S. Kasif, and S. Salzberg. Induction of oblique decision trees. Journal of Artificial Intelligence
Research, 2(2):1–32, 1993.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

610 REFERENCES

D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: the combination of
knowledge and statistical data. Machine Learning, 20:197–243, 1995.

W.J. Heiser. A generalized majorization method for least squares multidimensional scaling of pseu-
dodistances that may be negative. Psychometrika, 56(1):7–27, 1991.

W.J. Heiser. Convergent computation by iterative majorization: theory and applications in multidi-
mensional data analysis. In W.J. Krzanowski, editor, Recent Advances in Descriptive Multivariate
Analysis, pages 157–189. Clarendon Press, 1994.

W.E. Henley and D.J. Hand. A k-nearest-neighbour classifier for assessing consumer credit risk. The
Statistician, 45(1):77–95, 1996.

W.H. Highleyman. The design and analysis of pattern recognition experiments. Bell System Technical
Journal, 41:723–744, 1962.

D.V. Hinkley. Bootstrap methods. Journal of the Royal Statistical Society Series B, 50(3):321–337,
1988.

N.L. Hjort and G. Claeskens. Frequentist model average estimators. Annals of the American Statistical
Society, 98(464):879–899, 2003.

N.L. Hjort and I.K. Glad. Nonparametric density estimation with a parametric start. Annals of Statistics,
23(3):882–904, 1995.

N.L. Hjort and M.C. Jones. Locally parametric nonparametric density estimation. Annals of Statistics,
24(4):1619–1647, 1996.

Y.-C. Ho and A.K. Agrawala. On pattern classification algorithms. Introduction and survey. Proceedings
of the IEEE, 56(12):2101–2114, 1968.

Y.-C. Ho and R.L. Kashyap. An algorithm for linear inequalities and its applications. IEEE Transactions
on Electronic Computers, 14(5):683–688, 1965.

J.A. Hoeting, D. Madigan, A.E. Raffery, and C.T. Volinsky. Bayesian model averaging: a tutorial.
Statistical Science, 14(4): 382–417, 1999.

J.M. Hofman and C.H. Wiggins. A Bayesian approach to network modularity. Physical Review Letters,
100(25):258701, 2008.

P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies of biochemical pathways. Bioinformatics,
19(4):532–538, 2003.

C.C. Holmes and D.G.T. Denison. Classification with Bayesian MARS. Machine Learning, 50:159–173,
2003.

C.C. Holmes and B.K. Mallick. Bayesian radial basis functions of variable dimension. Neural Compu-
tation, 10:1217–1233, 1998.

L. Holmström and P. Koistinen. Using additive noise in back-propagation training. IEEE Transactions
on Neural Networks, 3(1):24–38, 1992.

L. Holmström, P. Koistinen, J. Laaksonen, and E. Oja. Neural and statistical classifiers – taxonomy and
two case studies. IEEE Transactions on Neural Networks, 8(1):5–17, 1997.

L. Holmström and S.R. Sain. Multivariate discrimination methods for top quark analysis. Technometrics,
39(1):91–99, 1997.

Z.-Q. Hong and J.-Y. Yang. Optimal discriminant plane for a small number of samples and design
method of classifier on the plane. Pattern Recognition, 24(4):317–324, 1991.

K. Hornik. Some new results on neural network approximation. Neural Networks, 6:1069–1072, 1993.

D. Hosseinzadeh and S. Krishnan. Gaussian mixture modeling of keystroke patterns for biometric
applications. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and
Reviews, 38(6):816–826, 2008.

H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
Educational Psychology, 24:417–444, 1933.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 611

C.W. Hsu, C.C. Chang, and C.J. Lin. A practical guide to support vector classification. Technical Report,
Department of Computer Science, National Taiwan University, Taipei, 2003.

C.W. Hsu and C.J. Lin. A comparison on methods for multi-class support vector machines. IEEE
Transactions on Neural Networks, 13(2):415–425, 2002.

S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment overlap
measure: support vector machine approach. Journal of Molecular Biology, 308:397–407, 2001.

C.-L. Huang and C.-J. Wang. A GA-based feature selection and parameters optimization for support
vector machines. Expert Systems with Applications, 31(2):231–240, 2006.

Y.S. Huang and C.Y. Suen. A method of combining multiple experts for the recognition of unconstrained
handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1):90–94,
1995.

Z. Huang and D. Zeng. A link prediction approach to anomalous email detection. In IEEE International
Conference on Systems, Man and Cybernetics, pages 1131–1136. IEEE, 2006.

P.J. Huber. Projection pursuit (with discussion). Annals of Statistics, 13(2):435–452, 1985.

D.R. Hush, W. Horne, and J.M. Salas. Error surfaces for multilayer perceptrons. IEEE Transactions on
Systems, Man, and Cybernetics, 22(5):1151–1161, 1992.

F. Hussein, N. Khanna, and R. Ward. Genetic algorithms for feature selection and weighting, a review and
study. In Proceedings of the Sixth International Conference on Document Analysis and Recognition,
pages 1240–1244. IEEE, 2001.

J.-N. Hwang, S.-R. Lay, and A. Lippman. Nonparametric multivariate density estimation: a comparative
study. IEEE Transactions on Signal Processing, 42(10):2795–2810, 1994.

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural Net-
works, 13:411–430, 2000.

S. Ingrassia. A comparison between the simulated annealing and the EM algorithms in normal mixture
decompositions. Statistics and Computing, 2:203–211, 1992.

M.A. Ismail. Soft clustering: algorithms and validity of solutions. In M.M. Gupta and T. Yamakawa,
editors, Fuzzy Computing, pages 445–472. Elsevier, 1988.

S.G. Iyengar, P.K. Varshney, and T. Damarla. A parametric copula based framework for multimodal
signal processing. In Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’09), pages 1893–1896. IEEE, 2009.

A.J. Izenman. Recent developments in nonparametric density estimation. Journal of the American
Statistical Association, 86:205–223, 1991.

T.S. Jaakkola. Tutorial on variational approximation methods. Advanced Mean Field Methods: Theory
and Practice, The MIT Press, 2000.

D.A. Jackson. Stopping rules in principal components analysis: a comparison of heuristical and statistical
approaches. Ecology, 74(8):2204–2214, 1993.

J.E. Jackson. A User’s Guide to Principal Components. John Wiley & Sons, Ltd, 1991.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mixtures of local experts. Neural
Computation, 3:79–87, 1991.

A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.

A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: a review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

A.K. Jain and J.V. Moreau. Bootstrap technique in cluster analysis. Pattern Recognition, 20(5):547–568,
1987.

S. Jain and R.K. Jain. Discriminant analysis and its application to medical research. Biomedical Journal,
36(2):147–151, 1994.

M. Jambu and M.-O. Lebeaux. Cluster Analysis and Data Analysis. North Holland, 1983.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

612 REFERENCES

G.M. James and T.J. Hastie. Functional linear discriminant analysis for irregularly samples curves.
Journal of the Royal Statistical Society Series B, 63(3):533–550, 2001.

M. Jamshidian and R.I. Jennrich. Conjugate gradient acceleration of the EM algorithm. Journal of the
American Statistical Association, 88:221–228, 1993.

M. Jamshidian and R.I. Jennrich. Acceleration of the EM algorithm by using quasi-Newton methods.
Journal of the Royal Statistical Society Series B, 59(3):569–587, 1997.

N. Jardine and R. Sibson. Mathematical Taxonomy. John Wiley & Sons, Ltd, 1971.

A. Jasra and P. Del Moral. Sequential Monte Carlo methods for option pricing. Stochastic Analysis and
Applications, 29(2):292–316, 2011.

A. Jasra, D.A. Stephens, A. Doucet, and T. Tsagaris. Inference for Lévy driven stochastic volatility
models via adaptive sequential Monte Carlo. Scandinavian Journal of Statistics, 38(1):1–22, 2011.

F.V. Jensen. Introduction to Bayesian Networks. Springer, 1997.

F.V. Jensen. Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Sci-
ence. Springer, 2002.

B. Jeon and D.A. Landgrebe. Fast Parzen density estimation using clustering-based branch and bound.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):950–954, 1994.

J. Jiang. Image compression with neural networks – a survey. Signal Processing: Image Communication,
pages 737–760, 1999.

Q. Jiang and W. Zhang. An improved method for finding nearest neighbours. Pattern Recognition
Letters, 14:531–535, 1993.

R.-K. Jin, D.C. Parkes, and P.J. Wolfe. Analysis of bidding networks in eBay: aggregate preference
identification through community detection. In Proceedings of the AAAI Workshop on Plan, Activity
and Intent Recognition (PAIR), pages 66–73. 2007.

T. Joachims. Text categorization with support vector machines: Learning with many relevant features.
In Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137–142.
1998.

T. Joachims. Structured output prediction with support vector machines. In Structural, Syntactic, and
Statistical Pattern Recognition, volume 4109 of Lecture Notes in Computer Science, pages 1–7.
Springer, 2006.

M. Jobert, H. Escola, E. Poiseau, and P. Gaillard. Automatic analysis of sleep using two parameters based
on principal component analysis of electroencephalography spectral data. Biological Cybernetics,
71:197–207, 1994.

H. Joe. Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of
Multivariate Analysis, 94:401–419, 2005.

N. Johnson and D. Hogg. Representation and synthesis of behaviour using Gaussian mixtures. Image
and Vision Computing, 20:889–894, 2002.

I.T. Jolliffe. Principal Components Analysis. Springer-Verlag, 1986.

M.C. Jones and H.W. Lotwick. A remark on algorithm AS176. Kernel density estimation using the fast
Fourier transform. Applied Statistics, 33:120–122, 1984.

M.C. Jones, J.S. Marron, and S.J. Sheather. A brief survey of bandwidth selection for density estimation.
Journal of the American Statistical Association, 91:401–407, 1996.

M.C. Jones, I.J. McKay, and T.-C. Hu. Variable location and scale kernel density estimation. Annals of
the Institute of Statistical Mathematics, 46(3):521–535, 1994.

M.C. Jones and S.J. Sheather. Using non-stochastic terms to advantage in kernel-based estimation of
integrated squared density derivatives. Statistics and Probability Letters, 11:511–514, 1991.

M.C. Jones and R. Sibson. What is projection pursuit? (with discussion). Journal of the Royal Statistical
Society Series A, 150:1–36, 1987.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 613

M.C. Jones and D.F. Signorini. A comparison of higher order bias kernel density estimators. Journal of
the American Statistical Association, 92:1063–1073, 1997.

M. Jordan. Learning in Graphical Models. The MIT Press, 1998.

M.I. Jordan, Z. Ghahramani, T.S. Jaakola, and L.K. Saul. An introduction to variational methods for
graphical models. Machine Learning, 37:183–233, 1999.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural Computa-
tion, 6:181–214, 1994.

A. Juan and E. Vidal. Fast k-means-like clustering in metric spaces. Pattern Recognition Letters,
15:19–25, 1994.

B.-H. Juang and L.R. Rabiner. Mixture autoregressive hidden Markov models for speech signals. IEEE
Transactions on Acoustics, Speech and Signal Processing, 33(6):1404–1413, 1985.

H.F. Kaiser. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23:187–200,
1958.

H.F. Kaiser. Computer program for varimax rotation in factor analysis. Educational and Psychological
Measurement, 19:413–420, 1959.

D. Kalles and T. Morris. Efficient incremental induction of decision trees. Machine Learning,
24:231–242, 1996.

J. Kalousis, A.and Prados and M. Hilario. Stability of feature selection algorithms. In Proceedings of
the Fifth IEEE International Conference on Data Mining, ICDM ’05, pages 218–225. IEEE, 2005.

M. Kam, C. Rorres, W. Chang, and X. Zhu. Performance and geometric interpretation for decision
fusion with memory. IEEE Transactions on Systems, Man and Cybernetics, 29(1):52–62, 1999.

M. Kam, Q. Zau, and W.S. Gray. Optimal data fusion of correlated local decisions in multiple sensor
detection systems. IEEE Transactions on Aerospace and Electronic Systems, 28(3):916–920, 1992.

M.S. Kamel and S.Z. Selim. A thresholded fuzzy c-means algorithm for semi-fuzzy clustering. Pattern
Recognition, 24(9):825–833, 1991.

M.S. Kamel and S.Z. Selim. New algorithms for solving the fuzzy clustering problem. Pattern Recog-
nition, 27(3):421–428, 1994.

B. Kamgar-Parsi and L. Kanal. An improved branch and bound algorithm for computing k-nearest
neighbors. Pattern Recognition Letters, 3(1):7–12, 1985.

N.B. Karayiannis and G.W. Mi. Growing radial basis neural networks: merging supervised and un-
supervised learning with network growth techniques. IEEE Transactions on Neural Networks,
8(6):1492–1506, 1997.

N.B. Karayiannis and A.N. Venetsanopolous. Efficient learning algorithms for neural networks
(ELEANNE). IEEE Transactions on Systems, Man and Cybernetics, 23(5):1372–1383, 1993.

R.J. Karunamuni and T. Alberts. On boundary correction in kernel density estimation. Statistical Method-
ology, 2(3):191–212, 2005.

R.L. Kashyap. Algorithms for pattern classification. In J.M. Mendel and K.S. Fu, editors, Adaptive,
Learning and Pattern Recognition Systems. Theory and Applications, pages 81–113. Academic
Press, 1970.

R.E. Kass, B.P. Carlin, A. Gelman, and R.M. Neal. Markov chain Monte Carlo in practice: a roundtable
discussion. The American Statistician, 52(2):93–100, 1998.

J.W. Kay. Comments on paper by Esposito et al. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(5):492–493, 1997.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy. Improvements to Platt’s SMO
algorithm for SVM classifier design. Neural Computation, 13:637–649, 2001.

M.G. Kelly, D.J. Hand, and N.M. Adams. The impact of changing populations on classifier performance.
In Proceedings of the 5th ACM SIGKDD Conference, pages 367–371. ACM, 1999.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

614 REFERENCES

J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of IEEE Conference on
Neural Networks, pages 1942–1948. IEEE, 1995.

R.D. Keppel, K.M. Brown, and K. Welch. Forensic Pattern Recognition: from Fingerprints to Toolmarks.
Prentice-Hall, 2006.

G. Kim, M.J. Silvapulle, and P. Silvapulle. Comparison of semiparametric and parametric methods for
estimating copulas. Computational Statistics and Data Analysis, 51(6):2836–2850, 2007.

S.-B. Kim, K.-S. Han, H.-C. Rim, and S.H. Myaeng. Some effective techniques for naı̈ve Bayes text
classification. IEEE Transactions on Knowledge and Data Engineering, 18(11):1457–1466, 2006.

S.C. Kim and T.J. Kang. Texture classification and segmentation using wavelet packet frame and
Gaussian mixture model. Pattern Recognition, 40:1207–1221, 2007.

A.J. Kinderman and J.F. Monahan. Computer generation of random variables using the ratio of uniform
deviates. ACM Transactions on Mathematical Software (TOMS), 3(3):257–260, 1977.

C.A. Kirkwood, B.J. Andrews, and P. Mowforth. Automatic detection of gait events: a case study using
inductive learning techniques. Journal of Biomedical Engineering, 11:511–516, 1989.

J. Kittler. Une généralisation de quelques algorithmes sous-optimaux de recherche d’ensembles
d’attributs. In Proceedings of Congrès AFCET/IRIA Reconnaissance des Formes et Traitement des
Images, pages 678–686, 1978.

J. Kittler and F.M. Alkoot. Relationship of sum and vote fusion strategies. In J. Kittler and F. Roli, editors,
Proceedings of the 2001 Workshop on Multiple Classifiers Systems, pages 339–348. Springer-Verlag,
2001.

J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(3):226–239, 1998.

J. Kittler and P.C. Young. A new approach to feature selection based on the Karhunen–Loève expansion.
Pattern Recognition, 5:335–352, 1973.

J. Kittler, J. Matas, K. Jonsson, and Ramos Sánchez, M.U. Combining evidence in personal identity
verification systems. Pattern Recognition Letters, 18:845–852, 1997.

U.B. Kjaerulff and A.L. Madsen. Bayesian Networks and Influence Diagrams: A Guide to Construction
and Analysis. Information Science and Statistics. Springer, 2010.

J. Klemelä. Smoothing of Multivariate Data: Density Estimation and Visualization. John Wiley & Sons,
Ltd, 2009.

T. Kohonen. Self-organization and Associative Memory. Springer-Verlag, third edition, 1989.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78:1464–1480, 1990.

T. Kohonen. Self-organizing Maps. Springer-Verlag, second edition, 1997.

T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas. Engineering applications of the self-organising
map. Proceedings of the IEEE, 84(10):1358–1384, 1996.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principals and Techniques. The MIT Press,
2009.

T. Komviriyavut, P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo. Network intrusion
detection and classification with decision tree and rule based approaches. In Proceedings of the
9th International Conference on Communications and Information Technologies, pages 1046–1050.
IEEE, 2009.

S. Konishi and M. Honda. Comparison of procedures for estimation of error rates in discriminant analysis
under nonnormal populations. Journal of Statistical Computation and Simulation, 36:105–115, 1990.

W.L.G. Koontz and K. Fukunaga. A nonlinear feature extraction algorithm using distance transformation.
IEEE Transactions on Computers, 21(1):56–63, 1972.

W.L.G. Koontz, P.M. Narendra, and K. Fukunaga. A branch and bound clustering algorithm. IEEE
Transactions on Computers, 24(9):908–915, 1975.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 615

T. Koski and J.M. Noble. Bayesian Networks: an Introduction. Series in Probability and Statistics. John
Wiley & Sons, Ltd, 2009.

F. Kovács, C. Legány, and A. Babos. Cluster validity measurement techniques. In 6th International
Symposium of Hungarian Researchers on Computational Intelligence, pages 388–393. 2006.

M.A. Kraaijveld. A Parzen classifier with an improved robustness against deviations between training
and test data. Pattern Recognition Letters, 17:679–689, 1996.

M.A. Kraaijveld, J. Mao, and A.K. Jain. A non-linear projection method based on Kohonen’s topology
preserving maps. In 11th International Conference on Pattern Recognition. 1992.

D.E. Kreithen, S.D. Halversen, and G.J. Owirka. Discriminating targets from clutter. The Lincoln
Laboratory Journal, 6(1):25–51, 1993.

M. Kristan, A. Leonardis, and Skočaj. Multivariate online kernel density estimation with Gaussian
kernels. Pattern Recognition, 44(10–11):2630–2642, 2011.

R.A. Kronmal and M. Tarter. The estimation of probability densities and cumulatives by Fourier series
methods. Journal of the American Statistical Association, 63:925–952, 1962.

E. Krusińska. Robust methods in discriminant analysis. Rivista di Statistica Applicada, 21(3):239–253,
1988.

J.B. Kruskal. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psy-
chometrika, 29:1–28, 1964a.

J.B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2):115–129,
1964b.

J.B. Kruskal. Comments on ‘A nonlinear mapping for data structure analysis’. IEEE Transactions on
Computers, 20:1614, 1971.

W.J. Krzanowski. The location model for mixtures of categorical and continuous variables. Journal of
Classification, 10(1):25–49, 1993.

W.J. Krzanowski, P. Jonathan, W.V. McCarthy, and M.R. Thomas. Discriminant analysis with sin-
gular covariance matrices: methods and applications to spectroscopic data. Applied Statistics,
44(1):101–115, 1995.

W.J. Krzanowski and F.H.C. Marriott. Multivariate Analysis. Part 1: Distributions, Ordination and
Inference. Edward Arnold, London, 1994.

W.J. Krzanowski and F.H.C. Marriott. Multivariate Analysis. Part 2: Classification, Covariance Struc-
tures and Repeated Measurements. Edward Arnold, London, 1996.

A. Krzyzak. Classification procedures using multivariate variable kernel density estimate. Pattern Recog-
nition Letters, 1:293–298, 1983.

M. Kudo and J. Sklansky. Comparison of algorithms that select features for pattern classifiers. Pattern
Recognition, 33:25–41, 2000.

L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. Wiley-Blackwell, 2004a.

L.I. Kuncheva. Classifier ensembles for changing environments. In F. Roli, J. Kittler, and T. Windeatt,
editors, Multiple Classifier Systems, volume 3077 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2004b.

C.-K. Kwoh and D.F. Gillies. Using hidden nodes in Bayesian networks. Artificial Intelligence, 88:1–38,
1996.

T.-Y. Kwok and D.-Y. Yeung. Use of bias term in projection pursuit learning improves approximation
and convergence properties. IEEE Transactions on Neural Networks, 7(5):1168–1183, 1996.

P.A. Lachenbruch and M.R. Mickey. Estimation of error rates in discriminant analysis. Technometrics,
10:1–11, 1968.

P.A. Lachenbruch, C. Sneeringer, and L.T. Revo. Robustness of the linear and quadratic discriminant
function to certain types of non-normality. Communications in Statistics, 1(1):39–56, 1973.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

616 REFERENCES

L. Lam and C.Y. Suen. Optimal combinations of pattern classifiers. Pattern Recognition Letters,
16:945–954, 1995.

C.G. Lambert, S.E. Harrington, C.R. Harvey, and A. Glodjo. Efficient on-line nonparametric kernel
density estimation. Algorithmica, 25(1):37–57, 1999.

J. Lampinen and A. Vehtari. Bayesian approach for neural networks – review and case studies. Neural
Networks, 14:257–274, 2001.

G. Landeweerd, T. Timmers, E. Gersema, M. Bins, and M. Halic. Binary tree versus single level
classification of white blood cells. Pattern Recognition, 16:571–577, 1983.

T.C.W. Landgrebe and R.P.W. Duin. Approximating the multiclass ROC by pairwise analysis. Pattern
Recognition Letters, 28(13):1747–1758, 2007.

T.C.W. Landgrebe and R.P.W. Duin. Efficient multiclass ROC approximation by decomposition via con-
fusion matrix perturbation analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30:810–822, 2008.

R.O. Lane. Non-parametric Bayesian super-resolution. IET Radar, Sonar and Navigation, 4(4):639–648,
2010.

R.O. Lane, M. Briers, and K. Copsey. Approximate Bayesian computation for source term estimation.
In Mathematics in Defence 2009. 2009.

K. Lange. A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical
Society Series B, 57(2):425–437, 1995.

P. Langley and H.A. Simon. Applications of machine learning and rule induction. Communications of
the ACM, 38:55–64, 1995.

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector machines for classification: a
review. Neurocomputing, 71(7–9):1578–1594, 2008.

S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical structures and
their application to expert systems (with discussion). Journal of the Royal Statistical Society Series
B, 50:157–224, 1988.

M. Lavine and M. West. A Bayesian method for classification and discrimination. The Canadian Journal
of Statistics, 20(4):451–461, 1992.

M. Laviolette, J.W. Seaman, J.D. Barrett, and W.H. Woodall. A probabilistic and statistical view of
fuzzy methods (with discussion). Technometrics, 37(3):249–292, 1995.

E.L. Lawler and D.E. Wood. Branch-and-bound methods: a survey. Operations Research,
14(4):699–719, 1966.

M. Lázaro, I. Santamarı́a, and C. Pantaleón. A new EM-based training algorithm for RBF networks.
Neural Networks, 16:69–77, 2003.

J.R. Leathwick, D. Rowe, J. Richardson, J. Elith, and T. Hastie. Using multivariate adaptive regression
splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biology,
50:2034–2052, 2005.

Y. Le Cun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation
applied to hand-written zip code recognition. Neural Computation, 1(4):541–551, 1989.

C.-C. Lee, S.-S. Huang, and Shih C.-Y. Facial affect recognition using regularized discriminant analysis-
based algorithms. EURASIP Journal on Advances in Signal Processing, 2010:1:1–1:10, 2010.

J.S. Lee, M.R. Grunes, and R. Kwok. Classification of multi-look polarimetric SAR imagery based
on complex Wishart distribution. International Journal of Remote Sensing, 15(11):2299–2311,
1994.

P.M. Lee. Bayesian Statistics: an Introduction. Arnold, third edition, 2004.

S.H. Lee, J.H. Kim, K.G. Kim, S.J. Park, and W.K. Moon. K-means clustering and classification of
kinetic curves on malignancy in dynamic breast MRI. IFMBE Proceedings, 14(15):2536–2539, 2007.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 617

E.A. Leicht and M.E.J. Newman. Community structure in directed networks. Physical Review Letters,
100(11):118703, 2008.

B. Lerner, H. Guterman, M. Aladjem, and I. Dinstein. A comparative study of neural network based
feature extraction paradigms. Pattern Recognition Letters, 20:7–14, 1999.

M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a non-
polynomial activation function can approximate any function. Neural Networks, 6:861–867,
1993.

D.D. Lewis. Naı̈ve Bayes at forty: the independence assumption in information retrieval. In Proceedings
of ECML-98, 10th European Conference on Machine Learning, pages 4–15. 1998.

C. Li, D.B. Goldgof, and L.O. Hall. Knowledge-based classification and tissue labeling of MR images
of human brain. IEEE Transactions on Medical Imaging, 12(4):740–750, 1993.

D.X. Li. On default correlation: a copula function approach. The Journal of Fixed Income, 9(4):43–54,
2000.

T. Li and I.K. Sethi. Optimal multiple level decision fusion with distributed sensors. IEEE Transaction
on Aerospace and Electronic Systems, 29(4):1252–1259, 1993.

X. Li and A.G.O. Yeh. Principal component analysis of stacked multi-temporal images for the moni-
toring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing,
19(8):1501–1518, 1998.

H.-T. Lin, C.-J. Lin, and Weng R.C. A note on Platt’s probabilistic outputs for support vector machines.
Machine Learning, 68:267–276, 2007.

S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee. Particle swarm optimization for parameter de-
termination and feature selection of support vector machines. Expert Systems with Applications,
35:1817–1824, 2008.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations.
Machine Learning, 46(1–3):191–202, 2002.

Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design. IEEE Transactions on
Communications, 28(1):84–95, 1980.

B.G. Lindsay and P. Basak. Multivariate normal mixtures: a fast consistent method of moments. Journal
of the American Statistical Association, 88:468–476, 1993.

R.F. Ling. A probability theory for cluster analysis. Journal of the American Statistical Association,
68:159–164, 1973.

J.C. Lingoes, E.E. Roskam, and I. Borg, editors. Geometric Representations of Relational Data. Readings
in Multidimensional Scaling, volume 20(2). Mathesis Press, 1979.

R.J.A. Little. Regression with missing X’s: a review. Journal of the American Statistical Association,
87:1227–1237, 1992.

R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, Ltd, 1987.

B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer, 2006.

C. Liu and D.B. Rubin. The ECME algorithm: a simple extension of EM and ECM with faster monotone
convergence. Biometrika, 81(4):633–648, 1994.

H. Liu and H. Motoda, editors. Computational Methods of Feature Selection. Chapman and Hall/CRC,
2007.

H. Liu and L. Yu. Toward integrating feature selection algorithms for classification. IEEE Transactions
on Knowledge and Data Engineering, 17(4):491–502, 2005.

H.-L. Liu, N.-Y. Chen, W.-C. Lu, and X.-W. Zhu. Multi-target classification pattern recognition applied
to computer-aided materials design. Analytical Letters, 27(11):2195–2203, 1994.

J.S. Liu, W.H. Wong, and A. Kong. Covariance structure of the Gibbs sampler with applications to the
comparisons of estimators and augmentation schemes. Biometrika, 81(1):27–40, 1994.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

618 REFERENCES

K. Liu, Y.Q. Cheng, and J.-Y. Yang. A generalized optimal set of discriminant vectors. Pattern
Recognition, 25(7):731–739, 1992.

K. Liu, Y.Q. Cheng, and J.-Y. Yang. Algebraic feature extraction for image recognition based on an
optimal discriminant criterion. Pattern Recognition, 26(6):903–911, 1993.

T. Liu, A.W. Moore, and Gray A. New algorithms for efficient high-dimensional nonparametric classi-
fication. Journal of Machine Learning Research, 7:1135–1158, 2006.

W. Liu, J. Tian, and X. Chen. RDA for automatic airport recognition on FLIR image. In Proceedings of
the 7th World Congress on Intelligent Control and Automation, pages 5966–5969. IEEE, 2008.

W.Z. Liu and A.P. White. A comparison of nearest neighbour and tree-based methods of non-parametric
discriminant analysis. Journal of Statistical Computation and Simulation, 53:41–50, 1995.

W.Z. Liu, A.P. White, S.G. Thompson, and M.A. Bramer. Techniques for dealing with missing values in
classification. In X. Liu, P. Cohen, and M. Berthold, editors, Advances in Intelligent Data Analysis.
Springer-Verlag, 1997.

K. Lock and Gelman A. Bayesian combination of state polls and election forecasts. Political Analysis,
18:337–348, 2010.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string
kernels. Journal of Machine Learning Research, 2:419–444, 2002.

A.M. Logar, E.M. Corwin, and W.J.B. Oldham. Performance comparisons of classification techniques
for multi-font character recognition. International Journal of Human-Computer Studies, 40:403–423,
1994.

W.-L. Loh. On linear discriminant analysis with adaptive ridge classification rules. Journal of Multi-
variate Analysis, 53:264–278, 1995.

W.-Y. Loh and N. Vanichsetakul. Tree-structured classification via generalized discriminant analysis
(with discussion). Journal of the American Statistical Association, 83:715–727, 1988.

M. Loog and R.P.W. Duin. Linear dimensionality reduction via a heteroscedastic extension of LDA: the
Chernoff criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6):732–739,
2004.

D. Lowe. Novel ‘topographic’ nonlinear feature extraction using radial basis functions for concentration
coding on the ‘artificial nose’. In 3rd IEE International Conference on Artificial Neural Networks,
pages 95–99. IEE, 1993.

D. Lowe, editor. IEE Proceedings on Vision, Image and Signal Processing, 141(4): 1994. Special issue
on ‘Applications of Artificial Neural Networks’.

D. Lowe. Radial basis function networks. In M.A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks, pages 779–782. The MIT Press, 1995a.

D. Lowe. On the use of nonlocal and non-positive definite basis functions in radial basis function
networks. In IEE International Conference on Artificial Neural Networks, pages 206–211. IEE,
1995b.

D. Lowe and M. Tipping. Feed-forward neural networks and topographic mappings for exploratory data
analysis. Neural Computing and Applications, 4:83–95, 1996.

D. Lowe and A.R. Webb. Exploiting prior knowledge in network optimization: an illustration from
medical prognosis. Network, 1:299–323, 1990.

D. Lowe and A.R. Webb. Optimized feature extraction and the Bayes decision in feed-forward clas-
sifier networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4):355–364,
1991.

J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos. Regularized discriminant analysis for the
small sample size problem in face recognition. Pattern Recognition Letters, 24(16):3079–3087,
2003.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 619

J. Lu, K.N. Plataniotis, and A.N. Venetsanopoulos. Regularization studies of linear discriminant analysis
in small sample size scenarios with application to face recognition. Pattern Recognition Letters,
26:181–191, 2005.

L. Lü and T. Zhou. Link prediction in complex networks: a survey. Physica A: Statistical Mechanics
and its Applications, 390(6):1150–1170, 2010.

A.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS – a Bayesian modelling framework:
contents, structure and extensibility. Statistics and Computing, 10:325–337, 2000.

D. Lusseau and M.E.J. Newman. Identifying the role that animals play in their social networks. Pro-
ceedings of the Royal Society of London B, 271(S6):S477–S481, 2004.

D. Lusseau, H. Whitehead, and S. Gero. Applying network methods to the study of animal social
structures. Animal Behaviour, 75:1809–1815, 2008.

S.P. Luttrell. Hierarchical vector quantisation. IEE Proceedings Part I, 136(6):405–413, 1989.

S.P. Luttrell. Using self-organising maps to classify radar range profiles. In Proceedings of the 4th
International Conference on Artificial Neural Networks, pages 335–340. IEE, 1995.

S.P. Luttrell. Self-organised modular neural networks for encoding data. In A.J.C. Sharkey, editor,
Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, pages 235–263.
Springer-Verlag, 1999.

M.A. Lyons, R.S.H. Yang, A.N. Mayeno, and B. Reisfeld. Computational toxicology of chloroform:
Reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human
biomonitoring data. Environmental Health Perspectives, 116(8):1040–1043, 2008.

D.J.C. MacKay. Probable networks and plausible predictions – a review of practical Bayesian methods
for supervised neural networks. Network: Computation in Neural Systems, 6:469–505, 1995.

D. Madigan and A.E. Raftery. Model selection and accounting for model uncertainty in graphical models
using Occam’s window. Journal of the American Statistical Association, 89:1535–1546, 1994.

M. Magee, R. Weniger, and D. Wenzel. Multidimensional pattern classification of bottles using diffuse
and specular illumination. Pattern Recognition, 26(11):1639–1654, 1993.

J.R. Magnus, O. Powell, and P. Prüfer. A comparison of two model averaging techniques with an
application to growth empirics. Journal of Econometrics, 154:139–153, 2010.

J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding. Proceedings of the IEEE,
73(11):1511–1588, 1985.

B.F.J. Manly. Multivariate Statistical Methods, a Primer. Chapman and Hall, 1986.

J. Mao and A.K. Jain. Artificial neural networks for feature extraction and multivariate data projection.
IEEE Transactions on Neural Networks, 6(2):296–317, 1995.

D.J. Marchette. Random Graphs for Statistical Pattern Recognition. John Wiley & Sons, Ltd, 2004.

M. Marinaro and S. Scarpetta. On-line learning in RBF neural networks: a stochastic approach. Neural
Networks, 13:719–729, 2000.

P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain Monte Carlo without likelihoods. Pro-
ceedings of the National Academy of Sciences of the United States of America, 100(26):15324–15328,
2003.

J.S. Marron. Automatic smoothing parameter selection: a survey. Empirical Economics, 13:187–208,
1988.

A.D. Marrs. An application of reversible-jump MCMC to multivariate spherical Gaussian mixtures.
Advances in Neural Information Processing Systems, 10:577–583, 1998.

G. Martinelli, J. Eidsvik, R. Hauge, and M.D. Forland. Bayesian networks for prospect analysis in the
North Sea. Technical Report of Department of Mathematical Sciences, NTNU, Trondheim, 2010.

S.R. Maskell. A Bayesian approach to fusing uncertain, imprecise and conflicting information. Infor-
mation Fusion Journal, 9(2):259–277, April 2008.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

620 REFERENCES

K. Matsuoka. Noise injection into inputs in back-propagation learning. IEEE Transactions on Systems,
Man, and Cybernetics, 22(3):436–440, 1992.

A. McCallum and K. Nigam. A comparison of event models for naı̈ve Bayes text classification. In
Proceedings of AAAI/ICML-98 Workshop on Learning for Text Categorization, pages 41–48. AAAI
Press, 1998.

C.A. McGrory and D.M. Titterington. Variational Bayesian analysis for hidden Markov models. Aus-
tralian and New Zealand Journal of Statistics, 51(2):227–244, 2009.

R.M. McIntyre and R.K. Blashfield. A nearest-centroid technique for evaluating the minimum-variance
clustering procedure. Multivariate Behavioral Research, 2:225–238, 1980.

S.J. McKenna, S. Gong, and Y. Raja. Modelling facial colour and identity with Gaussian mixtures.
Pattern Recognition, 31(12):1883–1892, 1998.

G.J. McLachlan. Error rate estimation in discriminant analysis: recent advances. In A.K. Gupta, editor,
Advances in Multivariate Analysis. D. Reidel Publishing Company, 1987.

G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, Ltd,
1992a.

G.J. McLachlan. Cluster analysis and related techniques in medical research. Statistical Methods in
Medical Research, 1(1):27–48, 1992b.

G.J. McLachlan and K.E. Basford. Mixture Models: Inference and Applications to Clustering. Marcel
Dekker, 1988.

G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley & Sons, Ltd, 1996.

G.J. McLachlan and D. Peel. Finite Mixture Models. John Wiley & Sons, Ltd, 2000.

W. Meier, R. Weber, and H.-J. Zimmermann. Fuzzy data analysis – methods and industrial applications.
Fuzzy Sets and Systems, 61:19–28, 1994.

J. Meinguet. Multivariate interpolation at arbitrary points made simple. Journal of Applied Mathematics
and Physics (ZAMP), 30:292–304, 1979.

M.R. Melchiori. Which Archimedean copula is the right one? YieldCurve.com, 2003.

F. Melgani and L. Bruzzone. Classification of hyperspectral remote sensing images with support vector
machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8):1778–1790, 2004.

I. Melvin, J. Weston, C.S. Leslie, and W.S. Noble. Combining classifiers for improved classification of
proteins from sequence or structure. BMC Bioinformatics, 9:389, 2008.

X.-L. Meng and D.B. Rubin. Recent extensions to the EM algorithm. In J.M. Bernado, J.O. Berger, A.P.
Dawid, and A.F.M. Smith, editors, Bayesian Statistics, volume 4, pages 307–320. Oxford University
Press, 1992.

X.-L. Meng and D.B. Rubin. Maximum likelihood estimation via the ECM algorithm: a general frame-
work. Biometrika, 80(2):267–27, 1993.

X.-L. Meng and D. van Dyk. The EM algorithm – an old folk-song sung to a fast new tune (with
discussion). Journal of the Royal Statistical Society Series B, 59(3):511–567, 1997.

K.L. Mengersen, C.P. Robert, and C. Guihenneuc-Jouyaux. MCMC convergence diagnostics: a review.
In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith, editors, Bayesian Statistics, pages
399–432. Oxford University Press, 1998.

C.L. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 36:33–58, 1999.

A. Meyer-Baese. Pattern Recognition in Medical Imaging. Academic Press, 2003.

C.A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite
matrices. Constructive Approximation, 2:11–22, 1986.

M. Michael and W.-C. Lin. Experimental study of information measure and inter-intra class distance
ratios on feature selection and orderings. IEEE Transactions on Systems, Man and Cybernetics,
3(2):172–181, 1973.

http://YieldCurve.com

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 621

D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural and Statistical Classification.
Ellis Horwood Limited, 1994.

M.L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour approximating and elimi-
nating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern
Recognition, 15:9–17, 1994.

T. Mikosch. Copulas: tales and facts. Extremes, 9:3–20, 2006.

J. Milgram, M. Cheriet, and R. Sabourin. ‘One against one’ or ‘one against all’: which one is better
for handwriting recognition with SVMs? In G. Lorette, editor, Proceedings of 10th International
Workshop on Frontiers in Handwriting Recognition. Suvisoft, 2006.

S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.

A.J. Miller. Subset Selection in Regression. Chapman and Hall, 1990.

G.W. Milligan. A Monte Carlo study of thirty internal measures for cluster analysis. Psychometrika,
46(2):187–199, 1981.

G.W. Milligan and M.C. Cooper. An examination of procedures for determining the number of clusters
in a data set. Psychometrika, 50(2):159–179, 1985.

J. Mingers. An empirical comparison of pruning methods for decision tree inductions. Machine Learning,
4:227–243, 1989.

M.L. Minsky and S.A. Papert. Perceptrons. An Introduction to Computational Geometry. The MIT
Press, 1988.

T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and F. Itakura. Driver modeling
based on driving behavior and its evaluation in driver identification. Proceedings of the IEEE,
95(2):427–437, 2007.

A. Mkhadri. Shrinkage parameter for the modified linear discriminant analysis. Pattern Recognition
Letters, 16:267–275, 1995.

A. Mkhadri, G. Celeux, and A. Nasroallah. Regularization in discriminant analysis: an overview. Com-
putational Statistics and Data Analysis, 23:403–423, 1997.

R. Mojena. Hierarchical grouping methods and stopping rules: an evaluation. Computer Journal,
20:359–363, 1977.

M. Mojirsheibani. Combining classifiers via discretization. Journal of the American Statistical Associ-
ation, 94(446):600–609, 1999.

L.C. Molina, L. Belanche, and A. Nebot. Feature selection algorithms: a survey and experimental
evaluation. In Proceedings of the IEEE International Conference on Data Mining, pages 306–313.
IEEE, 2002.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: an improved particle filtering
algorithm for simultaneous localization and mapping that provably converges. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence (IJCAI). 2003.

J. Montgomery and B. Nyhan. Bayesian model averaging: theoretical developments and practical appli-
cations. Political Science, 18(2):245–270, 2010.

A.W. Moore. Efficient Memory-based Learning for Robot Control: An introductory tutorial on kd-trees.
PhD thesis, Computer Laboratory, University of Cambridge, 1991.

M.A. Moran and B.J. Murphy. A closer look at two alternative methods of statistical discrimination.
Applied Statistics, 28(3):223–232, 1979.

F. Moreno-Seco, L. Micó, and J. Oncina. Extending LAESA fast nearest neighbour algorithm to find
the k nearest neighbours. Springer Lecture Notes in Computer Science, 2396:718–724, 2002.

B.J.T. Morgan and A.P.G. Ray. Non-uniqueness and inversions in cluster analysis. Applied Statistics,
44(1):117–134, 1995.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

622 REFERENCES

N. Morgan and H.A. Bourlard. Neural networks for the statistical recognition of continuous speech.
Proceedings of the IEEE, 83(5):742–772, 1995.

D.P. Mukherjee, D.K. Banerjee, B. Uma Shankar, and D.D. Majumder. Coal petrography: a pattern
recognition approach. International Journal of Coal Geology, 25:155–169, 1994.

D.P. Mukherjee, A. Pal, S.E. Sarma, and D.D. Majumder. Water quality analysis: a pattern recognition
approach. Pattern Recognition, 28(2):269–281, 1995.

S. Mukkamala, A.H. Sung, A. Abraham, and V. Ramos. Intrusion detection using adaptive regression
splines. In 6th International Conference on Enterprise Information Systems, EIS’04, pages 26–33.
Kluwer Academic Press, 2004.

D.J. Munro, O.K. Ersoy, M.R. Bell, and J.S. Sadowsky. Neural network learning of low-probability
events. IEEE Transactions on Aerospace and Electronic Systems, 32(3):898–910, 1996.

P.M. Murphy and D.W. Aha. UCI repository of machine learning databases. Technical Report,
http://www.ics.uci.edu/ mlearn/MLRepository.html, UCI, 1995.

F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag, 1985.

F. Murtagh. Contiguity-constrained clustering for image analysis. Pattern Recognition Letters,
13:677–683, 1992.

F. Murtagh. Interpreting the Kohonen self-organizing feature map using contiguity-constrained cluster-
ing. Pattern Recognition Letters, 16:399–408, 1995.

F. Murtagh and M. Hernández-Pajares. The Kohonen self-organizing map method: an assessment.
Journal of Classification, 12(2):165–190, 1995.

S.K. Murthy. Automatic construction of decision trees from data: a multidisciplinary survey. Data
Mining and Knowledge Discovery, 2:345–389, 1998.

S.K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique decision trees. Journal of
Artificial Intelligence Research, 2:1–32, 1994.

M.T. Musavi, W. Ahmed, K.H. Chan, K.B. Faris, and D.M. Hummels. On the training of radial basis
function classifiers. Neural Networks, 5:595–603, 1992.

J.P. Myles and D.J. Hand. The multi-class metric problem in nearest neighbour discrimination rules.
Pattern Recognition, 23(11):1291–1297, 1990.

I.T. Nabney. NETLAB: Algorithms for Pattern Recognition. Springer, 2001.

I.T. Nabney, editor. NETLAB Algorithms for Pattern Recognition. Springer, 2002.

E.A. Nadaraya. Nonparametric Estimation of Probability Densities and Regression Curves. Kluwer
Academic, 1989.

P.M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset selection. IEEE
Transactions on Computers, 26:917–922, 1977.

R. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, April 2001.

R.M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, 2003.

R.E Neapolitan, editor. Learning Bayesian Networks. Series in Artificial Intelligence. Prentice Hall,
2003.

M. Neil, D. Marquez, and N. Fenton. Using Bayesian networks to model the operational risk to in-
formation technology infrastructure in financial institutions. Journal of Financial Transformation,
22:131–138, 2008.

M. Neil, M. Tailor, and D. Marquez. Inference in hybrid Bayesian networks using dynamic discretisation.
Statistics and Computing, 17(3):219–233, 2007.

M.E.J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.

M.E.J. Newman. Finding community structure in networks using the eigenvectors of matrices. Physical
Review E, 74:036184, 2006.

http://www.ics.uci.edu/mlearn/MLRepository.html

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 623

M.E.J. Newman. Networks. An Introduction. Oxford University Press, 2010.

M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
Review E, 69(5):026113, 2004.

M.E.J. Newman and E.A. Leicht. Mixture models and exploratory analysis in networks. Proceedings of
the National Academy of Sciences of the United States of America, 104(23):9564–9569, 2007.

A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In T. Dieterrich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, pages
849–856. The MIT Press, 2002.

H. Niemann and R. Goppert. An efficient branch-and-bound algorithm nearest neighbour classifier.
Pattern Recognition Letters, 7(2):67–72, 1988.

H. Niemann and J. Weiss. A fast-converging algorithm for nonlinear mapping of high dimensional data
to a plane. IEEE Transactions on Computers, 28(2):142–147, 1979.

N.J. Nilsson. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. McGraw-Hill,
1965.

H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang. Incremental spectral clustering with application to
monitoring of evolving blog communities. In SIAM International Conference on Data Mining, pages
261–272. SIAM, 2007.

M. Nixon and A.S. Aquado. Feature Extraction and Image Processing. Academic Press, second edition,
2008.

I. Ntzoufras. Bayesian Modeling Using WinBUGS. Wiley Series in Computational Statistics. John Wiley
& Sons, Ltd, 2009.

A. O’Hagan. Bayesian Inference. Edward Arnold, 1994.

T. Okada and S. Tomita. An optimal orthonormal system for discriminant analysis. Pattern Recognition,
18(2):139–144, 1985.

J.J. Oliver and D.J. Hand. Averaging over decision trees. Journal of Classification, 13(2):281–297, 1996.

I. Olkin and R.F. Tate. Multivariate correlation models with mixed discrete and continuous variables.
Annals of Mathematical Statistics, 22:92–96, 1961.

S.D. Oman, T. Naes, and A. Zube. Detecting and adjusting for non-linearities in calibration of near-
infrared data using principal components. Journal of Chemometrics, 7:195–212, 1993.

S.M. Omohundro. Five balltree construction algorithms. Technical Report, International Computer
Science Institute, 1989.

T.J. O’Neill. Error rates of non-Bayes classification rules and the robustness of Fisher’s linear discrimi-
nant function. Biometrika, 79(1):177–184, 1992.

M.J.L. Orr. Regularisation in the selection of radial basis function centers. Neural Computation,
7:606–623, 1995.

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an application to face detec-
tion. In Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 130–136. Computer Society Press, 1997.

R. Ouysse and R. Kohn. Bayesian variable selection and model averaging in the arbitrage pricing theory
model. Computational Statistics and Data Analysis, 54(12):3249–3268, 2010.

J.E. Overall and K.N. Magee. Replication as a rule for determining the number of clusters in a hierarchical
cluster analysis. Applied Psychological Measurement, 16:119–128, 1992.

N.R. Pal and J.C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy
Systems, 3(3):370–379, 1995.

G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evolution. Nature, 446:664–667, 2007.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of
complex networks in nature and society. Nature, 435:814–818, 2005a.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

624 REFERENCES

G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of
complex networks in nature and society. Supplementary information. Nature, 435:814–818, 2005b.

Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, 1989.

J. Park and I.W. Sandberg. Approximation and radial-basis-function networks. Neural Computation,
5:305–316, 1993.

S.H. Park, J.M. Goo, and C.-H. Jo. Receiver operating characteristic (ROC) curve: practical review for
radiologists. Korean Journal of Radiology, 5:11–18, 2004.

E. Parzen. On estimation of a probability density function and mode. Annals of Mathematical Statistics,
33:1065–1076, 1962.

A.C. Patel and M.K. Markey. Comparison of three-class classification performance metrics: a case study
in breast cancer CAD. In M.P. Eckstein and Y. Jiang, editors, Proceedings SPIE Medical Imaging
2005: Image Perception, Observer Performance and Technology Assessment, volume 5749, pages
581–589. SPIE, 2005.

M. Pawlak. Kernel classification rules from missing data. IEEE Transactions on Information Theory,
39(3):979–988, 1993.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine,
2:559–572, 1901.

F. Pedersen, M. Bergström, E. Bengtsson, and B. Langström. Principal component analysis of dynamic
positron emission tomography images. European Journal of Nuclear Medicine, 21(12):1285–1292,
1994.

D. Peel and G.J. McLachlan. Robust mixture modelling using the t distribution. Statistics and Computing,
10(4):339–348, 2000.

G. Peters. Topics in Sequential Monte Carlo Samplers. MSc Dissertation, Cambridge University, 2005.

P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss. The FERET evaluation methodology for
face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(10):1090–1104, 2000.

B. Pinkowski. Principal component analysis of speech spectrogram images. Pattern Recognition,
30(5):777–787, 1997.

J. Platt. Fast training of support vector machines using sequential minimal optimisation. In B. Schölkopf,
C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages
185–208. The MIT Press, 1998.

J.C. Platt. Probabilities for SV machines. In A.J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 61–74. The MIT Press, 2000.

N. Popescu-Borodin. Fast k-means image quantization algorithm and its application to iris segmentation.
Buletin Stiintific - Universitatea de Pitesti. Seria Matematica si Informatica, 14:1–18, 2008.

M.A. Porter, P.J. Mucha, M.E.J. Newman, and A.J. Friend. Community structure in the United States
House of Representatives. Physica A, 386:414–438, 2007.

O. Pourret, P. Naim, and B. Marcot, editors. Bayesian Networks: A Practical Guide to Applications.
Statistics in Practice. John Wiley & Sons, Ltd, 2008.

G.E. Powell, E. Clark, and S. Bailey. Categories of aphasia: a cluster-analysis of Schuell test profiles.
British Journal of Disorders of Communication, 14(2):111–122, 1979.

M.J.D. Powell. Radial basis functions for multivariable interpolation: a review. In J.C. Mason and M.G.
Cox, editors, Algorithms for Approximation, pages 143–167. Clarendon Press, 1987.

S. Prabhakar and A.K. Jain. Decision-level fusion in fingerprint verification. Pattern Recognition,
35:861–874, 2002.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 625

M. Prakash and M.N. Murty. A genetic approach for selection of (near-) optimal subsets of principal
components for discrimination. Pattern Recognition Letters, 16:781–787, 1995.

S.J. Press and S. Wilson. Choosing between logistic regression and discriminant analysis. Journal of the
American Statistical Association, 73:699–705, 1978.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes. The Art of Scientific
Computing. Cambridge University Press, second edition, 1992.

J.K. Pritchard, M.T. Seielstad, A. Perex-Lezaun, and M.W. Feldman. Population growth of human
Y chromosomes: a study of Y chromosome microsatellites. Molecular Biology and Evolution,
16(12):1791–1798, 1999.

L. Prost, D. Makowski, and M.-H. Jeuffroy. Comparison of stepwise selection and Bayesian model
averaging for yield gap analysis. Ecological Modelling, 219:66–76, 2008.

F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning,
42:203–231, 2001.

F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction
algorithms. In Proceedings of the Fifteenth International Conference on Machine Learning, pages
445–453. Morgan Kaufmann, 1997.

D. Psaltis, R.R. Snapp, and S.S. Venkatesh. On the finite sample performance of the nearest neighbor
classifier. IEEE Transactions on Information Theory, 40(3):820–837, 1994.

P. Pudil, F.J. Ferri, J. Novovic̆ová, and J. Kittler. Floating search methods for feature selection with
nonmonotonic criterion functions. In Proceedings of the International Conference on Pattern Recog-
nition, volume 2, pages 279–283. IEEE, 1994a.

P. Pudil, J. Novovic̆ová, N. Choakjarernwanit, and J. Kittler. Feature selection based on the approximation
of class densities by finite mixtures of special type. Pattern Recognition, 28(9):1389–1398, 1995.

P. Pudil, J. Novovic̆ová, and J. Kittler. Floating search methods in feature selection. Pattern Recognition
Letters, 15:1119–1125, 1994b.

M. H. Quenouille. Approximate tests of correlation in time series. Journal of the Royal Statistical Society
Series B, 11:68–84, 1949.

J.R. Quinlan. Simplifying decision trees. International Journal of Man Machine Studies, 27:221–234,
1987.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266, 1990.

J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmnann, 1993.

J.R. Quinlan and R.L. Rivest. Inferring decision trees using the minimum description length principle.
Information and Computation, 80:227–248, 1989.

L.R. Rabiner, B.-H. Juang, S.E. Levinson, and M.M. Sondhi. Recognition of isolated digits using hid-
den Markov models with continuous mixture densities. AT&T Technical Journal, 64(4):1211–1234,
1985.

A.E. Raftery. Bayesian model selection in social research (with discussion). In P.V. Marsden, editor,
Sociological Methodology 1995, pages 111–196. Blackwell, 1995.

A.E. Raftery and S.M. Lewis. Implementing MCMC. In W.R. Gilks, S. Richardson, and D.J. Spiegel-
halter, editors, Markov Chain Monte Carlo in Practice, pages 115–130. Chapman and Hall, 1996.

S. Raju and V.V.S. Sarma. Multisensor data fusion and decision support for airborne target identification.
IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1224–1230, 1991.

A. Ramalingam and S. Krishnan. Gaussian mixture modeling of short-time Fourier transform features
for audio fingerprinting. IEEE Transactions on Information Forensics and Security, 1(4):457–463,
2006.

V. Ramasubramanian and K.K. Paliwal. Fast nearest-neighbor search algorithms based on
approximation-elimination search. Pattern Recognition, 33:1497–1510, 2000.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

626 REFERENCES

S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C. Ladd, M. Reich, E.
Latulippe, J.P. Mesirov, T. Poggio, W. Gerald, M. Loda, E.S. Lander, and T.R. Golub. Multiclass
cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of
Sciences of the United States of America, 98(26):15149–15154, 2001.

J.O. Ramsay and C.J. Dalzell. Some tools for functional data analysis (with discussion). Journal of the
Royal Statistical Society Series B, 53:539–572, 1991.

M.B. Ratcliffe, K.B. Gupta, J.T. Streicher, E.B. Savage, D.K. Bogen, and L.H. Edmunds. Use of
sonomicrometry and multidimensional scaling to determine the three-dimensional coordinates of
multiple cardiac locations: feasibility and initial implementation. IEEE Transactions on Biomedical
Engineering, 42(6):587–598, 1995.

S. Rattanasiri, D. Böhning, P. Rojanavipart, and S. Athipanyakom. A mixture model application in
disease mapping of malaria. Southeast Asian Journal of Tropical Medicine and Public Health,
35(1):38–47, 2004.

M.J. Rattigan, M. Maier, and D. Jensen. Graph clustering with network structure indices. In ICML
’07: Proceedings of the 24th International Conference on Machine Learning, pages 783–790. ACM,
2007.

S.J. Raudys. Scaled rotation regularisation. Pattern Recognition, 33:1989–1998, 2000.

W. Rayens and T. Greene. Covariance pooling and stabilization for classification. Computational Statis-
tics and Data Analysis, 11:17–42, 1991.

R.A. Redner and H.F. Walker. Mixture densities, maximum likelihood and the EM algorithm. SIAM
Review, 26(2):195–239, 1984.

R. Reed. Pruning algorithms – a survey. IEEE Transactions on Neural Networks, 4(5):740–747, 1993.

A.-P.N. Refenes, A.N. Burgess, and Y. Bentz. Neural networks in financial engineering: a study in
methodology. IEEE Transactions on Neural Networks, 8(6):1222–1267, 1997.

J. Remme, J.D.F. Habbema, and J. Hermans. A simulative comparison of linear, quadratic and kernel
discrimination. Journal of Statistical Computation and Simulation, 11:87–106, 1980.

S. Renals. Nearest neighbours and the kD-tree, Course notes for informatics 2B, algorithms data
structures and learning. Technical Report, The University of Edinburgh School of Informatics, 2007.

J.D.M. Rennie, L. Shih, J. Teevan, and D.R. Karger. Tackling the poor assumptions of naı̈ve Bayes
text classifiers. In Proceedings of the Twentieth International Conference on Machine Learning
(ICML-2003), Pages 616–623. IEEE, 2003.

M. Revow, C.K.I. Williams, and G.E. Hinton. Using generative models for handwritten digit recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6):592–606, 1996.

R.A. Reyment, R.E. Blackith, and N.A. Campbell. Multivariate Morphometrics. Academic Press, second
edition, 1984.

D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using adapted Gaussian mixture
models. Digital Signal Processing, 10:19–41, 2000.

J.A. Rice and B.W. Silverman. Estimating the mean and covariance structure nonparametrically when
the data are curves. Journal of the Royal Statistical Society Series B, 53:233–243, 1991.

S. Richardson and P.J. Green. On Bayesian analysis of mixtures with an unknown number of components
(with discussion). Journal of the Royal Statistical Society Series B, 59(4):731–792, 1997.

S. Richardson and P.J. Green. Corrigendum: On Bayesian analysis of mixtures with an unknown number
of components. Journal of the Royal Statistical Society Series B, 60(3):661, 1998.

B.D. Ripley. Stochastic Simulation. John Wiley & Sons, Ltd, 1987.

B.D. Ripley. Neural and related methods of classification. Journal of the Royal Statistical Society Series
B, 56(3), 1994.

B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 627

E.A. Riskin and R.M. Gray. A greedy tree growing algorithm for the design of variable rate vector
quantizers. IEEE Transactions on Signal Processing, 39(11):2500–2507, 1991.

B. Ristic, B. La Scala, M. Morelande, and N. Gordon. Statistical analysis of motion patterns in AIS
data: anomaly detection and motion prediction. In Proceedings of 11th International Conference on
Information Fusion, pages 1–7. 2008.

H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing Maps: an Introduc-
tion. Addison-Wesley, 1992.

C.P. Robert. The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implemen-
tation. Springer Texts in Statistics. Springer, second edition, 2001.

C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics. Springer,
2004.

C.P. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, 2009.

C.P. Robert, J.-M. Cornuet, J.-M. Marin, and N.S. Pillai. Lack of confidence in ABC model choice.
Proceedings of the National Academy of Sciences of the United States of America, submitted.

G.O. Roberts. Markov chain concepts related to sampling algorithms. In W.R. Gilks, S. Richardson, and
D.J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, pages 45–57. Chapman and Hall,
1996.

S. Roberts and L. Tarassenko. Analysis of the sleep EEG using a multilayer network with spatial
organisation. IEE Proceedings Part F, 139(6):420–425, 1992.

D.M. Rocke and D.L. Woodruff. Robust estimation of multivariate location and shape. Journal of
Statistical Planning and Inference, 57:245–255, 1997.

K. Roeder and L. Wasserman. Practical Bayesian density estimation using mixtures of normals. Journal
of the American Statistical Association, 92(439):894–902, 1997.

S.K. Rogers, J.M. Colombi, C.E. Martin, J.C. Gainey, K.H. Fielding, T.J. Burns, D.W. Ruck, M. Kabrisky,
and M. Oxley. Neural networks for automatic target recognition. Neural Networks, 8(7/8):1153–1184,
1995.

F.J. Rohlf. Single-link clustering algorithms. In P.R. Krishnaiah and L.N. Kanal, editors, Handbook of
Statistics, volume 2, pages 267–284. North Holland, 1982.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of Mathe-
matical Statistics, 27:832–835, 1956.

M. Rosvall and C.T. Bergstrom. Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences of the United States of America, 105(4):1118–1123,
2008.

M.W. Roth. Survey of neural network technology for automatic target recognition. IEEE Transactions
on Neural Networks, 1(1):28–43, 1990.

P.J. Rousseeuw. Multivariate estimation with high breakdown point. In W. Grossmann, G. Pflug, I.
Vincze, and Wertz W, editors, Mathematical Statistics and Applications, pages 283–297. Reidel,
1985.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representation by error propagation.
In D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, volume 1, pages 318–362. The MIT
Press, 1986.

Y. Saeys, T. Abeel, and Y. Van de Peer. Robust feature selection using ensemble feature selection
techniques. In ECML PKDD, volume 5212 of Lecture Notes in Artificial Intelligence, pages 313–325.
Springer, 2008.

Y. Saeys, I. Inza, and P. Larranaga. A review of feature selection techniques in bioinformatics. Bioinfor-
matics, 23(19):2507–2517, 2007.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

628 REFERENCES

S.R. Safavian and D.A. Landgrebe. A survey of decision tree classifier methodology. IEEE Transactions
on Systems, Man, and Cybernetics, 21(3):660–674, 1991.

A. Samal and P.A. Iyengar. Automatic recognition and analysis of human faces and facial expressions:
a survey. Pattern Recognition, 25:65–77, 1992.

J.W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers,
18(5):401–409, 1969.

A. Sankar and R.J. Mammone. Combining neural networks and decision trees. In Applications of Neural
Networks II, volume 1469, pages 374–383. SPIE, 1991.

A. Saranli and M. Demirekler. A statistical framework for rank-based multiple classifier decision fusion.
Pattern Recognition, 34:865–884, 2001.

K. Saravanan. An efficient detection mechanism for intrusion detection systems using rule learning
method. International Journal of Computer and Electrical Engineering, 1(4):503–506, 2009.

S. Schaack, A. Mauthofer, and U. Brunsmann. Stationary video-based pedestrian recognition for driver
assistance systems. In Proceedings of 21st International Technical Conference on the Enhanced
Safety of Vehicles (ESV), Paper no. 09-0276. 2009.

S.E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.

C. Schaffer. Selecting a classification method by cross-validation. Machine Learning, 13:135–143, 1993.

R. Schalkoff. Pattern Recognition. Statistical Structural and Neural. John Wiley & Sons, Ltd, 1992.

R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine
Learning, 37:297–336, 1999.

S.S. Schiffman, M.L. Reynolds, and F.W. Young. An Introduction to Multidimensional Scaling. Aca-
demic Press, 1981.

B. Schölkopf and A.J. Smola. Learning with Kernels. Support Vector Machines, Regularization, Opti-
mization and Beyond. The MIT Press, 2001.

B. Schölkopf, A.J. Smola, and K. Müller. Kernel principal component analysis. In B. Schölkopf, C.J.C.
Burges, and A.J. Smola, editors, Advances in Kernel Methods – Support Vector Learning, pages
327–352. The MIT Press, 1999.

B. Schölkopf, A.J. Smola, R.C. Williamson, and P.L. Bartlett. New support vector algorithms. Neural
Computation, 12:1207–1245, 2000.

B. Schölkopf, K.-K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Comparing
support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions
on Signal Processing, 45(11):2758–2765, 1997.

C. Schölzel and P. Friederichs. Multivariate non-normally distributed random variables in climate
research – introduction to the copula approach. Nonlinear Processes in Geophysics, 15:761–772,
2008.

M. Schomaker, A.T.K. Wan, and C. Heumann. Frequentist model averaging with missing observations.
Computational Statistics and Data Analysis, 54(12):3336–3347, 2010.

J.R. Schott. Dimensionality reduction in quadratic discriminant analysis. Computational Statistics and
Data Analysis, 16:161–174, 1993.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

F. Schwenker, H.A. Kestler, and G. Palm. Three learning phases for radial-basis-function networks..
Neural Networks, 14:439–458, 2001.

S.L. Sclove. Application of model selection criteria to some problems in multivariate analysis. Psy-
chometrika, 52(3):333–343, 1987.

D.W. Scott. Multivariate Density Estimation. Theory, Practice and Visualization. John Wiley & Sons,
Ltd, 1992.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 629

D.W. Scott, A.M. Gotto, J.S. Cole, and G.A. Gorry. Plasma lipids as collateral risk factors in coronary
artery disease – a study of 371 males with chest pains. Journal of Chronic Diseases, 31:337–345,
1978.

G. Sebestyen and J. Edie. An algorithm for non-parametric pattern recognition. IEEE Transactions on
Electronic Computers, 15(6):908–915, 1966.

S.Z. Selim and K.S. Al-Sultan. A simulated annealing algorithm for the clustering problem. Pattern
Recognition, 24(10):1003–1008, 1991.

S.Z. Selim and M.A. Ismail. K-means-type algorithms: a generalized convergence theorem and char-
acterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6(1):81–87, 1984a.

S.Z. Selim and M.A. Ismail. Soft clustering of multidimensional data: a semi-fuzzy approach. Pattern
Recognition, 17(5):559–568, 1984b.

S.Z. Selim and M.A. Ismail. On the local optimality of the fuzzy isodata clustering algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(2):284–288, 1986.

P.S. Sephton. Cointegration tests on MARS. Computational Economics, 7:23–35, 1994.

S.B. Serpico, L. Bruzzone, and F. Roli. An experimental comparison of neural and statistical non-
parametric algorithms for supervised classification of remote-sensing images. Pattern Recognition
Letters, 17:1331–1341, 1996.

I.K. Sethi and J.H. Yoo. Design of multicategory multifeature split decision trees using perceptron
learning. Pattern Recognition, 27(7):939–947, 1994.

M. Sewell. Ensemble learning. RN/11/02. Technical Report, University College London, 2011.

S. Shah and P.S. Sastry. New algorithms for learning and pruning oblique decision trees. IEEE Trans-
actions on Systems, Man, and Cybernetics Part C, 29(4):494–505, 1999.

A.J.C. Sharkey. Multi-net systems. In A.J.C. Sharkey, editor, Combining Artificial Neural Nets. Ensemble
and Modular Multi-net Systems, pages 1–30. Springer-Verlag, 1999.

J.W. Shavlik, R.J. Mooney, and G.G. Towell. Symbolic and neural learning algorithms: an experimental
comparison. Machine Learning, 6:111–143, 1991.

S.J. Sheather and M.C. Jones. A reliable data-based bandwidth selection method for kernel density
estimation. Journal of the Royal Statistical Society Series B, 53:683–690, 1991.

J. Shetty and J. Adibi. The Enron email dataset database schema and brief statistical report. Information
Sciences Institute Technical Report, University of Southern California, 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

L. Shuhui, D. C. Wunsh, E.A. O’Hair, and M.G. Giesselmann. Using neural networks to estimate
wind turbine turbine power generation. IEEE Transactions on Energy Conversion, 16(3):276–282,
September 2001.

R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer
Journal, 16(1):30–34, 1973.

R. Sicard, T. Artières, and E. Petit. Learning iteratively a classifier with the Bayesian model averaging
principle. Pattern Recognition, 41:930–938, 2008.

W. Siedlecki, K. Siedlecka, and J. Sklansky. An overview of mapping techniques for exploratory pattern
analysis. Pattern Recognition, 21(5):411–429, 1988.

W. Siedlecki and J. Sklansky. On automatic feature selection. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 2(2):197–220, 1988.

B.W. Silverman. Kernel density estimation using the fast Fourier transform. Applied Statistics, 31:93–99,
1982.

B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

630 REFERENCES

B.W. Silverman. Incorporating parametric effects into functional principal components analysis. Journal
of the Royal Statistical Society Series B, 57(4):673–689, 1995.

P.K. Simpson, editor. IEEE Journal of Oceanic Engineering, 17: 1992. Special issue on ‘Neural Networks
for Oceanic Engineering’.

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. The ROCR package. Technical Report,
http://rocr.bioinf.mpi-sb.mpg.de, 2007.

A. Skabar. Application of Bayesian MLP techniques to predicting mineralization potential from geosci-
entific data. In Artificial Neural Networks: Formal Models and their Applications - ICANN, volume
3697 of Springer Lecture Notes in Computer Science, pages 963–968. Springer, 2005.

A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications of the Institute of Statistics
of the University of Paris, 8:229–231, 1959.

A. Sklar. Random variables, joint distribution functions and copulas. Kybernetika, 9(6):449–460, 1973.

M. Skurichina. Stabilizing Weak Classifiers. Technical University of Delft, 2001.

J.M. Sloughter, A.E. Raftery, T. Gneiting, and C. Fraley. Probabilistic quantitative precipita-
tion forecasting using Bayesian model averaging. Monthly Weather Review, 135(9):3209–3220,
2007.

A.F.M. Smith and A.E. Gelfand. Bayesian statistics without tears: a sampling-resampling perspective.
The American Statistician, 46(2):84–88, 1992.

S.J. Smith, M.O. Bourgoin, K. Sims, and H.L. Voorhees. Handwritten character classification using near-
est neighbour in large databases. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(9):915–919, 1994.

P. Smyth and Wolpert. Linearly combining density estimators via stacking. Machine Learning, 36:59–83,
1999.

P.H.A. Sneath and R.R. Sokal. Numerical Taxonomy. Freeman, 1973.

J.V.B. Soares, J.J.G. Leandro, R.M. Cesar Jr., and H.F. Jelinek. Retinal vessel segmentation using
the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging,
25(9):1214–1222, 2006.

A.H.S. Solberg, G. Storvik, R. Solberg, and E. Volden. Automatic detection of oil spills in ERS SAR
images. IEEE Transactions on Geoscience and Remote Sensing, 37(4):1916–1924, 1999.

P. Sollich. Bayesian methods for support vector machines: evidence and predictive class probabilities.
Machine Learning, 46(1-3):21–52, 2002.

P. Somol, P. Pudil, J. Novovic̆ová, and P. Paclı́k. Adaptive floating search methods in feature selection.
Pattern Recognition Letters, 20:1157–1163, 1999.

T. Sorsa, H.N. Koivo, and H. Koivisto. Neural networks in process fault diagnosis. IEEE Transactions
on Systems, Man and Cybernetics, 21(4):815–825, 1991.

H. Späth. Cluster Analysis Algorithms for Data Reduction and Classification of Objects. Ellis Horwood
Limited, 1980.

D.J. Spiegelhalter, A.P. Dawid, T.A. Hutchinson, and R.G. Cowell. Probabilistic expert systems and
graphical modelling: a case study in drug safety. Philosophical Transactions of the Royal Society of
London, 337:387–405, 1991.

D.A. Spielman and S.-H. Teng. Spectral partitioning works: planar graphs and finite element meshes.
In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages 96–105.
IEEE Computer Society Press, 1996.

V. Spirin and L.A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings
of the National Academy of Sciences of the United States of America, 100(21):12123–12128, 2003.

R.F. Sproull. Refinements to nearest-neighbour searching in k-dimensional trees. Algorithmica,
6:579–589, 1991.

http://rocr.bioinf.mpi-sb.mpg.de

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 631

D.V. Sridhar, E.B. Bartlett, and R.C. Seagrave. An information theoretic approach for combining neural
network process models. Neural Networks, 12:915–926, 1999.

D.V. Sridhar, R.C. Seagrave, and E.B. Bartlett. Process modeling using stacked neural networks. Process
Systems Engineering, 42(9):387–405, 1996.

C. Staelin. Parameter selection for support vector machines. Technical Report, HP Laboratories Israel,
2002.

F. Stäger and M. Agarwal. Three methods to speed up the training of feedforward and feedback
perceptrons. Neural Networks, 10(8):1435–1443, 1997.

A. Stassopoulou, M. Petrou, and J. Kittler. Bayesian and neural networks for geographic information
processing. Pattern Recognition Letters, 17:1325–1330, 1996.

S.D. Stearns. On selecting features for pattern classifiers. In Proceedings of the 3rd International
Conference on Pattern Recognition, pages 71–75. 1976.

M. Stephens. Bayesian Methods for Mixtures of Normal Distributions. PhD thesis, Magdalen College,
University of Oxford, 1997.

M. Stephens. Bayesian analysis of mixture models with an unknown number of components – an
alternative to reversible jump methods. Annals of Statistics, 28(1):40–74, 2000.

J. Stevenson. Multivariate statistics VI. The place of discriminant function analysis in psychiatric
research. Nordic Journal of Psychiatry, 47(2):109–122, 1993.

C. Stewart, Y.-C. Lu, and V. Larson. A neural clustering approach for high resolution radar target
classification. Pattern Recognition, 27(4):503–513, 1994.

G.W. Stewart. Introduction to Matrix Computation. Academic Press, Inc., 1973.

C. Stone, M. Hansen, C. Kooperberg, and Y. Truong. Polynomial splines and their tensor products (with
discussion). Annals of Statistics, 25(4):1371–1470, 1997.

M. Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statis-
tical Society Series B, 36:111–147, 1974.

D.J. Stracuzzi. Randomized feature selection. In H. Liu and H. Motoda, editors, Computational Methyods
of Feature Selection. Chapman and Hall/CRC, 2007.

A. Stuart and J.K. Ord. Kendall’s Advanced Theory of Statistic, volume 2. Edward Arnold, fifth edition,
1991.

R.G. Sumpter, C. Getino, and D.W. Noid. Theory and applications of neural computing in chemical
science. Annual Reviews of Physical Chemistry, 45:439–481, 1994.

B.D. Sutton and G.J. Steck. Discrimination of Caribbean and Mediterranean fruit fly larvae (Diptera:
Tephritidae) by cuticular hydrocarbon analysis. Florida Entomologist, 77(2):231–237, 1994.

A. Swarnkar and K.R. Niazi. CART for online security evaluation and preventive control of power
systems. In Proceedings of the 5th WSEAS/IASME International Conference on Electric Power
Systems, High Voltages, Electric Machines, pages 378–383. 2005.

K.S. Swarup, R. Mastakar, and K.V. Prasad Reddy. Decision tree for steady state security assessment
and evaluation of power systems. In Proceedings of the 2005 International Conference on Intelligent
Sensing and Information Processing, pages 211–216. 2005.

M.A. Tahir, A. Bouridane, and F. Kurugollu. Simultaneous feature selection and feature weighting using
hybrid tabu search/k-nearest neighbor classifier. Pattern Recognition Letters, 28:438–446, 2007.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson Education, 2005.

L. Tarassenko. A Guide to Neural Computing Applications. Arnold, 1998.

S. Tavaré, D.J. Balding, R.C. Griffiths, and P. Donnelly. Inferring coalescence times from DNA sequence
data. Genetics, 145:505–518. 1997.

D.M.J. Tax, M. van Breukelen, R.P.W. Duin, and J. Kittler. Combining multiple classifiers by averaging
or multiplying? Pattern Recognition, 33:1475–1485, 2000.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

632 REFERENCES

G.R. Terrell and D.W. Scott. Variable kernel density estimation. Annals of Statistics, 20(3):1236–1265,
1992.

S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, fourth edition, 2009.

S. Theodoridis, A. Pikrakis, K. Koutroumbas, and D. Cavouras. Introduction to Pattern Recognition: A
Matlab Approach. Academic Press, 2010.

C.W. Therrien. Decision, Estimation and Classification. An Introduction to Pattern Recognition and
Related Topics. John Wiley & Sons, Ltd, 1989.

H.H. Thodberg. A review of Bayesian neural networks with application to near infrared spectroscopy.
IEEE Transactions on Neural Networks, 7(1):56–72, 1996.

C.E. Thomaz, D.F. Gillies, and R.Q. Feitosa. A new covariance estimate for Bayesian classifiers in bio-
metric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(2):214–223,
2004.

Q. Tian, Y. Fainman, and S.H. Lee. Comparison of statistical pattern-recognition algorithms for hy-
brid processing. II. Eigenvector-based algorithm. Journal of the Optical Society of America A,
5(10):1670–1682, 1988.

R.J. Tibshirani. Principal curves revisited. Statistics and Computing, 2(4):183–190, 1992.

L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics, 22(4):1701–1762,
1994.

D.M. Titterington. A comparative study of kernel-based density estimates for categorical data. Techno-
metrics, 22(2):259–268, 1980.

D.M. Titterington and G.M. Mill. Kernel-based density estimates from incomplete data. Journal of the
Royal Statistical Society Series B, 45(2):258–266, 1983.

D.M. Titterington, G.D. Murray, L.S. Murray, D.J. Spiegelhalter, A.M. Skene, J.D.F. Habbema, and
G.J. Gelpke. Comparison of discrimination techniques applied to a complex data set of head in-
jured patients (with discussion). Journal of the Royal Statistical Society Series A, 144(2):145–175,
1981.

D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical Analysis of Finite Mixture Distributions.
John Wiley & Sons, Ltd, 1985.

R. Todeschini. k-nearest neighbour method: the influence of data transformations and metrics. Chemo-
metrics and Intelligent Laboratory Systems, 6:213–220, 1989.

T. Toni and M.P.H. Stumpf. Simulation-based model selection for dynamical systems in systems and
population biology. Bioinformatics, 26(1):104–110, 2010.

T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M.P.H. Stumpf. Approximate Bayesian computation
scheme for parameter inference and model selection in dynamical systems. Journal of the Royal
Society Interface, 6(31):187–2002, 2009.

J.T. Tou and R.C. Gonzales. Pattern Recognition Principles. Addison-Wesley, 1974.

G.T. Toussaint. Bibliography on estimation of misclassification. IEEE Transactions on Information
Theory, 20(4):472–479, 1974.

P.K. Trivedi and D.M. Zimmer. Copula modeling: an introduction for practitioners. Foundations and
Trends R© in Econometrics, 1(1):1–111, 2005.

S. Tulyakov, S. Jaeger, V. Govindaraju, and D. Doermann. Review of classifier combination methods.
In S. Marinai and H. Fujisawa, editors, Studies in Computational Intelligence: Machine Learning in
Document Analysis and Recognition, pages 361–386. Springer, 2008.

M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86,
1991.

J.R. Tyler, D.M. Wilkinson, and B.A. Huberman. Email as spectroscopy: automated discovery of
community structure within organizations, pages 81–96. Kluwer, 2003.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 633

D.G. Tzikas, C.A. Likas, and N.P. Galatsanos. The variational approximation for Bayesian inference.
IEEE Signal Processing Magazine, 25(6):131–146, 2008.

J.K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information Processing
Letters, 40:175–179, 1991.

R. Unbehauen and F.-L. Luo, editors. Signal Processing, 64:1998. Special issue on ‘Neural Networks’.

D. Valentin, H. Abdi, A.J. O’Toole, and G.W. Cottrell. Connectionist models of face processing: a
survey. Pattern Recognition, 27(9):1209–1230, 1994.

R.S. Valiveti and B.J. Oommen. On using the chi-squared metric for determining stochastic dependence.
Pattern Recognition, 25(11):1389–1400, 1992.

R.S. Valiveti and B.J. Oommen. Determining stochastic dependence for normally distributed vectors
using the chi-squared metric. Pattern Recognition, 26(6):975–987, 1993.

F. van der Heiden, R.P.W. Duin, D. de Ridder, and D.M.J. Tax. Classification, Parameter Estimation
and State Estimation: an Engineering Approach Using MATLAB. Wiley-Blackwell, 2004.

R. van der Heiden and F.C.A. Groen. The Box-Cox metric for nearest neighbour classification improve-
ment. Pattern Recognition, 30(2):273–279, 1997.

P.P. van der Smagt. Minimisation methods for training feedforward networks. Neural Networks,
7(1):1–11, 1994.

T. Van Gestel, J.A.K. Suykens, D.-E. Baestaens, A. Lambrechts, G. Lanckriet, B.V. Vandaele, B.
De Moor, and J. Vandewalle. Financial time series prediction using least squares support vector
machines within the evidence framework. IEEE Transactions on Neural Networks, 12(4):809–821,
2001.

T. Van Gestel, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle. A Bayesian
framework for least squares support vector machine classifiers, Gaussian processes and kernel Fisher
discriminant analysis. Neural Computation, 14(5):1115–1147, 2002.

V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Ltd, 1998.

P.K. Varshney. Distributed Detection and Data Fusion. Springer-Verlag, 1997.

N.B. Venkateswarlu and P.S.V.S.K. Raju. Fast ISODATA clustering algorithms. Pattern Recognition,
25(3):335–345, 1992.

G.G. Venter. Tails of copulas. 2001 ASTIN Colloquium. 2001.

E. Vidal. An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern
Recognition Letters, 4(3):145–157, 1986.

E. Vidal. New formulation and improvements of the nearest-neighbour approximating and eliminating
search algorithm (AESA). Pattern Recognition Letters, 15:1–7, 1994.

R. Viswanathan and P.K. Varshney. Distributed detection with multiple sensors: part 1 – fundamentals.
Proceedings of the IEEE, 85(1):54–63, 1997.

F. Vivarelli and C.K.I. Williams. Comparing Bayesian neural network algorithms for classifying seg-
mented outdoor images. Neural Networks, 14:427–437, 2001.

C.T. Volinsky. Bayesian Model Averaging for Censored Survival Models. PhD thesis, University of
Washington, Seattle, 1997.

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, 2007.

P.W. Wahl and R.A. Kronmal. Discriminant functions when covariances are unequal and sample sizes
are moderate. Biometrics, 33:479–484, 1977.

E. Waltz and J. Llinas. Multisensor Data Fusion. Artech House, 1990.

M.P. Wand and M.C. Jones. Multivariate plug-in bandwidth selection. Computational Statistics,
9:97–116, 1994.

M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman and Hall, 1995.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

634 REFERENCES

X. Wang, T.L. Lin, and J. Wong. Feature selection in intrusion detection system over mobile ad-hoc
network. Technical Report, Computer Science, Iowa State University, 2005.

J.H. Ward. Hierarchical grouping to optimise an objective function. Journal of the American Statistical
Association, 58:236–244, 1963.

L. Wasserman. Bayesian model selection and model averaging. Journal of Mathematical Psychology,
44(1):92–107, 2000.

S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, 1994.

S. Watanabe. Pattern Recognition: Human and Mechanical. John Wiley & Sons, Ltd, 1985.

A.R. Webb. Functional approximation in feed-forward networks: a least-squares approach to generali-
sation. IEEE Transactions on Neural Networks, 5(3):363–371, 1994.

A.R. Webb. Multidimensional scaling by iterative majorisation using radial basis functions. Pattern
Recognition, 28(5):753–759, 1995.

A.R. Webb. An approach to nonlinear principal components analysis using radially-symmetric kernel
functions. Statistics and Computing, 6:159–168, 1996.

A.R. Webb. Gamma mixture models for target recognition. Pattern Recognition, 33:2045–2054, 2000.

A.R. Webb and P.N. Garner. A basis function approach to position estimation using microwave arrays.
Applied Statistics, 48(2):197–209, 1999.

A.R. Webb and D. Lowe. A hybrid optimisation strategy for feed-forward adaptive layered networks.
DRA Memo 4193, DERA, 1988.

A.R. Webb, D. Lowe, and M.D. Bedworth. A comparison of nonlinear optimisation strategies for
feed-forward adaptive layered networks. DRA Memo 4157, DERA, 1988.

W.G. Wee. Generalized inverse approach to adaptive multiclass pattern recognition. IEEE Transactions
on Computers, 17(12):1157–1164, 1968.

L. Wehenkel and M. Pavella. Decision tree approach to power systems security assessment. International
Journal of Electrical Power and Energy Systems, 15(1):13–36, 1993.

M. West. Modelling with mixtures. In J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith,
editors, Bayesian Statistics, pages 503–524. Oxford University Press, 1992.

N. Weymaere and J.-P. Martens. On the initialization and optimization of multilayer perceptrons. IEEE
Transactions on Neural Networks, 5(5):738–751, 1994.

A.W. Whitney. A direct method of nonparametric measurement selection. IEEE Transactions on Com-
puters, 20:1100–1103, 1971.

C.K.I. Williams and X. Feng. Combining neural networks and belief networks for image segmentation.
In Proceedings of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal
Processing. IEEE, 1998.

W.T. Williams, G.N. Lance, M.B. Dale, and H.T. Clifford. Controversy concerning the criteria for
taxonomic strategies. Computer Journal, 14:162–165, 1971.

D. Wilson. Asymptotic properties of NN rules using edited data. IEEE Transactions on Systems, Man
and Cybernetics, 2(3):408–421, 1972.

J. Winn and C.M. Bishop. Variational message passing. Journal of Machine Learning Research,
6:661–694, 2005.

J.M. Winn. Variational Message Passing and its Applications. PhD thesis, Inference Group, Cavendish
Laboratory, University of Cambridge, 2004.

I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, second edition, 2005.

J.H. Wolfe. A Monte Carlo study of the sampling distribution of the likelihood ratio for mixtures of
multinormal distributions. Technical Bulletin STB 72–2, Naval Personnel and Training Research
Laboratory, San Diego, 1971.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

REFERENCES 635

D.H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–260, 1992.

S.K.M. Wong and F.C.S. Poon. Comments on ‘Approximating discrete probability distributions with
dependence trees’. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(3):333–335,
1989.

K. Woods, W.P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local accuracy
estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):405–410, 1997.

J. Wray and G.G.R. Green. Neural networks, approximation theory, and finite precision computation.
Neural Networks, 8(1):31–37, 1995.

T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise
coupling. Journal of Machine Learning Research, 5:975–1005, 2004.

X. Wu and K. Zhang. A better tree-structured vector quantizer. In J.A. Storer and J.H. Reif, editors,
Proceedings Data Compression Conference, pages 392–401. IEEE Computer Society Press, 1991.

C.R. Wylie and L.C. Barrett. Advanced Engineering Mathematics. McGraw-Hill, sixth edition, 1995.

Z.-X. Xie, Q.H. Hu, and D.-R. Yu. Improved feature selection algorithm based on SVM and correlation.
In Advances in Neural Networks - ISNN 2006, pages 1373–1380. Springer, 2006.

D. Yan, L. Huang, and M.I. Jordan. Fast approximate spectral clustering. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages
907–916. ACM, 2009.

H. Yan. Handwritten digit recognition using an optimised nearest neighbor classifier. Pattern Recognition
Letters, 15:207–211, 1994.

M.-S. Yang. A survey of fuzzy clustering. Mathematical and Computer Modelling, 18(11):1–16, 1993.

Y. Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of SIGIR’99,
22nd Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 42–49. ACM, 1999.

D. Yaramakala, S. Margaritis. Speculative Markov blanket discovery for optimal feature selection. In
Fifth IEEE International Conference on Data Mining (ICDM’05), pages 809–812. IEEE, 2005.

R. Yasdi, editor. Neural Computing and Applications, 9(4):2000. Special issue on ‘Neural Computing
in Human-Computer Interaction’.

K.Y. Yeung, R.E. Bumgarner, and A.E. Raftery. Bayesian model averaging: development of an improved
multi-class, gene selection and classification tool for microarray data. Bioinformatics, 21:2394–2402,
2005.

S.H. Yook, H. Jeong, and A.-L. Barabási. Weighted evolving networks. Physical Review Letters.,
86(25):5835–5838, 2001.

T.Y. Young and T.W. Calvert. Classification, Estimation and Pattern Recognition. Elselvier, 1974.

L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal of
Machine Learning Research, 5:1205–1224, 2004.

H. Zare, P. Shooshtari, A. Gupta, and R.R. Brinkman. Data reduction for spectral clustering to analyze
high throughput flow cytometry. BMC Bioinformatics, 11(403), 2010.

R. Zentgraf. A note on Lancaster’s definition of higher-order interactions. Biometrika, 62(2):375–378,
1975.

I. Zezula. On multivariate Gaussian copulas. Journal of Statistical Planning and Inference,
139:3942–3946, 2009.

G.P. Zhang. Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and
Cybernetics – Part C: Applications and Reviews, 30(4):451–462, 2000.

P. Zhang. Model selection via multifold cross validation. Annals of Statistics, 21(1):299–313, 1993.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods. Infor-
mation Retrieval, 4(1):5–31, 2001.

P1: OTA/XYZ P2: ABC
JWST102-bref JWST102-Webb August 23, 2011 20:5 Printer Name: Yet to Come

636 REFERENCES

X. Zhang, M.L. King, and R.J. Hyndman. A Bayesian approach to bandwidth selection for multivariate
kernel density estimation. Compuational Statistics and Data Analysis, 50(11):3009–3031, 2006.

Y. Zhang, C.J.S. de Silva, R. Togneri, M. Alder, and Y. Attikiouzel. Speaker-independent isolated word
recognition using multiple hidden Markov models. IEEE Proceedings on Vision, Image and Signal
Processing, 141(3):197–202, 1994.

Q. Zhao, J.C. Principe, V.L. Brennan, D. Xu, and Z. Wang. Synthetic aperture radar automatic
target recognition with three strategies of learning and representation. Optical Engineering,
39(5):1230–1244, 2000.

Y. Zhao and C.G. Atkeson. Implementing projection pursuit learning. IEEE Transactions on Neural
Networks, 7(2):362–373, 1996.

E.N. Zois and V. Anastassopoulos. Fusion of correlated decisions for writer verification. Pattern Recog-
nition, 34:47–61, 2001.

J. Zupan. Clustering of Large Data Sets. Research Studies Press, 1982.

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

Index

activation function, 277
adjacency matrix, 532, 561
Akaike information criterion, 53,

583
application studies

classifier combination, 399
clustering, 546
data fusion, 399
decision trees, 340, 350
feature selection and extraction,

493
MARS, 357
mixture models, 64, 547
neural networks, 548
nonparametric methods of density

estimation, 213
normal-based linear and quadratic

discriminant rule, 63
rule induction, 357
support vector machines, 315

approximate Bayesian computation,
137–144

back-propagation, 302–305
bagging, 385, 402
ball trees, 170
Bayes

decision rule, see decision rule
error, see error, Bayes

Bayesian information criterion, 53

Bayesian learning methods, 70–87
analytic, 73–87
conjugacy, 73
recursive, 72

Bayesian multinet, 189
Bayesian networks, 186–190
Bayesian sampling schemes, 87–126

importance sampling, 92–95
Markov chain Monte Carlo, 95–116
ratio of uniforms, 90
rejection sampling, 89
sequential Monte Carlo samplers,

119–126
boosting, 387
bootstrap

in cluster validity, 546
in error rate estimation, see error-rate

estimation, bootstrap
Borda count, 379
branch and bound

in clustering, 516, 520
in density estimation, 203
in feature selection, 450–454, 496
in kd-trees, 163
in nearest-neighbour classification,

163–174

CART, see decision trees, CART
chain rule, 187
change of variables, 91

Statistical Pattern Recognition, Third Edition.Andrew R. Webb and Keith D. Copsey.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

638 INDEX

class-conditional probability density
function, 7

classification trees, see decision trees
classifier combination methods, see

ensemble methods
classifier fusion, 362
classifier generalisation, 6
classifier performance assessment,

404–432
clique percolation method, 573
clustering

agglomerative methods, 203
application studies, 546
cluster validity, 538–546
hierarchical methods, 502–510

agglomerative algorithm, 503
complete-link method, 506–507
divisive algorithm, 503, 510
general agglomerative algorithm,

508
inversions, 510, 547
nonuniqueness, 510, 547
single-link method, 503–506
sum-of-squares method, 507

mixture models, 511–513
quick partitions, 510–511
spectral clustering, 531–538
sum-of-squares methods, 513–531

clustering criteria, 514
complete search, 520
fuzzy k-means, 519–520
k-means, 49, 280, 516–517
nonlinear optimisation, 518
stochastic vector quantisation, 529–531
vector quantisation, 520–531

community detection, see complex
networks, community detection

comparative studies, 30
approximation elimination search

algorithms, 178
comparing performance, 424
decision trees, 357, 358
feature selection, 497
fuzzy c-means, 547
hierarchical clustering methods, 547
kernel bandwidth estimators, 200
kernel methods, 201, 203, 216

linear discriminant analysis – for small
sample size, 248

MARS, 358
maximum weight dependence trees, 186
naı̈ve Bayes, 216
neural networks, 315
neural networks model selection, 582
nonlinear feature extraction, 493
nonlinear optimisation algorithms, 313
normal-based models, 64
number of mixture components, 53
principal components analysis, 469, 473
RBF learning, 290
regularised discriminant analysis, 45, 46
tree-pruning methods, 339

complete link, see clustering, hierarchical
methods, complete-link method

complex networks, 555–580
community detection, 565–575
link prediction, 575–579
properties, 557

condensing of nearest-neighbour training
set, 176

conditional risk, 14
confusion matrix, 5, 40, 406
conjugate gradients, 305
conjugate priors, 73
copulas, see nonparametric discrimination,

copulas
covariance matrix

maximum likelihood estimate, 37
structures

common principal components, 45
proportional, 45

unbiased estimate, 80
cross-validation, 327, 582

error rate, see error-rate estimation,
cross-validation

curse of dimensionality, 181

data
dimension, 4
head injury patient, 39
training set, 3

data fusion, 361, 366, 367, 370–376
data mining, 2, 315
data visualisation, 433, 463

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

INDEX 639

decision rule, 7
Bayes

for minimum error, 8–15, 18
for minimum risk, 13–15

minimax, 18
Neyman–Pearson, 15, 373

decision surfaces, 7
decision theory, 7–20
decision trees, 323–342

CART, 330, 332, 334
construction, 326, 337–339
definition, 333
pruning algorithm, 330–332
splitting rules, 327–330

deduction, 3
dendrogram, 502
density estimation

nonparametric, 150–218
expansion by basis functions, 204
properties, 150

parametric
estimative, 34
predictive, 35, 70

semiparametric, 203
design set, see data, training set
detailed balance, 97, 105
discriminability, see performance

assessment, discriminability
discriminant functions, 20–26
discrimination

normal-based models, 35–46
linear discriminant function, 41
quadratic discriminant function, 36

regularised discriminant analysis, see
regularised discriminant analysis

distance measures
binary variables, 443
distance between distributions

Bhattacharyya, 452
Chernoff, 452
divergence, 446, 452
Kullback–Leibler, 126, 184
Mahalanobis, 271, 452, 500
multiclass measures, 447
Patrick–Fischer, 452

nominal and ordinal variables, 443
divergence, 446, 452

editing of nearest-neighbour training set, 174
EM algorithm, see estimation, maximum

likelihood, EM algorithm
ensemble methods, 361–402
error rate, 406

apparent, 406, 448
Bayes, 10, 407
estimation, see error-rate estimation
expected, 406
for feature selection, 448
true, 406

error-rate estimation
bootstrap, 411–413, 448
cross-validation, 408
holdout, 407
jackknife, 410, 448

errors-in-variables models, 289
estimation

maximum likelihood
definition, 34
EM algorithm, 55

Expectation Maximisation algorithm, 49

false negative rate, 16
false positive rate, 16
feature extraction, 433, 434, 463–495

Karhunen–Loève transformation,
475–481

Kittler–Young, 477
SELFIC, 476

multidimensional scaling, 484–493
by transformation, 491
classical scaling, 484
metric multidimensional scaling, 486
ordinal scaling, 487

principal components analysis, 98,
464–474

feature selection, 433, 435–463
algorithms, 449–463

branch and bound, 450
Markov blanket, 459
suboptimal methods, 454–463

criteria, 440
error rate, 448
probabilistic distance, 446
scatter matrices, 443

embedded methods, 439

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

640 INDEX

feature selection (Continued)
filter methods, 439
floating search methods, 457
redundancy, 436
relevance, 435
stability, 460
wrapper methods, 439

features, 2
forward propagation, 303
fuzzy k-means clustering, see clustering,

sum-of-squares methods, fuzzy
k-means

Gaussian classifier, see discrimination,
normal-based models, 35–40

geometric methods, 433
Gibbs sampling, see Markov chain Monte

Carlo algorithms, Gibbs sampling
Gini criterion, 328
graph, 188, 532–533, 561
graph centrality measures, 563–564
graph diameter, 563

Hermite polynomial, 206

imprecision, see performance assessment,
imprecision

independent components analysis, 483
induction, 3
information gain, 329
intrinsic dimensionality, 4, 285

k-means clustering, see clustering,
sum-of-squares methods, k-means

k-nearest-neighbour methods, see
nonparametric discrimination,
nearest-neighbour methods

Karhunen–Loéve transformation, see feature
extraction, Karhunen–Loéve
transformation

Karush–Kuhn–Tucker conditions, 252
kernel methods, 88, 194
Kullback–Leibler divergence, 126, 128, 129,

184, 438, 446, 460

Laplacian, 532, 535–536, 562
latent variables, 483
LBG algorithm, 522

learning vector quantisation, 528
likelihood ratio, 9
linear discriminant analysis, 221–249

error correction procedure
multiclass, 237
two-class, 223

Fisher’s criterion
multiclass, 238
two-class, 227

for feature extraction, see feature
extraction, linear discriminant
anlysis

least mean-squared-error procedures, 228,
241–246

multiclass algorithms, 236–249
perceptron criterion, 223–227
support vector machines, see support

vector machines
two-class algorithms, 222–236

linear discriminant function, see
discrimination, normal models,
normal-based linear discriminant
function

generalised, 24
piecewise, 23

link prediction, see complex networks, link
prediction

logistic discrimination, 263–268
loss matrix, 14

equal cost, 14
Luttrell algorithm, 528

machine learning, 322
Mahalanobis distance, see distance

measures, distance between
distributions, Mahalanobis

Markov blanket, 436, 459
Markov chain Monte Carlo methods,

95–116
Gibbs sampling, 95–103
Metropolis–Hastings, 103–107, 114
practical example, 111–114
reversible jump Markov chain Monte

Carlo, 108
slice sampling, 109–111

MARS, see multivariate adaptive regression
splines

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

INDEX 641

MCMC algorithms, see Markov chain
Monte Carlo algorithms

Mercer’s condition, 293
Metropolis–Hasting, see Markov chain

Monte Carlo algorithms,
Metropolis–Hasting

minimum description length, 339, 345, 350,
462, 584

minimum-distance classifier, 22, 241
misclassification matrix, see confusion

matrix
missing data, 585–586
mixture models, 46–63

discriminant analysis, 48
EM algorithm, 55
in cluster analysis, see clustering, mixture

models
in discriminant analysis, see normal

mixture models
number of components, 52
sampling from, 48

mixture of experts model, 382–385
mixture sampling, 264
model averaging, 390–396
model selection, 6, 53, 135, 286, 293,

581–585
modularity, 569, 570–572
monotonicity property, 450
multidimensional scaling, see feature

extraction, multidimensional
scaling

multilayer perceptron, 26, 275, 298–314
multivariate adaptive regression splines,

351–356
mutual information, 441

naı̈ve Bayes, 40, 181
nearest class mean classifier, 23, 42
neural networks, 274–321

model selection, 582
nonparametric discrimination

copulas, 207–213, 216
expansion by basis functions,

204
histogram approximations, 181

Bayesian networks, 186–190
independence, 181

Lancaster models, 182
maximum weight dependence trees,

183–190
histogram method, 180, 216

variable cell, 181
kernel methods, 194–204, 216

choice of kernel, 201
choice of smoothing parameter, 199
multivariate kernel, 198
product kernels, 198
variable kernel, 200

nearest-neighbour algorithms, 159–174
ball-trees, 170–174
kd-trees, 163–170
LAESA, 159–163

nearest-neighbour methods, 152–180, 216
choice of k, 180
choice of metric, 157
condensing, 176
discriminant adaptive nearest

neighbour classification, 177
editing techniques, 174
for RBF initialisation, 281
k-nearest-neighbour decision rule, 156

normal (Gaussian) distribution, 36
normal mixture models, 47, 67

cluster analysis, 511
discriminant analysis, 48
EM acceleration, 62
EM algorithm, 49, 55, 67
for RBF initialisation, 280
number of components, 52

normal-based quadratic discriminant
function, 36

oblique decision trees, 341
ordination methods, 433
outlier detection, 586
overfitting, 6

parametric density estimation, see density
estimation, parametric

particle filters, 93
pattern

definition, 2
perceptron, see linear discriminant analysis,

perceptron criterion

P1: OTA/XYZ P2: ABC
JWST102-IND JWST102-Webb September 6, 2011 17:25 Printer Name: Yet to Come

642 INDEX

performance assessment
discriminability, 405, 406
imprecision, 413
reliability, 405, 413

population and sensor drift, 7, 202, 245, 289,
317, 419–421

primary monotone condition, 488
principal components analysis, see feature

extraction, principal components
analysis

principal coordinates analysis, 484
probabilistic expert systems, 189
probability

a posteriori, 8
a priori, 8

probability density function
Dirichlet, 86
gamma, 74
normal, 36
Poisson, 74
student, 81
Wishart, 80

projection pursuit, 26, 313
pseudo-distances, 489

quadratic discriminant function, see
discrimination, normal models,
quadratic discriminant function

radial basis function network, 26, 269,
275–290

random forests, 389
random graph, 564
Rao-Blackwellisation, 88
receiver operating characteristic, 17,

415–422
area under the curve, 416–419

recursive partitioning, 322
regression, 21, 26–28
regularisation, 246, 284
regularised discriminant analysis,

42–67
reject option, 7, 12, 15
reliability, see performance assessment,

reliability
representation space, 484
robust procedures, 586

ROC, see receiver operating characteristic
rule induction, 342–351

scale-free networks, 559
scree test, 469, 485
secondary monotone condition, 488
self-organising feature maps, 525–531
Sherman–Morisson formula, 409
simulated annealing

in clustering, 520
single-link, see clustering, hierarchical

methods, single-link method
small-world effect, 557
softmax, 284
spectral clustering, 531–538
stacked generalisation, 382
stochastic vector quantisation, see

clustering, sum-of-squares methods,
stochastic vector quantisation

stress, 489
support vector machines, 249–263,

291–298, 388
application studies, 268, 315
canonical hyperplanes, 250
linear

multiclass algorithms, 247, 256
two-class algorithms, 249–256, 262

nonlinear, 291–298
surrogate splits, 339
Sylvester’s determinant theorem, 84

text classification, 190
training set, see data, training set, 7
tree-structured vector quantisation, 523

ultrametric dissimilarity coefficient,
545

ultrametric inequality, 503

validation set, 582
variables of mixed type, 587–588
variational Bayes, 126–137
varimax rotation, 473
VC dimension, 589, 590
vector quantisation, see clustering,

sum-of-squares methods, vector
quantisation

	Statistical Pattern Recognition
	Contents
	Preface
	Notation
	1 Introduction to Statistical Pattern Recognition
	1.1 Statistical Pattern Recognition
	1.1.1 Introduction
	1.1.2 The Basic Model

	1.2 Stages in a Pattern Recognition Problem
	1.3 Issues
	1.4 Approaches to Statistical Pattern Recognition
	1.5 Elementary Decision Theory
	1.5.1 Bayes’ Decision Rule for Minimum Error
	1.5.2 Bayes’ Decision Rule for Minimum Error – Reject Option
	1.5.3 Bayes’ Decision Rule for Minimum Risk
	1.5.4 Bayes’ Decision Rule for Minimum Risk – Reject Option
	1.5.5 Neyman–Pearson Decision Rule
	1.5.6 Minimax Criterion
	1.5.7 Discussion

	1.6 Discriminant Functions
	1.6.1 Introduction
	1.6.2 Linear Discriminant Functions
	1.6.3 Piecewise Linear Discriminant Functions
	1.6.4 Generalised Linear Discriminant Function
	1.6.5 Summary

	1.7 Multiple Regression
	1.8 Outline of Book
	1.9 Notes and References
	Exercises

	2 Density Estimation – Parametric
	2.1 Introduction
	2.2 Estimating the Parameters of the Distributions
	2.2.1 Estimative Approach
	2.2.2 Predictive Approach

	2.3 The Gaussian Classifier
	2.3.1 Specification
	2.3.2 Derivation of the Gaussian Classifier Plug-In Estimates
	2.3.3 Example Application Study

	2.4 Dealing with Singularities in the Gaussian Classifier
	2.4.1 Introduction
	2.4.2 Na¨ıve Bayes
	2.4.3 Projection onto a Subspace
	2.4.4 Linear Discriminant Function
	2.4.5 Regularised Discriminant Analysis
	2.4.6 Example Application Study
	2.4.7 Further Developments
	2.4.8 Summary

	2.5 Finite Mixture Models
	2.5.1 Introduction
	2.5.2 Mixture Models for Discrimination
	2.5.3 Parameter Estimation for Normal Mixture Models
	2.5.4 Normal Mixture Model Covariance Matrix Constraints
	2.5.5 How Many Components?
	2.5.6 Maximum Likelihood Estimation via EM
	2.5.7 Example Application Study
	2.5.8 Further Developments
	2.5.9 Summary

	2.6 Application Studies
	2.7 Summary and Discussion
	2.8 Recommendations
	2.9 Notes and References
	Exercises

	3 Density Estimation – Bayesian
	3.1 Introduction
	3.1.1 Basics
	3.1.2 Recursive Calculation
	3.1.3 Proportionality

	3.2 Analytic Solutions
	3.2.1 Conjugate Priors
	3.2.2 Estimating the Mean of a Normal Distribution with Known Variance
	3.2.3 Estimating the Mean and the Covariance Matrix of a Multivariate Normal Distribution
	3.2.4 Unknown Prior Class Probabilities
	3.2.5 Summary

	3.3 Bayesian Sampling Schemes
	3.3.1 Introduction
	3.3.2 Summarisation
	3.3.3 Sampling Version of the Bayesian Classifier
	3.3.4 Rejection Sampling
	3.3.5 Ratio of Uniforms
	3.3.6 Importance Sampling

	3.4 Markov Chain Monte Carlo Methods
	3.4.1 Introduction
	3.4.2 The Gibbs Sampler
	3.4.3 Metropolis–Hastings Algorithm
	3.4.4 Data Augmentation
	3.4.5 Reversible Jump Markov Chain Monte Carlo
	3.4.6 Slice Sampling
	3.4.7 MCMC Example – Estimation of Noisy Sinusoids
	3.4.8 Summary
	3.4.9 Notes and References

	3.5 Bayesian Approaches to Discrimination
	3.5.1 Labelled Training Data
	3.5.2 Unlabelled Training Data

	3.6 Sequential Monte Carlo Samplers
	3.6.1 Introduction
	3.6.2 Basic Methodology
	3.6.3 Summary

	3.7 Variational Bayes
	3.7.1 Introduction
	3.7.2 Description
	3.7.3 Factorised Variational Approximation
	3.7.4 Simple Example
	3.7.5 Use of the Procedure for Model Selection
	3.7.6 Further Developments and Applications
	3.7.7 Summary

	3.8 Approximate Bayesian Computation
	3.8.1 Introduction
	3.8.2 ABC Rejection Sampling
	3.8.3 ABC MCMC Sampling
	3.8.4 ABC Population Monte Carlo Sampling
	3.8.5 Model Selection
	3.8.6 Summary

	3.9 Example Application Study
	3.10 Application Studies
	3.11 Summary and Discussion
	3.12 Recommendations
	3.13 Notes and References
	Exercises

	4 Density Estimation – Nonparametric
	4.1 Introduction
	4.1.1 Basic Properties of Density Estimators

	4.2 k-Nearest-Neighbour Method
	4.2.1 k-Nearest-Neighbour Classifier
	4.2.2 Derivation
	4.2.3 Choice of Distance Metric
	4.2.4 Properties of the Nearest-Neighbour Rule
	4.2.5 Linear Approximating and Eliminating Search Algorithm
	4.2.6 Branch and Bound Search Algorithms: kd-Trees
	4.2.7 Branch and Bound Search Algorithms: Ball-Trees
	4.2.8 Editing Techniques
	4.2.9 Example Application Study
	4.2.10 Further Developments
	4.2.11 Summary

	4.3 Histogram Method
	4.3.1 Data Adaptive Histograms
	4.3.2 Independence Assumption (Naïve Bayes)
	4.3.3 Lancaster Models
	4.3.4 Maximum Weight Dependence Trees
	4.3.5 Bayesian Networks
	4.3.6 Example Application Study – Naïve Bayes Text Classification
	4.3.7 Summary

	4.4 Kernel Methods
	4.4.1 Biasedness
	4.4.2 Multivariate Extension
	4.4.3 Choice of Smoothing Parameter
	4.4.4 Choice of Kernel
	4.4.5 Example Application Study
	4.4.6 Further Developments
	4.4.7 Summary

	4.5 Expansion by Basis Functions
	4.6 Copulas
	4.6.1 Introduction
	4.6.2 Mathematical Basis
	4.6.3 Copula Functions
	4.6.4 Estimating Copula Probability Density Functions
	4.6.5 Simple Example
	4.6.6 Summary

	4.7 Application Studies
	4.7.1 Comparative Studies

	4.8 Summary and Discussion
	4.9 Recommendations
	4.10 Notes and References
	Exercises

	5 Linear Discriminant Analysis
	5.1 Introduction
	5.2 Two-Class Algorithms
	5.2.1 General Ideas
	5.2.2 Perceptron Criterion
	5.2.3 Fisher’s Criterion
	5.2.4 Least Mean-Squared-Error Procedures
	5.2.5 Further Developments
	5.2.6 Summary

	5.3 Multiclass Algorithms
	5.3.1 General Ideas
	5.3.2 Error-Correction Procedure
	5.3.3 Fisher’s Criterion – Linear Discriminant Analysis
	5.3.4 Least Mean-Squared-Error Procedures
	5.3.5 Regularisation
	5.3.6 Example Application Study
	5.3.7 Further Developments
	5.3.8 Summary

	5.4 Support Vector Machines
	5.4.1 Introduction
	5.4.2 Linearly Separable Two-Class Data
	5.4.3 Linearly Nonseparable Two-Class Data
	5.4.4 Multiclass SVMs
	5.4.5 SVMs for Regression
	5.4.6 Implementation
	5.4.7 Example Application Study
	5.4.8 Summary

	5.5 Logistic Discrimination
	5.5.1 Two-Class Case
	5.5.2 Maximum Likelihood Estimation
	5.5.3 Multiclass Logistic Discrimination
	5.5.4 Example Application Study
	5.5.5 Further Developments
	5.5.6 Summary

	5.6 Application Studies
	5.7 Summary and Discussion
	5.8 Recommendations
	5.9 Notes and References
	Exercises

	6 Nonlinear Discriminant Analysis – Kernel and Projection Methods
	6.1 Introduction
	6.2 Radial Basis Functions
	6.2.1 Introduction
	6.2.2 Specifying the Model
	6.2.3 Specifying the Functional Form
	6.2.4 The Positions of the Centres
	6.2.5 Smoothing Parameters
	6.2.6 Calculation of the Weights
	6.2.7 Model Order Selection
	6.2.8 Simple RBF
	6.2.9 Motivation
	6.2.10 RBF Properties
	6.2.11 Example Application Study
	6.2.12 Further Developments
	6.2.13 Summary

	6.3 Nonlinear Support Vector Machines
	6.3.1 Introduction
	6.3.2 Binary Classification
	6.3.3 Types of Kernel
	6.3.4 Model Selection
	6.3.5 Multiclass SVMs
	6.3.6 Probability Estimates
	6.3.7 Nonlinear Regression
	6.3.8 Example Application Study
	6.3.9 Further Developments
	6.3.10 Summary

	6.4 The Multilayer Perceptron
	6.4.1 Introduction
	6.4.2 Specifying the MLP Structure
	6.4.3 Determining the MLP Weights
	6.4.4 Modelling Capacity of the MLP
	6.4.5 Logistic Classification
	6.4.6 Example Application Study
	6.4.7 Bayesian MLP Networks
	6.4.8 Projection Pursuit
	6.4.9 Summary

	6.5 Application Studies
	6.6 Summary and Discussion
	6.7 Recommendations
	6.8 Notes and References
	Exercises

	7 Rule and Decision Tree Induction
	7.1 Introduction
	7.2 Decision Trees
	7.2.1 Introduction
	7.2.2 Decision Tree Construction
	7.2.3 Selection of the Splitting Rule
	7.2.4 Terminating the Splitting Procedure
	7.2.5 Assigning Class Labels to Terminal Nodes
	7.2.6 Decision Tree Pruning – Worked Example
	7.2.7 Decision Tree Construction Methods
	7.2.8 Other Issues
	7.2.9 Example Application Study
	7.2.10 Further Developments
	7.2.11 Summary

	7.3 Rule Induction
	7.3.1 Introduction
	7.3.2 Generating Rules from a Decision Tree
	7.3.3 Rule Induction Using a Sequential Covering Algorithm
	7.3.4 Example Application Study
	7.3.5 Further Developments
	7.3.6 Summary

	7.4 Multivariate Adaptive Regression Splines
	7.4.1 Introduction
	7.4.2 Recursive Partitioning Model
	7.4.3 Example Application Study
	7.4.4 Further Developments
	7.4.5 Summary

	7.5 Application Studies
	7.6 Summary and Discussion
	7.7 Recommendations
	7.8 Notes and References
	Exercises

	8 Ensemble Methods
	8.1 Introduction
	8.2 Characterising a Classifier Combination Scheme
	8.2.1 Feature Space
	8.2.2 Level
	8.2.3 Degree of Training
	8.2.4 Form of Component Classifiers
	8.2.5 Structure
	8.2.6 Optimisation

	8.3 Data Fusion
	8.3.1 Architectures
	8.3.2 Bayesian Approaches
	8.3.3 Neyman–Pearson Formulation
	8.3.4 Trainable Rules
	8.3.5 Fixed Rules

	8.4 Classifier Combination Methods
	8.4.1 Product Rule
	8.4.2 Sum Rule
	8.4.3 Min, Max and Median Combiners
	8.4.4 Majority Vote
	8.4.5 Borda Count
	8.4.6 Combiners Trained on Class Predictions
	8.4.7 Stacked Generalisation
	8.4.8 Mixture of Experts
	8.4.9 Bagging
	8.4.10 Boosting
	8.4.11 Random Forests
	8.4.12 Model Averaging
	8.4.13 Summary of Methods
	8.4.14 Example Application Study
	8.4.15 Further Developments

	8.5 Application Studies
	8.6 Summary and Discussion
	8.7 Recommendations
	8.8 Notes and References
	Exercises

	9 Performance Assessment
	9.1 Introduction
	9.2 Performance Assessment
	9.2.1 Performance Measures
	9.2.2 Discriminability
	9.2.3 Reliability
	9.2.4 ROC Curves for Performance Assessment
	9.2.5 Population and Sensor Drift
	9.2.6 Example Application Study
	9.2.7 Further Developments
	9.2.8 Summary

	9.3 Comparing Classifier Performance
	9.3.1 Which Technique is Best?
	9.3.2 Statistical Tests
	9.3.3 Comparing Rules When Misclassification Costs are Uncertain
	9.3.4 Example Application Study
	9.3.5 Further Developments
	9.3.6 Summary

	9.4 Application Studies
	9.5 Summary and Discussion
	9.6 Recommendations
	9.7 Notes and References
	Exercises

	10 Feature Selection and Extraction
	10.1 Introduction
	10.2 Feature Selection
	10.2.1 Introduction
	10.2.2 Characterisation of Feature Selection Approaches
	10.2.3 Evaluation Measures
	10.2.4 Search Algorithms for Feature Subset Selection
	10.2.5 Complete Search – Branch and Bound
	10.2.6 Sequential Search
	10.2.7 Random Search
	10.2.8 Markov Blanket
	10.2.9 Stability of Feature Selection
	10.2.10 Example Application Study
	10.2.11 Further Developments
	10.2.12 Summary

	10.3 Linear Feature Extraction
	10.3.1 Principal Components Analysis
	10.3.2 Karhunen–Loève Transformation
	10.3.3 Example Application Study
	10.3.4 Further Developments
	10.3.5 Summary

	10.4 Multidimensional Scaling
	10.4.1 Classical Scaling
	10.4.2 Metric MDS
	10.4.3 Ordinal Scaling
	10.4.4 Algorithms
	10.4.5 MDS for Feature Extraction
	10.4.6 Example Application Study
	10.4.7 Further Developments
	10.4.8 Summary

	10.5 Application Studies
	10.6 Summary and Discussion
	10.7 Recommendations
	10.8 Notes and References
	Exercises

	11 Clustering
	11.1 Introduction
	11.2 Hierarchical Methods
	11.2.1 Single-Link Method
	11.2.2 Complete-Link Method
	11.2.3 Sum-of-Squares Method
	11.2.4 General Agglomerative Algorithm
	11.2.5 Properties of a Hierarchical Classification
	11.2.6 Example Application Study
	11.2.7 Summary

	11.3 Quick Partitions
	11.4 Mixture Models
	11.4.1 Model Description
	11.4.2 Example Application Study

	11.5 Sum-of-Squares Methods
	11.5.1 Clustering Criteria
	11.5.2 Clustering Algorithms
	11.5.3 Vector Quantisation
	11.5.4 Example Application Study
	11.5.5 Further Developments
	11.5.6 Summary

	11.6 Spectral Clustering
	11.6.1 Elementary Graph Theory
	11.6.2 Similarity Matrices
	11.6.3 Application to Clustering
	11.6.4 Spectral Clustering Algorithm
	11.6.5 Forms of Graph Laplacian
	11.6.6 Example Application Study
	11.6.7 Further Developments
	11.6.8 Summary

	11.7 Cluster Validity
	11.7.1 Introduction
	11.7.2 Statistical Tests
	11.7.3 Absence of Class Structure
	11.7.4 Validity of Individual Clusters
	11.7.5 Hierarchical Clustering
	11.7.6 Validation of Individual Clusterings
	11.7.7 Partitions
	11.7.8 Relative Criteria
	11.7.9 Choosing the Number of Clusters

	11.8 Application Studies
	11.9 Summary and Discussion
	11.10 Recommendations
	11.11 Notes and References
	Exercises

	12 Complex Networks
	12.1 Introduction
	12.1.1 Characteristics
	12.1.2 Properties
	12.1.3 Questions to Address
	12.1.4 Descriptive Features
	12.1.5 Outline

	12.2 Mathematics of Networks
	12.2.1 Graph Matrices
	12.2.2 Connectivity
	12.2.3 Distance Measures
	12.2.4 Weighted Networks
	12.2.5 Centrality Measures
	12.2.6 Random Graphs

	12.3 Community Detection
	12.3.1 Clustering Methods
	12.3.2 Girvan–Newman Algorithm
	12.3.3 Modularity Approaches
	12.3.4 Local Modularity
	12.3.5 Clique Percolation
	12.3.6 Example Application Study
	12.3.7 Further Developments
	12.3.8 Summary

	12.4 Link Prediction
	12.4.1 Approaches to Link Prediction
	12.4.2 Example Application Study
	12.4.3 Further Developments

	12.5 Application Studies
	12.6 Summary and Discussion
	12.7 Recommendations
	12.8 Notes and References
	Exercises

	13 Additional Topics
	13.1 Model Selection
	13.1.1 Separate Training and Test Sets
	13.1.2 Cross-Validation
	13.1.3 The Bayesian Viewpoint
	13.1.4 Akaike’s Information Criterion
	13.1.5 Minimum Description Length

	13.2 Missing Data
	13.3 Outlier Detection and Robust Procedures
	13.4 Mixed Continuous and Discrete Variables
	13.5 Structural Risk Minimisation and the Vapnik–Chervonenkis Dimension
	13.5.1 Bounds on the Expected Risk
	13.5.2 The VC Dimension

	References
	Index

