
www.it-ebooks.info

http://www.it-ebooks.info/

QlikView 11 for Developers

Develop Business Intelligence applications with
QlikView 11

Miguel García

Barry Harmsen

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

QlikView 11 for Developers

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 1161112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-606-8

www.packtpub.com

Cover Image by Barry Harmsen (barry@qlikfix.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Miguel García

Barry Harmsen

Reviewers
Ralf Becher

Steve Dark

Stephen Redmond

Acquisition Editors
Rashmi Phadnis

Joanne Fitzpatrick

Lead Technical Editor
Ankita Shashi

Technical Editor
Nitee Shetty

Copy Editors
Aditya Nair

Alfida Paiva

Project Coordinators
Sai Gamare

Anugya Khurana

Proofreaders
Joel Johnson

Bob Phillips

Indexers
Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Graphics
Aditi Gajjar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

At QlikTech we often describe ourselves as "an American company with a Swedish
soul". We celebrate our roots in the delightful and urbane university town of Lund
in southern Sweden; indeed, the development teams who built QlikView are still
mostly based there. We power our business from our headquarters and major offices
in Philadelphia, Boston, and San Mateo.

Nevertheless, we have more than a Swedish soul and a US business; in fact the
QlikView community of customers, partners, and consultants is truly international.
To understand that scope, you need only look at the authors of this excellent new
book. Barry Harmsen is well known in the Netherlands as an independent Business
Intelligence consultant. He is undoubtedly a star of the QlikTech community. Miguel
García, from Mexico, has worked globally consulting on QlikView.

The sheer range of experience that Barry and Miguel bring to this book is one
of its most valuable qualities. Their examples are carefully thought out, and
very thorough; but they also take time to explain the business background to
their thinking.

At QlikTech we often say that QlikView is not so much a tool for Business
Intelligence as it is a platform for Business Discovery. This is not just a marketing
term: we do not want only something different to say. In fact, every day we see
customers making discoveries—finding new information and insights—with
QlikView.

A traditional BI report simply tells you what you already know and is packaged and
formatted to keep that knowledge up-to-date and share it easily. A typical dashboard
enables you to track key indicators and, with some good design, also "drill down" to
understand the details or trends underlying those indicators. But Business Discovery
does this and more. Business Discovery enables users to formulate new questions
and explore the answers and implications with very few restrictions.

From the very first chapter, Barry and Miguel show you exactly how this happens.
Here, they introduce the associative model that makes QlikView so powerful, along
with the clues in the user interface (look for the green, white, and grey) that make
this model easy to use.

www.it-ebooks.info

http://www.it-ebooks.info/

As they progress along a thoroughly practical path, the authors introduce you to
the mechanics of collecting data from sources. They guide you through numerous
techniques for transforming, modeling, and exploring this data. They provide practical
advice on best practices for security, visualization, and more complex analyses.

In short, for new developers, this is an excellent guide to get them started. For more
experienced users, the thoughtful examples and careful notes make this an excellent
companion in your work.

Donald Farmer,

VP Product Management, QlikTech.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Miguel García is a Business Intelligence Consultant and QlikView Solutions
Architect from Monterrey, Mexico. Having worked throughout many successful
QlikView implementations, from inception through implementation, and performed
across a wide variety of roles on each project, his experience and skills range from
applications development and design, to pre-sales, technical architecture, system
administration, as well as functional analysis and overall project execution.

He currently holds the QlikView Designer and QlikView Developer Certifications,
backed by QlikTech, for versions 9, 10, and 11.

His passion for QlikView led him to create and host the iQlik's blog (http://iqlik.
wordpress.com). You can follow his blog updates via Twitter on @iQlik.

He currently works for DataIQ, a QlikView consulting firm with presence in
Argentina, Mexico, Uruguay, and Paraguay.

I want to thank my family for their understanding and support
throughout all the projects and endeavors I undertake.

www.it-ebooks.info

http://www.it-ebooks.info/

Barry Harmsen is an independent Business Intelligence Consultant based in the
Netherlands. Originally from a background of traditional Business Intelligence, Data
Warehousing, and Performance Management, in 2008 he made the shift to QlikView
and a more user-centric form of Business Intelligence. Since then he has completed
many successful QlikView implementations in many different industries, from
Financial Services to Telecoms, and from Manufacturing to Healthcare. He writes a
QlikView blog at QlikFix.com.

I would like to thank my daughter Lucie, my son Lex, and especially
my wife Miranda for their support and patience during the writing
of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgements

Writing a book is not a solo - or duo - exercise. This result could not have been
achieved without the contributions of a great team.

We want to thank Donald Farmer for writing the foreword and for helping us
acquire permission to use some of QlikTech's materials in this book. Thanks to John
Trigg for supporting this project as well.

Ralf Becher, Steve Dark, and Stephen Redmond performed the technical review
of this book. Their insightful comments and suggestions have added an extra
dimension of quality to the book. For that we thank them.

We also want to thank everyone on Packt's editorial team; Rashmi Phadnis, Joanne
Fitzpatrick, Sai Gamare, Anugya Khurana, Ankita Shashi, and Nitee Shetty. Their
guidance kept us focused and on track.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ralf Becher was born in 1968. He had his apprenticeship as an Information
Technology Officer at the Leipzig Graduate School of Management (HHL) in
1992. He worked as an IT System Architect and as an IT Consultant in the areas of
banking, insurance, logistics, automotive, and retail. He co-founded TIQ Solutions
in 2004.

The Leipzig Company specializes in modern, quality-assured data management;
since 2004 it has been helping its customers process, evaluate, and maintain the
quality of company data. TIQ Solutions supports its customers from the initial
problem analysis on, helping them introduce, implement, and improve complex
solutions in the fields of data architecture, data integration, data migration,
master data management, meta-data management, data warehousing, and
business intelligence.

He is an internationally recognized QlikView expert with a strong position in the
community. He has contributed QlikView add-on solutions for data integration,
especially in the Java and Big Data realm.

Steve Dark was a SQL Server / MS ASP developer, building web based reporting
solutions for ten years, until he was shown a demo of QlikView. Soon after this
revelation, he left his previous employer to set up Quick Intelligence—a consultancy
focusing entirely on QlikView and delivering Business Intelligence solutions.
Preferring to stay at the coalface, he spends the majority of his time with clients,
building QlikView applications, managing servers, and running projects.

He will never tire of showing QlikView to new users and seeing that "jaw
drop moment".

www.it-ebooks.info

http://www.it-ebooks.info/

He is active on QlikCommunity and other social media sites, where he shares
his enthusiasm for QlikView and assists other users. Through his blog he
shares tutorials, examples, and insights about QlikView. Read it at
http://www.quickintelligence.co.uk/.

I would like to thank Barry and Miguel for writing this book and the
publishers for making it possible. I honestly believe it fills a vital gap
in the QlikView universe.

Stephen Redmond is the CTO of CapricornVentis Limited (http://www.
capventis.com), a QlikView elite partner. He is the author of several books,
including the very popular DevLogix series for SalesLogix developers.

After many years working with CRM systems, reporting and analysis solutions,
and data integration, in 2006 he started working with QlikView. Since then,
CapricornVentis have become QlikView's top partner in the UK and Ireland territory
and, with Stephen as the head of the team, have implemented QlikView in a wide
variety of enterprise and large business customers across a wide range of sectors
from public sector to financial services to large retailers.

He regularly contributes to online forums, including the Qlik Community. His
QlikView blog is at http://qliktips.blogspot.com and you can follow him
on Twitter—@stephencredmond—where he tweets about QlikView, BI, data
visualization, and technology in general.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dedicated to our families.

Miguel García

Barry Harmsen

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Meet QlikView	 7

What is QlikView?	 8
How does QlikView differ from traditional BI?	 8

Associative user experience	 9
Technology	 11
Adoption path	 11

Exploring data with QlikView	 13
Getting QlikView	 13
Navigating the document	 14
Slicing and dicing your data	 15

List-boxes	 15
Selections in charts	 16
Search	 16
Bookmarking selections	 17
Undoing selections	 19

Changing the view	 19
Cyclic Groups	 19
Drill down Groups	 19
Containers	 20

But wait, there's more!	 21
The technology and components behind QlikView	 22

The way the data flows	 23
When QlikView use expands	 24

Create content	 25
Reload, publish, and distribute content	 25
Consume content	 26

Meet HighCloud Airlines	 27
Summary	 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Seeing is Believing	 29
What is a SiB?	 30
Preparing the workspace	 30

Setting up the folder structure	 30
Creating the QlikView document	 31

Creating the app 	 32
The requirements	 32
Constructing the data model	 33

What is a data model?	 33
Loading the fact table	 33
Playing with listboxes	 36
Associating additional tables	 40

Creating the dashboard tab	 43
Creating and positioning the filters and user controls	 43
Number of flights over time	 46
One chart and multiple analyses with cyclic expressions	 50
Adding a time drill-down group	 52
Top 10 routes	 54

Summary	 57
Chapter 3: Data Sources	 59

Using ODBC and OLE DB drivers	 60
Installing the drivers	 60

Accessing custom data sources	 61
Third-party custom connectors	 62

Reading table files	 63
Extracting data—two hands-on examples	 63

Extracting data from MS Access	 64
Configuring the driver	 64
Creating the OLE DB connection string	 66
Querying the database	 69
Reloading the script	 73

The resulting data model	 74
Loading a table file	 75

Specifying the file attributes	 76
The transformation step	 79
Refining the input table	 80

The resulting script	 82
QVD and QVX files	 84

QVD files	 84
QVX files	 84

Loading an Inline table	 85
Summary	 86

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Data Modeling	 87
Dimensional data modeling	 88

Back in the day	 88
Relational databases and ER modeling	 88
Dimensional modeling	 90

The star schema	 90
The snowflake schema	 91
Creating the dimensional model	 92

Dimensional models in QlikView	 93
The associative data model	 94

Guidelines for table associations	 95
How associations are created	 96
Avoiding data model conflicts	 98

The Table Viewer window	 104
Table information	 105
Field information	 105
Table preview	 106
Table viewer menu	 106

Summary	 108
Chapter 5: Styling Up	 109

Design requirements	 110
The Document Properties window	 112
The Sheet Properties dialog	 115
Setting the object properties	 117

Caption colors and style	 117
Changing the caption colors	 117
Setting the caption font	 120
Setting the content font	 121
Setting the global font	 121

Propagating the object appearance	 122
Setting the default Sheet Object Style	 123
Hiding captions	 123

Working with listboxes	 124
Adding listboxes	 124
The List Box Properties dialog	 125

The General tab	 125
The Expressions tab	 126
The Sort tab	 126
The Presentation tab	 127
The Number tab	 128
The Font tab	 128
The Layout tab	 128
The Caption tab	 129

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

The Multi Box	 130
The Current Selections Box	 131

Making selections from the Current Selections Box	 132
Adding a Bookmark Object	 132
Aligning and resizing sheet objects	 133

Selecting objects	 133
Moving objects	 133
Resizing objects	 134

Resizing a Multi Box	 134
Aligning sheet objects	 135
Do a little house keeping	 135

Creating and applying a default color map	 136
Defining chart colors	 136
Setting the default color map	 137

Summary	 138
Chapter 6: Building Dashboards	 139

User types	 139
Dashboard users	 140
Analysts	 141
Report users	 142

Applying the DAR principle to Airline Operations	 142
Document requirements	 143

Creating the Analysis sheet	 144
Adding a new chart	 145
Bar Chart	 147

Additional bar chart properties	 149
Expressions and the Edit Expression window	 150

Expressions	 150
The Edit Expression window	 150
The Expression Overview window	 153

Line Chart	 154
Additional line chart properties	 156

Combo Chart	 157
Container	 159
Scatter Chart	 161
Button	 163
Statistics box	 164

Creating the new Dashboard sheet	 166
Linked Objects	 167
Gauges	 170

Cloning the object for re-use	 175
Adding Air Time %	 176

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

More Gauge styles	 177
Adding a Text object	 177

Using a Text Object to display an image	 179
Adding actions to a Text object	 181

Adding a Pie chart	 182
Dimension Limits	 183
Adding the dimension value to the data point values	 185

Creating the Reports sheet	 187
Variables	 187

The Expression Overview window in action	 189
Copying sheets	 191
KPIs per airline, origin, and destination country	 192

Cyclic and Drill-down groups	 192
Straight table	 194

Not all expressions are numbers	 196
Pivot tables	 198
Auto minimize	 200
The Report Editor window	 201

Other charts	 205
Radar Chart	 206
Mekko Chart	 206
Grid Chart	 207
Funnel Chart	 208
Block Chart	 209
Trellis Chart	 209

Summary	 211
Chapter 7: Scripting	 213

The Script Editor	 214
Menu and toolbar	 215
Script pane	 215
Tool pane	 216

Script statements	 216
Building the aircraft dimension table	 217

Loading the aircraft information	 217
Adding the aircraft groups	 219
Loading the second aircraft table	 221
Making it all right	 223

Manipulating tables	 227
The JOIN statement	 227
The KEEP statement	 229
The CONCATENATE statement	 231
The NOCONCATENATE statement	 232
Using MAPPING tables	 233
Adding comments	 235

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Storing tables	 237
Renaming tables and fields	 237
Deleting tables and fields	 238

Setting variables	 238
Controlling script flow	 239

Conditional functions	 241
Dealing with different data types	 242

Strings	 242
String operators	 242
String functions	 242

Numbers and numeric functions	 245
Date and time functions	 246

Debugging script	 247
Syntax check	 248
Saving logs to disk	 248
The script debugger	 249

Using breakpoints	 250
Limited load	 250

Tracing script	 251
Standardizing and organizing script	 252

Using tabs	 252
Comments	 253
Adding an information tab	 254
Script layout	 256
Naming conventions	 256

Table naming conventions	 256
Field naming conventions	 257

Re-using scripts	 258
Subroutines	 258
Including script files	 260

Managing file locations and connection strings	 261
Summary	 263

Chapter 8: Data Modeling Best Practices	 265
Data consistency	 265

Dealing with dimensions without facts	 266
An alternative approach	 270
A solo exercise	 271

Dealing with facts without dimensions	 272
Reducing storage requirements	 277

Using number-based key fields	 277
Removing unused fields	 278
Splitting high-cardinality fields	 278

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Design challenges of data modeling	 280
The Airline Employment statistics table	 280
Concatenating fact tables	 281

Structural asymmetry	 281
Natural and forced concatenation	 282
Concatenating the Employment Statistics table	 284

Working with link tables	 286
A link table example	 286
Creating a link table in the Airline Operations document	 289

Finding a balance	 292
The master calendar	 293
A final note on data modeling	 297
Summary	 298

Chapter 9: Basic Data Transformation	 299
Changing the source table structure	 299

"Cleansing" a dirty table	 300
File contents	 300
Working with the Transformation Step wizard	 301
The final result	 311
Other transformation tricks	 313

Loading a Crosstable	 313
A Crosstable example	 313
Working with the Crosstable Wizard	 314
A solo exercise	 318

Expanding a hierarchy	 318
A hierarchy example	 319
Working with the Hierarchy Wizard	 320
The tree-view list-box	 323

Generic load	 324
Loading a generic table into QlikView	 325

Summary	 328
Chapter 10: Advanced Expressions	 329

Using variables	 329
Creating a variable	 330
Using variables in charts	 331
Interactively changing a variable's value	 333

Using the Input Box object	 333
Using the Slider object	 334

Using variables based on expressions	 335
Using variables to store expressions	 337
Variable naming convention	 338
The Dollar Sign Expansion syntax	 338

Dollar Sign Expansion with parameters	 339
Double Dollar Sign Expansion	 341

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Using the TOTAL qualifier	 344
The Aggr function	 346

Using Aggr for nested aggregation	 346
A word on calculated dimensions	 348

Aggregations over the Aggr output	 349
A word on using the Distinct qualifier	 351

Getting the Average Load Factor per Route per Airline	 351
Conditional functions	 353

The If function	 353
The syntax	 353
A use case	 354
Numeric versus text comparisons	 360

The Class function	 360
A solo exercise using the Class function	 362

The Pick function	 363
Using Pick with Dimensionality	 363

A tip on copying expressions	 366
Summary	 367

Chapter 11: Set Analysis and Point In Time Reporting	 369
The magic of Set Analysis	 369

What is it for?	 370
Syntax and examples	 371

Using variables in set expressions	 374
Dynamic record sets	 374
More assignment operators	 375
Set operators	 376
Using element functions	 377

Point In Time Reporting	 378
The challenge	 378
Defining the set modifiers	 379

Obtaining the base period record set	 379
Obtaining the compare-to period record set	 380

Constructing the expressions	 382
Enabling additional period comparisons	 383

More Point In Time Reporting examples	 384
Storing set expressions into variables	 386

Set expressions with parameters	 388
Portable set expressions	 390

Set variables and the Master Calendar	 392
Comparative analysis with alternate states	 393

A comparative analysis example	 393
Alternate states step-by-step	 394
State-based expressions	 398

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Combining alternate states and the default state	 398
Applying alternate states to layout objects	 399
Document navigation with alternate states	 400

Clearing selections in an alternate state	 400
Always validate	 400
Summary	 401

Chapter 12: Advanced Data Transformation	 403
Data architecture	 403

Two-stage architecture	 404
Three-stage architecture	 406
Setting up our environment	 407

Loading data already stored in QlikView	 408
Cloning a QlikView data model	 408
Loading from RAM	 410

Resident load	 410
Aggregating data	 411

Aggregating the Flight Data table	 412
The Transformation output	 416
Aggregation functions	 417

Sorting tables	 418
Ordering the Order-By fields	 418

The Peek function	 419
Merging forces	 420

A refresher	 420
The objective	 420
Getting it done	 421

Loading the table	 421
Sorting the table	 422
Peeking previous records	 423
A solo exercise	 427

Dealing with slowly changing dimensions	 427
The Carrier Decode table	 428
IntervalMatch magic	 429

Expanding the intervals	 429
Some considerations	 432
Applying IntervalMatch to the Carrier Decode table	 432

Ordering, peeking, and matching all at once	 436
The use case	 437

Incremental loads	 438
Summary	 441

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[x]

Chapter 13: More on Visual Design and User Experience	 443
Creating a consistent QlikView UI	 443

Screen resolution	 444
Background image	 444
Themes	 446

Applying themes	 447
Creating themes	 448

Additional interactivity	 454
Triggers	 455

Document triggers	 455
Sheet triggers	 457

Actions	 458
Advanced search expressions	 461

A solo exercise	 463
Dynamic bookmarks	 463
Alerts	 463
Conditionally showing and calculating objects	 467

Summary	 470
Chapter 14: Security	 471

Hidden script	 471
Section access	 473

Section access fields	 476
Reduction fields	 478
Initial data reduction	 480
Omitting fields	 481

Document-level security	 483
Sheet-level security	 485
Summary	 486

Index	 489

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The need for Business Intelligence (BI) solutions and data analysis has always
existed, and so have different approaches to fulfill this need. Traditional BI software
has heavily relied on techniques that have been around and persisted through the
decades, but newer technologies have emerged in recent times that have proven
to be more flexible and, therefore, more adequate for the evolving environment in
which they are used. QlikView is an example of this kind of disruptive technology, a
kind of software that changes the rules of the game.

QlikView is different; that's a fact. It's different in an advantageous way. If you have
worked with traditional BI software before, it might be necessary to let go of some
of the preconceptions you may have regarding how BI solutions are built. If, on the
other hand, you are a newcomer to the BI landscape, we will help you get the basics
in order for you to get up-to-speed. In any case, rest assured that you are on the right
track by having picked QlikView as your tool and this book as your guide.

The good news is the material between these covers has been written in such a way
that newcomers, BI professionals experienced in other tools, and even seasoned
QlikView practitioners, will find useful. This book will provide you with the
knowledge required to understand how QlikView works, and the skills needed to
build QlikView documents from start to finish: from loading data to building charts.
Even if you have worked with QlikView before, you will find that the exercises
presented in each chapter, and the recommended practices we discuss, will help you
extend your knowledge and become more proficient with QlikView.

Among other features you will find in this book, some of the most important are:
•	 The book is practical and hands-on. This book is filled with examples that

will let you move from theory into practice right away. We support this
hands-on experience by providing a full dataset used across the entire book,
and around which we build a fully-functional QlikView document that
contains a dashboard, various analyses (both basic and complex to build),
and reports, using the DAR (Dashboard-Analysis-Reports) approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

•	 In every chapter, a piece of a final QlikView document is built , which allows
you to follow its evolution from start to finish. It also enables us to cover
different development challenges that you may encounter in a real-world
QlikView project.

•	 We made sure to cover both backend and frontend development, so you
will find that all 14 chapters cover different topics, from scripting and
data extraction to data modeling, design, charts and expressions, as well
as security, and everything in between. We also talk about various best
practices related to each of these topics.

•	 All of the examples discussed in the book are complemented with solution
files for the reader to follow the exercises and compare his work. The
QlikView files we provide are Personal Edition enabled, which means that a
purchased QlikView license is not required to open them.

•	 Although the case and story used in the book are built around a fictional
company, the data we use in our examples and final application is
real. Thanks to the Open Government initiative and the Bureau of
Transportation Statistics of the United States, which compiles
and maintains a complete dataset about airline operations in the US, you
will be able to work with real data and build a QlikView application to
analyze flights, enplaned passengers, cargo, and many others across multiple
dimensions such as carriers, airports, cities, aircraft types, and so on.

Congratulations on taking a step towards learning to develop Business Intelligence
applications with QlikView. Are you ready for take off? Qlik On!

What this book covers
Chapter 1, Meet QlikView, introduces QlikView and shows how it can be used to
explore data. We will also learn about the technology and components behind
QlikView and will be introduced to the case that is used throughout the book:
HighCloud Airlines.

Chapter 2, Seeing is Believing, helps us get hands-on with QlikView by building a
simple QlikView document. We will learn what dimensions and expressions are
in the context of a QlikView document. We will also learn to build simple charts to
visualize and aggregate data, and how to design a basic user interface for navigating
through the QlikView document.

Chapter 3, Data Sources, will help us learn how to load data from different sources
and how to extract data using the built-in wizards. We will also take a closer look
at QlikView's proprietary data files.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 4, Data Modeling, explains which type of data model is best suited for
QlikView. We will see which "rules" need to be followed when designing a QlikView
data model and will also learn how best to take advantage of the associative data
model to make our documents highly dynamic.

Chapter 5, Styling Up, will help us learn how to style our QlikView documents. We
will learn about the various document and sheet properties and will use them to
manage the visual style of our document. We will also take a closer look at some of
the most fundamental objects and learn how we can change their appearance.

Chapter 6, Building Dashboards, introduces us to the three basic types of QlikView users,
and how we can best cater to their needs. We will learn about the various charting
options that are available in QlikView, and will see how we can add interactivity to
our QlikView documents. We will also be introduced to basic calculations.

Chapter 7, Scripting, introduces us to the QlikView scripting language and editor.
We will learn about the most important script statements, and how we can use them
to manipulate data and control the flow of the script. We will also be introduced to
some of the most important operators and functions for dealing with various data
types. Finally, we will look at the options for debugging scripts, how to organize and
standardize scripts, and how we can reuse our scripts.

Chapter 8, Data Modeling Best Practices, expands on the knowledge about data
modeling and scripting we gained in earlier chapters. We will learn how to make
sure that data models are consistent and how to work with complex data models and
multiple fact tables. We will also learn how to reduce storage requirements for a data
set and how to best deal with date and time information.

Chapter 9, Basic Data Transformation, focuses on how to deal with unstructured data
and how to transform it for use in our QlikView data model. We will learn about
basic data transformation subjects, such as cleansing data and how to restructure
pivoted and hierarchical tables for inclusion in the QlikView data model.

Chapter 10, Advanced Expressions, we will learn more about the use of variables. We will
also learn how to use conditional functions and how to handle advanced aggregations.

Chapter 11, Set Analysis and Point In Time Reporting, takes a closer look at Set Analysis
and will explain how it can be used for Point In Time Reporting. We will also learn
about comparative analysis using alternate states.

Chapter 12, Advanced Data Transformation, returns to the topic of data transformation.
We will learn about the most commonly used data architectures that can ease QlikView
development and administration. Next, we will take a close look at aggregating and
sorting data in the data model. In the final part of the chapter, we will learn how to
take advantage of some of QlikView's most powerful data transformation capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Chapter 13, More on Visual Design and User Experience, gives us a closer look at the
visual design of our QlikView documents and will learn how to create a consistent
user interface. The second part of the chapter introduces us to some additional
options for making our documents more interactive, and proactive.

Chapter 14, Security, shows us how to secure our QlikView documents. We will see
how to allow only authorized users to open our documents and will learn how we
can limit what a user can do and see within our document.

What you need for this book
To use this book, you primarily need the QlikView Desktop software. If you do
not yet have this software, Chapter 1, Meet QlikView, explains how to obtain it. With
regards to computer requirements, you will need a PC with at least Windows XP (or
better), 2 GB of hard disk space, and 2 GB of RAM. A 32-bit machine can be used, but
a 64-bit machine is recommended for this book and QlikView development in general.

For best understanding, a general knowledge of Business Intelligence and its
terminology is required. Basic understanding of databases and SQL is preferred,
but not compulsory for this book.

Who this book is for
This book is aimed at developers and power users who want to learn how to develop
Business Intelligence applications with QlikView. Developers who have already been
using QlikView for some time may find that this book contains useful tips and best
practices to make more effective use of QlikView.

This book only covers QlikView Desktop. Deployments to QlikView Server and
Publisher are beyond the scope of this book. The book is not aimed at QlikView
Server Administrators.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " Import this connection into every QVW
via an include statement."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

A block of code is set as follows:
LOAD
 [%Origin Airport ID],
 [Origin Airport];
SQL SELECT
 `%Origin Airport ID`,
 `Origin Airport`
FROM `Origin Airports`;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "We will
now click on Test Connection to make sure the connection is established ".

Warnings or important notes appear in a box
like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Disclaimer
"QlikTech makes no representations or warranties with respect to the accuracy or
completeness of the contents of the Book or the QlikView Materials referenced herein
and specifically disclaims all warranties, including without limitation warranties
of fitness for a particular purpose. The advice and strategies contained in the Book
or the QlikView Materials may not be suitable for every situation. QlikTech shall
not be liable for any damages, claims, costs, or causes of action, whether known or
unknown, arising from the Book."

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView
Congratulations on your decision to start learning QlikView development! You
are now well on your way to building and delivering analytical applications
which will help you and your organization quickly gain new insights and make
fact-based decisions.

Before we dive in and start building all sorts of wonderful things, we first need to
review some of the basics. This first chapter introduces us to the business end of
QlikView. We will discover what QlikView is, how it's different from other tools,
and how we can explore and interact with our data within a QlikView document. Of
course, this being a technical book, we will also be looking at the various technical
components that QlikView consists of. This chapter concludes with an introduction
to HighCloud Airlines, the case we will be working on throughout the book.

In this chapter, specifically, we will look at:

•	 What is QlikView?
•	 Exploring data with QlikView
•	 The technology and components behind QlikView
•	 HighCloud Airlines, and why QlikView might be just the tool they need

First, let's look at what QlikView is, what we can do with it, and how it differs from
other solutions that are available on the market.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[8]

What is QlikView?
QlikView is developed by QlikTech, a company that was founded in Sweden in 1993,
but has since moved its headquarters to the US. QlikView is a tool used for Business
Intelligence, often shortened to BI. Business Intelligence is defined by Gartner, a
leading industry analyst firm, as:

An umbrella term that includes the application, infrastructure and tools, and best
practices that enable access to and analysis of information to improve and optimize
decisions and performance.

Following this definition, QlikView is a tool that enables access to information in
order to analyze this information, which in turn improves and optimizes business
decisions and performance.

Historically, BI has been very much IT-driven. IT departments were responsible
for the entire Business Intelligence life cycle, from extracting the data to delivering
the final reports, analyses, and dashboards. While this model works very well for
delivering predefined static reports, most businesses find that it does not meet the
needs of their business users. As IT tightly controls the data and tools, users often
experience long lead-times whenever new questions arise that cannot be answered
with the standard reports.

How does QlikView differ from traditional BI?
QlikTech prides itself in taking an approach to Business Intelligence that is different
from what companies such as Oracle, SAP, and IBM—described by QlikTech as
traditional BI vendors—are delivering. They aim to put the tools in the hands of
business users, allowing them to become self-sufficient because they can perform
their own analyses.

Independent industry analyst firms have noticed this different approach as well. In
2011, Gartner created a subcategory for Data Discovery tools in its yearly market
evaluation, the Magic Quadrant Business Intelligence platform. QlikView was
named the poster child for this new category of BI tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

QlikTech chooses to describe itself as a Business Discovery enterprise instead
of Data Discovery enterprise. It believes that discovering business insights is
much more important than discovering data. The following diagram outlines
this paradigm:

Besides the difference in who uses the tool—IT users versus business users—there
are a few other key features that differentiate QlikView from other solutions.

Associative user experience
The main difference between QlikView and other BI solutions is the associative
user experience. Where traditional BI solutions use predefined paths to navigate
and explore data, QlikView allows users to take whatever route they want. This is a
far more intuitive way to explore data. QlikTech describes this as "working the way
your mind works."

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[10]

An example is shown in the following image. While in a typical BI solution, we
would need to start by selecting a Region and then drill down step-by-step
through the defined drill path, in QlikView we can choose whatever entry point
we like—Region, State, Product, or Sales Person. We are then shown only the
data related to that selection, and in our next selection we can go wherever we
want. It is infinitely flexible.

Additionally, the QlikView user interface allows us to see which data is associated
with our selection.

For example, the following screenshot (from QlikTech's What's New in QlikView 11
demo document) shows a QlikView Dashboard in which two values are selected. In
the Quarter field, Q3 is selected, and in the Sales Reps field, Cart Lynch is selected.
We can see this because these values are green, which in QlikView means that they
have been selected. When a selection is made, the interface automatically updates
to not only show which data is associated with that selection, but also which data
is not associated with the selection. Associated data has a white background, while
non-associated data has a gray background. Sometimes the associations can be pretty
obvious; it is no surprise that the third quarter is associated with the months July,
August, and September. However, at other times, some not-so-obvious insights
surface, such as the information that Cart Lynch has not sold any products in
Germany or Spain. This extra information, not featured in traditional BI tools, can be
of great value, as it offers a new starting point for investigation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Technology
QlikView's core technological differentiator is that it uses an in-memory data model,
which stores all of its data in RAM instead of using disk. As RAM is much faster
than disk, this allows for very fast response times, resulting in a very smooth
user-experience.

In a later part of this chapter, we will go a bit deeper into the technology
behind QlikView.

Adoption path
There is also a difference between QlikView and traditional BI solutions in the way
it is typically rolled out within a company. Where traditional BI suites are often
implemented top-down—by IT selecting a BI tool for the entire company—QlikView
often takes a bottom-up adoption path. Business users in a single department adopt
it, and its use spreads out from there.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[12]

QlikView is free of charge for single-user use. This is called
the Personal Edition or PE. Documents created in Personal
Edition can be opened by fully-licensed users or deployed on
a QlikView server. The limitation is that, with the exception of
some documents enabled for PE by QlikTech, you cannot open
documents created elsewhere, or even your own documents if they
have been opened and saved by another user or server instance.

Often, a business user will decide to download QlikView to see if he can solve a
business problem. When other users within the department see the software, they
get enthusiastic about it, so they too download a copy. To be able to share
documents, they decide to purchase a few licenses for the department. Then
other departments start to take notice too, and QlikView gains traction within the
organization. Before long, IT and senior management also take notice, eventually
leading to enterprise-wide adoption of QlikView.

QlikView facilitates every step in this process, scaling from single laptop
deployments to full enterprise-wide deployments with thousands of users.
The following graphic demonstrates this growth within an organization:

As the popularity and track record of QlikView have grown, it has gotten more and
more visibility at the enterprise level. While the adoption path described before is
still probably the most common adoption path, it is not uncommon nowadays for a
company to do a top-down, company-wide rollout of QlikView.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Exploring data with QlikView
Now that we know what QlikView is and how it is different from traditional BI
offerings, we will learn how we can explore data within QlikView.

Getting QlikView
Of course, before we can start exploring, we need to install QlikView. You can
download QlikView's Personal Edition from http://www.qlikview.com/download.
You will be asked to register on the website, or log in if you have registered before.

Registering not only gives you access to the QlikView software,
but you can also use it to read and post on the QlikCommunity
(http://community.qlikview.com) which is the QlikTech's
user forum. This forum is very active and many questions can be
answered by either a quick search or by posting a question.

Installing QlikView is very straightforward, simply double-click on the executable
file and accept all default options offered. After you are done installing it, launch
the QlikView application. QlikView will open with the start page set to the Getting
Started tab, as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[14]

The example we will be using is the Movie Database, which is an example document
that is supplied with QlikView. Find this document by scrolling down the Examples
list (it is around halfway down the list) and click to open it. The opening screen of
the document will now be displayed:

Navigating the document
Most QlikView documents are organized into multiple sheets. These sheets often
display different viewpoints on the same data, or display the same information
aggregated to suit the needs of different types of users. An example of the first type
of grouping might be a customer or marketing view of the data, an example of the
second type of grouping might be a KPI dashboard for executives, with a more
in-depth sheet for analysts.

Navigating the different sheets in a QlikView document is typically done by
using the tabs at the top of the sheet, as shown in the following screenshot. More
sophisticated designs may opt to hide the tab row and use buttons to switch
between the different sheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

The tabs in the Movie Database document also follow a logical order. An
introduction is shown on the Intro tab, followed by a demonstration of the key
concept of QlikView on the How QlikView works tab. After the contrast with
Traditional OLAP is shown, the associative QlikView Model is introduced. The
last two tabs show how this can be leveraged by showing a concrete Dashboard
and Analysis:

Slicing and dicing your data
As we saw when we learned about the associative user experience, any selections
made in QlikView are automatically applied to the entire data model. As we will see in
the next section, slicing and dicing your data really is as easy as clicking and viewing!

List-boxes
But where should we click? QlikView lets us select data in a number of ways.
A common method is to select a value from a list-box. This is done by clicking
in the list-box.

Let's switch to the How QlikView works tab to see how this works. We can do this
by either clicking on the How QlikView works tab on the top of the sheet, or by
clicking on the Get Started button.

The selected tab shows two list boxes, one containing Fruits and the other containing
Colors. When we select Apple in the Fruits list-box, the screen automatically updates
to show the associated data in the Colors list-box: Green and Red. The color Yellow
is shown with a gray background to indicate that it is not associated, as seen below,
since there are no yellow apples. To select multiple values, all we need to do is hold
down Ctrl while we are making our selection.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[16]

Selections in charts
Besides selections in list-boxes, we can also directly select data in charts. Let's jump
to the Dashboard tab and see how this is done. The Dashboard tab contains a chart
labeled Number of Movies, which lists the number of movies by a particular actor.
If we wish to select only the top three actors, we can simply drag the pointer to select
them in the chart, instead of selecting them from a list-box:

Because the selection automatically cascades to the rest of the model, this also results
in the Actor list-box being updated to reflect the new selection:

Of course, if we want to select only a single value in a chart, we don't necessarily
need to lasso it. Instead, we can just click on the data point to select it. For example,
clicking on James Stewart leads to only that actor being selected.

Search
While list-boxes and lassoing are both very convenient ways of selecting data,
sometimes we may not want to scroll down a big list looking for a value that may
or may not be there. This is where the search option comes in handy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

For example, we may want to run a search for the actor Al Pacino. To do this, we
first activate the corresponding list-box by clicking on it. Next, we simply start
typing and the list-box will automatically be updated to show all values that match
the search string. When we've found the actor we're looking for, Al Pacino in this
case, we can click on that value to select it:

Sometimes, we may want to select data based on associated values. For example, we
may want to select all of the actors that starred in the movie Forrest Gump. While we
could just use the Title list-box, there is also another option: associated search.

To use associated search, we click on the chevron on the right-hand side of the
search box. This expands the search box and any search term we enter will not only
be checked against the Actor list-box, but also against the contents of the entire
data model. When we type in Forrest Gump, the search box will show that there is
a movie with that title, as seen in the screenshot below. If we select that movie and
click on Return, all actors which star in the movie will be selected.

Bookmarking selections
Inevitably, when exploring data in QlikView, there comes a point where we want to
save our current selections to be able to return to them later. This is facilitated by the
bookmark option. Bookmarks are used to store a selection for later retrieval.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[18]

Creating a new bookmark
To create a new bookmark, we need to open the Add Bookmark dialog. This is done
by either pressing Ctrl + B or by selecting Bookmark | Add Bookmark from the menu.

In the Add Bookmark dialog, seen in the screenshot below, we can add a descriptive
name for the bookmark. Other options allow us to change how the selection is
applied (as either a new selection or on top of the existing selection) and if the view
should switch to the sheet that was open at the time of creating the bookmark. The
Info Text allows for a longer description to be entered that can be shown in a pop-up
when the bookmark is selected.

Retrieving a bookmark
We can retrieve a bookmark by selecting it from the Bookmarks menu, seen here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Undoing selections
Fortunately, if we end up making a wrong selection, QlikView is very forgiving.
Using the Clear, Back, and Forward buttons in the toolbar, we can easily clear the
entire selection, go back to what we had in our previous selections, or go forward
again. Just like in our Internet browser, the Back button in QlikView can take
us back multiple steps:

Changing the view
Besides filtering data, QlikView also lets us change the information being displayed.
We'll see how this is done in the following sections.

Cyclic Groups
Cyclic Groups are defined by developers as a list of dimensions that can be
switched between users. On the frontend, they are indicated with a circular arrow.
For an example of how this works, let's look at the Ratio to Total chart, seen in the
following image. By default, this chart shows movies grouped by duration. If we
click on the little downward arrow next to the circular arrow, we will see a list of
alternative groupings. Click on Decade to switch to the view to movies grouped
by decade.

Drill down Groups
Drill down Groups are defined by the developer as a hierarchical list of dimensions
which allows users to drill down to more detailed levels of the data. For example, a
very common drill down path is Year | Quarter | Month | Day. On the frontend,
drill down groups are indicated with an upward arrow.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[20]

In the Movies Database document, a drill down can be found on the tab labeled
Traditional OLAP. Let's go there.

This drill down follows the path Director | Title | Actor. Click on the Director
A. Edward Sutherland to drill down to all movies that he directed, shown in
the following screenshot. Next, click on Every Day's A Holiday to see which
actors starred in that movie. When drilling down, we can always go back to the
previous level by clicking on the upward arrow, located at the top of the list-box
in this example.

Containers
Containers are used to alternate between the display of different objects in the same
screen space. We can select the individual objects by selecting the corresponding
tab within the container. Our Movies Database example includes a container on the
Analysis sheet.

The container contains two objects, a chart showing Average length of Movies
over time and a table showing the Movie List, shown in the following screenshot.
The chart is shown by default, you can switch to the Movie List by clicking on the
corresponding tab at the top of the object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

On the time chart, we can switch between Average length of Movies and Movie List
by using the tabs at the top of the container object.

But wait, there's more!
After all of the slicing, dicing, drilling, and view-switching we've done, there is
still the question on our minds: how can we export our selected data to Excel?
Fortunately, QlikView is very flexible when it comes to this, we can simply
right-click on any object and choose Send to Excel, or, if it has been enabled
by the developer, we can click on the XL icon in an object's header.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[22]

Click on the XL icon in the Movie List table to export the list of currently selected
movies to Excel.

A word of warning when exporting data
When viewing tables with a large number of rows, QlikView is very good
at only rendering those rows that are presently visible on the screen. When
Export values to Excel is selected, all values must be pulled down into an
Excel file. For large data sets, this can take a considerable amount of time
and may cause QlikView to become unresponsive while it provides the data.

The technology and components
behind QlikView
Now that we have seen how QlikView works from the point of view of a business
user, it is time to get a little more technical. Let's take an in-depth look at the various
components that QlikView consists of.

One of the key elements of QlikView is that it utilizes an in-memory database.
Compared with a disk-based database, this offers a great advantage when it comes
to performance. While disk-access time is measured in milliseconds, RAM access
time is measured in nanoseconds, making it many orders of magnitude faster.

"But hold on—" you may say, "my hard disk has much more space than I have RAM
in my PC; won't that mean that I can only load limited amounts of data into memory?"

This is a very valid question. Fortunately, there are two factors which counter this
potential problem:

•	 Cheap memory and the advancement of 64-bit processors and operating
systems: While 1 megabyte of memory, in 1957, would have cost a staggering
US$ 411 million, nowadays, a gigabyte can be had for less than US$ 5 (source:
http://www.jcmit.com/memoryprice.htm). Coupled with 64-bit operating
systems, which can address much larger amounts of RAM than 32-bit
systems (up to 2 terabyte on Windows 2008 R2), it is feasible and (relatively)
affordable to load huge amounts of data into RAM.

•	 Clever compression: QlikView utilizes some sophisticated compression
algorithms (and some common sense, such as de-duplicating data) to
significantly reduce the amount of memory that is required to store data.
Typically, on-disk data is compressed to 10 percent of its original size when
it is loaded into QlikView.

These two factors make it possible to create QlikView applications that contain
hundreds of millions—even billions—of records.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

The way the data flows
While the in-memory database is excellent technology, it cannot function on its own.
Functionally, data flows through QlikView in the following manner (also shown in
the following image):

1.	 It starts with the source data. QlikView can load data from a large variety of
sources, including ODBC, OLEDB, Flat Files (Excel, CSV, and so on), and
XML. There are also many different connectors, ranging from big enterprise
applications such as SAP, to social networks such as Twitter.

2.	 The data is loaded into QlikView using a load script. This script can be used
to extract, transform, and load data into the in-memory data model or to
store it to the disk in intermediary data files called QVD files.

3.	 Data in the in-memory database is stored in an unaggregated format,
meaning all aggregations are calculated on the fly. This simplifies data
modeling in QlikView, as there is no need for separate aggregation tables.

4.	 Selections made by the user automatically cascade throughout the entire data
model and these changes are shown by QlikView's presentation engine.

5.	 QlikView applications can be presented in multiple clients. The Windows
application we used earlier is an example of a client; other similar examples
will be covered in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[24]

When QlikView use expands
While QlikView deployments within an organization often start with a single
(or few) local installations, they often do not stay that way. As the use of QlikView
expands, keeping track of different versions, dealing with huge amounts of data,
reloading and distributing applications, and making sure that only the right
people have access to applications becomes increasingly hard when using only
the Windows client.

Fortunately, QlikTech offers a large range of components which ensure that QlikView
can scale from a local deployment on a laptop all the way to an enterprise-wide
solution. These components can be classified into three classes (also shown in the
following screenshot):

•	 Create content
•	 Reload, publish, and distribute content
•	 Consume content

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Create content
The Windows application we used earlier to navigate and analyse the data in Movies
Database can not only be used to consume content, but it is also the main tool with
which to create QlikView documents. As this book is focused on developers, this will
be the main focus for the remaining chapters.

Reload, publish, and distribute content
When QlikView deployments expand, it becomes impractical to update and
distribute files manually. Also, data is loaded into RAM when using a local Windows
application to open QlikView files. When working with huge amounts of data, each
PC would also need a huge amount of RAM. This might work for developer PCs, but
it is hardly a cost-effective solution to outfit each user in the organization with large
amounts of RAM.

Fortunately, QlikView has three components to mitigate these potential roadblocks
to broader adoption:

•	 QlikView Publisher: This component can take care of reloading, reducing,
and distributing the QlikView documents. Jobs can be scheduled or triggered
by external events. When QlikView Publisher has not been licensed,
QlikView Server can handle the task of reloading QlikView documents.

•	 QlikView Server: This is a centralized server which can load QlikView
documents into memory and allows clients to interact with these documents
remotely by using one of the QlikView clients. In addition to providing a
central place where documents are stored, this also has the advantage of
clients not needing huge amounts of RAM and CPU cores.
The clients do not need to load all of the data locally and the processing
power of the server is used for calculating and aggregating data.

•	 QlikView Access Point: This is a portal through which users can access
their documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[26]

Consume content
QlikView documents can be consumed in multiple ways. While this book mainly
focuses on the QlikView Desktop Windows application, it is interesting to take note
of the other possibilities for deployment:

•	 Web browser—plugin or AJAX client: There are two options for consumption
of QlikView documents via a web browser. The first option is an ActiveX
plugin. While this plugin offers an experience that is closest to the native
Windows application, it only works in Internet Explorer and requires the
QlikView plugin software to be installed on each client PC. Because rolling
out software to each client PC might not be practical, and because there are
web browsers other than Internet Explorer, there is also a second option: the
AJAX client. This client does not require any software to be installed and
works with most modern browsers.

•	 iPad and other tablets: Tablets can access QlikView by using the AJAX client
in their browser. The AJAX client automatically detects when a tablet is being
used and switches to a touch-enabled interface. This makes it possible to
develop a single QlikView document which can then be rolled out to both
regular computers and mobile devices.

•	 iPhone, Android, and BlackBerry: Mobile devices with a smaller screen, such
as most smartphones, can use a special version of the AJAX client: the Small
Device version. Instead of displaying complete worksheets, which would
be unreadable on a small screen, this client shows each of the objects (chart,
table, and so on.) one by one.

•	 QlikView Workbench and SharePoint Web Parts: Using QlikView
Workbench, objects from QlikView documents can be embedded within
.NET-based web solutions. The SharePoint Web Parts can be used to embed
objects from QlikView documents into SharePoint sites.

•	 PDF: In addition to all clients that allow interaction with the QlikView
documents, and with an additional license, there is also an option to
distribute static PDF reports from QlikView Publisher.

When going through this list of clients, you probably noticed that the AJAX client
is the most versatile of all clients. While it hasn't always been that way, nowadays,
the visual and functional differences between the AJAX client and the ActiveX
client are small enough for the AJAX client to be considered the preferred client for
consumption of QlikView documents by users.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Meet HighCloud Airlines
It's a typical Monday morning at the office. Sara, an executive at HighCloud Airlines,
arrives early to begin a busy week. Work has been hectic lately.

Ever since the start of the Euro crisis, the market for air travel and cargo in
HighCloud's home market in Europe has been steadily declining. As a result,
HighCloud's financial results have also been sloping downward.

A few weeks ago, in an effort to turn the company around, Steve, the CEO, launched
an initiative to investigate the company's expansion into other markets. Sara and her
team have been tasked with investigating the US airline market. It's a project that, if
done well, might really raise the profile of Sara and the team.

Unfortunately, data from many different sources, complicated query tools,
and dozens of spreadsheets have made progress slow so far. Even worse, each
presentation of preliminary results has triggered a wave of new questions which
cannot be answered by the existing reports and analyses. Morale within the team has
been steadily dropping and Sara has noticed that Steve is increasingly annoyed by
the lack of results.

Unlike the rest of the team, Sara is in an exceptionally good mood this morning.
After hearing good things about QlikView, she decided to download a copy of the
Personal Edition last weekend. Experimenting with it, she managed to load some
data into QlikView and has even created a few charts and tables.

With her laptop under her arm and a smile on her face, she walks confidently into
the CEO's office and announces, "Steve, you have to see this."

In this book, we will be following Sara and her team. We will see how they apply
QlikView to their business requirements, and how their knowledge and skills, along
with your own, evolve throughout the chapters. Each chapter builds on the result
of the previous chapter and contains hands-on exercises, along with explanations,
background theory, and examples of practical applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Meet QlikView

[28]

Summary
This concludes our first chapter. In this chapter, we've learned what QlikView is
and how it differs from traditional BI solutions. We've also seen how QlikView
works from the perspective of a business user, and have had a peek at the various
technical components that QlikView consists of. We concluded this chapter with an
introduction to Sara and her team, and their task—to investigate if expanding to the
US market might help the struggling HighCloud Airlines make a recovery.

To sum it all up, in this chapter, we have learned:

•	 That QlikView is a Business Intelligence solution that is different from
traditional BI solutions because of its associative user experience, its
underlying technology, and its typical bottom-up adoption path.

•	 How to make sense of our data: by selecting, filtering, searching,
bookmarking, cycling, and drilling.

•	 How the technology behind QlikView works, how it is deployed, and the
various ways in which applications can be consumed.

•	 What HighCloud's current problems are and how Sara and her team hope to
help resolve them using QlikView.

Now that we've been introduced to QlikView, in the next chapter we will get hands-
on and will develop a small proof of concept document.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing
As we've seen in the previous chapter, HighCloud Airlines has a particular need:
to be able to analyze the US airline market from different perspectives, be able to
create reports that help them better understand what the situation is, and evaluate if
entering that market is a good strategy. Sara took the risk and showed the CEO what
they could potentially do with QlikView and he was impressed by what he saw.
After their meeting, Sara was asked to arrange a formal proof-of-concept session.

This chapter will not only follow a QlikView team working on the Seeing is
Believing (SiB) phase of the pre-sale process, along with the HighCloud Airlines
executives evaluating it, but it will also help us learn some basic concepts about
developing QlikView documents.

So, let's get our hands on the subject and start creating. There is no better way to
learn than by doing, and this chapter will be the initial platform on which we will
base our QlikView development experience. It will help you build your first business
discovery app with QlikView, completely hands-on from the start.

On a technical level, after going through the tutorial presented in this chapter, you
will be able to:

•	 Understand the steps required in the construction process of a
QlikView document

•	 Identify what dimensions and expressions are within the context of a
QlikView document

•	 Build charts to visualize and aggregate data
•	 Design a basic user interface for navigating through the QlikView document

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[30]

What is a SiB?
A SiB (an acronym for Seeing is Believing) is the proof-of-concept session in which,
during the pre-sale process, the technical capabilities of the QlikView software are
demonstrated to the prospective customer. The way we demo QlikView at this stage
usually involves creating a targeted QlikView document that uses the customer's
actual data in a limited amount of time.

That's why, in this chapter, we will build a QlikView document based on real and
useful data, focused on HighCloud Airlines' line of business. The dataset we will
use is publicly available and covers information about airline operations in the US.
The original data files have been downloaded from The Bureau of Transportation
Statistics of the United States website (http://transtats.bts.gov), and have been
pre-processed so that we can focus on the main concepts this chapter is intended
to outline. As the book evolves, we will introduce more advanced concepts so that,
in the end, we are able to work with the original data files throughout the whole
processing phase.

Because of the nature of the SiB phase, the analytical application should be
developed rather quickly by the QlikView team. Since it will mainly be focused on
technical features and data discovery functionalities, some design details (such as
color, style, object positioning, and so on) have been left out for now. However, these
details will be covered in their own good time, later in the book.

Preparing the workspace
Before we start, we need to make sure we have everything we'll need throughout
the chapter.

Since the previous chapter covered the QlikView Desktop installation process, we
assume that it is already installed on your machine by now. If not, please take a
moment to install it before continuing.

Setting up the folder structure
We will create a Windows folder structure with which we'll work throughout the
book. This set of folders will help us organize the various files we'll be using and
arrange them by the specific role these files play in our project.

The files provided along with the book are already
structured with the folders we need. If you have already
copied the original files, you can skip the outlined process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

A typical QlikView deployment scenario will include different types of files, but for
now we'll just focus on two of them:

•	 The source data files
•	 The QlikView document

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Follow these steps to set up the environment:

1.	 Create a Windows folder with which you will work throughout the entire
book and call it QlikView Development. Place it in the location of your choice.

2.	 Inside this folder, create another one. This folder will specifically be used
to store the set of files we will work with. You may name the new folder as
Airline Operations.

3.	 Inside the Airline Operations folder, create two additional subfolders, one
called Data Files and the other called Apps.

4.	 Inside the Data Files folder, create yet another folder and name it QVDs.
The final folder structure is depicted in the following screenshot:

5.	 Copy the QVD files corresponding to this chapter into the
Data Files\QVDs folder.

Our environment is almost set up. The only thing left is to create the
QlikView document.

Creating the QlikView document
To create the QlikView file we will use to build our app, follow these steps:

1.	 Launch the QlikView program.
2.	 Click on the File menu and select New.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[32]

3.	 The Getting Started wizard dialog may instantly appear, asking you to select
a data source. We will, for now, ignore it. Click on Cancel.

°° Don't worry if this dialog window doesn't appear when
launching QlikView.

4.	 Go to the File menu again and click on Save as…. We will save the
document inside the Airline Operations\Apps folder and name it
Airline Operations.qvw.

Now that we have our environment ready, let's move on to create our
analytical application.

QlikView documents are often referred to as 'applications' or
'apps' as they offer a much more interactive experience than the
term 'document' would imply. In this book, we will be using
the terms 'document', 'application' and 'app' interchangeably.

Creating the app
We can think of a QlikView document as being composed of two major elements:

•	 The dataset that the user analyzes: This is the backend of our QlikView
document and includes all of the source tables needed to build a data model,
as well as the logic to update its source data.

•	 The user interface through which the user analyzes the data: This is the
frontend of our analytical app and includes the objects contained in the
document (like a listbox to make selections and filter data), or the charts
and tables used to visualize the information.

In hand with the elements described above, we will break the construction of our
QlikView document into two major phases:

•	 Constructing the data model
•	 Designing the user interface

However, before moving on to create our QlikView document, we should have a clear
understanding of the business-side requirements for our app, so the construction and
design phases are fully focused towards meeting those requirements.

The requirements
In our SiB scenario, HighCloud Airlines executives have determined that they would
benefit from a business discovery application that helps them answer questions
around the following topics:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

•	 Number of flights across time
•	 Number of transported passengers
•	 Amount of transported cargo (mail and freight)
•	 Most-used routes

At the same time, the application should allow the user to choose airline and aircraft
dimensions, as well as origin and destination airports, cities, and states.

Now that we have our goals clearly defined, let's move on to the construction phase.

Constructing the data model
The tutorial in this chapter is designed to focus mostly on creating the analysis
interface of our QlikView document. However, a fundamental part of QlikView
development is to construct an appropriate data model to support the various
analyses required in the application. The dataset we will work with in this chapter
will help us describe the most important concepts we need to consider when
building the data model.

What is a data model?
The heart of a QlikView application is its data model. It is composed of the different
source tables that contain the information and data used to measure a company's
performance. The data model is constructed by using QlikView's scripting language.

A correctly-built data model will associate all of its tables in a way which allows us
to manipulate the data however we like. This means that the creation of analysis
objects (charts) across different dimensions depends mainly on how the data model
is built and how its tables are associated (how they are linked to each other).

Loading the fact table
To start building our data model, we will load the fact table of our source data files
into QlikView.

A fact table is a table that contains the measurements across which we'll make the
analyses. The fact table is, at the same time, the central part of the data model.

A data model can contain more than one fact table. We'll deal
with the implications regarding schema design in Chapter 4,
Data Modeling and Chapter 8, Data Modeling Best Practices.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[34]

Follow these steps to load a fact table:

1.	 Go to the Edit Script window by pressing Ctrl + E or by selecting
File | Edit Script... from the menu bar.

2.	 In the Edit Script window, we will initially have 10 lines of code, all starting
with the word SET. Those are the initialization variables for some common
formatting options. We will leave them as they are for now.

3.	 At the bottom of the script editor, we will see a set of tabs containing specific
functions regarding script generation. Make sure the Data tab is active and
mark the Relative Paths checkbox, as shown in the following screenshot:

4.	 Position the cursor a few lines below the initialization statements and click on
the Table Files… button to bring up the Open Local Files wizard. Browse to
the Data Files\QVDs folder we created in the previous section and select the
Flight Data.qvd file, as shown in the following screenshot. Click on Open.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

The QVD file we are using is in an optimized format for use with QlikView
and, as noted previously, is the result of processing the original data files that
are provided in CSV format. We will dive deeper into what these files are,
and how to create them, as the book evolves.

5.	 The File Wizard dialog now appears. The File Type option will be set to
Qvd (on the left pane) automatically, as shown below. Click on Finish to
close the window.

Afterwards, the Load statement is automatically created and inserted into the
Script Editor window at the cursor's position.

Since we enabled the Relative Paths option, the Directory;
statement is placed before the Load statement. We can delete
this instruction since it is not relevant in our script.

6.	 The next thing we'll do is assign an internal name to the loaded table and call
it Main Data. To do this, type [Main Data]: (don't forget the colon) right
above the Load statement.

Brackets are required to enclose the table name because it
contains special characters, in this case a blank space.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[36]

The script will look like the following:

[Main Data]:
LOAD
	 ...Field Names...
	 ...Field Names...
	 ...Field Names...
FROM
[..\Data Files\QVDs\Flight Data.QVD]
(qvd);

The Load statement is composed of:

°° The names of the fields we want to load from the source table.
°° The From statement, specifying the location of the file we want

to read. The location can be specified either as a full path or a
relative path.

°° The attributes we set about the file for QlikView to load it
appropriately. In this case, this part contains only the string (qvd).
In other cases it may include other important properties. We will
cover this in more detail in Chapter 3, Data Sources.

7.	 We will now reload the script for the data to be loaded into the QlikView
document so we can start working with it. However, before we do that, it's
a good practice to hit the Save button so we do not lose the changes if the
script execution goes wrong.
After saving the file, locate the Reload button, shown in the following
screenshot, in the toolbar at the top and click on it.

8.	 After the script execution, the Sheet Properties window will appear. We will
use it in the next section, but for now just click on OK to dismiss it.

Our data model now contains the Main Data table.

Playing with listboxes
The first object we will look at in this tutorial is the listbox. A listbox is the most basic
of all QlikView objects and contains all the occurring values for a given field in the
data model. As demonstrated in Chapter 1, Meet QlikView, a listbox is used to make
selections in the document and filter the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

To start using this object and better understand its function, bring up the Sheet
Properties dialog window by right-clicking in a blank space inside the sheet area,
then selecting Properties… from the context menu. Once the Sheet Properties
window is open, make sure the Fields tab is active.

From the Available Fields list on the left, add the Carrier Name, Origin City, Origin
Country, Origin State, Destination City, Destination Country, and Destination
State fields to the Fields Displayed in Listboxes list on the right by highlighting
each of them and clicking on the Add > button.

To highlight all of the required fields at once, click on the
first one and press the Ctrl key before selecting the others.

The following screenshot shows the Sheet Properties dialog window:

Click on OK to apply the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[38]

The procedure we followed above will add one listbox for each of the fields
we selected. Let's take a moment to position them in our workspace.

The listboxes will initially all be placed on top of each other. Go to the Layout
menu and click on Rearrange Sheet Objects and they will be dispersed across
the screen space.

Sometimes it's necessary to click on this command more than once because the
objects don't get properly distributed at first. So, if necessary, click on Rearrange
Sheet Objects two or three times until all of the seven listboxes we added are
properly spread throughout the screen space.

You can also click and drag individual objects to position them in the place you
want them on the screen. Make sure to click on the caption bar of the object to be
able to drag it.

Aligning listboxes
Another way of rearranging the objects is by using the alignment
commands found in the Design toolbar. Enable the Design toolbar,
which is disabled by default, by selecting View | Toolbars | Design
from the menu bar. To use the alignment buttons, select two or more
objects at once by clicking on them while pressing the Shift key.

In the previous chapter, we talked about how listboxes work, so you should now be
familiar with it and the color-coding used to mark selected, associated, and excluded
values respectively. Even so, let's use some of the listboxes added above and
reinforce these concepts.

Let's click on the Adana, Turkey value in the Origin City listbox. This action will
filter the dataset to show only information regarding flights departing from Adana,
Turkey. We can instantly see how the selected value will turn green. The rest of the
listboxes will also be updated to show the data that is associated with the specific
value we just selected. The values associated with our selection will have a white
background and the data that is excluded (that is, those values that have no relation
with our selection) will be shown with a gray background. The new selection state is
depicted in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Which carriers have logged flights departing from Adana, Turkey? In which
cities and states are those flights arriving? These questions are easily answered by
QlikView's associative engine by simply selecting a value in the Origin City listbox.
One click gives us multiple answers.

After a selection is made, QlikView updates the charts and objects in the document
to match that particular request. This selection process is similar, in a way, to making
filters in an Excel table. It's also similar to making a query in a database, but with the
code part laid aside.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[40]

Using the associations presented in the previous screenshot, we can confidently
make the following affirmations:

•	 Only three carriers have reported flights from Adana, Turkey. All other
carriers have not.

•	 Only seven U.S. states have been destinations to flights departing from
Adana, Turkey, in the analyzed dataset.

•	 We can also see, in the screenshot, the eight cities where those flights arrived.

Click on the Clear button, shown in the following screenshot, in the Navigation
toolbar to reset the selection state.

Associating additional tables
At this point, the sole table we loaded provides a lot of usable information about
airline traffic for us to analyze. However, while there is a lot of data, there are only
a few descriptive values. Instead, the table contains references (identifiers) to values
stored in other tables. We need to integrate additional tables into the data model
which will provide the description to those identifiers and, by doing so, we will
enrich the meaning and context of our data and allow for more insight into the
analyses we make.

Structuring the script
In order to add more tables to the data model, we need to add the corresponding
Load statements to the script. In order to keep things tidy, we will separate some of
these Load statements and store them in different tabs in the Edit Script window.
That way, we will keep our script well-structured. Since we already have a Load
statement (the one we created in the previous section), let's place it in its own tab.

Go to the Edit Script window (Ctrl + E) and position the cursor on the line directly
above the name we assigned to the first table ([Main Data]). Then, go to the Tab
menu and select Insert Tab at Cursor…. The Tab Rename Dialog window will
appear, in which we will type Main Data, to name the new tab, and click on OK.
The code we generated previously will be moved to this new tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Now, let's load the remaining tables. We'll start by adding the Carrier Groups table,
using the following steps:

1.	 Activate the tab on the far right, which should be the one named Main Data,
and select Tab | Add Tab…. In the Tab Rename Dialog window, type
Airlines and click on OK.

2.	 Click on the Table Files… button and browse to the Carrier Groups.qvd
file located in the Data Files\QVDs folder. Highlight it and click on Open.

3.	 The Qvd file type should automatically show as selected in the left pane of
the File Wizard: Type window. Click on Finish to close the dialog window.

4.	 Remove the Directory; instruction and assign a name to the table by typing
[Carrier Groups]: right above the Load statement.

Take a moment to follow steps 2 through 4 for the remaining tables, which are listed
below, but assign a different table name to each of them in step 4.

Before adding a new Load statement, make sure the
cursor has been placed in a new line in the Script Editor.

We will add the tables contained in the following files to the following tabs:

•	 Airlines tab:
°° Airlines.qvd

°° Carrier Operating Region.qvd

°° Flight Types.qvd

•	 Aircrafts tab (follow step 1, above, to create it):
°° Aircraft Groups.qvd

°° Aircraft Types.qvd

•	 Airports tab (follow step 1, above, to create it):

°° Distance Groups.qvd

QlikView script is followed from top to bottom and then left
to right across the tabs. As a best practice, each new source
table should be placed in its own tab whenever possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[42]

After adding these tables and reloading the script (as just described), we can press
Ctrl + T to bring up the Table Viewer window, which shows the newly constructed
data model as in the following image:

Each blue-bordered box represents a loaded table, and it lists the fields contained in
that table. We can also see a blue line that shows the connection between any two
tables and marks the associations generated by QlikView in the data model.

To rearrange the layout of the data model in the Table
Viewer window, click on the Auto-Layout button or click
and drag the table titles.

The rule for two tables to be linked is simply that they must share a field with the
same name. As a developer, you can use alias field names to link or unlink tables
and ensure the created associations are correct. Table Viewer is very helpful when
verifying table associations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

There is another rule for constructing data models: Two
tables should be linked by only one field. If they have two
or more fields in common, a Synthetic Key will be created
which can be a potential issue that needs to be addressed.
We'll cover these rules in depth in Chapter 4, Data Modeling.

Creating the dashboard tab
In this section, we will see how we can enhance the analytical capabilities of our
QlikView document by adding interactive charts.

First, we will add a new sheet and name it Dashboard. From the design toolbar,
locate the Add Sheet button, shown below, and click on it.

To rename the new sheet, right-click on its background area and select Properties….
Then, from the Sheet Properties window, activate the General tab, locate the Title
field, and type Dashboard. Click on OK.

If the design toolbar is not visible, go to
View | Toolbars | Design on the menu bar.

Creating and positioning the filters and user controls
We will start by adding user controls in the form of listboxes to our new sheet.

Right-click on a blank space of the sheet area and click on Select Fields…. Then, add
the following fields to allow filtering: Year, Quarter, Month, Carrier's Operating
Region, Carrier Group, Aircraft Group, and Flight Type.

After adding the specified fields, click on OK.

We will adjust some of the properties in the created listboxes, starting with the Year
listbox. Right-click on it and select Properties… from the context menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[44]

The changes we will make to this listbox are set in the Presentation tab of the
Properties dialog window. Adjust the following settings:

1.	 Set the Alignment to Center for both Text and Numbers.
2.	 Uncheck Single Column.
3.	 Mark the Fixed Number of Columns checkbox and set it to 3.
4.	 Mark the Order by Column checkbox.
5.	 Click on OK to apply the changes.

Follow the earlier procedure for the Quarter, Month and Carrier's Operating Region
listboxes, changing only the Fixed Number of Columns setting as follows:

•	 Set it to 2 in the Quarter field
•	 Set it to 6 in the Month field
•	 Set it to 3 in the Carrier's Operating Region field

Let's now reposition these listboxes appropriately on the screen space, and resize
them if needed. We should have them placed in a way more or less similar to those
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Optimizing the screen space
As you may have noticed, we still need to include a few more fields for filtering, but
don't have much space available (since we must reserve the main part of the screen
for charts and tables). We will make use of an additional object type to optimize the
screen space used by listboxes: the search object.

The search object will allow the user to search for information related to airlines and
carriers, as well as aircrafts. All of this by using only a small space on the screen.

Click on the Create Search Object button, shown below, located on the
design toolbar.

From the New Search Object dialog window, we can specify which fields the object
search will go through when the user types a search string. We will enable the search
across Selected Fields, so make sure the corresponding radio button is selected,
highlight the fields to be added, and clicking on the Add> button.

The following fields need to be added: Aircraft Type, Airline, Carrier Code, Carrier
Name, Destination City, Destination Country, Destination State, Origin City,
Origin Country, Origin State, and Unique Carrier.

The order in which the fields are added is not
important.

Click on OK and reposition the search object, shown below, to the upper-left corner
of the screen by clicking on the magnifying glass and dragging it with the mouse.

The way the Search object works is outlined below:

1.	 The user clicks inside the Search object and types a search string. A search
string is any word(s) or set of characters the user is interested in finding
within the loaded data.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[46]

2.	 All field values containing the specified search string will be listed below
the search box. The matching search string will be highlighted in yellow and
grouped by the field in which the value is found. For example, the following
screenshot shows results for the search string South:

3.	 When the total matching values in any given field exceed a certain number
(10 by default), all of the corresponding values will be collapsed. Otherwise,
they will all be listed. You can change the default limit value from the
Presentation tab of the Properties dialog window.

Now that our search object and listboxes are set up, let's create a few charts.

Number of flights over time
Our first analysis object will be a bar chart which will show the number of logged
flights per year.

Locate the Create Chart button, shown in the following screenshot, in the design
toolbar and click on it.

The Create Chart wizard will appear. In the Window Title field, enter Traffic per
year. From the Chart Type section, select the Bar Chart option (the first one to the
left) and click on Next.

The next dialog window is Dimensions. A dimension is a field across which data is
aggregated on the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

From the list on the left, locate and highlight the Year field and add it to the Used
Dimensions list by clicking on the Add > button. After that, click on Next, as shown
in the following screenshot:

We will now deal with the expression, which is the formula QlikView will use
to calculate the metric we want. In this case, we want to get the total (a sum
aggregation) number of flights performed. In the Edit Expression dialog, which
opens automatically after clicking on Next in the previous window, type:

Sum ([# Departures Performed])

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[48]

The Edit Expression window is shown in the following screenshot:

Click on OK to continue.

Building the expression
You can either type the expression directly or use the
drop-down fields at the bottom of the Edit Expression
window. When using the drop-down method, click on
Paste after selecting the desired fields.

We will assign a label to our expression by entering # of Flights in the Label field
of the Expressions dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

We will continue making a few additional adjustments to our chart in a moment, but
for now we'll just click on Finish to exit the Create Chart wizard, which is composed
of several tabs. You should see something similar to the following screenshot:

We will now go back to the Properties dialog (right-click on the chart and select
Properties…), which contains the same options as the Create Chart wizard, and
make the following adjustments to our chart:

1.	 From the Caption tab, uncheck the Show Caption option.
°° The Caption tab is the right-most tab in the Properties window. You

might need to use the slider buttons at the top-right corner to make
it visible.

2.	 From the Number tab, select Integer as the number format.
3.	 From the Axes tab, enable the Show Grid checkbox from the Expression

Axes section (the one at the top, since there are two Show Grid checkboxes).
4.	 Also from the Axes tab, change the Primary Dimension Labels orientation

to Diagonal.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[50]

After clicking on OK to apply the above changes, resize and reposition the chart on
the screen to occupy an appropriate part of the upper space of the window. What we
should have so far is:

With the above user interface, a user can now start making queries, filter data, and
see how the chart updates with every new selection. We can, for example, ask a
question like: How many flights per year have been performed by foreign carriers?
How many of those flights were domestic and how many were international?

However, let's enhance the functionality a bit more.

One chart and multiple analyses with cyclic
expressions
We will now add one more level of interactivity to our chart by using a Cyclic
Expression group. Having a cyclic expression means the user will have the ability
to interactively change the measure or formula used in a chart.

The cyclic group we will create will hold expressions to calculate the number of
flights, number of enplaned passengers, total freight, and total mail transported.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

To create a cyclic expression, right-click on the Traffic per year chart and select
Properties… from the context menu.

Since we already have the first expression created, we will continue by beginning to
create the second one. Activate the Expressions tab and click on the Add button. In
the Edit Expression dialog window, type the following expression:

Sum ([# Transported Passengers])

Click on OK and set the label for this expression as # of Enplaned Passengers.

Make sure this second expression is highlighted and click on the Group button. This
will automatically create the cyclic group for our expressions.

Click on the Add button once more and add the following expression:

Sum ([# Transported Freight])

The label for this expression will be Transported Freight. Make sure the new
expression is highlighted and click on the Group button again.

Click on the Add button again to add our last expression:

Sum ([# Transported Mail])

The label for this expression will be Transported Mail. Make sure the new
expression is highlighted and click on the Group button again.

Finally, go to the Number tab and make sure that all of our expressions are
formatted as Integer. Click on OK to apply the changes.

After following this procedure, our chart will have the ability to change its active
expression (metric) through a cycle button (in the form of a circular arrow) that will
be placed at the lower-left corner of the object.

The user can select the measure that he/she wishes to activate by either clicking on it
directly to sequentially change the chart's expression, or by clicking on the little black
down-arrow to display the drop-down menu from which the desired expression can
be selected.

We can also activate the drop-down menu by right-clicking
anywhere inside the cycle button.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[52]

Our chart should look like the following screenshot:

Adding a time drill-down group
Using the same chart object as in the previous section, we will now make use of a
different kind of dimension: Drill-down Group. We will change the Year dimension
with a hierarchical group that will contain the Year and Month fields.

First, right-click on the bar chart created above and select Properties…. Activate the
Dimensions tab, then locate the Edit Groups… button at the lower-left corner and
click on it.

The Groups dialog window will pop up. Click on the New… button and, from the
Group Settings dialog window, enter Time as the Group Name, making sure the
Drill-down Group radio button is selected.

From the Available Fields list on the left, locate the Year and Month fields, and add
them to the Used Fields section on the right by highlighting them and clicking on the
Add> button. Make sure the fields are added in the correct order.

Using an alternate label
By default, each field will use its own name as the label in
the chart. However, we can specify a different label for each
of them by typing it on the Label field at the bottom of the
Used Fields list. For now, we will use the default label.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

The Group Settings dialog window should now look like the following:

Click on OK to apply the changes in the Group Settings dialog, and click on OK
again to close the Group window.

If the fields are not added in the correct order, use the
Promote and Demote buttons to rearrange them.

You will now see the newly created group in the Available Fields/Groups list in the
Dimensions window. Highlight it and add it to the Used Dimensions list by clicking
on the Add> button. Then, remove the one we previously had (Year) by highlighting
it and clicking on the <Remove button.

Click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[54]

We now have a bar chart showing the number of flights per year. We can drill down
to see a monthly trend by clicking on one of the bars, which initially represents a
year. Another way of drilling down is by making an in-chart lasso selection covering
one of the bars. Our chart should look like the following screenshot:

Navigating back up
When drilling down, you can go back to the previous level
in the Drill-down Group by either clicking on the up-facing
arrow next to the field name in the legend box (down to the
right), or by clicking the Back button on the navigation toolbar.

With the functionality presented in this section, as well as in the previous one, the
user is free to decide how he/she wants to visualize the data: selecting, slicing,
drilling, and swapping as per his/her convenience. Also, the space taken up by one
single chart can be used to make a lot of different analyses with just a few clicks.

Besides drill-down groups, we can also create cyclic groups for the
user to interactively change a chart's dimensions. This is similar to
what we did with the cyclic expression. The procedure to create a
cyclic group dimension is the same as the one described above for
drill-down groups, we just select Cyclic Group instead of Drill-
down Group in the Group Settings dialog window.

Top 10 routes
We will now add a chart in the form of table to display the top routes in terms of
number of flights, enplaned passengers, transported freight, and transported mail.
Let's call it Top 10 Routes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Start by clicking on the Create Chart button from the design toolbar. From the first
dialog in the New Chart wizard, select the Straight Table icon, shown below, as
Chart Type and set Window Title to Top 10 Routes. Click on Next.

In the Dimensions window, add the From – To City field to the Used Dimensions
list and click on Next.

We will add the following four expressions and their corresponding labels:

•	 Flights: Sum ([# Departures Performed])
•	 Passengers: Sum ([# Transported Passengers])
•	 Freight: Sum ([# Transported Freight])
•	 Mail: Sum ([# Transported Mail])

After adding the expressions, make sure to set Total Mode to No Totals for all four
of them. This is done by selecting the corresponding radio button at the lower-right
corner of the window.

The Total Mode setting is unique to each expression, so we
need to highlight each of the expressions from the list and
change its Total Mode one at a time.

The Total Mode section is shown in the following screenshot:

Click on Next two times to open to the Presentation dialog window. Once there,
enable the Max Number (1 – 100) checkbox and set it to 10.

Click on Next three times to get to the Number dialog window and make sure to set
all of the expressions to the Integer format.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing is Believing

[56]

Click on Finish and, after rearranging and resizing the objects, we should have
the following:

For the table to actually show the top values, we need to sort one of the four
expression columns in either ascending or descending order. To do that, double-click
on the header cell of the column you want to sort. The first time the column is
sorted, it will use the ascending order. You can double-click it again to sort in
descending order.

Now that we have prepared a QlikView document, we can explore and discover the
data contained in it. We can interact with our document, make selections, and use the
charts to make sense of the information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Summary
We have just started creating and building analytical applications with QlikView.
Although the data model we used was simple to build, we covered the basic
concepts a developer should consider when designing it.

The main objective of this chapter was to show you the basics of QlikView
development from the design perspective, to create basic objects, and to change
different properties to make them more functional.

This chapter helped you learn how to load source tables from QVDs, to associate
different source tables to create a data model, and to identify dimensions and
expressions in the context of a QlikView document.

It also showed you how to create a user interface with user controls to filter data and
make selections. Finally, we learned how to create charts and tables that have a high
degree of interactivity.

In the next chapter we will learn how we can load data from different data sources.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources
We've completed the "Seeing is Believing" phase with big success. We've shown
HighCloud Airlines the potential value that QlikView can bring to their business
and how they will be able to give their raw data the meaning their business requires
to make everyday decisions. Now, the natural question that arises after seeing
what QlikView can do on the frontend is: What type of database does QlikView
require to work?

The straight answer to this question is, simply, that QlikView does not necessarily
requires a specific database or Data Warehouse (DWH) to pull data from. It could
benefit from using a DWH, but it is not required. However, the data must reside
somewhere, in order to be able to pull it into QlikView, visualize it, discover patterns
in it, and build all kinds of charts with it. That somewhere can be almost any
standard database, flat file (for example, .xls or .csv), web page, and so on, or even
any combination of the above.

When building the data model for the application created in the previous chapter, we
used tables stored in a QlikView data format (QVD). However, as pointed out, this
data can be stored and managed in a wide range of different systems. Therefore, it
requires different methods for extraction. That's where Data Sources come in. In this
chapter, you will learn:

•	 How to load data from different sources
•	 How to extract data using the built-in wizard
•	 What QVD and QVX files are
•	 How to load data from disparate sources

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[60]

Although there are many different Database Management Systems (DBMS) out
there, we can, for our purposes, group them into three different categories:

•	 Those that provide connectivity via ODBC/OLE DB drivers (we'll talk about
what these are in a moment).

•	 Those that use proprietary systems with no standard connectivity.
•	 Those that are not necessarily DBMSs, but rather have tables stored in plain

files, such as Excel, CSV, TXT, XML, and the like.

We'll discuss some key points in each of these categories so we have a general
understanding of the implications we must consider.

Using ODBC and OLE DB drivers
First, what the acronyms mean:

•	 Open Database Connectivity (ODBC)
•	 Object Linking and Embedding Database (OLE DB)

You may already know what these are, and we will not go into detail about how
these drivers work on the inside but, in general terms, we can think of them as
"query translators", which enable the communication between an application (such
as QlikView) and the DBMS. Since they have been in use for a long time, almost all
major DBMS vendors provide access via ODBC and/or OLE DB drivers.

Installing the drivers
When you use a printer, it requires you to install a driver on your computer so the
documents you send to print can be received and printed properly. The same is true
with the DBMS drivers. You need to install the corresponding driver on the machine
you will be sending queries from in order for them to be accurately translated and
properly processed by the DBMS, which will, in time, respond to it by sending the
requested set of data.

Some common drivers will be installed along with the Windows
installation. So, depending on the driver, you might not need to
install any additional drivers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

A very important point you must consider when installing ODBC and OLE DB
drivers is the architecture. In most cases, you will find the driver installation
packages for both 32-bit and 64-bit operating systems. You need to take into account
not only which architecture your OS is running on, but also which edition (x64 or
x86) of QlikView you will be using. For example, if your OS is 32-bit, then the only
edition of QlikView you can install will be 32-bit (x86). However, if your OS is 64-
bit, you could either install the x86 or x64 edition of the QlikView program. It is
important, from the moment you first install QlikView, to know which edition is
more convenient for the environment you will be working on.

The QlikView version and edition
If you want to find out which QlikView edition you are
currently running, you can find out by going to the Help
menu and clicking on About QlikView.... There, you will
find information like the version (9, 10, 11, and so on), the
release, as well as the build number and the edition.

In some cases, the DBMS might not provide drivers for both architectures so you
may only find the 32-bit edition. In that case, QlikView makes it possible to use 32-bit
connection drivers even from the 64-bit edition.

Accessing custom data sources
OLE DB and ODBC are the most common types of connectivity you will find
in corporate environments. However, there are certain data sources that cannot
be accessed naturally via any of these standards. For these few (but increasing)
scenarios, QlikView provides the ability to integrate what is called Custom Data
Sources, and extract data from them and manipulate it as any other source.

We can access custom data sources just as we access any other common database:
with a connector or a driver. In this case, we can either build our own custom
provider, or buy it from a third-party. The former typically requires using C or C++
code to create the communication architecture between the custom data source and
QlikView. QlikTech provides a Software Development Kit (SDK) to facilitate the
construction of these programs, sometimes even including sample code.

An example of a custom data source would be Salesforce.com. The connectivity
for Salesforce.com is provided by QlikTech via a free, add-on, .dll-based adapter,
and allows rapid extraction of the data stored in this popular CRM system. This
.dll-based adapter is what we call a connector, which serves the same purpose as
that of an ODBC/OLE DB driver.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[62]

Another common example of a custom data source, which has been increasingly
used in QlikView deployments, is the SAP platform. At an additional license fee,
QlikTech provides a set of .dll-based QlikView connectors which you can use to
access SAP data (R/3, mySAP, and BW). This connector is SAP-certified, and comes
with built-in wizards to query the database and even includes prebuilt QlikView
applications, which will literally help you build the script you need to extract any
required table. It's especially useful when you don't know how tables are related,
or don't actually know the technical names of the fields in a table, which is also
very common.

Third-party custom connectors
As stated previously, we can build our own custom connectors. In the case of the
data source being Salesforce.com or SAP, you can opt to use the ones QlikTech
offers. There are also third-party companies who specialize in providing this kind
of connectivity for other common, custom data types. Two examples of third-party
custom connectors are:

•	 QVSource: This connector, built by Industrial CodeBox, can be used to
extract data from a large number of web services that are accessible via
APIs. You can easily load data from social media sites, such as Facebook
or Twitter, and business web apps, such as Google Analytics, Google
Spreadsheets, and so on.	

°° More information about QVSource can be found at
http://www.qvsource.com.

•	 QlikView JDBC connector: This connector, from TIQ Solutions, enables
the possibility of communicating with Java Database Connectivity
(JDBC) data sources from QlikView. JDBC is an industry standard for
database-independent connectivity for a wide range of data sources.
Common examples are the Java-based databases such as Derby, or Big Data
environments such as Hadoop Hive.

°° More information about the JDBC connector can be found at
http://www.tiq-solutions.de/display/enghome.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Reading table files
The third type of data source you will find consists of the most common table files,
such as Excel, CSV, TXT, XML, or even HTML. For these types of data sources,
the one requirement would be that their content is in a readable, understandable
structure. It will be easier to extract data from them if they are constructed in
the form of a traditional table, that is, only rows and columns (like any table in a
database). However, sometimes these files could contain extra information that is not
actually part of the core table (such as headers or footers) and, therefore, additional
transformations via script are required.

In Chapter 9, Basic Data Transformation, we will talk about
some techniques for dealing with unstructured table files.

The ability to read table files is especially useful when we want to mix information
from the DBMS and data generated by the business user that might not be stored in
a database. For instance, budget forecasts, external market indicators, and so on.

Extracting data—two hands-on examples
In this section, we will go through the steps required to extract data into a QlikView
document. The extraction process through which we pull data into the QlikView
document consists of:

1.	 Connecting to the database
2.	 Querying the database
3.	 Reloading the QlikView script

We will provide two examples of data extraction using two different data sources:

•	 A Microsoft Access database
•	 A table file

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[64]

Extracting data from MS Access
Our first example will demonstrate how to extract data from an MS Access database.
It will be a good example since the connection process is very similar to that used
when connecting to most major DBMSs. We will be using one of the drivers discussed
in the previous section, and covering the steps required in the entire process.

Before continuing, make sure a database file named Dimension
Tables.mdb is in the Data Files\MDBs folder. If not,
proceed to create the folder, if necessary, and copy the file.

Configuring the driver
Drivers for MS Access databases are often installed, by default, with the Windows
OS. The default drivers are built for 32-bit architectures, but that won't be a problem
for us since, as pointed out earlier, both editions of QlikView can make use of any
32-bit driver.

Connectivity to an MS Access database is provided by Microsoft either through
ODBC or OLE DB drivers. At this point, we must decide which of the two types of
drivers we want to use. Since the connection setup via the OLE DB driver is more
straightforward, we will opt for that method. However, we will take a moment to
briefly describe the configuration process for ODBC drivers.

The following process is not necessary when using OLE
DB drivers, and, for the purpose of our example, we can
skip these steps.

How to set up an ODBC connection
In order to create the ODBC configuration, we need to go to the ODBC Data Source
Administrator window. Access this window via Control Panel | Administrative
Tools | Data Sources (ODBC).

Accessing a 32-bit ODBC Data Source Administrator from a
64-bit machine
If you are using a 64-bit machine and need to configure a 32-bit ODBC
driver, you will need to access ODBC Data Source Administrator
from a different location. Go to the %systemdrive%\Windows\
SysWoW64 folder and launch the Odbcad32.exe file. Otherwise,
only 64-bit drivers will be available to configure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Once in the ODBC Data Source Administrator window, we'll go to the System DSN
tab so the configuration we set is visible for any user of the machine, and then we'll
click on Add…, as shown in the following screenshot:

The Create New Data Source window appears, which is where we will be able to
select the driver we want to use, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[66]

After clicking on Finish, the configuration window will appear. Depending on the
driver you select, the configuration and parameters required for the connection
will vary. However, the configurations for almost all drivers on this, and all of the
following dialog windows, are very simple with self-explanatory fields.

After configuration, an ODBC connection can be used from QlikView in the same
manner as the OLE DB connection, just by selecting ODBC instead of OLE DB when
creating the connection string, which is described in the following section.

Let us now continue with our example using the OLE DB driver. If you followed the
process just described, click on Cancel to follow the OLE DB procedure instead.

Creating the OLE DB connection string
The connection string is basically a set of instructions and specifications with which
QlikView will establish the communication with the database. It contains the
database name or network location, the driver name, as well as the credentials with
which we will access the database (username and password), if needed.

The connection string is created from QlikView, so the next thing we will do is open
the QlikView document Airline Operations.qvw that we created earlier in Chapter
2, Seeing is Believing. We will add new tables to the data model, this time extracting
them from MS Access, to continue exploring how QlikView's built-in extraction
capabilities work.

Once the QlikView document is opened, go over to the Edit Script window (Ctrl +
E or File | Edit Script…). We've already worked briefly with this window, and this
time, we will make use of the Database section in the Data tab.

Activate the Airports tab and position the cursor on the last line, below the existing
Load statement. From the Database section, select OLE DB from the drop-down
menu, and click on the Connect… button, shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

The Force 32 Bit checkmark is used to specify that
QlikView should look for 32-bit drivers, instead of
looking for 64-bit drivers, installed on the computer.
It is relevant for both ODBC and OLE DB drivers.

If you have installed the 64-bit edition of QlikView,
please mark this option before clicking the Connect…
button so QlikView uses the correct connection engine.

Remember, we are using the 32-bit connection only
because we don't have a 64-bit driver available to query
our database. In all cases in which the 64-bit driver is
available, it is advisable to use that instead, since using
32-bit drivers might significantly reduces performance
over the 64-bit equivalent.

The Data Link Properties window, which is composed of several tabs, will appear.
The first tab (Provider) shows a list of all the available OLE DB drivers. Here, we will
select Microsoft Jet 4.0 OLE DB Provider. Once selected, click on Next >> to move to
the Connection tab, in which we will specify the database file we want to connect to.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[68]

Click on the browse (…) button, placed between number 1 and number 2, to select
the database file we have stored in the Data Files\MDBs folder.

Since the database file does not require logon credentials, we will leave the User
name and Password fields blank. The Blank password checkmark should be
selected as well.

We will now click on Test Connection to make sure the connection is established.
A message will indicate if the test went well and, if so, we may now click on OK. If
not, we need to make sure the configuration is correct and verify that the database
file is accessible.

Scrambling user credentials
For databases that require logon credentials, the username
and password will be stored in the connection string either
as plain text or as scrambled text. To store them as scrambled
text, select the Scramble User Credentials checkbox, in the
Settings tab of the tool pane in the Script Editor window
before generating the connection string.

After clicking on OK, you should see the newly generated connection string as part
of the script.

It is possible to have several connection strings in the same QlikView document.
This allows you to pull data from different sources. Each time that a new connection
string is found during the script execution, the previous connection is automatically
disconnected. We can also use the Disconnect; statement to explicitly drop the
previous database connection before connecting to the next one.

Connection string portability
In some circumstances, we might need to create several QVW
files for extracting several tables from a particular database.
An elegant and administration-friendly approach is to store
the connection string in a text file, residing in a folder that is
reachable from your QVW files. Import this connection into
every QVW via an include statement (from the Edit Script
window, select Insert | Include Statement). The benefit of this
approach is that if the connection string should change, you only
need to modify it in one place, and all of the corresponding QVW
files will automatically use the updated Connect statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

Querying the database
Now that we have established communication with the database via our connection
string, we can begin retrieving data from it using the Structured Query Language
(SQL). QlikView makes it easy for us to create the Select statements to build
our queries.

The Create Select Statement wizard
The Select statement is used to pull data from the database into our QlikView
document, and tells the DBMS the specific set of data we want. We could just type it
manually, but instead we will use the Create Select Statement dialog in order to find
the table we want to read, as well as the fields we need, and automatically populate
the required QlikView script.

Since we've already created the Connect statement, we can go ahead and click on the
Select button from the Data tab. The Create Select Statement dialog window will
appear. This window is used to specify the database, table, and fields we want to
load. After we click on OK, the corresponding Select statement will be generated.

Let's look at the components of this particular window, so we know what
each option does. The following screenshot shows the Create Select Statement
dialog window:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[70]

We can split the window into three horizontal panes. In the top pane, we specify
where the tables we want to read are located. We have a Database drop-down field
and an Owner field of this database. We also have three buttons to the right, in this
top pane:

•	 Connect…: This button lets you create another connection. It is rarely used
since the current window is usually opened after a connection is already
created.Driver…: This button provides some information about the driver
you are currently using.

•	 Support…: This button opens a pop-up window, which may or may not
contain data, but is intended to provide information about the database.

In the middle pane, we can choose what will become the core of our Select
statement: the table and fields we will read.

On the left side of this middle pane, we have several checkmarks that will allow us
to filter the list of tables we see to the right. We can select to see only Tables, Views,
both, and so on. Once we apply the appropriate filter, we can move on to pick the
table we need. Note that the list is alphabetically ordered, so you can type the first
letter of the table you want to find, to automatically scroll to the section where the
tables whose names begin with the specified letter are listed, and then scroll further
down until you find it.

After highlighting the table, we can move on to the next section of this middle pane,
which is the list of fields which the selected table contains. In this section, we have an
additional option which is the ability to sort the listed fields by Text Order or by the
Original Order on which they are stored in the database.

Note that we will always see a star symbol at the top of the list. We can highlight this
"wildcard" character if we want to pull all of the fields contained in the table. In case
we want to load only a few, but not all of the fields, we can do that by highlighting
each of them individually and not with the star symbol.

When selecting the particular fields you want to include,
use the Ctrl key after each click/highlight so you can pick
more than one.

We can also click on Show Icon for Key Fields, if we want to identify the fields that
are defined as key fields in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

And finally, we have the bottom pane, which at the same time is divided into several
tabs. Let's go through each of them briefly:

•	 Script: This tab will give a preview of what the wizard will create based on
our selections from the panes above.

°° To the right, we have additional options to specify how we want the
script to be generated (Column, Row, or Structured). We can also
add a Preceding Load, which lists the resulting fields individually
and makes them available for QlikView-side operations.

°° We also have an Add… button which basically allows the creation of
several Select statements involving several tables at the same time,
without needing to click on OK and then return to the Create Select
Statement window for each one.

•	 Table: This tab is used to view general information about the selected
database table.

•	 Columns: This tab will provide specific information about the properties of
the fields that make up the table.

•	 Preview: This tab will show a preview of the table, consisting of the first
few rows.

•	 Blobs: This tab provides the ability to bundle objects contained in a Binary
Large Object (Blob) field into the QlikView application. This feature is
only supported when using an ODBC connection (OLE DB is not supported
for this).

Adding the airport tables
Even though the Access database contains all of the dimension tables used in
the Airline Operations data model and more, we will only extract the tables
corresponding to the origin and destination airports and incorporate them into
our application.

Using the Create Select Statement wizard described earlier, create the Select
statement to extract the Origin Airports table with both the %Origin Airport ID and
Origin Airport fields. Make sure to create a script in the form of Column with each
field name listed in Preceding Load for us to manipulate it further, if needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[72]

The following screenshot shows the configuration we need in the Create Select
Statement dialog for this particular example:

The resulting script is as follows:

LOAD `%Origin Airport ID`,
 `Origin Airport`;
SQL SELECT `%Origin Airport ID`,
 `Origin Airport`
FROM `Origin Airports`;

Did you notice how we didn't use the star symbol when selecting the list of fields
to retrieve, even when we needed to pull all fields? This is a best practice, to ensure
that only the required fields are returned by the query, and no more. Suppose, for
example, that a new field is added to the source table. If we used the star symbol to
query the database, we would automatically retrieve this new field even when it's
not necessary for our data model, wasting valuable bandwidth in the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Follow the same process to add the script needed to load the Destination
Airports table.

Reloading the script
We now have a query to execute, and need to reload the script to actually pull
the data into our QlikView document (and into RAM, for as long as the QlikView
document is open). We can either select File | Reload, press Ctrl + R, or click on the
Reload button from the toolbar.

After this, as we've seen previously, a Script Execution Progress window, shown
below, appears that shows feedback about the loading process. It also tells us, after
reading a table, how many rows it fetched, among other things.

By default, the Close when finished checkmark, at the bottom-left of the window, is
enabled. It tells QlikView to close the progress window immediately after finishing
the script execution. It is sometimes useful to disable this property, so we can get an
overview of the entire process after it is finished. You can either uncheck the option
right from this window or change the parameter via Settings | User Preferences |
Keep Progress Open after Reload. You will know that the script execution has ended
when the Close button becomes enabled. Click on Close to dismiss the dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[74]

Since we executed the reload operation from the Edit Script window, the Sheet
Properties dialog appears immediately after script execution, with the Fields tab
active by default. As we saw in Chapter 2, Seeing is Believing, through this window we
can add fields to our workspace in the form of listboxes and start reviewing what we
got from the query we ran.

This dialog does not appear when launching the reload
from outside the Script Editor. If that is the case, you can
access it by right-clicking on a blank space of the sheet
area and then clicking on Select Fields….

Click on OK to dismiss the Sheet Properties dialog window.

The resulting data model
If we press Ctrl + T at this moment, Table Viewer will appear and we will be able
to see the resulting data model. The data model now consists of the tables we added
previously, in Chapter 2, Seeing is Believing, and the two tables we added from the MS
Access database.

Table Viewer is also available via File | Table Viewer…,
or by using the corresponding toolbar button available in
the design toolbar.

The following screenshot shows the resulting data model:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Table Viewer is a great tool to analyze the data model and check table associations.
In the next chapter, we will describe in more detail how we can take advantage of it.

It is important to note that, at this point, we are using prepared source
tables in our data model for introductory purposes, so everything
falls into place without much effort. In the later chapters, we will
cover in more detail how the data model is constructed via a script.

After reviewing Table Viewer, click on OK to dismiss it, and make sure to save the
changes we made to the application before moving on to the next section.

Loading a table file
We have now covered data extraction from a typical database via ODBC and OLE
DB. QlikView is also able to load data from a table file, such as an Excel, CSV, TXT,
and XML file, among others.

Let's go through an example of loading a CSV file, so we can describe the steps and
dialog windows involved. We will load two additional tables in the CSV format with
the purpose of demonstrating that, no matter what the source is, at the end (that is,
once added to the QlikView document and data model) all tables are equal. The new
tables are contained in the Origin Markets.csv and Destination Markets.csv
files, so make sure you have them in Data Files\CSVs.

We will add this table to the same data model used in the previous section, so if you
already closed the Airline Operations.qvw document, please open it again. Go to
the Edit Script window, activate the Airports tab, and position the cursor on the very
last line. Next, click on the Table Files… button from the Data tab in the tool pane
below. The Open Local Files dialog will appear, in which we must select the file
we want to load. In our case, we will first browse and select the file named Origin
Markets.csv and then click on Open.

A new window pops up. It will be the equivalent of the Create Select Statement
dialog we previously discussed. Here we will define some configuration options
about how the Load statement will be created.

This configuration is separated into several steps in the dialog window. We will go
through the most important sections of this wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[76]

Specifying the file attributes
The first step is defining the attributes of the file we are reading, as well as the fields
we want to include. In the following screenshot, we can see the contents of the File
Wizard: Type section:

We can divide this window into three panes; the first (left pane) contains radio
buttons for us to select the corresponding File Type. The second pane, to the upper
right of the window, contains various settings about the file attributes. These settings
will vary depending on the file type. Finally, we have a preview pane, at the bottom,
that reflects how the table file will be interpreted by QlikView with the configuration
we are setting on the two other panes. The preview pane provides immediate
feedback after we modify any of the configuration options in the rest of the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

The File Wizard tries to determine the File Type automatically, and it is pretty
accurate. However, you can easily change it in case it got it wrong, by selecting the
corresponding radio button. As you can see, the file types that can be loaded using
this wizard include: Delimited (CSV, TSV, and so on), Fixed Record (when the file
does not contain a specific character as a separator, but is consistent with its column
widths), Excel files, Html, Qvd (QlikView datafiles, like the ones we used in Chapter
2, Seeing is Believing), Xml, and Qvx (QlikView eXchange format).

As part of this example, we will further discuss the settings involved when reading a
CSV (delimited) file. The configuration for the rest of the file types is very similar to
this, so we will not go into detail for each of them.

The CSV attributes
Since our CSV file is a delimited file, it is possible to select which character is used as
a separator. This is done via the Delimiter drop-down field.

The Quoting schema to be used can also be specified, with the available options
of Standard, MSQ, and None. By default (that is, using MSQ), straight double
quotes (" ") and straight single quotes (' ') are permitted for field values, but with
one condition: they must be in both the first and the last non-blank character of a
field value.

In case the table file has more than one line as the header record, you can specify
it in this same window, with the option to set it as a number of lines or number
of bytes.

QlikView can also recognize comment lines in the file, when we specify the
character(s) which identifies a comment line by typing it in the Comment field.

The other options we can set are: whether the file has the field names defined in the
header row (Embedded) or not, and whether QlikView should ignore an End of File
mark (Ignore EOF).

A word on Quoting
If a cell contained in the table being read has only one quotation mark, or if the
quotation marks are not in the first and last non-blank character position, the script
reload will not be correctly executed and the file will not be properly read.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[78]

The following diagram shows three different scenarios that can be encountered
when reading text files with quotes. The first two will either result in an incomplete
read, or the table will contain "dirty" data. The third scenario will be read correctly.
Pay special attention to the value of the third record in Field B of the input table for
each scenario.

Field A Field B Field C
A1
A2
A3
A4

“B1”
“B2”
“B3
“B4”

C1
C2
C3
C4

I

I

I

I

I

I

I

I

I

I

Field A Field B Field C
A1
A2
A3
A4

“B1”
“B2”
“B 3
“B4”

”

C1
C2
C3
C4

I

I

I

I

I

I

I

I

I

I

Field A Field B Field C
A1
A2
A3
A4

“B1”
“B2”
“B3”
“B4”

C1
C2
C3
C4

I

I

I

I

I

I

I

I

I

I

Field A

Field A

Field A

Field B

Field B

Field B

Field C

Field C

Field C

A1

A1

A2

A2

A3

A4

A1

A2

A3

A4

A3

B1

B2

B3,C3

C1

C2

C4

B1

B2

“B”3

B4

B1

B2

B3

B4

C1

C2

C3

C4

Result using MSQ

Result using MSQ

Result using MSQ

Record#4 is missing

Value for field B in
record #3 is”dirty”

Table OK
C1

C2

C3

C4

We need to emphasize this point because, for example, in the first scenario stated
previously, QlikView will not alert about a possible misinterpretation of the input
table. Instead, it will simply mark the dirty record as the end of the file and finish the
extraction, with all of the subsequent records being left out. This potential issue is not
always apparent in the preview pane of the File Wizard, as the offending character
may be further down in the table. Look out for the listboxes containing mixed types
of content, as this might be a sign that the described issue is present.

The solution to the first and second scenarios is to change the Quoting schema to
Standard or None from the File Wizard: Type window.

Previewing
The preview pane, as stated previously, will show how the file will be read by
QlikView with the configuration we have defined. We can also use this pane to
rename fields and/or exclude columns from the extraction.

To change a field name from the preview pane, simply click on the cell containing
the field name (dark gray, with an X mark on its right side), and type the new field
name. If the file we are currently loading does not contain field labels, QlikView
defaults them to something like @1, @2, and so on, depending on the column number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

To continue, make sure you've defined the settings as depicted
in the screenshot shown at the beginning of this section.

After we've set these configurations, we are done with this window. Let's click on
Next to continue with the following step in File Wizard.

The transformation step
The second step in the File Wizard is the Transform process. Since, for now, we
are not going to make any transformation to our file, we are going to skip this step.
However, it is important that you know how and when this can be useful for you.
Chapter 9, Basic Data Transformation, covers this topic more in depth.

Let's just say, for now, that the transformation step is used when loading files that
are not in a format consistent with a traditional table (that is, pure and clean rows
and columns). The Transform dialog is shown here:

As you can see, there is a warning about using this feature: it requires a large amount
of RAM. If your source file is large, you might not find this Transform wizard useful,
and other techniques will need to be employed to process the source data.

Click on Next once more to skip the transformation step, and move to the third step
in the File Wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[80]

Refining the input table
There are several options that can be defined to treat a table file and transform/
convert it in the loading process. This is done in the File Wizard: Options step
depicted in the following screenshot:

We can set options such as Where..., specify QlikView to treat the table as a
Crosstable..., or interpret it as a Hierarchy.... However, we will not use any of
these options when loading the Origin Market table, but we will describe their
components and functions for introductory purposes.

Where Clause wizard
A Where Clause is used when we need to exclude records from the input table.
We can specify on which condition these records should be left out. When clicking
on the Where… button from the File Wizard: Options window, the following dialog
will appear:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

The Simple configuration allows us to set the commonly used conditions of
Field – Operator – Value. For example, Field A = X will exclude all records from
the input table that have the value X in Field A. The operators available in this
wizard are shown in the screenshot below:

The Advanced option allows us to write the desired Where Clause by hand, whereas
the Empty Template will only add a Where Clause similar to the following:

Where (1 = 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[82]

This will not exclude any records, but you can manipulate it after the script
is created.

We will talk about using advanced Where Clause in Chapter 7,
Scripting and Chapter 8, Data Modeling Best Practices.

The crosstable
QlikView is also able to convert crosstables (a table where there is a column for
each dimension in a range) to traditional tables. For the file we are loading in this
example, we won't need this function, but it's important that you know about it since
this table structure is very common, particularly in budget spreadsheets. An example
of a crosstable is shown here:

Department Jan Feb Mar Apr May Jun
A 160 336 545 152 437 1
B 476 276 560 57 343 476
C 251 591 555 195 341 399
D 96 423 277 564 590 130

These tables, because of their structure, are not appropriate for a QlikView data
model. We will discuss this topic further in Chapter 8, Data Modeling Best Practices,
along with other transformation options and hierarchy tables.

The resulting script
For now, let's continue to the next step in the File Wizard. Click on Next from the
File Wizard: Options window, and the File Type: Script dialog will appear.

This window basically lets us take a look at the generated script with the
configurations set in the previous steps. Additionally, we can set a Max Line
Length parameter to make the script easier to read once it is pasted into the
Script Editor, or enable the Load All (*) option, which will generate a script that
indistinctively loads every field in the source table.

If you have previously changed field labels, or excluded some
fields from the load (using the File Wizard: Type window),
you should not use the Load All (*) option, since it will
override those previous settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

The File Wizard: Script dialog window is shown in the following screenshot:

Let's leave these options as they are for now, and click on Finish. The script will be
generated and added to the Edit Script window.

Please note that when reading data from a plain table file, we do not
use a Select statement but only a Load statement. That is because
the SQL Select statement is only used to send the appropriate
command to the ODBC, OLE DB, or some other data connectivity
drivers, and query the database. Since we are only loading a local
file, no driver is being used, and the built-in QlikView extraction
functionality is used to pull data into our document.

We can now reload the script, and the table will be pulled into QlikView and treated
like any other table from any other source, from hereafter.

Save before reloading
The reload operation will execute every script statement, and there
will be times when the script execution will fail for a number of
reasons. Therefore, it's a good practice to hit Save before actually
reloading the script. In some cases, when the reload fails, changes
since the last save are lost.

We have now loaded the Origin Market table. Take a moment to do the same with
the Destination Markets table and include it in our data model. Afterwards, save
and close the QlikView document.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[84]

QVD and QVX files
We have now gone through the process of loading data from traditional databases
and simple table files. In this section, we will take a deeper look at the QVD and QVX
file types, which are used by QlikView to store and read data in an optimized format.
We will discuss a little more about both of these types, and the benefits and uses of
each of them.

QVD files
QlikView Data (QVD) files are used to extract and store data into and from
QlikView. This means that whichever table you read, from whichever database, you
can store it in the QVD format before or after any transformations you perform on
the table. The special characteristics of this file type are:

•	 It contains only one logical table.
•	 It uses a special algorithm to compress the data, achieving compression

rates of up to 90 percent, depending on the fields' cardinality of the
underlying data.

•	 When reading a QVD table file in QlikView, the loading speed is anywhere
from 10 to 100 times faster than when loading from a database. When the
table file is being read without applying any transformations, QlikView
performs an optimized load (super-fast mode).

One of the main advantages of using QVD files is that, once you have a QVD on your
disk, the table can be exploited by more than one QlikView application. This reduces
the load on the database server, and optimizes QlikView resources and development
time. This process is called QVD staging and is discussed further in Chapter 12,
Advanced Data Transformation.

The QVD file will also be particularly useful when dealing with Incremental
Load scenarios which are discussed in Chapter 12, Advanced Data Transformation.

QVX files
QlikView data eXchange (QVX) files are used for data input from external
systems into QlikView. The main difference with respect to the QVD file is that
QVX is a public format and can be created from external interfaces. It can be
considered as the format in which custom data sources (described earlier in the
chapter) send data to QlikView via the custom connector. Data retrieval becomes
optimized when complying with QVX specifications, although not as optimized
as QlikView's own QVD.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Loading an Inline table
There is yet another way of adding a table to a data model, and it's one that is
especially useful for small tables that do not necessarily reside in a database. For
example, those that contain a custom description of an entity. With an Inline table,
the data is entered directly into the Edit Script window. The process to input an
Inline table is outlined here.

From the Edit Script window, go to the Insert menu and select Load Statement |
Load Inline. The Inline Data Wizard will appear as shown in the screenshot below:

The window is similar to a spreadsheet, with rows and columns.

To enter heading labels, double-click on the header cell.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Sources

[86]

We can start typing data into the cells, and after we are finished entering the content
of the table, we can click on OK.

Importing document data to the Inline table
It is possible to enter, within the Inline wizard, a list of values
contained in a field that is already stored in RAM. This is done via the
Import Document Data wizard. To bring up this wizard, go to the
Tools menu from the Inline Data wizard and select Document Data….

The resulting script for our input table would be similar to the following:
LOAD * INLINE [
 ID, Description
 1, One
 2, Two
 3, Three
 4, Four
 5, Five
 6, Six
 7, Seven
 8, Eight
 9, Nine
 10, Ten
];

The advantage of this approach is that you will not need to maintain a separate table
(whether on a database or a table file) when dealing with a small table of this sort.
Keep in mind that the values will be hardcoded in the script. Whenever you need to
change them, it can only be changed in the script.

Summary
We have covered the most basic extraction capabilities that QlikView provides. We
have also described the different data sources you can access from QlikView and
provided a few tips for dealing with input tables.

At the same time, the technical team at HighCloud Airlines has been able to assess
that QlikView can load data from disparate sources, and see the different options
they will have at their disposal with QlikView regarding data sources. They have
also been presented with one of the most important differentiators of the QlikView
software; that is, its ability to read and process data stored in disparate sources,
and combine them, associate them, link them, and store it all in one location (the
QlikView document), to enable a complete insight and analysis for QlikView users.

In the next chapter, we will learn how we can turn our extracted data into a proper
data model.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling
Up until now, we've seen the HighCloud Airlines team becoming familiar with
QlikView and its powerful analytic capabilities and data association engine. The
time has come to establish how their first production application will be developed,
starting with its very core: the Data Model.

We've constructed a data model in the preceding chapters using pre-processed
tables, so it was an easy task. In this chapter however, we will dig into the hows and
whys of data model design in QlikView, exploring different scenarios and learning
about the inner workings of QlikView's associative engine. This enables us to take
the most advantage of the dataset we will be analyzing.

In this chapter, you will learn about:

•	 Which type of data model is best suited for QlikView
•	 The different "rules" that need to be followed when designing data models

for a QlikView document
•	 How to best take advantage of the associative data model to make your

documents highly dynamic
•	 How to work with tables and the associations between them

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[88]

Dimensional data modeling
We will first take a moment to review a little bit of theory, and even some history.
If you are already familiar with dimensional modeling, feel free to skip to The
associative data model section. Otherwise, read on to see how the data models used in
transaction processing systems came to be, why these data models are hard to query,
and how an alternative modeling technique solves these problems.

This section is largely based on Ralph Kimball's article,
A Dimensional Modeling Manifesto. The full version can be
found at http://www.kimballgroup.com/1997/08/02/
a-dimensional-modeling-manifesto/.

Back in the day
When computers first appeared on the scene, the methods for storing, retrieving,
and modifying data were still in their infancy. For example, when storing a customer
order, it was likely that all of the data from the paper order form was directly copied
into a single record or file.

While it was convenient to have the data digitally available, people quickly realized
that storing and manipulating the data was not. As each record was stored on its
own, it was hard to keep the data consistent. Imagine customer addresses and
product information being repeated on every order, and you will agree that updating
and keeping the data consistent is a painful exercise.

To counter these issues, and save expensive storage space, developers started to
apply their own optimizations, often splitting data out into separate tables. While
this approach was a step in the right direction, it also came with a downside. The
algorithms for linking and working with these tables needed to be embedded within
the applications, adding significant complexity.

Relational databases and ER modeling
Fortunately, Relational Database Management System (RDBMS) came to the
rescue by the early 1980's and solved part of the problem. These were systems
dedicated entirely to storing, retrieving, and modifying data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

At the same time, the Entity-Relationship Modeling (ER modeling) technique
became fashionable. ER modeling aims to remove all redundancy from the data
model. This technique greatly improved and simplified transaction processing. For
example, instead of needing to update the same customer address information in
each separate record, only a single update to a customer address master table is
made. This customer address is then referenced in other tables using a customer
address key, a field which uniquely identifies each customer address.

While all of these advancements greatly improved the efficiency of inserting and
updating information in a transactional database, it also made it increasingly harder
to get information out of it. For example, consider the following table containing
attributes related to Aircraft Types:

If we were to model the information in this table using ER modeling, the data could
be normalized into the model, as you can see in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[90]

This is only some of the information relating to aircrafts. Imagine if we'd model all
of the information we're interested in (airports, carriers, countries, flights, personnel,
and so on), we might end up with dozens, or even hundreds, of tables!

When dealing with database sources other than a data warehouse or data mart, this
is the most likely scenario we will encounter, and it might get even more complex.
For example, the SAP ERP system has thousands of tables for all of the different
entities it handles.

Dimensional modeling
When ER models get too complicated to query, dimensional modeling can offer a
practical solution. A dimensional data model is composed of a single fact table. This
fact table contains a compound primary key, with separate keys linking the fact table
to the dimension tables.

These dimension tables contain descriptions and attributes that provide context
to the metrics stored in the fact table. Dimensions often contain data on multiple
hierarchical levels that are "flattened" (or denormalized) into a single table. For
example, in our Aircraft Types dimension table, we have both Aircraft and Aircraft
Manufacturer in the same table.

In addition to keys to the dimension tables, fact tables also contain measures. For
example, metrics such as transported passengers or available seats are often additive,
allowing them to be summed over various dimensions. An example would be:
transported freight per aircraft type per month, in which transported freight is a fact,
while aircraft type and month are dimensions that add context to the measure.

A fact table does not always need to contain metrics. When
storing an event, such as when a salesperson has visited a
company, we only store the keys to the relevant dimensions
(salesperson, company, and date) in our fact table.

The star schema
The fact and dimension tables are usually combined into a star schema. This name is
used because, with some imagination, the data model resembles a star. An example
of a star schema is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

The Flights table is the fact table, containing all of the measures as well as links to
the surrounding dimension tables. A big advantage of the star schema is that it can
be easily understood, and business users can easily recognize the names of the tables
and how they relate to each other.

The snowflake schema
In the earlier example, each dimension table is completely denormalized. There is
a second type of dimensional model in which dimensions are not necessarily fully
flattened. This is called a snowflake schema as (again with some imagination) the
diagram resembles a snowflake. An example is depicted in the following screenshot.
It is basically the same schema as the previous example, but the Aircraft dimension
is not completely denormalized.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[92]

In an RDBMS, the snowflake schema is sometimes chosen when trying to save disk
space, as it removes duplicate values from the dimension tables. Since QlikView
automatically removes duplicates from the data model, using a snowflake schema is
generally not a preferred approach.

Creating the dimensional model
So, how do we go from an ER diagram to a dimensional model? The first thing
to understand is that an ER diagram does not directly translate into a single star
schema. A transactional system often contains data used across many different
business processes. For example, think of how many different business processes
and functions a typical ERP system supports: accounting, human resources,
manufacturing, supply chain management, and customer relationship management,
just to name a few. The data for all of these processes is usually stored in a single
ER schema.

The first step in converting from an ER schema to a dimensional schema is dividing
the ER schema into separate business processes. Each of these business processes will
be modeled into a separate star schema.

The next step is to declare the granularity of the business process (for example, a
single flight or one salary payment). We then group the measures that are used in the
business process into a single fact table.

After that, the remaining tables are flattened into dimension tables and directly
linked to the fact table using a single key. It is possible for the same dimension
table to be used in multiple star schemas. This is called conformed dimension. For
example, the employee dimension can be used in the context of Airline Operations as
well as in the payroll context.

In QlikView, we can use QVD files to store conformed
dimensions. For example, we can store the Aircraft Type
dimension into a QVD file and use that file in any application
that requires information about the Aircraft. This way, data
consistency is ensured across applications.

Dealing with multiple fact tables
As described previously, each business process is modeled into a separate star
schema. When dealing with multiple fact tables in a single QlikView application,
loops and synthetic keys can occur. To solve this problem, fact tables can be
concatenated, or a link table can be added. The techniques for how to achieve this
are described in Chapter 8, Data Modeling Best Practices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Dimensional models in QlikView
In QlikView, the main benefit of using a dimensional model is increased response
time. QlikView just works faster when there are fewer links between tables. A
second benefit is that a dimensional model is very easy to understand, and can be
extended gracefully. It is very easy to add new facts (as long as they share the same
granularity), new dimensions, or extend existing dimensions.

As QlikView works better with fewer links between tables, you may wonder if it
might work even better when we just use a single flat table. If fewer links is better,
no links must be best, right? As with many things, the answer to this question is "It
depends." The next diagram shows a generalized list of the pros and cons of various
modeling approaches in QlikView:

Overall, in our experience, the star schema is the preferred model as it offers a good
balance between the various trade-offs.

If you want to learn more about dimensional modeling, an excellent
book to consider is The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling (Second Edition), Ralph Kimball and Margy
Ross, Wiley publication, ISBN: 0471200247.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[94]

The associative data model
After reviewing the theory of dimensional data modeling, it is now time to apply
those concepts to how QlikView works. By now, we know that a QlikView document
is, in general terms, used to visualize data. This data can come from disparate
sources: a database, Excel files, a legacy system, or even the Web. But how do we put
all this data together? The answer is: through the associative data model.

The associative data model can be said to be equal in structure to a dimensional
model. However, a data model of any type in QlikView becomes an associative
data model because it not only contains the different source tables from which
the charts get the data, but also keeps them associated in a way which allows the
QlikView document and its users to consume information and aggregate data cross
dimensionally in any possible way. In a QlikView data model, all of the field values
from all of the tables in the model are automatically associated among themselves
based purely on the field names.

Let's look at the Airline Operations data model built in an earlier example, from
Chapter 3, Data Sources:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

In the previous screenshot, we can see how the fact table (that is, the Main Data
table) is directly associated with all of the other dimension tables. The purpose of
these dimension tables is to provide context to the values stored in the fact table.
Furthermore, the dimension tables are not only associated with the fact table, but at
the same time they are indirectly associated with each other through the fact table.

With the data model shown we can, for instance, cross-reference the Origin Airport
with the Destination Airport (via the Main Data table) and get the Distance Interval
value between any two of them. These three fields are stored in three different
dimension tables in the data model, and the fact that they are associated allows
QlikView to naturally perform this cross-dimensional reference and support the
associative analysis we just described. This is shown in the following screenshot:

In an associative data model, any field can act as a dimension in a chart. They can all
be used within expressions to aggregate their data too.

Guidelines for table associations
In order to design and build a data model in QlikView, we need to understand how
the associations between tables are created. We also need to consider some basic
rules to avoid performance and data consistency issues. In this section, we will
describe and review these guidelines.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[96]

How associations are created
QlikView creates associations between tables in a simple and straightforward
manner: through the field names. This means that, for any given set of tables, an
association is automatically created between two of them if they both contain a field
with exactly the same name. Simple enough.

In QlikView, field names are case-sensitive.

Based on this concept, we can say that QlikView will automatically build up the data
model with its respective associations even if the developer does not explicitly define
how the tables are linked to each other. However, this functionality requires that
the source tables contain the correct field names. Since this scenario seldom occurs,
especially if we are loading tables from several different source systems, the most
basic and fundamental tool for the data model design in QlikView is Renaming fields.

Renaming fields
There are two main reasons for a developer to rename a field:

•	 To ensure that two tables are associated through the correct fields when
originally these two tables did not share a field with the same name, but
a link does in fact exist between them.

•	 To prevent unwanted associations between tables when they share a field
with the same name but that field does not actually represent the link
between them.

To rename a field, we can simply use the as keyword in the Load script to assign an
alias to the original field name. For example, take the following Load script, in which
we hypothetically load the Airport descriptions:

[Origin Airports]:
LOAD
 Code as [Origin Airport ID],
 Description as [Origin Airport]
FROM
[..\Data Files\QVDs\Airport Descriptions.qvd]
(qvd);

What this code does is load the table contained in the Airport Descriptions.qvd
file. This table has two fields: Code and Description. In this case, we are changing
the original names from Code to Origin Airport ID and from Description to
Origin Airport.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

This way, we are ensuring an association between the Origin Airports table and
any other table containing either a field named Origin Airport ID or one named
Origin Airport. At the same time, we are ensuring that the table doesn't associate
with other tables which contain fields named Code or Description.

Renaming fields with the Qualify statement
The Qualify keyword can be used to qualify field names with their corresponding
table name, which basically renames the specified fields in the form of tablename.
fieldname, thus ensuring no unwanted associations are created.

Let's look at our previous example in which we needed to rename the Code and
Description fields. We can rename these fields by using the Qualify keyword
as follows:

Qualify Code, Description;

[Origin Airports]:
LOAD
 Code,
 Description
FROM
[..\Data Files\QVDs\Airport Descriptions.qvd]
(qvd);

The above Load statement will result in a table with two fields: Origin Airports.
Code and Origin Airports.Description.

As you can see, we have specifically entered, as the Qualify statement parameter,
the two fields which we want to rename. In some cases, we might need to rename
a long list of fields, making it impractical to list them all in a Qualify statement.
Luckily, the Qualify statement allows the use of wildcard characters in the
fieldlist parameter. For example, we can use a star symbol to specify that all
subsequently loaded fields should be qualified. We can also combine the star symbol
with a string or with a question mark symbol (another wildcard character) to specify
that a set of fields that match a given criteria are to be qualified. For instance:

•	 Qualify Code, Description;: This command will only qualify fields
named Code or Description

•	 Qualify "*ID";: This command will qualify all fields whose name
ends with ID

•	 Qualify *;: This command will qualify all fields that are loaded from
that point forward

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[98]

Sometimes, the Qualify feature is required to be activated for only part of the
script but then should be turned off after loading certain tables. To do that, we can
simply use the Unqualify statement, specifying the field names in the same way
as described previously.

In some cases, we are required to turn on qualification for all fields except one or
two (for example, the key fields). To accomplish that, the Qualify and Unqualify
instructions can be used in conjunction, like in the following example:

Qualify *;
Unqualify Key_Field1, Key_Field2;

The above combination of instructions will cause all fields loaded from that point
forward to be qualified with their corresponding table name, except the fields named
Key_Field1 and Key_Field2. This is useful when we want to ensure key fields are
not affected by the Qualify instruction.

Remember that a Qualify instruction can be turned off at any
point in the script with a corresponding Unqualify statement.

Avoiding data model conflicts
With the simplicity QlikView provides in building the associative data model, it's
very likely we will sometimes find one of the following two issues:

•	 The creation of what is called "Synthetic Keys" (described in the next section)
•	 The creation of circular references in the data model

Both of these issues need to be avoided since they can cause performance
degradation in the QlikView application, along with data inconsistency.

Dealing with synthetic keys
When any two tables share more than one common field, QlikView creates a complex
key, or synthetic key, to try and associate both tables through the combination of
all of the common fields between them. This takes the form of an additional table
containing the shared fields and an additional key field added to all involved tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

An example of a data model with synthetic keys is presented in the following
screenshot:

As you can see from the earlier screenshot, the data model is primarily composed of
two tables: Main Data and Calendar. These two tables have two fields in common:
Year and Month.

Because of QlikView's associative engine, the two tables are automatically linked
through both fields, creating a complex key out of the combination of their values.

There is also a third table in our data model, called $Syn 1 Table. This is the
synthetic table which stores the combination of values for the two fields which, as
pointed out, form the synthetic key.

The presence of synthetic keys in a data model can cause the application to have
slow response time and sometimes even consume all available resources. Therefore,
they need to be avoided when possible.

There are several methods we can use to remove synthetic keys:

•	 We can rename those fields that are a part of the synthetic key but should not
be a part of the association between the two tables.

•	 We can remove conflicting fields from one of the two tables. To remove a
field, we just erase the corresponding line of code from the Load script.

•	 We can create an explicit complex key with the concatenation of all common
fields that actually represent the link between the two tables.

°° After creating the new complex key, we can remove the conflicting
fields from either table.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[100]

The following flowchart shows the decision process a developer should follow to
decide which of the methods mentioned earlier should be used:

Dealing with Synthetic Keys – Flow Chart.

Getting back to our synthetic keys example shown earlier, let's see which of these
workarounds would best solve our problem. If we follow the flow chart, we can
arrive at the following conclusions:

•	 Yes, the tables should be associated with each other
•	 The unique key is formed by two fields
•	 The fields that constitute the unique key are Year and Month

Therefore, we should use the third method and create a complex key using the
Month and the Year fields. At the same time, we will need to remove the individual
fields from one of the tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

We decided the unique field was composed of both fields because if we had used
only one of them, the key would not be unique. That is:

•	 If we had used the field Year as our key, one record in the fact table would
be associated to 12 records in the Calendar table, since there are 12 months
corresponding to one year.

•	 Likewise, if we had used the field Month as our key, one record in the fact
table would be associated to as many records as the number of years exist in
the Calendar table.

A relation between a fact table and a dimension table should always be at the
same granularity.

Creating a composite key
While we are at it, let's see how we are going to create the composite key needed in
our simulated scenario to solve the synthetic key issue.

First, you should be familiar with the values that exist in each of the fields at play.
Let's assume the following:

•	 The Month field has the following values:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

•	 The Year field has the following values:
2010, 2011, 2012

Complex keys can be created from the Load script. The following script will create
the corrected data model by loading both tables, creating the complex key in both
tables, and removing the conflicting fields from the Main Data table while keeping
them on the Calendar table:

[Main Data]:
Load
 Year & '|' & Month as YearMonth,
 Total
From FactTable.qvd (qvd);

Calendar:
Load
 Year & '|' & Month as YearMonth,
 Month,
 Year,
 Quarter,
 [Month Name]
From Calendar.qvd (qvd);

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[102]

We are using the ampersand operator to merge the values from the two fields into
one. We then assign an alias to the new calculated field by using the as keyword.

Adding a delimiter to concatenated fields
It's always a good idea to add a separator between fields when
concatenating them to ensure data consistency. For example:
Year & ' | ' & Month	 as YearMonth

The resulting data model, created using compound keys, is shown in the
following screenshot:

The synthetic key has been successfully eliminated from the data model and the
associations between both tables have been explicitly defined.

Dealing with circular references
Similar to how synthetic keys are created, a circular reference can also be the result
of unwanted associations in our data model and, as such, they can be fixed using the
same principles described earlier. But before getting into how to solve them, let's first
see what they are.

We can think of the data model as a map that shows the paths through which we
can walk to get from one point to another. For instance, considering the data model
seen in the previous section, the only path to get from the fact table to the Calendar
table is the YearMonth route. This means in order to get there you must know what
Month and Year you are looking for in the Calendar table.

However, when the data model becomes more and more complex, with a larger
number of tables, and more and more destination points, we might also get to a point
where we have more than one route connecting point A to point B. All roads lead to
Rome, they say. Well, in our case, we must always have one road between any two
points. Otherwise, we would be having a circular reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

To better understand what a circular reference is, let's look at the following
data model:

As you can see, a circular reference exists when the connections among the tables
simulate a circle and we have two routes to get from any given point to another. For
example, we can get from the Main Data table to the Calendar table either directly,
through the YearMonth route, or by going first to the Promotions table and then
moving to the Calendar table.

This is an issue that needs to be addressed, and one that can create severe data
inconsistency problems, performance degradation, and even crashes.

To solve the presented scenario, and based on how we deal with synthetic keys in
the flow chart, we should start by asking which of the created associations are
correct and which aren't. In this case, the association between the Promotions table
and the Calendar table is incorrect since the Month field stored in the former table
does not necessarily represent the month in which the promotion was used, but
rather the month in which the promotion was created. They just happen to have
the same name.

Most of the time, as in the earlier example, we will find that the problem arises from
unwanted associations and the issue is easy to solve (through the first method from
the section on synthetic keys). Other times, there are design challenges that need to
be analyzed thoroughly.

In Chapter 8, Data modeling best practices, there is a full section dedicated to address
the main design challenges a developer could come across when designing a
data model.

Now, let's quickly describe how the Table Viewer window works and how it can
become our best ally when data modeling.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[104]

The Table Viewer window
We already had a small peek at the Table Viewer window in previous chapters.
As this feature is very useful when analyzing our data models, let's take a more
in-depth look. To illustrate, consider the data model seen in the following Table
Viewer window:

The Table Viewer window can be opened by selecting File | Table Viewer from the
menu bar, or by pressing Ctrl + T.

The table viewer shows the tables (boxes) and their associations (connectors). When
more than two tables are associated via the same key, it will be indicated with a
small blue dot in the connector line.

The layout of the tables and connection points can be changed by clicking and
dragging the header and connection point, respectively. Tables can also be resized
when hovering over and dragging their edges. Of course, it is not mandatory to
create a clean layout for your data model, but it is recommended as it makes a
diagram easier to understand.

A lot of information about our data model can be learned from the Table
Viewer window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Table information
When hovering the mouse cursor over a table header, a tool tip is shown to display
the name of the table and the number of rows, fields, and key fields. This can be used
to do a quick sanity check on the loaded data. Optionally, when a comment is set for
the table (using the COMMENT TABLE script statement), the corresponding comment is
also shown in the tool tip. For example, the following screenshot shows the tool tip
for the Aircraft Types table:

Field information
When the mouse cursor hovers over a field name within a table, it gets even
more interesting.

The following information is shown in the previous screenshot:

•	 The name of the field. Optionally, if the field is a key field, a qualifier is
shown enclosed in square brackets. This qualifier indicates the following
levels of key quality:

°° [Perfect Key] indicates that every row contains a key value, and that
all of these key values are unique. At the same time, the field's subset
ratio is 100 percent. This qualifier should be seen in dimension tables,
where every key should uniquely identify a single record.

°° [Primary Key] indicates that all key values are unique, but not
every row contains a key value or the field's subset ratio is less
than 100 percent.

°° [Key] indicates that the key is not unique. This qualifier is usually
seen in fact tables, where the same dimension value may be
associated with many different facts.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[106]

•	 Information density of the field, which indicates the percentage of rows that
contain a non-null value.

•	 Subset ratio, which shows the percentage of all distinct values for a field in
the table compared to all the distinct values for that field in the entire data
model. It is only relevant for key fields since they are present in multiple
tables and do not all share the same value. Subset ratios can be used to easily
spot problems in key field associations. For example, when the combined
total of subset ratios for multiple tables is 100 percent, this may indicate that
there are no matching keys between these tables.

•	 Tags, which show the tags applied to the field. Some of these, such as tags
that indicate if the field is a key field or tags indicating the data type of the
field, are automatically generated. Other tags can be manually applied.

•	 Optionally, any comment set on the field is also shown.

Table preview
While looking at ratios and such will give us some good insights into the data in our
model, it is sometimes easier to just look at the raw data. By right-clicking on a table
and selecting Preview, a preview of the first 1,000 table rows will be shown:

Table viewer menu
The menu of the Table Viewer dialog contains some other useful functions:

•	 The Export Image command lets us save a picture of the data model in PNG
or BMP format.

•	 The structure of the QlikView document can be exported using the Export
Structure button. This creates three text files: one for the tables, one for the
fields, and one for the mappings between fields. Of course, these text files can
be loaded back into QlikView for further analysis.

•	 We can also Print a picture of the data model or copy a picture of the data
model to the clipboard using the Copy Image button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

•	 The Auto-Layout feature automatically arranges the tables. While it attempts
to generate a coherent layout, in our experience it usually fails. Manually
positioning the tables is still our preferred method.

The layout of tables in the Table Viewer generally persists even
when the document is closed and re-opened. However, changing
the data model slightly can make the tables in the Table Viewer
appear in different locations than the ones previously defined.

•	 The zoom level on which the diagram is displayed can be set using the
corresponding drop-down box. By default it is set to 100%.

Of special interest is the drop-down box that switches the view between Internal
Table View and Source Table View.

Internal Table View is the default option and shows how the data is stored in
QlikView. If synthetic keys are created, they are shown in this view. However,
Source Table View shows how QlikView reads the data, and when synthetic
keys are present in the model they are not shown in this view. Instead, multiple
connectors between tables are displayed.

Source Table View, compare this to the Internal Table View shown at the start of this section

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling

[108]

Summary
We've come to the end of the chapter and we hope you found the provided
guidelines useful and applicable to your particular scenarios.

We learned what dimensional modeling is, how it differs from ER modeling, and
why it is a good idea to use this modeling technique in QlikView. We also saw how
to take advantage of the information provided by the Table Viewer dialog, how the
associative data model really works, and how it does what it does.

We even got an overview of the basic rules for creating associations in QlikView and
how to deal with the conflicts in data modeling

By now, we have a clear understanding of how the data model for the HighCloud
Airlines document should be designed. We will continue providing tips for efficient
data modeling and design in later chapters. But first, in the next chapter, we will take
a more in-depth look at styling our QlikView documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up
Up until now, our focus has been more on loading data into QlikView and building
the data model than on actually visualizing the information. It's about time we
started working on the frontend of our document and present the data in the form of
a dashboard.

Besides presenting useful insights, a very important aspect of a business dashboard
is that it should be visually appealing. Our users will be accessing the document
every day, so we had better give them something nice to look at while they are
drinking their morning coffee.

Our course of action for now will be to take advantage of QlikView's customization
flexibility to style up our document, brand it with HighCloud's corporate identity,
and set up the general layout on which we will ultimately place our charts.

In this chapter, we will cover the following topics:

•	 Setting up the workspace
•	 Understanding and changing the sheet's properties
•	 Managing our sheet object's appearance
•	 Using some of the most fundamental objects for selecting and filtering data
•	 Placing, resizing, and aligning the sheet objects

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[110]

But before we start, a word of warning.

Just because you can, does not mean you should.
Design is obviously a very subjective thing. However, there
are some general design principles that will ensure your
QlikView document is easy on the eyes and also easily
understood by the user.
The main principle is: minimize non-data pixels. This is
a principle introduced for print by Edward R. Tufte and
brought to the digital age by Stephen Few. This principle
states that we should focus on showing the data, while
minimizing or de-emphasizing those pixels that do not
represent data. Examples of non-data pixels include borders,
grid lines, drop shadows, 3D objects, and glossy reflections.
For those interested in data visualization and dashboard
design, we highly recommend Stephen Few's book
Information Dashboard Design, (First Edition), O'Reilly Media,
ISBN: 0596100162.
Of course, the main objective of this book is to teach you how
to develop QlikView solutions. For that reason, we want to
let you explore as many options as possible. Unfortunately,
this also means that sometimes, while showing you the
technical workings of a feature, we might also be showing
you things that could be considered bad visual design.
Ultimately, the decision to use certain visualizations or
design principles lies with you; so keep a critical mind.

Design requirements
When we start building the frontend of a QlikView document, we should always
begin by defining two fundamental characteristics:

•	 The screen resolution on which most users will access the document
•	 The general style and layout of the document

We need to set a standard screen resolution right from the start because it will
ultimately determine the placement and size of the objects across the screen. If we
build the document targeting a screen resolution higher than that which users have
on their machines, they will probably need to use the scroll bars too often. On the
other hand, if we target our document to a screen resolution lower than our users'
screen resolution, they will see a lot of empty space. Both of these situations will be
an inconvenience that our users will need to deal with every day, so we don't want
that to happen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Having a predefined resolution in the document does not keep
the user from accessing a document using a lower (or higher)
resolution monitor. QlikView allows users to "zoom" a screen
to a different size using the View | Fit Zoom to Window and
View | Zoom options. However, using these options can lead to
alignment and display issues. It is better to avoid them if possible.

For the HighCloud Airlines document, we will use a screen resolution of 1280 x 1024,
since it's the one our primary users (top executives) have set on their monitors.

At the same time, it's been determined that we will divide the frontend layout into
four main panels:

•	 The top panel will be used to place time-related user controls as well as the
HighCloud logo

•	 The left-side panel will hold a majority of the listboxes used to filter the data
•	 The central area will be used to place the different charts and visualizations
•	 The right-side panel will have other special objects (that we will discuss

later on)

The four main panels are shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[112]

The general style of the document should also reflect the HighCloud corporate
identity. We will achieve this by:

•	 Using the official HighCloud logo, seen below. This will be visible at all times
and from all worksheets in the document.

•	 Setting the Background Color to white.
•	 Using the following corporate colors to set different layout

object's appearance:

Color name Color code (RGB)
HighCloud Blue 0, 112, 192
HighCloud Brown 73, 68, 41

The Document Properties window
The Document Properties window is where document-level settings are defined.
Using this dialog window, we will ensure that HighCloud's logo is embedded into
every worksheet of the document. We will also divide the screen space into the
panels described previously and set the default Background Color option to white.
The Document Properties window is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

With these design requirements in mind, we will start setting up the document's
appearance by following these steps:

1.	 Open the Airline Operations.qvw document we've been working with
and go to the Dashboard tab.

2.	 As the document needs to fit the default corporate resolution of 1280 x 1024,
select View | Resize Window | 1280 x 1024 from the menu bar.

3.	 Then, open the Document Properties window by pressing Ctrl + Alt + D or
by selecting Settings | Document Properties from the menu bar.

4.	 Navigate to the General tab and enable the Wallpaper Image checkbox.
Then, click on the Change… button.

5.	 Browse to the Airline Operations\Design folder, select the
HighCloud_Background.png image, and click on Open.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[114]

6.	 From the Default Sheet Background section of the Document Properties
window, locate the Vertical drop-down and select the Top option from the
list. The Horizontal drop-down will keep the default value, which is the
Left option.

7.	 Finally, close the Document Properties window by clicking on OK.

We've now set the QlikView application window to match the required size of our
document. This way, we can ensure that the sheets we design will fit entirely on the
target monitors without any scrolling.

When using the View | Resize Window functionality,
it is always advisable to also check on the target
environment to see if there will be any toolbars or
other objects eating into the screen real estate.

Next, we've added a background image which already includes the HighCloud logo,
as well as the pre-defined panel divisions that will help us position the objects. All
of the sheets we create from now on in our document will automatically have the
defined background.

In Chapter 13, More on Visual Design and User Experience,
we will look further into how we can create and use
these background images.

After following the previous procedure, our Dashboard sheet should look like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

The Sheet Properties dialog
Just as there are document-level properties, we can also set properties at the
sheet- and object-level. Let's have a quick look at the Sheet Properties dialog.

Open this window by right-clicking on an empty space in the Dashboard worksheet
and selecting Properties….

The following screenshot shows the Sheet Properties dialog:

As its name implies, the Sheet Properties dialog can be used to set various properties
of a worksheet. Let's quickly review the available options.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[116]

On the General tab, the following properties are of interest:

•	 Title: This property can be used to set the title that appears in the tab row.
In addition to static text, this can also be a calculated value.

•	 Show Sheet: This property can be used to conditionally hide/show the sheet.
For example, we can use an expression like GetSelectedCount([Carrier
Name]) = 1 to only show the sheet when a single carrier is selected.

•	 Sheet ID: This property is the internal ID of the sheet. This ID can be used
to reference the sheet from other objects in the document, for example, to
activate the sheet by clicking on a button object.

•	 Background: We can either use the Document Default option, which we
set in the previous section, or override the default by setting a sheet-specific
Color and/or Image selection.

•	 Tab Settings: This property can be used to set any desired Tab Color or style.

We've previously worked with the Fields tab, which is an easy way to add multiple
listboxes to the sheet. Simply select the required fields from the Available Fields listbox
and double-click (or click Add >) to include them in Fields Displayed in Listboxes.

The Objects tab shows all of the objects that are present on the worksheet, even those
that are conditionally hidden. From this tab, we can directly open the individual
object's Properties… dialog or even Delete any of them. The Objects tab is shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

It's also worth noting the Calc Time and Memory columns in the Objects tab. These
can be used to optimize our document by identifying which objects have the most
impact on performance, or are using up a lot of memory.

The Security tab is used to set what users are allowed to do on the corresponding
sheet. We are also able to propagate the security settings to all sheets if the Apply
to All Sheets checkbox is marked. Additionally, when the Read Only checkbox is
enabled, no selections can be made on the sheet.

Triggers are events to which QlikView can react with Actions. When used on sheets,
a trigger can be set to respond to events such as activate and deactivate, meaning it
will run when entering or leaving the sheet, respectively. Triggers will be discussed
in more detail in Chapter 13, More on Visual Design and User Experience.

Setting the object properties
It's now time to peek into some of the object-level properties that affect the QlikView
document's appearance. The properties we are most interested in at this point are:

•	 Caption colors
•	 Caption font

Let's see what these are.

Caption colors and style
By default, almost every object in the QlikView document has a caption bar at the
top, unless we choose to explicitly hide it. Since the caption bar will be visible for
most of our objects, let's apply a touch of corporate identity by setting the default
caption color to HighCloud Blue and by selecting a custom styling mode.

Changing the caption colors
Follow these steps to apply a new formatting style to caption bars:

1.	 Right-click on any of the listboxes on the sheet, for example, Carrier's
Operating Region.

2.	 Select Properties… and navigate to the Caption tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[118]

Two types of caption colors can be set: one for when the object is Inactive and one
for when the object is Active. An active object is the one on which the user has last
clicked, while all of the others are inactive. Since we are not interested in visually
identifying the current state of an object, we will apply the same color for both
options:

1.	 Click on the Background Color button on the Inactive Caption section to
open up the Color Area dialog window.

2.	 Make sure the radio buttons corresponding to Solid Color and Fixed Base
Color are selected.

3.	 Click on the colored square next to the Fixed radio button to open the Color
dialog window.

4.	 Add the HighCloud Blue color to the Custom colors section by entering the
RGB codes 0, 112, 192 into the respective Red, Green, and Blue inputs and
click on the Add to Custom Colors button.

5.	 While we're here, let's also add the HighCloud Brown color to the Custom
colors section. Do this by first selecting the second color placeholder from
the left, under the Custom colors section, then enter the RGB codes 73, 68, 41
into the Red, Green, and Blue inputs respectively. Finally, click on the Add
to Custom Colors button.

6.	 Select the HighCloud Blue custom color again from the Custom colors
section and click on OK to close the Color dialog window.

7.	 Click on OK to close the Color Area dialog window as well.

Now that we've changed the Background Color option for the Inactive Caption
section, we can repeat the same process to set the Text Color option of the Inactive
caption section to white. Once this is done, we've done our fair share of clicking.
Fortunately, we can take a different time-saving approach for changing the
Background Color option of the Active Caption section:

1.	 Right-click on the Background Color option in the Inactive Caption section
and select Copy.

2.	 Right-click on the Background Color option in the Active Caption section
and select Paste All.

3.	 Repeat the same process for the Text Color option in the Active
Caption section.

Note that the last copied color remains on QlikView's clipboard
even when other objects or text are subsequently copied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

The following screenshot shows the Inactive Caption and Active Caption sections:

We've now set the colors used by the caption bars for this particular listbox.
We will first need to tweak a few other settings before applying this style to
every object caption in our document.

The Color Area and Color dialog windows
The Color Area and Color dialog windows that we've just worked with are
used everywhere throughout QlikView to set the color formatting of a variety
of object components.

Besides the static, solid color that we used, it is also possible to use gradients of one
or two colors. Furthermore, the colors used do not always need to be fixed, they can
be based on a dynamic calculation as well. A use case for this is to show a red color
when a certain value is below target, and a green one when it is above the target.
Calculated colors are set by using an expression with QlikView's color functions,
examples of which are Red(), LightGreen(), Yellow(), and so on. In addition to
these standard, pre-defined colors, any custom color can be represented using the
RGB() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[120]

The following screenshot shows the Color Area dialog window:

Note that the gradient used in the previous image is an example only, it is
inadvisable to use these types of candy-colored gradients in your documents.

Setting the caption font
At 10 points, the default caption font in QlikView is quite big. Let's change the
caption font by following these steps:

1.	 From the Properties dialog window of the Carrier's Operating Region
listbox, click the title's Font button on the Caption tab.

2.	 Set the Size to 9 in the Font Dialog. The font name and font style will be kept
as default (Tahoma, Bold).

3.	 Click on OK to apply the changes and close the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Setting the content font
Besides setting the caption font, we will also change the font used to display the
listbox values. To do this, follow these steps:

1.	 Right-click on the Carrier's Operating Region listbox and select
Properties….

2.	 Navigate to the Font tab.
3.	 Change the font Size to 9.
4.	 Click on OK to close the Properties window.

Setting the global font
An interesting feature in the Font Dialog wizard is the option to set a global Default
Font option, found in the lower-left corner of the Font Dialog. By selecting either
List Boxes, Chart, etc. or Text Objects/Buttons under Default Font, we can apply
the currently selected font to all new objects of the selected class.

The Font Dialog window is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[122]

This setting is available from both the caption's font dialog and the content's
font dialog.

Propagating the object appearance
By following the previously described procedures, we have set the appearance for
a single listbox. To apply the same configuration to all of the remaining listboxes,
right-click on the one we already configured, select Properties… from the context
menu, and go to the Layout tab.

At the upper-right corner of the dialog window you will see an Apply to… button.
Click on it and the Caption and Border Properties dialog window will appear. Make
sure to mark the following options:

1.	 The Apply properties to… checkbox should be enabled.
2.	 Select the Objects in this document and All object types radio buttons.
3.	 Mark the Set as default for new objects in this document checkbox.

4.	 Click on OK on the two remaining dialog boxes to apply the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Setting the default Sheet Object Style
The captions, as we've styled them now, still have a very basic look. As we noted at
the start of this chapter, having a clean, basic style is not necessarily a bad thing, and
in many cases is preferred. For now, however, we'll make our presentation a little bit
flashier by setting another default Sheet Object Style, using the following steps:

1.	 Open the Document Properties dialog by selecting Settings | Document
Properties or by pressing Ctrl + Alt + D.

2.	 Make sure the General tab is active.
3.	 Set the Styling Mode option to Advanced.
4.	 Set the Sheet Object Style option to Glass.
5.	 Click on OK to apply the settings.

The object captions now have a glass-like appearance and rounded corners. The
Advanced styling mode allows us to make additional changes to an object's style,
such as setting rounded corners.

There are several pre-defined object styles available through the Sheet Object Style
menu. The following screenshot shows how each available combination of Styling
Mode and Sheet Object Style looks:

Hiding captions
Because of the data in them, some of the listboxes, such as Year, Quarter, and Month,
do not really need captions. We can hide these captions by right-clicking on the
listbox, selecting Properties…, and unmarking the Show Caption checkbox on the
Caption tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[124]

Working with listboxes
Currently, our QlikView document contains the following listboxes in the
Dashboard sheet:

•	 Carrier's Operating Region
•	 Carrier Group
•	 Flight Type
•	 Aircraft Group
•	 Year
•	 Quarter
•	 Month

Let's see how we can add listboxes and change their properties.

Adding listboxes
Lets add another listbox representing the Carrier Name field by right-clicking on
the worksheet and selecting Properties… (or by pressing Ctrl + Alt + S, which is the
shortcut for the Settings | Sheet Properties menu command). Next, open the Fields
tab, locate the Carrier Name field under the Available Fields list, and click on Add >
to add it as a new listbox.

Many routes lead to Rome
To add an object to a worksheet, there are three basic
methods: using the menu, using the toolbar, or using the
pop-up menu:
Menu: By selecting Layout | New Sheet Object
Toolbar: By using the design toolbar

Pop-up: By right-clicking on a blank space within the
worksheet and choosing the desired object from the
New Sheet Object submenu
The examples throughout this book will use a different
method each time, but of course you are free to choose
your preferred method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

In a moment we will discuss the positioning of the objects we are adding, but for
now let's add another listbox, this time using a different method:

1.	 Right-click anywhere on the sheet and select New Sheet Object | List Box.
2.	 Select Aircraft Type from the Field drop-down list.
3.	 Click on OK to close the dialog window.

The List Box Properties dialog
Besides the default settings, there are quite a few other options that can be set
for listboxes. In this section, we will review the most common of these options.
Right-click on any listbox and select Properties… to open the List Box Properties
dialog window.

While the customization of the listboxes' appearance is quite
flexible, one of the options that cannot be changed, at least
not out-of-the-box, are the colors used to identify selections.
Green always means selected, while white and gray mean
associated and excluded values respectively.

The General tab
As the name implies, the General tab contains general options for the listbox.
Notable options are:

•	 Title: This option is used to set the Title label to be different from the default
field name. The Title label can also be set based on a calculated value.

•	 Object ID: While the title shows the pretty-print frontend name, the Object
ID option contains the name under which the listbox is known to QlikView.
This ID can be used to reference the listbox from other QlikView objects.

•	 Always One Selected Value: This checkbox is only available when a single
value is selected at the time we open the Properties dialog. This option locks
the listbox so that it can only have one value selected at any given time.

•	 The Show Frequency and In Percent checkboxes: These options are used to
display the absolute number of times that each value appears in the active
data set. When In Percent is checked, the relative number of appearances
versus the total is shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[126]

The Expressions tab
The Expressions tab lets us add calculations and mini charts into listboxes, for
example, adding the number of departures to the Carrier Name listbox by using the
expression Sum([# Departures Performed]). The following screenshot shows the
Carrier Name listbox with an expression in place:

The Sort tab
The Sort tab is commonly found across many objects. It offers the option to order the
data using any of the following sort orders, outlined in descending order of priority:

•	 State: This option sorts values based on the selection state of the items.
Ascending will put all selected or associated items at the top, followed
by all non-selected items. Descending performs the opposite sorting.
Auto Ascending puts all selected items at the top, but only if the listbox is
not big enough to show all of the values at the same time. If all of the values
are visible, no sorting has been performed.

•	 Expression: This option sorts the values based on the result of an expression.
For example, we could sort carrier names based on the number of departures
they have performed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

•	 Frequency: This option sorts the values based on how often the value
appears in the dataset.

•	 Numeric Value: This option sorts the values based on the numeric values
of each item.

•	 Text: This option sorts the values based on the alphanumerical representation
of each item.

•	 Load Order: This option sorts the values based on the order in which the
items were loaded into QlikView.

The Presentation tab
The Presentation tab lets us change some of the presentation aspects of the listbox.
Some of the important options are as follows:

•	 Selection Style Override: This option allows for some (limited) variations on
the selection style. For example, it's possible to replace the green background
on selected items with a checkbox.

•	 Single Column: This option forces QlikView to use only a single column
to list the corresponding field values, even if space is available for
multiple columns.

•	 Suppress Horizontal Scroll Bar: When values are longer than the width of a
listbox, a horizontal scroll bar is automatically created. Checking this option
prevents that from happening.

•	 Fixed Number of Columns: When the Single Column checkbox is
deselected, this option can be used to set a fixed number of columns for
the listbox.

•	 Order by Column: When this option is checked, sorting is performed by
column, instead of by row.

•	 Alignment: This option is used to set the alignment of Text and Numbers
within the listbox.

•	 Wrap Cell Text: This option wraps text over multiple lines (as set in the
Height input box). This can be useful for lengthy instances of text that need
to be completely visible.

Suppress Horizontal Scroll Bar
Now might be a good time to suppress the horizontal scroll
bar on the Carrier Group, Aircraft Group, Aircraft Type,
and Carrier Name listboxes.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[128]

The Number tab
Like the Sort tab, the Number tab is used by many different objects. It allows us to
control how the listbox content looks by using either predefined or custom formats.
For example, if we always want numbers to be displayed with two decimals, we can
follow these steps:

1.	 Check the Override Document Settings checkbox.
2.	 Select the Fixed to radio button.
3.	 Enter 2 in the Decimals input box.

By clicking on the Change Document Format button, a dialog is opened that lets us
set the default number format for every individual field at the document level. This
means we will only need to specify the format once, and it will be used everywhere
within our document. This option is also available via the Document Properties
dialog window (Settings | Document Properties | Number).

The Font tab
The Font tab is also a common one, and its purpose is very straightforward. We
already worked with these properties earlier in the chapter while changing the
caption font.

The Layout tab
Just as with the others, the Layout tab is also one that is used for nearly every object
in QlikView. As the name suggests, it allows us to set various layout options.

The different properties available through this tab are directly affected by the
document styling mode (Simplified or Advanced). The Advanced styling mode
adds more options for styling borders and enables the possibility for rounded
corners to be set.

Since the Advanced styling mode is more comprehensive, this
section assumes the Advanced styling mode is turned on.

Important options on this tab are as follows:

•	 Use Borders: This checkbox is used to enable/disable the object's border.
•	 Shadow Intensity: This option selects whether a shadow effect should be

added to the object, and if so, specifies its intensity.
•	 Border Width: This option sets the width of the border, when enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

•	 Rounded Corners: This checkbox is used to set whether rounded corners
should be used. By (de)selecting individual corners, we can specify which
corners should have a rounded effect.

•	 Layer: This option is used to establish the ordering to be used when multiple
objects are overlapping. In case of complex, overlapping objects, a Custom
layer can be used. In this case, higher numbers overlap lower numbers.

•	 Apply To…: This option is used to apply the current format to other objects.
We used this function before to apply the same caption layout to every object
in the document.

•	 Theme Maker and Apply Theme: This option stores the current format in
an external theme file. This file can then be used to apply the same format to
objects in other documents. Creating and applying themes will be described
in more detail in Chapter 13, More on Visual Design and User Experience.

•	 Show: This option allows us to either always show the object, or to apply a
condition which must be fulfilled for the object to be shown. An example of
this would be to use the expression GetSelectedCount([Aircraft Group])
= 1 to the Aircraft Type listbox so that it is only visible when a single aircraft
group is selected.

•	 Allow Move/Size: Deselecting this option locks the object's size and position.
•	 Allow Copy/Clone: Deselecting this option prevents the object from

being copied.

The Caption tab
The Caption tab is also a common tab across all QlikView objects. We used it
before to set the listbox caption colors and fonts, but it contains a few other
interesting options:

•	 Multiline Caption: This option wraps the caption text over the number of
lines defined through the Caption Height field.

•	 X-pos, Y-pos, Width, and Height: While it is easier to just drag, align,
and size objects using the mouse, these options let you define the size and
location of an object with pixel-level precision. These options can be set for
both the Normal and the Minimized state of the object.

•	 Caption Alignment: This option defines how the display text is aligned in
the caption.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[130]

•	 Special Icons: This option adds icons to the caption which perform specific
actions. An example of these icons would be the one used to send the chart's
data to Excel. It is not advisable to add too many icons as this may clutter the
interface. When many icons are needed, it is better to select only the Menu
icon. This option creates an icon that shows a drop-down menu with all of
the available actions.

•	 Allow Minimize and Auto Minimize: The Allow Minimize option enables
an object to be minimized. This setting will add a minimize icon to the
caption, much like the one on a regular Windows window. When Auto
Minimize is also marked, different objects with this setting enabled can
be interactively and alternately switched between the restored and the
minimized states. This means that, when restoring a minimized object,
another currently restored object will be automatically switched to the
minimized state for the new object to take its place.

•	 Allow Maximize: This option enables an object to be maximized. It
adds a maximize icon to the caption, in the same style as in a regular
Windows window.

•	 Help Text: This option adds a question mark icon to the caption that, when
clicked, will show a pop-up message with the entered help text. The Help
Text option can contain calculated expressions as well.

This concludes the side-step into the various listbox properties. Don't worry if you
didn't memorize all of them at first, we'll encounter them often enough in the rest of
the book.

The Multi Box
While listboxes are a very convenient way to quickly make selections, the downside
is that they can also take up a lot of space. This is where the multi box offers an
alternative. The multi box displays each field on a single line, alongside a drop-down
that expands to allow selections to be made.

Let's add a multi box that contains some extra information on flights, by following
these steps:

1.	 Select Layout | New Sheet Object | Multi Box….
2.	 In the Title input field enter Flight Information.
3.	 From the list of Available Fields, double-click the fields From – To City,

Origin City, Origin Country, Destination City, Destination Country, and
Distance Interval.

4.	 Go to the Sort tab and select Distance Interval from the list of Fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

5.	 In the Sort by section, uncheck the Text option, and mark the Load
Order checkbox.

6.	 Click on OK to apply the settings and close the Multi Box Properties page.

The resulting multi box should look like the one shown in the following screenshot.
Notice how the list of values is expandable when clicking on each field. Also note
that the sort order for the Distance Interval is no longer alphabetical, but uses the
order in which the values were loaded into QlikView:

During this exercise, you may have noticed that, unlike the listbox, the Sort tab for
the multi box contains multiple fields and that we can set different sort orders for
each field. This is also the case for the alignment options on the Presentation tab and
the number format options on the Number tab. This is not only true for multi boxes,
but for any object that contains multiple dimensions and/or expressions, such as
table boxes and charts.

The Current Selections Box
QlikView lets us select data in many different ways: listboxes, clicking in charts and
entering search terms, just to name a few. While this is incredibly flexible, it can also
become hard to see which information is actually selected at any given moment.

Fortunately, QlikView has an option to show the user exactly which selections are
currently applied to the data: the Current Selections dialog. To open this dialog, we
simply need to press Ctrl + Q or select View | Current Selections from the menu
bar. This floats the Current Selections dialog window on top of our worksheet. Once
we have had a glance at the Current Selections window, we can close the dialog.

It is sometimes useful to permanently display the Current Selections dialog. This
is where the Current Selections Box object comes in handy. To add a Current
Selections Box object to our Dashboard sheet, follow these steps:

1.	 Select Layout | New Sheet Object | Current Selections Box.
2.	 Click on OK to apply the settings and close the New Current Selections Box

dialog window.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[132]

The resulting Current Selections Box will look like the following screenshot. Notice
how every selection you make is added to the displayed list. Also note that we did
not change any of the settings in the Current Selections Properties dialog, you may
want to review the options yourself at a later time.

Making selections from the Current
Selections Box
Besides being a great place to quickly look at the applied filters, the Current Selections
Box option also allows us to interact with the selections in the following ways:

•	 Erasing filters: By clicking on the corresponding erase icon for any of the
displayed fields, the selection over that field will be cleared.

•	 Modifying selections: By clicking on the drop-down icon, a list of that
corresponding field's values will be displayed, from which we can further
refine our selection and select other values, just like with a listbox.

•	 By right-clicking on each of the displayed filters, we can issue additional
commands such as Select Excluded, Select All, Clear, or Clear Other Fields.

Adding a Bookmark Object
When using QlikView, we invariably come across some selections that we want to
return to at a later time. We can create a bookmark by using the menu (Bookmarks
| Add Bookmark), using the toolbar, or by pressing Ctrl + B. Another option is the
Bookmark Object. This object lets us create and remove bookmarks from within the
worksheet space.

Let's add a bookmark object to our Dashboard sheet by following these steps:

1.	 Right-click anywhere on the worksheet and select New Sheet Objects |
Bookmark Object.

2.	 Enter Bookmarks into the Title input box.
3.	 Mark the Show Remove Button checkbox.
4.	 Under Button Alignment, select Vertical.
5.	 Click on OK to create the bookmark object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

Aligning and resizing sheet objects
When we look at the results so far, we will notice that it looks very unorganized
(as seen in the following screenshot). The objects are all over the place and are not
aligned with the background. Of course, this is not very convenient for the user,
so let's see how we can solve it.

Selecting objects
To select a single object, simply click on its caption. To select multiple objects, activate
all of them by either clicking and dragging around them with the mouse cursor
("lassoing"), or by clicking on their captions while keeping the Shift key pressed.

Moving objects
Objects (or a selected group of objects) can be moved by clicking on the caption bar
and dragging them to the desired location. Objects without a caption (for example,
the listboxes showing Year, Quarter, and Month that we created earlier) can be
dragged by holding Alt and clicking and dragging anywhere on the object. This
method also works for objects with a visible caption, and even for objects where
Allow Move/Size is disabled.

Holding Ctrl while pressing the arrow keys moves the active object(s) 1 pixel at a
time. Use Ctrl + Shift to move them in 10-pixel steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[134]

Resizing objects
To resize an object, click and drag one of its edges (left, right, top, or bottom) until it
fits the required size. You can also use any of the object's corners.

To resize more than one object at once, activate all of them. When resizing one of the
selected objects, all of the selected objects will adopt the new size, either vertically,
horizontally, or both.

Resizing a Multi Box
Resizing a multi box can be somewhat tricky. Unlike the other sheet objects, if we
click and drag one of the object's edges, we can get unexpected results. For example,
if we click and drag the right edge and try to make the object smaller, we will, in fact,
make it smaller in size but a scrollbar will appear, meaning some part of the object
has actually been hidden.

If, on the other hand, we click and drag the right edge and try to make the object
larger, it will result in no apparent change.

The key to resizing multi boxes lies in resizing the cells instead. A multi box can be
broken into cells, one containing the field label and one containing the field values.
By placing the cursor on the right edges of those cells, rather than on the edges of the
object, we will be able to click and drag to resize them and, at the same time, resize
the entire object.

Hover over the left side of the drop-down icon and watch for when the cursor
changes its shape. Click and drag to resize the Label cell. Hover over the right edge
of the value cell to resize it as well. Resizing cells can be a bit "fiddly," moving the
mouse just a little bit may switch between resizing the cell and resizing the object.
The following image shows which cursor is associated with which action:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Aligning sheet objects
To align the objects on the screen, activate the desired objects and use the aligning
buttons in the design toolbar. Right-clicking on any of the selected objects also brings
up the alignment options, seen in the following screenshot:

If the design toolbar is not shown in your tool dock (it is turned off by default), you
can enable it by selecting View | Toolbars | Design from the menu.

Do a little house keeping
Let's tidy up our current dashboard using the previously described methods. See if
you can get the end result to look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[136]

You may notice in the screenshot that I made some other changes. Besides aligning
and sizing the objects, I also fixed the following things:

•	 Removed the border from the Search box.
•	 Changed the fixed number of columns from the Quarter listbox to 4.
•	 Changed the fixed number of columns from the Month listbox to 12.
•	 Added a caption to the Traffic per Year chart.
•	 Right-aligned the expression labels in the Top 10 Routes chart.

See if you can apply these changes as well.

Creating and applying a default color map
Now there is only one thing left to do to finish styling up our document: apply
the standard HighCloud color scheme to our charts.

Defining chart colors
We'll start by applying the HighCloud colors to the Traffic per Year chart. Follow
these steps:

1.	 Right-click on the bar chart and select Properties….
2.	 Navigate to the Colors tab.
3.	 From the Data Appearance section, click on the first color button under the

Colors 1-6 list, and the already familiar Color Area dialog will appear.
4.	 Change the Base Color to the already defined HighCloud Blue and close the

Color Area window.
5.	 Then, click on the second color button from the color map and change it to

HighCloud Brown.
6.	 Click on OK to close the Chart Properties window.

Once we've changed the color map, our chart will adopt the new colors in the order
that was defined. At this time, only one color (HighCloud Blue) is used by the chart.
However, we will use the same color map for all of our future charts, and some of
them will indeed require more of the defined colors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

Setting the default color map
Let's now see how we can use that previous definition and set it as the default
scheme for all of our charts:

1.	 Right-click on the Traffic per Year chart again and select Properties….
2.	 Navigate to the Colors tab and click on the Advanced… button. You will

now see the following dialog:

The Advanced Color Map dialog window lets us retrieve and update the default
color map on a number of levels:

•	 Sheet Default: The color map is only used for objects within this sheet.
•	 Document Default: The color map is used for all of the objects within

this document.
•	 User Default: The color map is used for all of the objects that the current user

creates. This is very useful when you have a corporate style that you want to
apply to all of your charts across all of your documents.

•	 QlikView Default: This is the default QlikView color map.
•	 These settings can only be retrieved but not overwritten.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling Up

[138]

Setting a new default color map does not overwrite the color settings
on objects that were already created. Those settings would need to
be updated manually. In Chapter 13, More on Visual Design and User
Experience, we will look at how we can use themes to override the entire
look of a QlikView document, including styles that were set manually.

As we only want to apply the color scheme to this document, we will be updating
the Document Default color map by following these steps:

1.	 Click on the Update button corresponding to Document Default.
2.	 Click on OK to close the Advanced Color Map dialog.
3.	 Click on OK to close the Chart Properties dialog.

The default color map used by the document has been set and it will be
automatically applied to all future charts we create.

Summary
We've come to the end of the chapter, in which we learned to set document, sheet,
and object properties. We've also learned how to add a background to aid the
frontend layout, and also to apply a corporate identity to our document and set a
default color map.

We learned how to create and use different objects, such as the listbox, the Current
Selections Box, the Multi Box, and the Bookmark Object.

After preparing and setting the style used by the document, we can now continue
to create and use the different data visualization objects available in QlikView. In the
next chapter, we will look at building the charts and tables which will be used for
dashboards, analysis, and reports.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards
By now we have a data model, a styled frontend, and a layout design. It's now time
to populate our document with charts, tables, and other data visualization objects.

We will first look at the various types of QlikView users, and what they typically
look for in a QlikView document. After that we will look at the different chart
options available, along with a few other sheet objects, and use them to extend our
dashboard. We will also take a more in-depth look at the ways in which we can
create basic calculations in the various objects.

Specifically, in this chapter you will learn:

•	 The three basic types of QlikView users, and how best to cater to their needs
•	 The various charting options available in QlikView
•	 Other sheet objects that can be used to add interactivity to our QlikView

documents
•	 How to create basic calculations

Let's get started!

User types
The data model within a single QlikView document can be used to serve the
information needs of a wide range of users, from the executive to the operational
level. As different user groups have different information needs, QlikView
documents are often built using the Dashboards, Analysis, and Reports (DAR)
approach. Of course, with a limited number of user types, it is inevitable that they
are painted with a broad brush. Most QlikView users will fall into more than one
user category. Let's take a look at each of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[140]

Dashboard users
Dashboards offer a quick, bird's-eye view of information. They are often used by
executives and middle-management to gauge performance of a limited number of
Key Performance Indicators (KPIs) against predefined targets.

Data displayed in dashboards is usually aggregated at a high level. Drill-downs to
more granular data, while technically not a problem in QlikView, are purposely
limited. When dashboard users spot an anomaly in the data, they may simply ask an
analyst to dig deeper.

Typical data visualization on a dashboard includes speedometers and traffic lights
to provide, at a quick glance, the current status of the defined KPIs. The following
screenshot depicts a typical, albeit cleanly formatted, dashboard:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

Analysts
While dashboard users commonly want to have a general view on their performance
at a glance, analysts are the ones who really dig into the data. They will try to
uncover not only what happened, but also why it happened. To do this, they require
access to the complete dataset with no detail left out; they also need to be able to
query it in many different ways.

In QlikView, this translates to having several listboxes for easy data filtering, along
with many different charts offering comprehensive and insightful views of the
data. Many analysts will also create their own visualizations whenever they need to
answer a specific question, or will make extensive use of What-If scenarios to test
and predict an outcome based on changes in certain variables.

Typical data visualizations used in analysis include scatter, bar and line charts, and
pivot tables. The following screenshot shows an example of a typical analysis sheet:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[142]

Report users
In QlikView, reports are considered to be more or less static displays of information
in a tabular form. Reports can serve multiple purposes; for instance, they can be used
to provide users at the operational level with the information they need in their daily
activities. They can also be the end-point of an analytical exercise.

Typical data visualizations at the report level are straight tables and pivot tables. The
following screenshot shows a typical report:

Applying the DAR principle to
Airline Operations
Now that we've gone through the theoretical part of QlikView use cases and user
types, it's time to get practical again. To continue, open the Airline Operations.
qvw file we've been working on. We will build our exercises upon the previously
created data model and frontend.

If you've not followed each exercise in previous chapters and
don't have an up-to-date document, don't worry. Take the file
named Solution_Chapter 5_Airline Operations.
qvw, which is located inside the Airline Operations\
Apps folder; create a copy for back up, and rename it to
Airline Operations.qvw.

When we look at the document we have built so far, we will notice that this does not
yet cover the Dashboard, Analysis, and Report use cases. That's why, in this section,
we will expand on the various charts that are available in QlikView, while also
applying the DAR principles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

First, though, we need to take a better look at the business requirements set by
HighCloud Airlines.

Document requirements
After requirement workshops and interviews with the HighCloud Airlines' executive
team, Sara has distilled the following KPIs:

•	 Load Factor %: This gives the number of enplaned passengers versus the
number of available seats

•	 Performed versus scheduled flights: This gives the number of flights that
were performed versus those that were actually scheduled

•	 Air time %: This gives the time spent flying versus total ramp-to-ramp time
•	 Enplaned passengers (in millions): This gives the number of transported

passengers, in millions
•	 Departures performed (in thousands): This gives the number of flights

performed, in thousands
•	 Revenue Passenger Miles (in millions): This gives the total number of miles

that all passengers were transported, in millions
•	 Available Seat Miles (in millions): This gives the total number of miles that

all seats (including unoccupied seats) were transported, in millions
•	 Market Share: This is based on transported passengers

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[144]

Besides these requirements, there is a need to further analyze the data. While
the workshop and interviews weren't conclusive about the exact analytics
requirements (they rarely are), there was consensus that at least the following
areas should be investigated:

•	 Trend analysis of the number of flights, transported passengers, freight, and
mail through time

•	 Top 10 routes based on the number of flights, enplaned passengers, freight,
and mail

•	 The number of passengers versus available seats (Load Factor %) across
flight types

•	 The relationship between transported passengers, mail, and the number
of flights

In addition, the current metrics currently shown on the Dashboard sheet should be
moved to the new analysis section.

It was also decided that the following two reports should be available:

•	 Aggregated flights per month
•	 KPIs per carrier

Creating the Analysis sheet
The first sheet we will create is the Analysis sheet; as the current Dashboard sheet
already contains a few of the metrics that we want on that sheet, first, let's change the
name of the sheet from Dashboard to Analysis:

4.	 Right-click anywhere on the sheet workspace and choose Properties.
5.	 Navigate to the General tab and enter Analysis in the Title input field.
6.	 Click on OK to close the Sheet Properties dialog.

While we're at it, rename the Main sheet to Associations. This sheet will help
users to find associations on the data across many different fields. We might need to
reposition the listboxes to fit our new layout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

Sheet handling
The design toolbar at the top of the screen contains some
useful commands for dealing with worksheets.

The first icon on the left adds a new sheet. The second and
third icons move the currently active sheet to the left or
the right on the tab row. The last icon is used to open the
properties dialog for the currently active sheet.
The same functionality can also be found under the Layout
menu. This menu additionally contains the Remove Sheet
function, which will remove the currently active sheet.

Just as a quick review to keep our focus, the following requirements were defined for
the Analysis sheet:

•	 Trend analysis of the number of flights, enplaned passengers, freight, and
mail through time

•	 Top 10 routes based on the number of flights, enplaned passengers, freight,
and mail

•	 The number of passengers versus available seats (Load Factor %) across
flight types

•	 The relationship between enplaned passengers, mail, and the number
of flights

Adding a new chart
Now that we have a general layout to start from, it is time to add another chart to
the Analysis sheet. As you might remember from Chapter 2, Seeing is Believing, a new
chart can be added by selecting Layout | New Sheet Object | Chart from the menu,
right-clicking on the worksheet and selecting New Sheet Object | Chart, or clicking
on the Create Chart button on the toolbar.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[146]

This opens the first page of the Chart Properties dialog: the General tab. On this
tab we can set some general settings for the chart, such as what the display text in
the caption (Window Title) should be, and, more importantly, what Chart Type we
wish to create.

Another interesting option in this window is the Fast Type Change option. This
option allows the user to dynamically switch between different types of charts, for
example, we may switch between a bar chart and a straight table.

Yes, pivot tables and straight tables are charts in QlikView
It might seem a little (or very) counter-intuitive, but
pivot and regular (straight) tables are considered charts
in QlikView.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

Bar Chart
One of the required charts in our document should display number of passengers
and number of available seats by flight type. We will use a bar chart to visualize this
metric. Follow these steps to create it:

1.	 From the Chart Type section in the New Chart dialog window, select the Bar
Chart option (the first one to the left) and click on Next.

2.	 The next dialog is the Dimensions dialog. From the list on the left, locate the
Flight Type field and add it to the Used Dimensions list by clicking on the
Add > button. After that, click on Next.

3.	 We will now enter an expression to get the total number of enplaned
passengers. In the Edit Expression dialog that opens automatically after
clicking on Next in the previous window, type the following expression and
click on OK:
Sum ([# Transported Passengers])

4.	 We will assign a label to our expression by typing # of Passengers in the
corresponding Label field.

5.	 We will add a second expression to calculate the number of available
seats. Do this by clicking on the Add button, which will open up the Edit
Expression window again.

6.	 Enter the following expression and click on OK:
Sum([# Available Seats])

7.	 Enter the label # of Available Seats into the Label field.
8.	 Let's have a look at the intermediate result; click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[148]

When we look at this chart, we notice that it's quite hard to read. The numbers are
really large, all those zeroes occupy a lot of space. Besides that, the title text and
caption both say the same thing and do not reference the second expression in
the chart.

We should also note that the corporate colors have been
correctly assigned, since the default color map in place
was defined in the previous chapter.

Let's correct these issues by changing the following settings in the Properties dialog:

1.	 On the General tab, set the Window Title field to # of Passengers/
Available Seats (x 1 million) by Flight Type. Next, uncheck the
Show Title in Chart checkbox.

2.	 On the Expressions tab, select the # of Passengers expression and tick the
Values on Data Points checkbox. Next, highlight # of Available Seats and
also check the Values on Data Points checkbox. Modify both expressions'
definition by dividing the result by one million. The
expressions will now be:
Sum ([# Transported Passengers]) / 1000000
Sum ([# Available Seats]) / 1000000

3.	 On the Style tab, change the Orientation to horizontal (right icon).
4.	 On the Presentation tab, set the legend's font format to Tahoma, with

a Regular Font Style, and with the Size set to 8 by first clicking on the
Settings button, and then clicking on the Font button in the Legend
Settings dialog window.

5.	 On the Axes tab, under Expression Axes, check the Show Grid checkbox.
Change the Font format for both Expression Axis and Dimension Axis
to Tahoma, with a Regular Font Style, and with the Size set to 8 using their
respective Font buttons.

6.	 On the Number tab, hold down the Shift key and select # of Passengers and
of Available Seats from the list of Expressions. Next, select Fixed to under
Number Format Settings and set the Decimals field to 1.

7.	 On the Layout tab, uncheck the Use Borders option.
8.	 Click on OK to close the Chart Properties window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

The resulting chart should look similar to the following screenshot:

Now that we have formatted our chart, we can copy these settings to another chart
using the Format Painter Tool. To do this, activate the object for which formatting
needs to be copied and then click the Format Painter Tool button in the design
toolbar. Next, click the target object to apply the format. Use it to copy the formatting
options we set previously and apply them to our Traffic per Year chart.

Additional bar chart properties
In the previous example we went over the most common bar chart properties.
As you may have seen in the various dialog windows, QlikView offers a
lot of additional options and settings. Let's look at a few notable options available
for bar charts.

Style
On the Style tab, you can add a 3D, shadow, or gradient Look to your bar chart.
Additionally, you can change the Orientation option, as we did in the example.
Choosing a horizontal orientation can make text labels much more readable.
Arguably the most important option on this tab is the Subtype option; this lets
you change the bar chart from Grouped, in which two bars corresponding to one
dimension value will be shown side by side, to a Stacked arrangement, where the
two bars will be stacked on top of each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[150]

Presentation
Notable options on the Presentation tab are the Bar Distance option, which controls
the distance between bars in a group, and the Cluster Distance option, which
controls the distance between groups of bars. For the last option to work there needs
to be multiple dimensions or expressions.

Expressions and the Edit Expression window
Before we look at the other chart types and objects that QlikView has to offer,
it is time to have a more in-depth look at Expressions and the Edit
Expression window.

Expressions
By now you may have noticed that QlikView expressions can be used just about
everywhere throughout the program, from chart expressions to expressions for
setting colors or window titles. This functionality makes QlikView very flexible.
Expressions in QlikView are very similar to formulas that you may know from Excel,
or functions that you may know from SQL.

The Edit Expression window
The Edit Expression window is used to enter expressions. Whenever you see an
ellipsis character (…) accompanying an input box, it means you can click on it to
enter an expression.

Let's open the Edit Expression window now and have a closer look:

1.	 Right-click the # of Passengers/Available Seats chart and choose
Properties....

2.	 Select the Expressions tab and highlight the # of Passengers expression from
the list on the left.

3.	 Click on the … button next to the Definition input box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

The Edit Expression window is shown in the following screenshot:

The Edit Expression window contains a big input field in which expressions can be
entered directly. Once you have familiarized yourself with the various expression
functions and their syntax (we'll cover many of them throughout the book), you
will realize that this is the fastest way to enter an expression. The Edit Expression
window automatically checks the syntax of the entered expression; if an error is
found, the expression will be underlined with a red squiggly line and the text Error
in expression will be displayed.

Be aware that the automatic syntax check does not always work flawlessly; with
advanced expressions, the editor will sometimes indicate that an error is present
when in fact there is none.

At the bottom of the expression editor, a few tabs can be found. Let's quickly see
what each of these tabs does.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[152]

Fields
The Fields tab enables "clicking together" an expression by selecting an Aggregation
function, such as sum, avg, min, max, and the field to which it should be applied.
The Table dropdown can be used to filter the field list to those belonging to a
particular table.

When the Distinct checkbox is marked, only unique values will be considered in the
aggregation. This can be useful when, for example, we want to count the number of
distinct customers, instead of their total number of appearances in the database.

When all selections have been made, the expression can be entered into the
Edit Expression input field by clicking on the Paste button. Note that the code
will be pasted where the cursor presently is, and will replace any highlighted text
in the expression.

Functions
While the Fields tab makes it possible to create expressions using just the mouse, it
is fairly limited in the type of expressions it can create. The Functions tab, however,
contains a comprehensive list of available functions, grouped by Function Category
and Function Name.

Selecting a particular function will display its syntax in a box. The selected function
can be entered into the expression input field by clicking on the Paste button, but the
corresponding parameters have to be set manually.

Variables
As we will see later in this chapter, variables can be used to store expressions and
values. The advantage of this approach is that we can use an expression in many
places, while only maintaining it in a single place.

If, for example, instead of directly typing the # of Passengers expression into the
input field we had created a variable containing its definition, we would be able to
select that variable from the drop-down list on the Variables tab and achieve the
same result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Images
A QlikView expression does not always have to be text or a calculation. There are
some objects, for example, the Text Object or even a Straight Table, that are also
able to display the result of an expression as an image.

The Images tab makes it easy to select images that are built into QlikView, or which
have been bundled into the document via script. Simply select an image name from
the Image drop-down list or, more conveniently, from a visual menu of images by
clicking on the Advanced button.

Clicking on the Paste option will enter a string referencing the corresponding
image into the expression input field. These string values can also be used within
expressions. For example, the following expression will compare the Target field
using the if function. If the value is greater than 100, a green upwards arrow will be
displayed, otherwise a red downwards arrow will be shown.

if(Target > 100, 'qmem://<bundled>/BuiltIn/arrow_n_g.png',
'qmem://<bundled>/BuiltIn/arrow_s_r.png')

Click on Cancel in the Edit Expression dialog window to close it without saving any
changes and close the Chart Properties window as well.

The Expression Overview window
With expressions in so many locations, it can be hard to keep track of them all.
This is where the Expression Overview window comes in handy; it offers a central
location to manage all expressions being used in our QlikView document.

The Expression Overview window can be opened by pressing Ctrl + Alt + E or by
selecting Settings | Expression Overview from the menu bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[154]

By default, only Chart Expressions in the QlikView document are shown. This
list can be expanded or narrowed down by (de)selecting the checkboxes for each
expression type.

It is possible to edit an individual expression by highlighting it from the list and
clicking the Edit button. Bulk updates are possible, using the Find/Replace button.
Be very cautious when using this function, as unintended changes can occur.

Line Chart
The Line Chart works very much like the bar chart that we looked at earlier. So,
instead of creating a new line chart, we will convert one of the already built bar
charts into one.

Bar charts versus line charts
While bar and line charts are considered interchangeable
by many, there are actually specific use cases in which
it is advisable to use one over the other. Bar charts are
best used to compare different categories, for example,
for comparing different Flight Types. Line charts are best
used to detect trends in series that have an order, such as
dates or steps within a process.

Let's follow these steps to convert the Traffic per Year chart from a bar chart into
a line chart:

1.	 Right-click the Traffic per Year chart and select Properties….
2.	 On the General tab, under Chart Type select Line Chart (second icon from

the top left).
3.	 Click on OK to apply the settings.

The resulting line chart is shown in the following picture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Notice we have to select a year for the months to be shown. In this case, we have
selected 2011 in the Year listbox.

While this already looks quite nice, we will make a few extra changes:

•	 As we are more interested in the trend than in the exact values, the axis does
not necessarily need to start at 0

•	 We will add dots on the actual data points so it is clear for the user where to
point their mouse cursor in case they do want to see the exact values

•	 The numbers on the Y-axis are quite big; we will format the numbers so that
they are shown in thousands, millions, or billions depending on the selection

Follow these steps to apply the changes:

1.	 Right-click on the Traffic per Year chart and select Properties….
2.	 Navigate to the Axes tab and deselect the Forced 0 checkbox.
3.	 Activate the Expressions tab and click on the plus icon next to the circular

arrow to display the list of expressions.
4.	 For each expression, individually mark the Symbol checkbox under the

Display Options section and select Dots from the drop-down list.
5.	 Open the Presentation tab and set the Symbol Size option to 4pt under the

Line/Symbol Settings section; this sets the size of the dots.
6.	 Open the Number tab and select all expressions by clicking on the first

expression (# of Flights) and then holding Shift while clicking on the last
expression (Transported Mail). All expressions will be highlighted.

7.	 In the Thousand Symbol input field enter x Thousand.
8.	 In the Million Symbol box enter x Million.
9.	 In the Billion Symbol box enter, you guessed it, x Billion.
10.	 Click on OK to apply the changes and close the Chart Properties dialog.

The resulting line chart is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[156]

As you can see, the actual trend can be easily perceived and the individual data
points are much more visible. Additionally, the scale on the y axis now contains
much shorter numbers. The advantage of setting values for thousands, millions,
and billions is that the y axis scale will automatically adjust to the appropriate range
when updating the chart based on user selections.

Additional line chart properties
While in the previous example we looked at the most common line chart attributes,
there are some additional settings in the Chart Properties dialog that are interesting
to take note of.

Expressions
On the Expressions tab, the Accumulation option can be used to display a moving
total. This means that instead of presenting individual values, each new value
is added to the sum of all previous values. In the following chart, instead of the
individual amount of flights for each month, we see the total cumulative amount of
flights as of each period:

The other line you see in the chart represents the Average; this option and is set
under the Trendlines section.

Style
On the Style tab, you can change the Look option of the line chart. Besides some
3D effects, an interesting visualization is the area chart (fourth icon from the top).
Another useful setting, though admittedly not as useful as it is for bar charts, is
the Orientation option. This allows you to change the orientation from vertical
to horizontal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

Presentation
The Presentation tab offers options to change how the data is presented within the
chart. Useful options are under the Line/Symbol Settings section; with these options
we can change the Line Width option of the chart as well as the size of the symbols
(as we saw when we added the dots in the previous chart).

For charts that have many values on the X-axis, a useful option is the Chart Scrolling
option. By checking the Enable X-Axis Scrollbar checkbox and setting a value for
the When Number of Items Exceeds parameter, a scrollbar is added to the chart
whenever the number of values on the X-axis exceeds the specified amount.

Arguably the most useful option in this tab, however, is found under the Reference
Lines section. This option can be used to integrate additional, straight lines to the
line chart. A practical example would be to add a target reference to compare each
data point to a predefined objective.

By clicking on the Add button, the Reference Lines dialog opens. Here we can set
an expression for the reference line, set its label, and change some other settings with
regard to formatting. The following screenshot shows an example of a static 900,000
flights target line, but of course a dynamic target could also be used if it is included
in the data model:

Combo Chart
Though it sounds fancy, the Combo Chart is nothing more than a combination of
the bar and line charts that we used earlier. It brings together all the properties of
both charts.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[158]

Let's look at how this combined chart works by converting the # of Passengers /
Available Seat (x 1 million) by Flight Type chart that we created earlier:

1.	 Right-click on the bar chart and select Properties….
2.	 From the General tab, change the Chart Type option from Bar Chart (top left

icon) to Combo Chart (third icon from the left).
3.	 On the Expressions tab select the # of Passengers expression. Next, deselect

the Line checkbox under Display Options and select the Bar checkbox.
Disable the Values on Data Points option as well.

4.	 Next, select the # of Available Seats expression. Then, deselect the Line
checkbox and mark the Symbol checkbox. Select the Diamonds option
from the drop-down list on the right. Disable the Values on Data Points
option as well.

5.	 Click on Add to open the Edit Expression window and enter the following
new expression and then click on OK to close the editor:
Column(1) / Column(2)

6.	 Enter Load Factor as this expression's Label.
7.	 With the new expression highlighted from the expressions' list, deselect the

Line checkbox and enable the Values on Data Points option.
8.	 Navigate to the Presentation tab and set the Symbol Size option to 4 pt.
9.	 On the Number tab, select the Load Factor expression and set the Number

Format Settings option to Fixed to 1 Decimals and mark the Show in
Percent (%) option.

10.	 Click on OK to close the Chart Properties dialog.

The end result should look like the following chart:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

One thing you may notice is that while we entered three expressions, only two are
visible in the chart. This happens because we did not select any display mode for
the Load Factor expression. However, we did activate the Values on Data Points
checkbox, and that is why the value for Load Factor is shown in the chart.

You may also wonder about the expression that we used to calculate the Load
Factor value:

Column(1) / Column(2)

This expression tells QlikView to divide the result of the first expression by the result
of the second expression. You will understand that the order of the expressions
should not be changed in order for this to work reliably.

Container
By now, with three charts already created, our worksheet is becoming somewhat
cluttered again. Time to do another round of reorganizing. The option of choice this
time will be a container object in which we will group multiple objects together in the
same screen space. The user will then be able to interactively switch between objects.

Let's put all three charts (or, two charts and a table) into the container object by
following these steps:

1.	 Go to Layout | New Sheet Object | Container in the menu bar.
2.	 On the General tab, select the three items corresponding to our charts

from the Existing Objects list (Traffic per Year, Top 10 Routes, and #
of Passengers).

In the Existing Objects list, objects are prefixed with their
Object ID, for example, CH03 Traffic per Year.

3.	 Click on Add to place them in the Objects Displayed in Container list to the
right.

4.	 Go to the Presentation tab and select Tabs at bottom from the Appearance
drop-down menu.

5.	 Go to the Layout tab and deactivate the Use Borders option.
6.	 Click OK to close the Container Properties dialog and create the new object.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[160]

The resulting container is shown in the following image. Notice how we can switch
between charts by clicking the tabs on the bottom row.

You will also notice that the original charts are still on the worksheet, making it look
even messier. We will remove these old objects by right-clicking on each of them
and selecting the Remove option. A pop-up window will appear asking to confirm
deletion of either only the selected object or all linked objects. Click on the Delete
Selected button as shown in the screenshot below:

The reason this dialog message appears is that there are now two instances of the
same object, and QlikView treats them as linked objects (one object sharing the same
properties and IDs, but in different locations). We will look at linked objects in more
detail later on in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

After we've removed all the duplicate charts and have properly aligned the container
object, we will remove the container's caption by following these steps:

1.	 Right-click on either the container's caption or one of the buttons on the
bottom row and select Properties….

2.	 Go to the Caption tab and deselect the Show Caption option.
3.	 Click on OK to apply the settings and close the dialog window.

It is important to click on the container heading or buttons; otherwise we would not
be opening the container properties but the properties of the currently active chart.
Now we have space to add even more charts!

Scatter Chart
One of the analysis requirements we have to meet is to provide an insight into the
relationship between the number of passengers, number of transported mail, and the
number of performed departures at the carrier level. To visualize this we will add a
scatter chart by following these steps:

1.	 Go to Layout | New Sheet Object | Chart in the menu.
2.	 From the New Chart Object window, set the Window Title to:

Transported passengers vs mail

3.	 Disable the Show Title in Chart option and select the Scatter Chart (bottom
left icon) option in the Chart Type section from the General tab. Then click
on Next.

4.	 Select Carrier Name from the Available Fields/Groups list and click on the
Add >button to add it to the Used Dimensions list. Click on Next.

5.	 On the Expressions tab, select # Transported Mail from the X listbox and #
Transported Passengers from the Y listbox.

6.	 Mark the Bubble Chart checkbox and enter the following in the Bubble Size
Expression input field:
Sum([# Departures Performed])

7.	 Click on Next twice.
8.	 On the Style tab, under the Look section select the third icon from the top in

the right column (above the "glossy" bubbles that are selected by default) and
click on Next.

9.	 On the Presentation tab, deselect the Show Legend checkbox and click
on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[162]

10.	 On the Axes tab, mark the Show Grid, Show Minor Grid, and Label Along
Axis checkboxes under X-axis as well as under the y axis. These options add
a visible grid to the chart as well as place the labels alongside the axes, which
takes less space. Click on Next.

11.	 On the Colors tab, enable the Persistent Colors checkbox. This setting
ensures that dimensions (in our case carriers) keep the same color even when
the selection changes. Click on Next.

12.	 On the Number tab, select all three expressions and set the Number Format
Settings option to Integer. Enter x 1 thousand in the Thousand Symbol
field, x 1 million in the Million Symbol field, and x 1 billion in the
Billion Symbol field.

13.	 Click on Finish to apply the settings and close the dialog.

The resulting chart is shown in the following screenshot. The Y-axis shows the
number of transported passengers while the X-axis shows the amount of transported
mail. The bubble size indicates how many flights (departures) have been performed
by each carrier.

We can immediately see there are carriers that only transport mail, such as United
Parcel Service, and those that only carry passengers, such as Southwest Airlines Co.
In fact, most carriers seem to either do one or the other, not both.

Make a few selections on the Carrier's Operating Region listbox and you might
gain some interesting insights. Also notice how the unit of the chart's scale
changes between selections because we set the Thousand, Million, and
Billion Symbol fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

In our example, we used the Simple Mode option to create the expressions for
the scatter chart. As the name implies, this allows for only simple expressions to
be formulated. We can switch to the Advanced Mode by checking the Advanced
Mode checkbox on the Expressions tab. This will change the view to the regular
Expressions tab that we saw on earlier charts.

It is important to keep in mind that when dealing with
scatter charts the expression that is defined first will be
used for the X-axis, the second expression will be used
for the Y-axis, and the third expression will always be
used to set the bubble size.

Button
Now that we have set up the basic structure and the charts for our analysis sheet, it is
time to add a few buttons for the user to interact with. QlikView allows us to execute
an action, or a sequence of actions, when a button is clicked.

Let's start with a practical example. During analysis, a user will often want to clear
their entire set of selections, or undo and redo single steps in their selection. Follow
these steps to add a button that will clear the user's selections:

1.	 Go to Layout | New Sheet Object | Button in the menu bar.
2.	 On the General tab of the New Button Object window, enter Clear

Selections in the Text input field.
3.	 Change the Color option to HighCloud brown, which was defined in the

previous chapter and should be part of the custom colors available on the
Color window.

4.	 Switch to the Actions tab.
5.	 Click the Add button, select the Clear All option from the Action list on the

right, and click on OK.
6.	 Click on OK to close the Button properties dialog.

We have now created a single button that, when clicked, will clear all
current selections.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[164]

As we saw while creating the button, there are a wide variety of actions that can be
assigned to it. These actions can also be chained, so that one click on a button triggers
a sequence of actions. The following screenshot shows a sequence of actions in which
we first clear all selections, switch to a predefined sheet, and finally make a selection
in a predefined field:

Of course, we still have to create the buttons for undoing and redoing a selection.
The corresponding actions are found as Back and Forward, respectively. Take a
minute to create the buttons for these actions as well and align them under the
Current Selections box. If everything goes correctly, you should end up with
something like this:

Test each button to make sure they are doing what they are supposed to do.

Statistics box
A statistics box is a convenient way to quickly perform a series of statistics on a
single, numeric field. For example, the following shows the total, average, minimum,
and maximum distances in a single statistics box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

1.	 Let's follow these steps to add the statistics box to our analysis
sheet: Right-click anywhere on the worksheet and select New Sheet
Object | Statistics Box….

2.	 On the General tab, select Distance from the Field drop-down menu.
3.	 Double-click on the Total count option in the Displayed Functions list to

remove it, since it will not be relevant.
4.	 Go to the Number tab and select all Functions by holding the Shift key

while clicking on the first and last item in the list. Set their number format to
Override Default Settings and Integer.

5.	 Click on OK to create the statistics box and position it below the buttons we
created earlier. Move the bookmark object to a lower position if necessary.

Now whenever we make selections, the Distance statistics box will automatically
show the various statistics calculated over all the individual records in the fact table.

With the added statistics box object, and after appropriately resizing and positioning
objects, the analysis sheet should now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[166]

The Analysis sheet now meets all the current requirements. The objects we've
created while building this sheet are the bar, line, and combo charts, a scatter plot,
buttons, and a statistics box. We've also learned how to organize objects using a
container and have had a closer look at chart properties, expressions, the expression
editor, and expression overview.

Of course, QlikView has many other objects and functions that we can use in our
documents. Let's move to our next sheet and discover some more of what QlikView
has to offer.

Creating the new Dashboard sheet
Now that we have finished the first iteration of our analysis sheet, it is time to start
creating the new Dashboard sheet. As was defined before, we will need to visualize
the following KPIs and metrics:

•	 Load Factor %: This gives the number of enplaned passengers versus the
number of available seats

•	 Performed versus scheduled flights: This gives the number of flights that
were performed versus those that were scheduled

•	 Air time %: This gives the time spent flying versus total ramp-to-ramp time
•	 Enplaned passengers (in millions): This gives the number of transported

passengers, in millions
•	 Departures performed (in thousands): This gives the number of flights

performed, in thousands
•	 Revenue Passenger Miles (millions): This gives the total number of miles

that all passengers were transported, in millions
•	 Available Seat Miles (millions): This gives the total number of miles that all

seats (including unoccupied seats) were transported, in millions
•	 Market Share: This is based on enplaned passengers

As we want to have a consistent interface throughout our sheets, let's first set up the
new sheet and common objects by following these steps:

1.	 Add a new sheet by selecting Layout | Add Sheet… from the menu.
2.	 Right-click on the new sheet workspace and select Properties….
3.	 On the General tab, set the Title of the sheet to Dashboard and click on OK

to close the dialog.
4.	 Right-click on the tab area of the new Dashboard sheet and select Promote

Sheet to place the Dashboard sheet to the left of the Analysis sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

5.	 Then, navigate to the Analysis sheet.
6.	 Repeat the following process for each of the objects shown in the following

screenshot. Right-click and select Copy to Clipboard | Object, select the
Dashboard tab, and right-click on an empty space and select Paste Sheet
Object as Link.

Now, when we switch between the Dashboard and Analysis tabs, we can see that
the surrounding listboxes, current selection box, buttons, and bookmark object
remain consistent; only the contents in the center area of the screen will differ from
one tab to the other.

Linked Objects
When we created the Dashboard sheet in the previous exercise, we used the Paste
Sheet Object as Link command instead of Paste Sheet Object to paste the copied
objects to the new sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[168]

The difference between these two options is that using Paste Sheet Object creates a
copy of the object, which is independent of the source object. The Paste Sheet Object
as Link option, on the other hand, creates an additional instance (or linked object) of
the source object. Any changes made to the layout properties of a linked object will
be applied to all other linked objects, with the exception of size and position.

The size and position of linked objects can be updated
manually by right-clicking on the object and selecting
Linked Objects | Adjust Position of Linked Objects.

When the same object is used in many different places, such as listboxes that appear
on every sheet, using linked objects can make maintenance a lot more convenient.

Drag and drop to copy or create linked objects
Objects can also be copied or linked by dragging
and dropping.
To copy an object, hold down the Ctrl key while clicking on
the object's caption and drag the object. A small green plus
sign on your cursor will indicate that you are copying an
object. Release the mouse cursor on an empty space on the
worksheet to create a copy.
Creating a linked object works very similarly to copying an
object. Hold down Ctrl + Shift while clicking on the object's
caption. A small chain icon on your cursor indicates that you
are linking an object. Drag and release the mouse cursor on
an empty space on the worksheet to create the linked object.
Of course, we can also create copies or linked objects on
sheets other than the source sheet. To do this, instead of
dragging the object to an empty space on the worksheet, drag
it to the tab corresponding to the target sheet. The object will
appear in exactly the same position as the source object, but
on the other sheet.

Let's see how linked objects work by following these steps:

1.	 On the Dashboard tab, create a copy of the Carrier Name listbox by holding
down the Ctrl key, clicking on the header, and dragging the listbox to an
empty space on the worksheet.

2.	 Right-click on the new copy and select Properties….
3.	 On the General tab, set the Title of the listbox to Copy.
4.	 On the Font tab, set the Font Style to Bold and the Font Size to 16.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

5.	 Click on OK to close the Properties dialog.
6.	 Now, create a linked object of the listbox Aircraft Group by holding down

Ctrl + Shift, clicking on the header, and dragging the listbox to an empty
space on the worksheet.

7.	 Right-click on the new linked object and select Properties….
8.	 On the General tab, set the Title to Linked Object.
9.	 On the Font tab, set the Font Style to Bold and the Font Size to 16.
10.	 Click on OK to close the Properties dialog.

The result shows the difference between copied and linked objects. Changes that
were made to the copied Carrier Name listbox have not been applied to the original,
while changes that were made to the linked Aircraft Group object were also applied
to the original. In fact, they have even been applied to the Aircraft Group listbox on
the Analysis sheet as well.

Let's undo the changes we've made by pressing Ctrl + Z until we are back to the
original layout.

Beware of deleting linked objects
When deleting a linked object, a popup will ask if you want
to only delete the selected object, or if you want to delete all
objects. Beware of selecting Delete All; all instances of the
object will be deleted, even those located on other sheets.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[170]

Gauges
After our little detour on linked objects, let's start building the dashboard by adding
three gauge charts, one showing a global indicator of Load Factor %, the second
showing Performed vs Scheduled Departures ratio value, and the third showing
the Air Time % value.

1.	 Start by adding a new chart object with the Create Chart button located on
the design toolbar.

2.	 From the first dialog window, make sure to select Gauge as Chart Type.

3.	 In the Window Title field, enter Load Factor % as the name of the chart
and click on Next.

4.	 This chart type does not make use of dimensions, so we'll skip this window
and click on Next once more to get to the Expressions dialog window.

If a dimension is present in the gauge chart, the gauge
will show the value for the first sorted value in the
dimension field. Always ensure, that no dimension is
selected. This is especially important to keep in mind
when using Fast Type Change on charts.

5.	 Add the following expression in the Edit Expression dialog window and
click on OK to continue:
Sum ([# Transported Passengers]) / Sum ([# Available Seats])

6.	 The expression that we just created will calculate the percentage of occupied
seats compared to those that were available on each flight.

7.	 The Label we'll assign to this expression will be the same as the Window
Title field that we previously defined: Load Factor %.

8.	 Click on Next three times, until you are at the Presentation window, and set
the following configuration under the Gauge Settings section:

°° Min and Max values will be 0.5 and 1 respectively
°° From the Segment Setup section, we will add two more segments by

clicking on the Add… button twice
°° Deselect the Autowidth Segments checkbox at the bottom of

the window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

When selected, the Autowidth Segments function automatically sizes the segments
based on the Min and Max values of the gauge. We want to avoid this as we want to
set the values ourselves.

Add two new segments by clicking twice on the Add... button from the Segments
Setup section. We'll now have four segments and will set up each of the four
segments is in the following manner:

•	 Segment 1:
°° Lower Bound: 0.5
°° Color set to Two Colors Gradient with the Base Color option set

to Red (R:255; G:0; B:0) and the Second Color option set to Orange
(R:255; G:128; B:0)

°° Color Gradient Style option should be set to Vertical

•	 Segment 2:
°° Lower Bound: 0.625
°° Color set to Two Colors Gradient with the Base Color option set

to Orange (R:255; G:128; B:0) and the Second Color option set to
Yellow (R:255; G:255; B:0)

°° Color Gradient Style option will be set to Vertical

•	 Segment 3:
°° Lower Bound: 0.75
°° Color set to Two Colors Gradient with the Base Color option set to

Yellow (R:255; G:255; B:0) and the Second Color option set to Light
Green (R:128; G:255; B:128)

°° Color Gradient Style option will be set to Vertical

•	 Segment 4:
°° Lower Bound: 0.85
°° Color set to Two Colors Gradient with the Base Color option set to

Light Green (R:128; G:255; B:128) and the Second Color option set to
Green (R:0; G:255; B:0)

°° Color Gradient Style option should be set to Vertical

In these steps we configured the gauge to display values from 50 to 100 percent.
Within this range we defined four separate segments, each with their own color.
You may have noticed that we only set the lower boundary for each segment; this is
because the upper boundary is automatically defined by the lower boundary of the
following segment, or by the upper boundary of the gauge. In our example, Segment 1
runs from 50 to 62.5 percent (although we specified the limits in decimal form, that is,
0.5 and 0.625), Segment 2 covers the area ranging from 62.5 to 75 percent, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[172]

The boundaries that we've defined in our example may appear
arbitrary. In a real-world situation, ideally we would be setting
these boundaries based on targets set by the business.

Let's continue setting up our gauge.

1.	 Still on the Presentation tab, enable the checkboxes corresponding to Show
Scale, Show Labels on Every Major Unit, Hide Segment Boundaries, and
Hide Gauge Outlines.

2.	 Set the value of Show Scale to 6 Major Units, set the value of Show Labels
on Every to 1 Major Unit.

3.	 Click on Next three times, until you get to the Number dialog window, set
the format to Integer, and mark the checkbox corresponding to Show in
Percent (%).

4.	 Click on Next to open the Font dialog window and set the Size to 8.
5.	 Click on Finish to create the chart.

The result should be the following gauge chart:

As at this point it's hard to see what exact number the chart is presenting, we'll
add a Text in Chart attribute to show the corresponding result value using the
following steps:

1.	 Bring up the Properties… dialog window again by right-clicking on the
Gauge chart option and activating the Presentation tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

2.	 Locate the Text in Chart section and click on the corresponding Add…
button. This brings up the Chart Text dialog, which is shown in the
following screenshot:

3.	 We'll add an expression in the Text field. Open the Edit Expression window
by clicking on the … button.

4.	 Type the following expression and click on OK:
=Num (Sum ([# Transported Passengers]) / Sum ([# Available
Seats]), '##.#%')

It's important to add the equal to sign at the beginning of
the expression; otherwise it will not be interpreted as an
expression but rather as literal text.

The expression we just created calculates the Load Factor % value and
formats it as a percentage using the Num() function. Let's finish the text.

5.	 From the Chart Text window, make sure to set the Alignment option to
Centered and change the Font option to Tahoma, Font Style to Regular, and
Size to 14.

6.	 Click on OK in all of the dialog windows that remain open to apply
the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[174]

Initially, the added text will be placed at the upper-left corner of the object and we'll
need to relocate it. To do that, follow these steps.

1.	 Activate the gauge object by clicking on the caption. Then, press Ctrl + Shift.
This will show a red border line around the text we want to move as well as
around the other chart components (that is, the chart area itself, the legend, if
any, and the title).

2.	 Use your mouse to drag the text we added to an appropriate location in the
chart and size it accordingly, as shown in the previous screenshot.

Resizing chart components
You can also resize, as well as relocate, other chart components,
such as titles and legends, with the Ctrl + Shift method described
earlier. Be aware that resizing chart component can be a bit
"fiddly"; you may have to try a few times before you get it right.

One final adjustment we are going to make to this chart is to remove the caption bar
and border and to make the background of the chart fully transparent. To do this we
use the following steps:

1.	 Right-click the gauge chart and select Properties….
2.	 Navigate to the Colors tab and move the Transparency slider (under the

Frame Background option) to 100%.
3.	 Navigate to the Layout tab and disable the Use Borders option.
4.	 From the Caption tab, deselect the Show Caption checkbox.
5.	 Click on OK to close the Chart Properties window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

The end result should be a gauge chart that looks like this:

Cloning the object for re-use
Since we have already created a gauge chart with several specific configurations, let's
make use of it to create a new one without having to do the whole process over again.

Right-click on the gauge chart we created previously and click on the Clone option.
A new copy of the object will be created exactly as the previous one; the only thing
we will need to do is re-position it and change its expression and title, as well as the
text in the chart.

Right-click on the new cloned object and select Properties… to make the
following changes:

1.	 In the General tab, the Window Title field will be Performed vs Scheduled.
2.	 The expression we will use is:

Sum([# Departures Performed]) / Sum([# Departures Scheduled])

3.	 The label for the expression is the same as the Window Title field:
Performed vs Scheduled.

4.	 On the Presentation tab, change the following settings:

°° Set the Max value for the gauge to 1.2
°° Set the Show Scale value to 8 Major Units
°° Set the Show Labels on Every value to 1 Major Unit
°° Highlight the Text in Chart expression that we added previously and

click on the Edit… button. Change the expression to:
=Num(Sum([# Departures Performed]) / Sum([# Departures
Scheduled]), '##.#%')

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[176]

Adding Air Time %
The final gauge that we will be creating is the Air Time %. Now that you have seen
how to create a new gauge and how to clone an existing one, take a chance and see if
you can create this gauge yourself:

1.	 The Window and Expression Title fields should be Air Time %.
2.	 The expression to calculate the Air Time % is as follows:

Sum ([# Air Time]) / Sum ([# Ramp-To-Ramp Time])

3.	 The Max value for the gauge should be 1.
4.	 The Show Scale value should be set to 6 Major Units.
5.	 The Show Labels on Every value should be set to 1 Major Unit.

After applying the changes and rearranging the objects, our dashboard should look
like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

More Gauge styles
While we selected the default speedometer look for our three gauges, QlikView has a
few other styles as well. These styles can be selected from the Styles tab of the Chart
Properties dialog.

The following screenshot shows, pictured from left to right and top to bottom,
a speedometer, vertical speedometer, thermometer, traffic light, horizontal
thermometer, and digital digit gauge. These objects are included in this chapter's
solution file on the Gauge Styles tab.

Adding a Text object
Now that we have added the gauges, it is time to add the following four metrics:

•	 Enplaned passengers (in millions)
•	 Departures performed (in thousands)
•	 Revenue Passenger Miles (in millions): the number of miles that paying

passengers were transported
•	 Available Seat Miles (in millions): the total number of miles that paying

passengers could have been transported, based on airplane capacity

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[178]

To display these metrics, we will be using Text Objects. A text object can be used to
display a static or calculated text and, somewhat counter-intuitively, images as well.

Let's follow these steps to create the first text object that will display Enplaned
Passengers:

1.	 Right-click anywhere on an empty space in the worksheet and select New
Sheet Object | Text Object.

2.	 In the Text input box enter the following expression:
=Num(Sum ([# Transported Passengers]) / 1000000, '#,##0.00')

3.	 Move the Transparency slider, at the bottom of the window, to 100%.
4.	 Go to the Font tab and set the Font option to Tahoma, Font Style to Bold,

and Size to 16.
5.	 On the Layout tab, enable the Use Borders checkbox.
6.	 On the Caption tab, check the Show Caption checkbox and define the Title

Text field as Transported passengers (millions).
7.	 Set the Horizontal Caption Alignment option to Centered.
8.	 Mark the Wrap Text checkbox under Multiline Caption.
9.	 Click on OK to close the dialog window.

After some resizing, the resulting object should look like the following screenshot.

Looking at the steps we went through to create this text object, you may have noticed
a few things:

•	 The expression we used was prefixed with an = (equal to) sign. This is
to tell QlikView to treat the entered text as an expression and evaluate it
accordingly, instead of treating it as a static text.

•	 The Text object does not have the Number properties tab which is often seen
on other objects, that is why we used the Num() function to properly format
the expression output.

•	 By checking the Wrap Text option we can create a multiline caption, this can
be very useful when we have long caption texts and limited horizontal space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Now that we have created the first text object, take a few minutes to create the
remaining three. Remember that you can press Ctrl and drag the mouse pointer
to copy an object, so you do not have to create each text object from scratch. The
caption's display and expressions are shown in the following table.

Caption Expression
Departures performed (in thousands) =Num(Sum ([# Departures Performed]) /

1000, '#,##0.00')

Revenue Passenger Miles (in
millions)

=Num(Sum ([# Transported Passengers]
* Distance) / 1000000, '#,##0.00')

Available Seat Miles (in millions) =Num(Sum ([# Available Seats] *
Distance) / 1000000, '#,##0.00')

After creating all four text objects, position them under the gauges in the
following manner:

Using a Text Object to display an image
As we said at the start of this section, a text object can also be used to display
an image. For example, we may want to display a small "warning" icon on our
Enplaned Passengers text object whenever the amount of passengers is lower than 1
million. We can achieve that by following these steps:

1.	 Go to Layout | New Sheet Object | Text Object in the menu bar.
2.	 Do not enter any text; instead, select the Image radio button located in the

Background section and click on Change....

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[180]

3.	 Next, navigate to the Airline Operations\Design folder and select the
warning.gif image file.

4.	 On the Layout tab, set the Layer to Top.
5.	 Click on OK to close the dialog window.
6.	 Position the warning icon over the Transported passengers (millions) text

object so that it looks like the following screenshot:

One thing to make note of is the Layer setting. By setting it to Top, we ensure that
the icon is always superimposed over the Transported passengers (millions) text
object. This is important, otherwise we will not be able to select it using the mouse.
Furthermore, if we hadn't set the 100% transparency in the Transported passengers
text object, having the icon in a lower layer would prevent it from being visible to
the user.

Remember that we can always access any object's properties via
the Objects sheet of the Sheet Properties dialog (Ctrl + Alt + S).

The current result is almost what we want. However, you'll notice that the icon is
displayed, even though there are more than 1 million transported passengers, which
is the specified limit. Let's take a moment to fix it by using the following steps:

1.	 Right-click on the warning icon and select Properties….
2.	 Go to the Layout tab and select the Conditional radio button under Show.
3.	 Enter the following expression:

Sum([# Transported Passengers]) < 1000000.

4.	 Click on OK to close the Text Object Properties dialog window.

Now the warning icon will only be shown when the specified condition is met; that
is, when the number of transported passengers is lower than 1 million. To test it,
you can make a few selections, for example, by selecting the year 2011 and Piston,
1-Engine/Combined Single Engine from the Aircraft Group.

Adding these type of visual cues to our dashboard will make it easier for the users to
spot potential issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

Adding actions to a Text object
Another interesting feature of the Text object is that we can assign actions to it,
essentially making it function as a button.

Creating custom-style buttons
By combining a text object with a custom image (or icon) and
assigning an action to it, we can create a custom-style button.

We could use this button-like functionality to allow for quick navigation across the
document. For example, a text object could be used to switch to a detail sheet when a
user clicks on it from a general-level dashboard. In the next example, we will assign an
action that will open the Analysis sheet when a user clicks on one of the text objects:

1.	 Go to the Analysis sheet.
2.	 Bring up the Sheet Properties window by pressing Ctrl + Alt + S.
3.	 On the General tab, set the Sheet ID to SH_Analysis and click on OK to

close the dialog.
4.	 Go back to the Dashboard tab.
5.	 Right-click on the Transported passengers (millions) text object and select

Properties….
6.	 Go to the Actions tab and click on the Add button.
7.	 Select the Layout option from the Action Type section and select the Activate

Sheet option from the Action section. Then click on OK.
8.	 From the Actions tab, locate the SheetID input box and enter

SH_Analysis. Click on OK.
9.	 Repeat steps 5 to 8 for each of the three remaining text objects.

Now, whenever the user clicks on one of the text objects, the Analysis sheet will be
automatically activated. Note that instead of the sheet's name we used the Sheet ID
to refer to the Analysis sheet. As explained earlier, object IDs are used internally to
reference objects.

Gauges can have actions assigned to them as well, using the
Actions tab of the Properties window. A typical use case for
this is to let the user drill down to a detailed view for a single
KPI or metric. For example, we could create a detailed sheet
specifically for the Load Factor % metric to analyze it from
many different angles (over time, by airline, and so on.) and
then reference it from the corresponding gauge chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[182]

Adding a Pie chart
The final metric that we want to display on our dashboard is Market Share. This
metric is based on the number of enplaned passengers per carrier, relative to the
total. We will use a Pie Chart to visualize this measure. Let's follow these steps:

1.	 Right-click on an empty space in the sheet and select New Sheet
Object | Chart.

2.	 On the General tab, select the Pie Chart option as the Chart Type, the third
icon from the left on the bottom row, and click on Next.

3.	 On the Dimension tab, select Carrier Name from the Available Fields/
Groups list and click on the Add > button to add it to the Used Dimensions
list. Click on Next to continue.

4.	 In the Edit Expression dialog, enter the following expression and click on OK:
Sum([# Transported Passengers])

5.	 Enter Market Share in the Label input box.
6.	 From the Expressions tab, enable both the Relative and the Value on Data

Points checkboxes.
7.	 Click on Finish to create the pie chart.

The result should look like the following screenshot:

You will notice that this does not look like a pie chart at all. Maximizing the chart to
full screen does show the pie, but it is unusable this way. The reason for this is that
there are simply too many dimension values; with hundreds of airlines the chart
looks more like a candy-cane than a pie.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

Dimension Limits
As the goal of this chart is to display who the big players on the market are, we will
modify the chart so that it will only show the airlines that make up 50 percent of the
market. All other airlines will be grouped in an Others group.

Follow these steps:

1.	 Right-click on the pie chart and select Properties….
2.	 Go to the Dimension Limits tab.
3.	 Mark the Restrict which values are displayed using the first expression

checkbox.
4.	 Select the Show only values that accumulate to radio button and set

the corresponding value to 50% relative to the total. Enable the Include
Boundary Values checkbox as well.

5.	 Click on OK to close the properties dialog.

The updated pie chart should look like the following screenshot:

We now see that there are actually only five airlines that, put together, account
for 50 percent of transported passengers. Also note that the amounts are shown
as a percentage, even though the expression we used returns an absolute number
(amount of passengers transported). This is because we have set the Relative
checkbox on the Expressions tab, which makes QlikView automatically calculate the
relative amount versus the total amount for each slice.

The Dimension Limits option we have used to achieve this is a very useful feature
that was introduced in QlikView 11 and enables us to control the number of
dimension values handled by a chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[184]

In the Dimension Limits window, all dimensions available in the chart are listed
to the left. Simply highlight the desired dimension to which the Dimension Limits
configuration should apply to and select any of the following settings to control the
number of dimension values displayed:

•	 From the Show only option we can select First, Largest, or Smallest x values
•	 From the Show only values that are option we can select Greater than, Less

than, Greater than or equal to, or Less than or equal to a certain value,
which can be given as:

°° A percentage relative to the total
°° An exact amount

•	 From the Show only values that accumulate to option we can select a certain
value, which can be given as:

°° A percentage relative to the total
°° An exact amount

The difference between the second and the third options is that the former evaluates
the individual result corresponding to the dimension's value, while the latter
evaluates the cumulative total of that value by either sweeping from largest to
smallest or vice versa. This can be used, for instance, in a Pareto analysis in which
we would present all carriers that make up the 80 percent of the flights, leaving all
the rest out.

Dimension limits can only be set based on the first
expression. In case the chart has more than one
expression, the rest are not taken into account.

Additional options can be set when working with dimension limits:

•	 Show Others: When this option is enabled, all dimension values that are
found off-limits will be grouped into an Others category, which will be
visible on the chart.

•	 Collapse Inner dimensions can also be used in conjunction with the Show
Others setting to either hide or display subsequent dimensions' values
on the Others row, in case the chart has further dimensions than the one
highlighted. This is useful mainly on straight tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

•	 Show Total: When this option is enabled a new total row will be displayed,
which is independent from the Total Mode control of the Expressions tab.
This means you can set the Total Mode option to perform an operation over
the rows, while the Dimension Total will hold the actual total, considering
on and off-limit dimension values.

The Show Total configuration from the Dimension Limits
window is virtually treated as a new dimension value. This
opens the possibility for having subtotals in a straight table.

•	 Global Grouping Mode: This option determines if the restrictions defined
should be calculated considering the inner dimensions or based on a sub
total, disregarding the remaining dimensions.

You may have noticed already that this option is not only found on pie charts but on
all charts, with the exception of the gauge chart and pivot tables.

Adding the dimension value to the data point values
While looking at the pie chart we created, you may notice that it is somewhat
inconvenient to have to switch between the pie slices and the legend to see which
slice represents which carrier. Fortunately, there is a little "hack" that we can apply to
place the labels on the data points as well. Follow these steps:

1.	 Right-click on the pie chart and select Properties….
2.	 Go to the Expressions tab, and select Add to add a new expression.
3.	 Enter the following expression:

if(count(distinct [Carrier Name]) = 1, [Carrier Name], 'Others')

4.	 For the Label field of the expression, enter Carrier and enable the Values on
Data Points option.

5.	 On the Presentation tab, uncheck the Show Legend checkbox.

While we're at it, let's apply some extra styling:

1.	 On the Font tab, set the Size to 8.
2.	 On the Layout tab, uncheck the Use Borders option.
3.	 On the Caption tab, uncheck the Show Caption option.
4.	 Click on OK to close the Properties window.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[186]

Now the carrier names, along with their respective market share, are shown directly
on the pie slices. Since there is no need for a legend anymore, we have disabled
it. The expression that we used: if(count(distinct [Carrier Name]) = 1,
[Carrier Name], 'Others')uses a conditional function to check if the current
slice corresponds to a single carrier by counting the distinct number of carrier names
(count(distinct [Carrier Name]) = 1). If the count equals one, the carrier name
is used; if not, it must mean that we are looking at the "others" slice of the pie, so the
"Others" label is applied. Our finished dashboard should now look like the following
screenshot:

We've now finished the dashboard sheet. We re-used quite a few objects from the
Analysis sheet, and added gauges, text objects, and a pie chart. Besides creating new
objects, we were also introduced to linked objects, actions, and dimension limits.

Let's move on to the last sheet, the Reports sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[187]

Creating the Reports sheet
Now that we've created our Dashboard and Analysis sheets, it is time to create the
final sheet from our DAR setup: the Reports sheet.

As was defined in the requirements, we will be creating the following objects:

•	 Aggregated flights per month
•	 KPIs per carrier

But before we begin creating new objects, let's first take a quick look at how we can
re-use the expressions that we have created earlier.

Variables
By now you may have noticed that we are using the same expressions in many
places. While we could simply type in the same expression every time, this approach
has two disadvantages:

•	 We risk introducing (minor) variations in the way expressions are calculated.
For example, one "revenue" expression might contain sales tax while another
does not.

•	 It makes maintenance harder; if the way an expression is calculated changes
we'd have to change it in many different places in our document, though the
Expression Overview window can help us simplify that task.

Enter variables. Variables make it easy to store expressions (and other statements,
but more on that later) in a central location from where they can be referenced
anywhere in our document.

Let's start by creating a variable to store the expression for the Load Factor % KPI:

1.	 Go to Settings | Variable Overview in the menu, or click Ctrl + Alt + V, to
open the Variable Overview window.

2.	 Click on Add, enter eLoadFactor in the Variable Name input box, and click
on OK.

3.	 While you would expect it, the new variable is not selected by default after
creation. Highlight the eLoadFactor variable and enter the following in the
Definition input box:
(Sum ([# Transported Passengers]) / Sum ([# Available Seats]))

4.	 In the Comment box, enter the description as The number of transported
passengers versus the number of available seats.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[188]

5.	 Click on OK to close the Variable Overview window.
6.	 Go to the Dashboard tab.
7.	 Open the properties for the Load Factor % gauge by right-clicking on the

object and selecting Properties….
8.	 On the Expressions tab, replace the definition for the Load Factor %

expression with $(eLoadFactor).
9.	 On the Presentation tab, replace the expression defined in the Text in Chart

with:
=Num($(eLoadFactor), '##.#%')

10.	 Click on OK to close the Chart Properties dialog.
Now, when you look at the Load Factor % gauge, you will notice that visually
nothing has changed. Behind the scenes, the gauge is now referencing
the centrally managed eLoadFactor variable. If we were to change this variable
in the Variable Overview window, the change would automatically be reflected
in the gauge.

There are a few points about the steps we used that you will want to take note of:

•	 Enclosing the expression in parentheses: As we want to make sure that
the expression always gets calculated in the right order, we enclose it
in parentheses. Imagine, for example, we had an expression vExample
containing 10 + 5 without parentheses. If we were to use that variable in an
expression containing a fraction, for example, $(vExample) / 5, the wrong
result would be returned (11 instead of 3).

•	 Not prefixing the variable expression with an equals sign: When the
expression in a variable definition is prefixed with an equals sign (=), the
variable gets calculated globally. In our example this would mean that the
Load Factor % value is calculated once for the entire data model. When used
in a chart, all dimensions would be ignored and the expression would just
return the same global value for each dimension. As we obviously do not
want this to happen, in this example we do not prefix our expression with an
equals sign.

•	 Dollar Sign Expansion: Enclosing a variable (or an expression) between
a dollar sign and parentheses (Dollar Sign Expansion), as we did on the
chart's expressions, tells QlikView to interpret the contents, instead of just
displaying the contents. For example, $(=1 + 1) will not return the static
text 1 + 1, but will return 2. We will look at Dollar Sign Expansion in more
detail in Chapter 10, Advanced Expressions. For now, it's sufficient to note that,
when referencing variables, we should use the Dollar Sign Expansion syntax
in order for them to be interpreted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

•	 The variable name begins with an e: This is for administration purposes
mainly. Having a consistent naming convention helps you, as the developer,
as well as any other third-party, to easily identify the purpose of any given
variable. We commonly use the following prefixes when naming variables:

°° eVariableName: When the purpose of the variable is to serve as an
expression definition

°° vVariableName: When the purpose of the variable is to store a value,
whether static or calculated

The Expression Overview window in action
Of course, creating variables for often-used expressions requires knowing which
expressions will be used often. This is not always known beforehand. Fortunately,
as we have seen earlier, we can use the Expression Overview window to find and
replace expressions in a document. Let's see how this approach works by swapping
the Performed vs Scheduled KPI with a variable:

1.	 Select Settings | Variable Overview from the menu, or click Ctrl + Alt + V,
to open the Variable Overview window.

2.	 Click on Add, enter ePerformedvsScheduled in the Variable Name input
box, and click on OK.

3.	 Highlight the ePerformedVsScheduled variable and enter the following in
the Definition input box:
(Sum([# Departures Performed]) / Sum([# Departures Scheduled]))

4.	 In the Comment box, enter Ratio between scheduled and performed
flights.

5.	 Click on OK to close the Variable Overview window.
6.	 Open the Expression Overview window by selecting Settings | Expression

Overview from the menu, or by pressing Ctrl + Alt + E.
7.	 Be sure to mark all different expression types from the filtering controls in

the window.
8.	 Click on the Find/Replace button.
9.	 Enter Sum([# Departures Performed]) / Sum([# Departures

Scheduled]) in the Find What input box.
10.	 Enter the following in the Replace With input box:

$(ePerformedVsScheduled)

11.	 Disable the Case Sensitive checkbox and click on Replace All.
12.	 Click on Close to close the Find/Replace dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[190]

Of course, using this method relies on the expressions being
entered identically in all places with no spaces out of place.
In reality this will not always be the case, you may have to
perform a more generic search and perform some manual
editing instead of using the Find/Replace option.

If everything went well, you should be able to see the updated expressions for the
Performed vs Scheduled gauge chart on the Dashboard sheet.

Now that we've seen how to create a new variable and how to retroactively update
hard-coded expressions to variables, it is left as an optional exercise to you, the
reader, to update the remaining expressions. The rest of this chapter will reference
the variables names, but you can also use the expression; the result will be the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[191]

Should you want to update the remaining expressions, their corresponding
definitions are shown in the following table.

Variable name Expression Description/Comment
eAirtime (Sum ([# Air Time]) /

Sum ([# Ramp-To-Ramp
Time]))

Time spent flying versus
total ramp-to-ramp time

eEnplanedPassengers (Sum ([# Transported
Passengers]) /
1000000)

Total enplaned
passengers in millions

eAvailableSeats (Sum ([# Available
Seats]) / 1000000)

Total available seats in
millions

eDeparturesPerformed (Sum ([# Departures
Performed]) / 1000)

Total departures
performed in thousands

eRevenuePassengerMiles (Sum ([# Transported
Passengers] *
Distance) / 1000000)

The total number of
miles (in millions) that
all passengers were
transported

eAvailableSeatMiles (Sum ([# Available
Seats] * Distance) /
1000000)

The total number of
miles (in millions) that
all seats, including
unoccupied seats, were
transported

Now that we've seen how we can create variables and how we can use them to re-
use expressions in our document, let's create the Reports sheet.

Copying sheets
While building the Dashboard sheet, we created a new sheet and copied linked
versions of all the relevant objects. Another approach is to copy an existing sheet and
remove all the unnecessary objects from it. We will take this approach to create our
initial Reports sheet:

1.	 Go to the Analysis sheet.
2.	 Right-click on an empty space on the worksheet and select Copy Sheet from

the context menu.
3.	 Open the Sheet Properties window for the new copy of the Analysis sheet

by pressing Ctrl + Alt + S.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[192]

4.	 Rename the sheet by entering Reports in the Title input box from the
General tab. Click on OK to close the Properties dialog.

5.	 From the new sheet, remove the objects that we do not need: the container
object and the scatter chart at the center, and the distance
statistics box.

Now we're ready to start adding our reporting objects.

KPIs per airline, origin, and destination country
Our first requirement is to create a table that shows Load Factor %, Performed vs
scheduled flights, and Air time %. We also want to be able to alternate the dimension
so we can see these KPIs by Airline, Origin Country, and Destination Country.

Cyclic and Drill-down groups
Since we want to be able to switch between dimensions in our table, we will be using
a cyclic group. As we saw before, cyclic groups can be used to dynamically switch
the dimension of a chart. We can cycle through the dimensions by clicking on the
circular arrow, or by selecting a specific dimension by clicking on the drop-down
arrow or right-clicking on the circular arrow.

In Chapter 2, Seeing is Believing, we described a way to create drill-down and cyclic
groups. However, there is another approach, which we will follow here:

1.	 Select Settings | Document Properties from the menu bar to open the
Document Properties window.

2.	 Go to the Groups tab and click on New.
3.	 Make sure that the Cyclic Group radio button is selected in the Group

Settings dialog window.
4.	 Enter Airline_Origin_Destination in the Group Name input box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

5.	 Select the Airline, Origin Country, and Destination Country fields from
the list of Available Fields and click on Add > move them under the Used
Fields list.

6.	 Click on OK to close the Group Settings dialog window.
7.	 Click on OK to close the Document Properties window.

We have now created a cyclic group called Airline_Origin_Destination that we can
use as a dimension in our charts.

When creating a cyclic group, make sure to select the Cyclic
Group radio button from the Group Settings dialog window. By
default this radio button is set to the Drill-down Group value.

A few interesting things to take note of:

•	 In the Group Settings dialog, the Label input box can be used to override the
display label of the field.

•	 Besides fields from the data model, an expression can also be used to define
a field. This field can be added using the Add Expression button and will
behave as a calculated dimension.

•	 In our example, we opened the Group Settings dialog via the Document
Properties window. It can also be opened via the Edit Groups… button,
which can be found on the Dimensions tab of chart objects. This method
is probably more convenient, as it fits better into the workflow of creating
a new chart object; it is the one we previously discussed in Chapter 2, Seeing
is Believing.

A drill-down group is created in the same way as a cyclic group, the only difference
is that the fields in the Used Fields list are not cycled through, but represent the
various levels in a drill-down hierarchy. The top field is the highest aggregation,
while the lowest field has the most detail. Our Traffic per Year chart uses a drill-
down group based on time; its defined hierarchy consists only of two fields: Year
and Month.

It is advisable to ensure that only fields that have a "proper" hierarchy are used for
drill-down groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[194]

Straight table
What is known as a straight table in QlikView is in fact a regular table. It can contain
dimensions and calculated expressions, which makes it the ideal candidate to display
our KPIs.

Straight table versus Table box
New QlikView developers often confuse the straight table with
the table box. While a straight table can contain both dimensions
and expressions, a table box, which is created by selecting Layout
| New Sheet Object | Table Box from the menu bar, can only
contain dimensions. This makes it unsuited to display calculated
aggregations. The table box can be very useful to display a quick
list of possible combinations of fields in the data model, though.

Let's follow these steps to create our KPI straight table:

1.	 Go to Layout | New Sheet Object | Chart in the menu bar.
2.	 On the General tab, select the Straight Table option in the Chart Type

section (bottom right icon).
3.	 In the Window Title input box, place the following expression and click on

Next:
='KPIs per ' &GetCurrentField(Airline_Origin_Destination)

4.	 On the Dimensions tab, select the Airline_Origin_Destination cycle group
from the Available Fields/Groups list and double-click on it to move it to the
Used Dimensions list.

5.	 Click on Next to go to the Expressions tab.
6.	 Create three new expressions using the predefined variables (or enter

their expressions directly, if you did not create the variables) and their
corresponding labels:

°° Load Factor %: $(eLoadFactor)
°° Performed vs Scheduled flights: $(ePerformedVsScheduled)
°° Air time %: $(eAirTime)

7.	 Click on Next twice to go to the Presentation tab.
8.	 Change the Alignment settings for all three expressions so that Label and

Data (Text) are set to Right and Label (Vertical) is set to Bottom.
9.	 Under the Totals section, select the Totals on Last Row radio button.
10.	 Under Multiline Settings, mark the Wrap Header Text checkbox.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[195]

11.	 Click on Next to go to the Visual Cues tab.
12.	 For all three expressions, set the Upper >= value to 0.85 and the Lower <=

value to 0.5.
13.	 Click on Next to go the Style tab.
14.	 Set Stripes every Rows to 1 and click on Next to go to the Number tab.
15.	 Set the Number Format Settings option for all three expressions to Fixed to 1

Decimals and enable the Show in Percent (%) checkbox.
16.	 Click on Next three times to go to the Caption tab.
17.	 Tick the Auto Minimize checkbox.
18.	 Click on Finish to create the straight table.

The result should look more or less like the following screenshot:

Most of the settings will seem pretty straightforward by now, except for the
following expression that we used for the Window Title input box:

='KPIs per ' & GetCurrentField(Airline_Origin_Destination)

In this expression, we used the GetCurrentField function. This function takes
the name of a cycle or drill-down group, Airline_Origin_Destination in our
example, and returns the name of the currently active field. When you cycle through
the three dimensions, you will notice that the table's caption changes to reflect the
active dimension.

Note that the GetCurrentField function returns the name
of the field in the data model, regardless of it being overridden
by the Label field. If this value needs to be changed, we should
either change it directly in the data model or change it by using
a conditional function in the expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[196]

Another thing you may notice in the final result is that some values have a hyphen
symbol (–) instead of a value. This happens when the result of the expression is null
or missing. We can illustrate this by creating a temporary table box containing the
Airline, # Departures Performed, and # Departures Scheduled fields. We will see
that, while 40-Mile Air has actually performed flights, none of them were scheduled.
This means that the Performed vs Scheduled flights KPI cannot be calculated
(division by zero is not possible).

Note that, in a table box, each possible combination of values resulting from the
enabled fields will occupy one row. All table records in the data model resulting in
the same combination of values are grouped into a single row. In our example, 40
Mile Air could have 10 records with 1.00 Departures Performed and these will all be
grouped into a single row in the table box.

If we want an exact count of the number of rows for each combination of dimensions,
we need to use a straight table and include the count function as an expression.

Not all expressions are numbers
A nice feature of straight tables (and pivot tables as well) is that not all expressions
need to be numbers. Take a look at the Expressions tab of the Chart Properties
window and you'll see a drop-down menu labeled Representation. By default this is
set to Text, but there are other interesting options:

•	 Image: This option works in the same way as the text object we used earlier.
For example, we could use this setting to display an upward arrow when a
certain indicator is showing positive results, or a downward arrow in case of
negative performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[197]

•	 Circular Gauge: When using this option, we are able to embed a circular
gauge chart, similar to the ones we added to the Dashboard sheet, into the
table cells. The in-cell chart will keep most of the functionality that a typical
gauge chart offers.

•	 Linear Gauge: A circular gauge takes up quite a bit of vertical space, making
it less suited for use within tables. The linear gauge, which mainly occupies
horizontal space, doesn't share this downside and is therefore better suited
for use within table cells.

•	 Traffic Light Gauge: This option shows a traffic light with the corresponding
value lit up. Alternatively, this can show a single light with the associated
color of the expression's value.

•	 LED Gauge: This option shows the expression's value using an
LED-style display.

•	 Mini chart: This option displays a trend using a line-based (sparkline, line
with dots, and dots) or bar-based (bars and whiskers) mini chart. It requires
an additional dimension on which the trend is based, for example, month.

•	 Link: This option is used to enable hyperlinking in the table cells. In this case
a <url> tag must be used within the expression to separate the cell display
text and the actual link. For example: =Company &'<url>'& [Company URL].

These options are useful to add visual cues to the otherwise plain table and help the
user spot trends quickly within the table.

The following screenshot shows a table with a linear gauge, a traffic light, and mini
chart embedded in the cells. This object is included on the Other representations tab
in this chapter's solution file.

Note that when tables are exported to Excel, images such as gauges or mini charts
will not be included in the export.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[198]

Pivot tables
Moving on to our second requirement for the report sheet, we now have to create a
table that shows enplaned passengers and departures performed across the Carrier
Group, Airline, Year and Month dimensions. This table should show totals for each
year, and subtotals for each carrier group.

To create this table we will use a pivot table, which offers more flexibility over a
straight table when working with multiple dimensions. Let's follow these steps to
create our table:

1.	 Right-click on an empty space in the worksheet and select New Sheet
Object | Chart.

2.	 On the General tab, select the Pivot Table option in the Chart Type section
(top-right icon) and click on Next.

3.	 On the Dimensions tab, select Carrier Group, Airline, Year, and
Month from the Available Fields/Groups list and add them to the Used
Dimensions section by clicking the Add> button.

4.	 In the Edit Expression dialog enter the previously defined expression for
Enplaned Passengers $(eEnplanedPassengers), and define the Label field
as Enplaned passengers (millions).

5.	 Add a second expression to calculate departures performed:
$(eDeparturesPerformed), and define the corresponding Label as
Departures Performed (thousands).

6.	 Click on Next twice to go to the Presentation tab.
7.	 Add a drop-down selection box for the Carrier Group, Airline, and Year

dimensions by selecting them in the Dimensions and Expressions listbox
and checking the Dropdown Select checkbox.

8.	 In the same way, enable the Show Partial Sums checkbox for the Carrier
Group and Airline dimensions.

9.	 The Enplaned passengers (millions) and Departures performed (thousands)
expressions will have the Alignment label set to Right.

10.	 Mark the Wrap Header Text checkbox and set the Header Height option to
3.

11.	 Click on Next three times to go to the Number tab.
12.	 For the Enplaned passengers (millions) expression, set the Number Format

Settings option to Fixed to and set it to 3 Decimals.
13.	 For the Departures performed (thousands) expression, set the Number

Format Settings option to Fixed to and set it to 2 Decimals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[199]

14.	 Click on Next three times to enter the Caption tab.
15.	 Enable the Auto Minimize checkbox.
16.	 Click on Finish to create the pivot table.

Once the pivot chart is created it will initially have all dimension values collapsed,
and only the first one will be visible. Use the plus icons to the side of each dimension
cell to expand it to the underlying level of aggregation. When a dimension value is
expanded, you can use the minus icon to collapse it.

Because we set the Drop-down Select option on Carrier Group, Airline, and Year,
we can open a pop-up listbox by clicking on the downward arrow in the header of
these fields. In big pivot tables, this makes searching for particular dimension values
a lot easier.

By right-clicking on the column header and selecting Expand all or Collapse all, we
are able to expand/collapse all corresponding dimension values at once.

One of the advantages of pivot tables is the ability to not only list dimension values
as rows, but display them as columns as well, creating a cross-table:

1.	 Expand any of the Carrier Group values to show the Airline column.
2.	 Now, expand any of the Airline values to show the Year column.
3.	 Click and drag the Year column to place it above the Enplaned passengers

(millions) column; this should place all the corresponding values at the top
horizontally. It is worth noting that it can sometimes require a bit of patience
to get the field placed in the right location.

The resulting pivot table should look like the following screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[200]

In many ways, the pivot table is similar to the straight table. However, you may
notice that there are a few differences:

•	 In a pivot table, expressions can be "rolled up" with subtotals (using the
Show Partial Sums setting) for different levels.

•	 It is possible to drilldown to a deeper level by clicking on the expand icons.
This can be overridden, however, by enabling the Always fully expanded
checkbox on the Presentation tab, which will make the table to always show
all possible dimension values.

•	 A cross-table can be created by dragging dimensions, like we just did
with the Year dimension. We can prevent this from happening by
unchecking the Allow Pivoting checkbox on the Presentation tab of
the Chart Properties window.

Auto minimize
We have now created two chart objects in our Reports sheet, a straight table and
a pivot table. These two tables do not necessarily need to be consulted at the same
time. Additionally, these objects would both benefit from being sized as large as the
screen space allows, so it's a good idea to display them one at a time.

Fortunately, while creating the tables we enabled the Auto Minimize option
(located on the Caption tab) for both of these objects. When the Auto Minimize
option is set for an object, it is automatically minimized whenever another object is
restored. For this to work, the corresponding objects must have the Auto Minimize
option enabled.

Let's make sure that both objects can utilize the maximum amount of space by
following these steps:

1.	 Minimize both the straight table and pivot table.
2.	 Position and resize the minimized tables in the space between the buttons

and the Bookmarks object.
3.	 Now, restore the straight table by double-clicking on its minimized icon.
4.	 Resize the table so that it occupies all the available space in the center of

the screen.
5.	 Next, restore the pivot table by double-clicking on its minimized icon. At this

point, the straight table should be automatically minimized; if it is not, then
check the Auto Minimize checkbox on the Caption tab for both objects.

6.	 Expand the fields in the pivot table and size it so that it uses all available
space in the center of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[201]

The resulting Reports sheet should look like the following screenshot:

The Report Editor window
Our observant readers may have noticed that the menu bar also includes a Reports
option. If we did not need it to create these reports, what does it do then?

While the "reports" we created in the Reports sheet show detailed information in
tabular form, they are limited to single tables. Another disadvantage is that these
reports can only be shared with others that have access to the QlikView document, or
by exporting them to Excel, in which case proper formatting will be lost.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[202]

Enter the Report Editor. The Report Editor window lets us design static reports that
can be used for printed distribution or saved to PDF files. While the Report Editor
is far from being a pixel-perfect reporting solution, it can be quite useful to quickly
create some static reports.

Let's see how the Report Editor window works by building a small report:

1.	 Go to Reports | Edit Reports in the menu.
2.	 From the Report Editor window, click the Add… button to create a

new report.
3.	 Enter Static Report as the Name for our new report and click on OK.
4.	 Click on the Edit>> button to begin editing the report.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[203]

We are now shown a single, empty report page. We can add objects to this page by
simply dragging them from our QlikView document. The implication of this is that,
to display an object on our report, it must also exist within our document.

In the following example, we will be using objects that we have
already created on our Dashboard, Analysis, and Report tabs.
In your own environment, you might create a separate, hidden
tab where you create and store objects that are exclusively used
for static reports. Such objects could be formatted differently
as well. For example, where we would want sort and selection
indicators on our objects used on a dashboard, we would want
to suppress these on the "reporting" object. That way, they are
not shown in the static report.

We will now add a few objects to our empty report:

1.	 Drag the Flight Type listbox from the app and into the Report
Editor window.

2.	 Go to the Dashboard tab and drag the Market Share pie chart into the
Report Editor window.

3.	 Next, go to the Analysis tab and drag the Traffic per Year line chart into the
Report Editor window.

4.	 Select Page | Page Settings from the menu bar of the Report Editor window.
5.	 Activate the Banding tab and check the Loop page over possible values in

field checkbox.
6.	 Select Flight Type from the drop-down box and click on OK.
7.	 Click on OK to close the Report Editor window.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[204]

We have now created a very simple report that loops over all values in the Flight Type
field and creates a single page showing the corresponding Flight Type, Market Share,
and Number of Flights. A shortcut to the report is placed under the Reports menu.

Other options in the Report Editor window to take note of:

•	 Single versus multi page: When creating a new page for a report, we can
decide if it should be single page, or multi page. The multi page version is
useful for printing tables that wrap over multiple pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[205]

•	 Report Settings | Header/Footer: It is used to set headers and footers for
our report. It has a few default variables that can be shown, such as page
number, date, time, filename, report name. An image can be included as well;
this can be useful to add a logo on our reports.

•	 Report Settings | Selections: Instead of basing our report on the current
selection in our document, we can also clear all selections or define a
bookmark as a starting point. Besides selections, we can use the Banding
function to loop the report over all possible values of a field. By setting
Banding at the report level, instead of applying it to a single report page,
it is applied to all pages in the entire report.

Although it is technically a "static report", it's also dynamic because the report
output, either a printed page or a PDF file, will be generated the moment the user
executes the report by selecting it from the Reports menu. This means that all
selections the user has in place when creating the report will also be applied to the
output, unless otherwise specified via the Report settings.

Now that we have created our Reports sheet and have created a static report, this
chapter is almost at its end. The new objects we encountered in this section are the
straight table, table box, and pivot table. Besides these objects, we also learned about
variables, cyclic and drill-down groups, auto minimizing, and the Report Editor.

Now let's go to the final part of this chapter, in which we will take a short look at
some of the objects that have not been covered in detail.

Other charts
Over the course of this chapter, we looked at the most common charts found within
QlikView. There are, however, some charts that we did not use, and we will use
this final section to take a quick glance at them. Do not worry though; with the
knowledge you picked up earlier in this chapter you should have no problem
creating these charts as well. Examples of these charts are also included on the Other
Charts tab of this chapter's solution file.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[206]

Radar Chart
The Radar Chart can be used to depict information that is cyclical in nature. For
example, the following screenshot illustrates the number of enplaned passengers
per month. In this example you can clearly see that travel increases during the
summer months:

Mekko Chart
The Mekko Chart is basically a bar chart with the ability to handle an additional
dimension. Our example, shown in the following image, displays the number of
enplaned passengers by Flight Type and Year. The width of the bar is determined
by the relative amount versus the total, considering the first dimension: Flight Type;
and the segment distribution within the bar is determined by the relative amount
versus the total, considering the second dimension: Year. Looking at this chart we
can clearly see that most passengers are being transported on Domestic, US Carrier
Only flights, and that the number of passengers transported is roughly equally
distributed over the years.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[207]

Grid Chart
A Grid Chart can contain three different dimensions. In the following example,
we've used the Year, Quarter, and Flight Type dimensions. The bubble size
represents the number of transported passengers. By taking a closer look, and
probably with some imagination, we can spot the same discoveries we made in
the first two charts. Bubble sizes are bigger in Q2 and Q3, indicating increased
travel during the summer. We can also easily see that most passengers are being
transported on Domestic, US Carriers Only flights. Additionally, we can see how
Q3 has been smoothly increasing over the last three years.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[208]

Funnel Chart
A Funnel Chart is often used in sales reports to visualize the "sales funnel", that is,
which sales opportunities are in which phase of the sales process. The following
screenshot shows an example chart that shows the various stages in the sales process
and how many clients are present in that phase:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[209]

Block Chart
A Block Chart can be used to display hierarchical information, by displaying blocks
within blocks. In our example, the size of the block corresponds to the number of
passengers that were transported. Each block represents a destination city, and they
are all grouped into bigger blocks according to their corresponding countries.

In this example we can clearly see that the majority of passengers have arrived
somewhere in the United States. Within the US, we can see that Atlanta, GA and
Chicago, IL are the most popular destinations.

By comparing blocks within the chart, we can see that the combined total number of
people traveling from US to Canada, Mexico, and the United Kingdom is smaller
than the number of people traveling to Atlanta, GA.

Trellis Chart
The Trellis Chart is not really a separate chart, but a chart option that exists on all
charts; with the exception of the straight tables and pivot tables. It creates a grid in
which a separate chart is created for each distinct value of the first dimension. To
facilitate easy comparisons between charts, each chart's axis uses the same scale.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Dashboards

[210]

In the following chart, we have created a chart with two dimensions: Flight Type
and Month. We have enabled the Trellis Chart option for the first dimension. The
result is a chart that shows, within a grid, a separate chart for each Flight Type. Each
separate chart shows the Load Factor % per Month.

The Trellis option can be set by going into the Chart Properties of a chart. On the
Dimensions tab you will find the Trellis button; clicking this brings up the Trellis
Settings, shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[211]

To create a trellis chart, we click on Enable Trellis Chart. Optionally, we can
manually set the Number of Columns and/or Number of Rows options.

With the exception of the trellis and the block chart, you
will find that whenever you are thinking of using any of
the charts (radar, mekko, funnel, or grid), there is usually
a better solution that uses a bar, line, or scatter chart.

Summary
This has been an intense chapter, but you've hopefully achieved a deeper
understanding of data visualization in QlikView and familiarized yourself with
the basics of building frontend dashboard, analyses, and reports in QlikView.

We started with the Analysis sheet, for which we created basic data visualization
objects like bar, line, combo, and scatter charts. We also learned how to create
container objects, statistics boxes, and buttons, and explored more in-depth chart
properties, expressions, the expression editor, and expression overview.

Next we built the Dashboard sheet, where we learned how to create gauges,
text objects, and pie charts, while also learning about linked objects, actions, and
dimension limits.

The final sheet that we built was Reports; here we learned how the straight table,
pivot table, and table box objects are created. Additionally, we also learned about
variables, cyclic and drill-down groups, auto minimizing, and the Report Editor.

We concluded this chapter by looking at some of the chart types that weren't
included in our QlikView document, and what the typical use case for these
chart types is.

In the next chapter we will take a better look at scripting. Before moving to the next
chapter however, you may want to take a little time to explore the various charts
and their options for yourself. While we have tried to show you as much as possible,
there is still a lot more to discover.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting
In the previous chapter, we looked at building the frontend objects for use in
dashboards, analyses, and reports. While it may be tempting to keep working on
the frontend, we still have a bit of work to do on the backend. Very often input data
is not in the exact same format as is required in the target data model, so in this
chapter we will look at how we can use QlikView's built-in scripting language to
transform our data.

We will first look at the script editor and some of the most important script
statements, and see how we can use them to manipulate tables and control the flow
of the script. This is followed by a look at some of the most commonly used functions
for dealing with conditions and various data types. As QlikView scripts can get quite
big and complex we will look at some ways in which we can debug our scripts. Next,
we look at how we can properly organize and standardize our scripts so that they
are easy to understand and maintain. We conclude this chapter by looking at how we
can re-use parts of our script within and between our QlikView documents.

In this chapter, specifically, we will learn about:

•	 The Script Editor
•	 The most important script statements and how to use them to manipulate

tables and control the flow of the script
•	 Operators and functions for dealing with various data types
•	 The options for debugging your script
•	 How to organize and standardize your script
•	 How to re-use your script

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[214]

The Script Editor
As we saw in Chapter 2, Seeing is Believing, Chapter 3, Data Sources, and Chapter 4,
Data Modeling, the script editor is where a lot of the magic happens. In this chapter,
we will be taking an in-depth look at the various functions that are available in
this environment.

We will again be expanding the Airline Operations.qvw document that we
worked on in the previous chapters. When you've opened the document, let's open
the script editor by selecting File | Edit Script from the menu or by pressing Ctrl + E.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

You will notice that the script editor consists of the following areas:

•	 A menu bar
•	 A toolbar
•	 A script pane
•	 A tool pane

Menu and toolbar
The menu offers a wide range of options, for some of which the toolbar offers
shorthand icons. For now, the most important options to take note of are:

Function Description
File | Reload Runs the entire script to reload the data
File | Save Entire Document Saves the entire document, not just the script
Tab | Add Tab As we have seen, QlikView scripts can be

organized using tabs; this function adds a new tab
Tab | Rename Renames the currently selected tab
Tab | Promote Moves the currently selected tab to the left

Tab | Demote Moves the currently selected tab to the right

Script pane
The area that draws the most attention is the big, white area—the script pane.
This is the main working area of the script editor. When a new QlikView file is
created, the new script is populated with a Main tab and a few lines where number
interpretation variables are added. These lines tell QlikView how to interpret various
numbers and are generated automatically based on your operating system settings.

When looking further at the script pane we can see that the lines are numbered and
that the editor has syntax highlighting. Based on their meaning, words in the script
have a different color or font decoration. For example, we see that the word SET is
shown in bold, blue text while the text immediately behind it is shown in italic, grey
text. It is important to note that QlikView statements always end with a ; (semicolon).

The exception to this rule are control statements, such as
the IF .. THEN .. ELSE,DO LOOP, FOR .. NEXT,
which are used to control the flow of the script. We'll
learn about control statements later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[216]

Tool pane
In the previous chapters, we only used the Data tab of the tool pane.

When looking at the pane we will notice that there are some additional tabs:

•	 The Functions tab gives a categorized overview of all the script functions
within QlikView. Further on, in this chapter we will have an in-depth look at
some of these functions.

•	 The Variables tab shows user and system variables. This tab is populated
after each reload, so in a new document it will be blank.

•	 The Settings tab contains some additional settings with regards to system
access and password scrambling.

Now that we have had a first look at the script editor, let's get a little more hands-on
and look at how we can create scripts.

Script statements
A QlikView script is made up of a sequence of statements. These statements are
typically used to either manipulate the data, or to conditionally control the way
in which the script is executed. For example, we may want to combine two tables
together, or skip over a part of a script if a condition is not met.

It is important to note that QlikView script is executed in a sequential order. This
means that script is executed top to bottom, and left to right.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

Building the aircraft dimension table
In Chapter 2, Seeing is Believing, we started building a small QlikView document to
analyze airline operations data. We loaded a fact table and some dimension tables.
All this data was loaded from QVD files, without any need for modifications. Of
course, this is a scenario that you are not likely to encounter in the real world. In
this example we will look at a scenario that is a little more plausible, l focusing on
the Aircraft Type dimension. Instead of a single, tidy Aircraft dimension, there are
multiple source files:

•	 Aircraft_Base_File.csv: This file contains information on airplanes that
were in the database up to and including 2009

•	 Aircraft_2010_Update.csv: This is an update file containing airplanes that
were added to the database since 2010

•	 Aircraft_Group.csv: This file contains attributes used to group airplanes;
the type of engine and the number of engines

Take a minute to look through the CSV files. Notice that the column AC_GROUP in
the Aircraft_Base_File.csv file references the column Aircraft Group ID in
the Aircraft_Group.csv file. The format of the Aircraft_2010_Update.csv file is
almost identical to the Aircraft_Base_file.csv file, but instead of an AC_GROUP
column it has an AC_GROUPNAME column. This column contains a concatenated string
with the engine type and number of engines.

Once you are done reviewing these source files, let's look at the steps involved in
building the aircraft dimension script.

Loading the aircraft information
Load the Aircraft information into QlikView by following these steps:

1.	 Open the Airline Operations.qvw document we saved in the previous
chapter and press Ctrl + E to open the script editor.

2.	 On the Data tab of the tool pane, make sure the Relative Paths checkbox
is enabled.

3.	 Go the Aircrafts tab and delete all script from the tab.
4.	 Click the Table Files button in the tool pane and navigate to the Data

Files\CSVs folder.
5.	 Select the file Aircraft_Base_File.csv.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[218]

6.	 Rename the fields by clicking on the column headers and replacing the text
as follows:

Original name New name
AC_TYPEID %Aircraft Type ID

AC_GROUP %Aircraft Group Type

SSD_NAME Aircraft Name

MANUFACTURER Aircraft Manufacturer

LONG_NAME Aircraft Name Full

SHORT_NAME Aircraft Name Abbreviated

BEGIN_DATE Aircraft Begin Date

END_DATE Aircraft End Date

7.	 Complete the Table File Wizard window by clicking on Finish.
8.	 Replace the Directory; text with [Aircraft Types]:, this will assign that

name to the table.

The resulting code should look as follows:

[Aircraft Types]:
LOAD AC_TYPEID as [%Aircraft Type ID],
 AC_GROUP as [%Aircraft Group Type],
 SSD_NAME as [Aircraft Name],
 MANUFACTURER as [Aircraft Manufacturer],
 LONG_NAME as [Aircraft Name Full],
 SHORT_NAME as [Aircraft Name Abbreviated],
 BEGIN_DATE as [Aircraft Begin Date],
 END_DATE as [Aircraft End Date]
FROM
[..\Data Files\CSVs\Aircraft_Base_File.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

Note how the source filename and path are specified in a relative manner, that is,
the location of the source file relative to the QlikView document. This happens
because we enabled the Relative Paths checkbox. Had we disabled the checkbox,
the full path and file name would have been used. For example, using relative paths
is convenient when your document will be moved around from a development to a
production environment.

Take a minute to review the rest of the script and see if your script matches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

Adding the aircraft groups
The next step is to enrich the Aircraft type data by adding the data from the
Aircraft_Group.csv file to it. To do this, follow these steps:

1.	 Place the cursor below the last line of the Aircraft Types load statement.
2.	 Click on the Table Files button in the tool pane and navigate to the Data

Files\CSVs folder.
3.	 Select the file Aircraft_Group.csv.
4.	 Notice that the headers in this file are not automatically detected

by QlikView.
5.	 Change the value of the Labels dropdown box to Embedded Labels.
6.	 Notice that the key column Aircraft Group ID does not match the name

we've given to the corresponding column in the Aircraft Types table.
Correct this by changing the name of the column to %Aircraft Group Type.

7.	 Complete the Table File Wizard window by clicking on Finish.
8.	 Replace the Directory; text with [Aircraft Groups]: to assign that name to

the table.
9.	 Save the document by pressing the Save icon on the toolbar, Ctrl + S, or by

selecting File | Save Entire Document.
The resulting code should look like this:
[Aircraft Groups]:
LOAD [Aircraft Group ID] as [%Aircraft Group Type],
 [Aircraft Engine Type],
 [Aircraft Number Of Engines]
FROM
[..\Data Files\CSVs\Aircraft_Group.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[220]

Better "Save" than sorry
By default, when QlikView encounters errors during the
reload of a document, it automatically closes the document and
reloads the last saved version of the file. It can be a frustrating
experience when you have just written a lot of script, only to
see all of it lost because you forgot a semicolon somewhere.
One way to avoid this problem is by always first saving your
script before reloading. This can be done by going to File |
Save Entire Document from the menu, by pressing Ctrl + S, or
by clicking on the Save icon in the toolbar.
Another more fail-safe way is to set QlikView to automatically
save the file before each reload. To do this, close the script
editor and open the User Preferences menu by selecting
Settings | User Preferences from the menu, or by pressing
Ctrl + Alt + U. In the menu, select the Save tab and tick the
checkbox labeled Save Before Reload. It is also advisable to
tick the checkbox Use Backup and set the field Keep Last
Instances to 5. This last option ensures that the last 5 versions
of the QlikView file are kept.

To run the script and see what the result is, follow these steps:

1.	 Select File | Reload, press Ctrl + R, or click the Reload button on the toolbar
to reload the script.

2.	 When the script has finished loading you will see the Sheet Properties
dialog, click on OK to close it.

You will notice that two of our list boxes have gone missing, Aircraft Group and
Aircraft Type. This has happened because the fields that were used for these list
boxes were removed from the data model.

Let's remove the two list boxes and replace them with a single Aircraft multibox, by
following these steps:

1.	 Right-click on the list box labeled (unavailable)[Aircraft Group] and select
Remove. As this is a linked object, select Delete All to remove the object
from all sheets.

2.	 Repeat the previous step for the list box labeled (unavailable)[Aircraft Type].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

3.	 Create a new multibox and add the Aircraft Name, Aircraft Engine Type,
and Aircraft Number of Engines fields.

4.	 Style the multibox to look like the following image and position it below the
Carrier Name list box.

5.	 Add the multibox to the Analysis and Reports sheets as a linked object by
holding Ctrl + Shift while dragging the multibox onto the respective tabs.

6.	 Verify that the data is associated by selecting the Name field from the
Aircraft multibox and checking if the Engine Type and Number of Engines
drop-down lists are being updated.

Loading the second aircraft table
Now that we have loaded these two tables, let's load the final file, Aircraft_2010_
Update.csv, into QlikView. Remember that this file is very similar to the Aircraft_
Base_File.csv file. The only difference is that there is no ID for an Aircraft Group,
just the actual Aircraft Group Name. We will load the file by following these steps:

1.	 Place the cursor below the last line of the current script.
2.	 Click on the Table Files button in the tool pane and navigate to the Data

Files\CSVs folder.
3.	 Select the file Aircraft_2010_Update.csv.
4.	 With the exception of AC_GROUPNAME, rename the fields in the

following manner.

Original name New name
AC_TYPEID %Aircraft Type ID

SSD_NAME Aircraft Name

MANUFACTURER Aircraft Manufacturer

LONG_NAME Aircraft Name Full

SHORT_NAME Aircraft Name Abbreviated

BEGIN_DATE Aircraft Begin Date

END_DATE Aircraft End Date

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[222]

5.	 Complete the Table File Wizard window by clicking on Finish.
6.	 Replace the Directory; text with [Aircraft Types 2010]: to assign that

name to the table.
7.	 If you did not turn on automatic saving, save the document by selecting File

| Save Entire Document from the menu or by pressing Ctrl + S.
The resulting script should look like this:

[Aircraft Types 2010]:
LOAD AC_TYPEID as [%Aircraft Type ID],
 AC_GROUPNAME,
 SSD_NAME as [Aircraft Name],
 MANUFACTURER as [Aircraft Manufacturer],
 LONG_NAME as [Aircraft Name Full],
 SHORT_NAME as [Aircraft Name Abbreviated],
 BEGIN_DATE as [Aircraft Begin Date],
 END_DATE as [Aircraft End Date]
FROM
[..\Data Files\CSVs\Aircraft_2010_Update.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

8.	 Reload the document by selecting File | Reload from the menu, or by
pressing Ctrl + R.

9.	 Once the script is finished, click on OK to close the Sheet Properties
[Dashboard] dialog.

10.	 Add the fields AC_GROUPNAME and Aircraft Begin Date to the
Aircraft multibox.

When we interact with the Aircraft multibox, we notice that something strange
is going on. There are three fields with overlapping information. AC_GROUPNAME
contains information that is also shown in the Engine Type and Number of
Engines drop-down lists. When we interact with the data, we will notice that any
aircraft that has an Aircraft Begin Date field before 2010 is associated with the
Engine Type and Number of Engines fields, while later models are associated
with the AC_GROUPNAME field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

When we open the table viewer we notice that the data model contains a synthetic
key table named $Syn1. We were introduced to synthetic keys in Chapter 4, Data
Modeling. In the next section we will see a practical example of how to resolve
this issue.

Making it all right
Remember how QlikView's associative logic works? It automatically associates fields
that have the same name. And those associations between tables can only be based
on a single field. Well, the Aircraft Types and Aircraft Types 2010 tables that we
loaded contain seven fields that match between these tables. To resolve this issue
QlikView created a synthetic key by creating a key for each unique combination of
the seven fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[224]

We will solve the problem by merging all these tables into a single Aircraft Types
dimension table. The following schematic shows the general approach we will
be taking.

We will begin by joining the Aircraft Groups table to the Aircraft Types table. We
will then concatenate (or union, for SQL connoisseurs) the Aircraft Types 2010 table
to the result we got by joining the Aircraft Groups table to the Aircraft Types table.
To achieve this, we follow these steps:

1.	 Go back to the script editor by pressing Ctrl + E or by selecting File | Edit
Script from the menu.

2.	 Go to the LOAD statement for the file Aircraft_Group.csv and replace the
text [Aircraft Groups]: with the text LEFT JOIN ([Aircraft Types]).

3.	 Next, go to the LOAD statement for the file Aircraft_2010_Update.
csv and replace the text [Aircraft Types 2010]: with the text
CONCATENATE([Aircraft Types]).

4.	 Replace the line reading AC_GROUPNAME, with SubField(AC_GROUPNAME, ',
', 1) as [Aircraft Engine Type],and press Return to create a new line.

5.	 On this new line enter SubField(AC_GROUPNAME, ', ', 2) as [Aircraft
Number Of Engines],.

6.	 Beneath the LOAD statement for the file Aircraft_2010_Update.csv add
the following code: DROP FIELD [%Aircraft Group Type] FROM
[Aircraft Types];.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

The finished code should look like this:
[Aircraft Types]:
LOAD AC_TYPEID as [%Aircraft Type ID],
 AC_GROUP as [%Aircraft Group Type],
 SSD_NAME as [Aircraft Name],
 MANUFACTURER as [Aircraft Manufacturer],
 LONG_NAME as [Aircraft Name Full],
 SHORT_NAME as [Aircraft Name Abbreviated],
 BEGIN_DATE as [Aircraft Begin Date],
 END_DATE as [Aircraft End Date]
FROM
[..\Data Files\CSVs\Aircraft_Base_File.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

LEFT JOIN ([Aircraft Types])
LOAD [Aircraft Group ID] as [%Aircraft Group Type],
 [Aircraft Engine Type],
 [Aircraft Number Of Engines]
FROM
[..\Data Files\CSVs\Aircraft_Group.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

DROP FIELD [%Aircraft Group Type] FROM [Aircraft Types];

CONCATENATE([Aircraft Types])
LOAD AC_TYPEID as [%Aircraft Type ID],
 SubField(AC_GROUPNAME, ', ', 1) as [Aircraft Engine Type],
 SubField(AC_GROUPNAME, ', ', 2) as [Aircraft Number Of
 Engines],
 SSD_NAME as [Aircraft Name],
 MANUFACTURER as [Aircraft Manufacturer],
 LONG_NAME as [Aircraft Name Full],
 SHORT_NAME as [Aircraft Name Abbreviated],
 BEGIN_DATE as [Aircraft Begin Date],
 END_DATE as [Aircraft End Date]
FROM
[..\Data Files\CSVs\Aircraft_2010_Update.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[226]

The following changes were made:

•	 By adding the LEFT JOIN ([Aircraft Types]) statement, we tell QlikView
not to load the data from the Aircraft_Group.csv file to a separate table.
Instead, it will be joined to the table specified between the parentheses. A join
is made over the common fields between both tables, in this case [%Aircraft
Group Type].

•	 By adding the CONCATENATE ([Aircraft Types]) statement, we tell
Qlikview not to load the data from the Aircraft_2010_Update.csv file to a
separate table. Instead, the rows are appended to the table specified between
the parentheses. Fields that are not shared between tables, for example, the
field [%Aircraft Group Type], get null values for the rows that are missing
this field.

•	 The AC_GROUPNAME column contains both the Engine Type and Number of
Engines fields, separated by a comma. The SubField(AC_GROUPNAME, ',',
1) as [Engine Type], expression uses the SubField function to split the
AC_GROUPNAME string into subfields based on the ',' delimiter. The first
subfield returns the Aircraft Engine Type table, the second subfield returns
the Aircraft Number of Engines table.

•	 As we no longer require the[%Aircraft Group Type] key field, the DROP
FIELD [%Aircraft Group Type] FROM [Aircraft Types]; statement is
used to remove it from the Aircraft Types table.

To see the effect of our changes, let's reload the script by selecting File | Reload from
the menu, or by pressing Ctrl + R.

After reloading has finished, open the Table Viewer window by selecting File |
Table Viewer from the menu, or by pressing Ctrl + T.

As we can see, all the source tables have been merged into a single Aircraft Types
dimension table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

Manipulating tables
Now that we have seen an example of how QlikView script statements and functions
can be used to load and combine data, let's look at some of the most common script
statements for manipulating tables.

As we saw in earlier chapters, the LOAD statement is the main statement used to load
data into QlikView.

The script we created in this chapter showed us two statements that can be used to
combine data from different tables: JOIN and CONCATENATE. We will now look at
these statements and others in some more detail.

The JOIN statement
The JOIN statement is a prefix to the LOAD statement. It is used to join the table
that is being loaded to a previously loaded table. The two tables are joined using a
natural join, this means that the columns in both tables are compared and the join
is made over those columns that have the same column names. This means that if
multiple columns are shared between tables, the match will be made over the distinct
combinations of those columns.

By default, QlikView performs an outer join. This means that the rows for both
tables are included in the resulting table. When rows do not have a corresponding
row in the other table, the missing columns are assigned null values.

Let us consider the following two tables:

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[228]

These two tables share two columns, B and C. Then we use the following code to
perform a regular join:

Table1:
LOAD * INLINE
[
A, B, C
1, 1, 1
2, 2, 2
3, 3, 3
];
JOIN

LOAD * INLINE
[
B, C, D
2, 2, 2
3, 3, 3
5, 5, 5
];

The result is the following table:

As you can see, the overlapping columns, B and C, have been merged into single
columns, and the fields A and D have been added from both tables. It is important
to note that, as the second table is being joined to the first the name of the table stays
Table1. It is also important to note that the rows that could not be joined, the first
and the last, get null values for the missing values.

Make it explicit
When using just the bare JOIN statement, the join will be made to the
table loaded directly before the JOIN statement. If the table to join to
was loaded somewhere earlier in the script, that table can be joined
to by supplying its name in parentheses. In our example this would
be achieved by replacing JOIN with JOIN (Table1). From the
perspective of keeping our code easy to understand, it is preferable to
always supply the name of the table to join to. While the load statement
for the table to join to may be directly above now, this may change in the
future. When that happens, the join is suddenly targeting another table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

The JOIN statement can be prefixed with the statements INNER, OUTER, LEFT, and
RIGHT, which performs an inner, outer, left, or right join respectively. This has the
following results:

•	 INNER JOIN: Only rows that can be matched between both tables will be kept
in the result.

•	 OUTER JOIN: All rows will be kept in the result, rows that do not have a
corresponding value in the other table will get null values for the fields that
are unique to that table. When no prefix is specified, this is the default join
type that will be used.

•	 LEFT JOIN: All rows from the first table and those rows from the second
table that have a corresponding key in the first table, will be included in the
result. When no match is found, null values will be shown for the columns
that are unique to the second table.

•	 RIGHT JOIN: All rows from the second table and those rows from the first
table which have a corresponding key in the second table, will be included
in the result. When no match is found, null values will be shown for the
columns that are unique to the first table.

Applied to our example tables, the results would be:

The KEEP statement
The KEEP statement works in the same way that the JOIN statement does, with a
small difference. Instead of joining the result in a single table, the KEEP statement
keeps both original tables and filters (keeps) rows in one table based on matching
rows in another table. The same logic for INNER, OUTER, LEFT, and RIGHT KEEP
applies here as did with the JOIN statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[230]

Let us consider the same two tables from the JOIN example:

If we apply a LEFT KEEP statement to these two tables, like shown in the
following code:

Table1:
LOAD * INLINE
[
A, B, C
1, 1, 1
2, 2, 2
3, 3, 3
];

Table2:
LEFT KEEP (Table1)
LOAD * INLINE
[
B, C, D
2, 2, 2
3, 3, 3
5, 5, 5
];

The result we get is the following two tables. As you can see, the last row from
the original Table2 has been filtered out as it does not correspond to any of the
rows in Table1:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

The CONCATENATE statement
The CONCATENATE statement is also a prefix to the LOAD statement, but instead of
matching and merging rows between tables, this statement appends the rows of one
table to another table.

Let us again consider the same two tables from the previous example:

We use the following code to concatenate the two tables:

Table1:
LOAD * INLINE
[
A, B, C
1, 1, 1
2, 2, 2
3, 3, 3
];

CONCATENATE (Table1)

LOAD * INLINE
[
B, C, D
2, 2, 2
3, 3, 3
5, 5, 5
];

The result is the following table:

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[232]

Notice how the rows from the second table were appended to the first table, and that
non-matching fields have all been given null values.

Make it explicit too
As you can see in the example code, the CONCATENATE
statement also supports explicitly specifying which table to
concatenate to. For the same reasons named with the JOIN
statement, it is a good idea to always do this.

The NOCONCATENATE statement
When two tables share the exact same columns, QlikView will automatically
concatenate them. For example, when looking at the following code we could
assume that the result would be two tables, Table1 and Table2.

Table1:
LOAD * INLINE
[
A, B, C
1, 1, 1
2, 2, 2
3, 3, 3
];

Table2:
LOAD * INLINE
[
A, B, C
4, 4, 4
5, 5, 5
6, 6, 6
];

However, in reality, as both tables share the exact same columns, QlikView will
implicitly concatenate Table2 onto Table1. The result of this script is a single table.

We can prevent this from happening by prefixing the LOAD statement for Table2
with the NOCONCATENATE statement. This statement instructs QlikView to create a
new table, even if a table with the same columns already exists.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

Using MAPPING tables
The MAPPING statement provides an alternative to the JOIN statement in a very
specific scenario: when you want to replace a single key value with a value from
a lookup (mapping) table. To see how this works, let's enrich our Aircraft Types
dimension table by adding the manufacturer's country. To do this, we open up the
script editor and follow these steps:

1.	 Place the cursor directly above the LOAD statement for [Aircraft Types].
2.	 Click the Table Files button in the tool pane and navigate to the Data

Files\CSVs folder.
3.	 Select the file Aircraft_Manufacturers.csv.
4.	 Set the Labels drop-down list to Embedded Labels.
5.	 Complete the Table File Wizard by clicking on Finish.
6.	 Replace the Directory; text with Map_Manufacturer_Country: to assign that

name to the table.
7.	 On the next line, prefix MAPPING to the LOAD statement.
8.	 Now add a line below the line MANUFACTURER as [Aircraft

Manufacturer], in the [Aircraft Types] LOAD statement.
9.	 On this line add the following script: ApplyMap('Map_Manufacturer_

Country', MANUFACTURER, 'Unknown') as [Aircraft Manufacturer
Country],.

10.	 Add a line below the line MANUFACTURER as [Aircraft Manufacturer], in
the CONCATENATE([Aircraft Types]) LOAD statement.

11.	 On this line add the following script: ApplyMap('Map_Manufacturer_
Country', MANUFACTURER, 'Unknown') as [Aircraft Manufacturer
Country],.

The modified script for the mapping table should look as follows:

Map_Manufacturer_Country:
MAPPING LOAD Company,
 Country
FROM
[..\Data Files\CSVs\Aircraft_Manufacturers.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[234]

By prefixing the LOAD statement with the MAPPING statement, we tell QlikView
that we want to create a mapping table. This is a specific type of table that has the
following properties:

•	 It can only have two columns, the first being the lookup value and the second
being the mapping value to return.

•	 It is a temporary table. At the end of the script, QlikView automatically
removes the table from the data model.

We then used the ApplyMap() function to look up the aircraft manufacturer's
country while loading the Aircraft_Base_File.csv and Aircraft_2010_Update.
csv files. The ApplyMap() function uses three parameters:

•	 The name of the mapping table to use, in our case this is the Map_
Manufacturer_Country table

•	 The search value, a field value or expression from the source table, that is
looked up in the mapping table. We used the MANUFACTURER field

•	 An optional value that specifies what value to use when no match is found
in the mapping table; here we used the value Unknown. When no value is
specified, the search value is returned.

You may wonder why we are using the name
MANUFACTURER in the ApplyMap() function, and not the
name [Aircraft Manufacturer] that we renamed it to.
This is because renamed fields only become known by the
name after the entire LOAD statement has been executed.

Let's look at how this affects the data model:

1.	 Save and reload the document.
2.	 After reload is finished, remove the fields AC_GROUPNAME and Aircraft

Begin Date from the Aircraft multibox.
3.	 Add the Aircraft Manufacturer and Aircraft Manufacturer Country

fields to the Aircraft multibox.
4.	 Select the value Unknown from the Aircraft Manufacturer Country list-box.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

We will notice that there are four aircraft that have an unknown Aircraft
Manufacturer Country field. When we look at the Aircraft Name drop-down list
we can see that this is because there are generic aircraft classes for which there are no
manufacturers listed.

Adding comments
The COMMENT statement can be used to add comments to tables and fields. These
comments will be shown when hovering the mouse cursor over table and field
names in various dialogs and the Table Viewer window, and are a very useful aid
for understanding the data.

Comments can be added to a table by using the following code:

COMMENT TABLE [Aircraft Types] WITH 'Dimension containing information
on aircrafts, including engine types and configuration and
manufacturer';

Fields can be commented in the same manner:

COMMENT FIELD [%Aircraft Type ID] WITH 'Primary key of the Aircraft
Type dimension';

Of course, commenting each table and field individually in the script is quite a lot
of work. Besides that, we often already have our table and field definitions stored
outside of QlikView, why would we want to duplicate work? Fortunately, we do
not have to. QlikView has the option to use mapping tables for the table and
field comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[236]

Let's open the script editor and apply comments to our Aircraft Types dimension by
following these steps:

1.	 Place the cursor beneath the last line of the Map_Manufacturer_Country
mapping table.

2.	 Click on the Table Files button in the tool pane and navigate to the Data
Files\Excel folder.

3.	 Select the file Comments.xls.
4.	 Check that the Tables drop-down box is set to Tables$.
5.	 Complete the Table File Wizard dialog by clicking on Finish.
6.	 Replace the Directory; text with Map_Table_Comments: to assign that

name to the table.
7.	 On the next line, prefix MAPPING to the LOAD statement.
8.	 Place the cursor beneath the last line of the Map_Table_Comments

mapping table.
9.	 Click on the Table Files button in the tool pane and navigate to the Data

Files folder.
10.	 Select the file Comments.xls.
11.	 Check that the Tables drop-down box is set to Fields$.
12.	 Complete the Table File Wizard dialog by clicking on Finish.
13.	 Replace the Directory; text with Map_Field_Comments: to assign that

name to the table.
14.	 On the next line, prefix MAPPING to the LOAD statement.
15.	 Place the cursor beneath the last line of the Map_Field_Comments

mapping table.
16.	 Add the following two lines:

COMMENT TABLES USING Map_Table_Comments;
COMMENT FIELDS USING Map_Field_Comments;

Our resulting script should look like this:

Map_Table_Comments:
MAPPING LOAD TableName,
 Comment
FROM
[..\Data Files\Excel\Comments.xls]
(biff, embedded labels, table is Tables$);

Map_Field_Comments:
MAPPING LOAD FieldName,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

 Comment
FROM
[..\Data Files\Excel\Comments.xls]
(biff, embedded labels, table is Fields$);

COMMENT TABLES USING Map_Table_Comments;
COMMENT FIELDS USING Map_Field_Comments;

We have now created two mapping tables and have instructed QlikView to use these
tables to assign comments to the tables and fields, using the COMMENT TABLES and
COMMENT FIELDS statements.

When we save and reload our document and open Table Viewer by pressing Ctrl +
T, we should see the comments that we loaded when hovering over the fields of the
Aircraft Types table.

Storing tables
Now that we have built our Aircraft Type dimension table, we can use it in our
QlikView document. In an environment with multiple documents, it is very likely
that we will want to re-use the same table in different apps. Fortunately, there is an
easy way to export a QlikView table to an external QVD file; the STORE statement.

We can store the Aircraft Types table to a QVD file by adding the following piece of
code at the end of our script:

STORE [Aircraft Types] INTO '..\Data Files\QVDs\
AircraftTypesTransformed.qvd' (qvd);

This tells QlikView to store the table [Aircraft Types] into the sub-folder
DataFiles\QVDs with the filename AircraftTypes.qvd. The .qvd suffix at the end
of the statement tells QlikView to use the QVD format. The other option is (txt) to
store the table in text format.

Renaming tables and fields
Renaming tables or fields in QlikView is done using the RENAME statement. The
following code shows some examples of this statement:

RENAME TABLE [Aircraft Types] TO [Aircraft];
RENAME FIELD [%Aircraft Type ID] TO [Aircraft ID];
RENAME FIELD [Aircraft Begin Date] to [Begin], [Aircraft End Date] to
[End];

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[238]

As we can see in the third statement, we can also rename multiple fields within the
same statement. We can also rename objects by using a mapping table, just like the
one we used for the comments. The following code shows an example:

RENAME TABLES USING Map_Table_Names;
RENAME FIELDS USING Map_Field_Names;

Of course, we must not forget to load a mapping table before using this approach.

Deleting tables and fields
Deleting tables or fields is done using the DROP statement. The following code shows
some examples of dropping table and fields:

DROP TABLE [Aircraft Types];
DROP FIELD [%Aircraft Group Type];
DROP FIELD [%Aircraft Group Type] FROM [Aircraft Types];

The first line deletes the table [Aircraft Types]. The second line deletes the field
[%Aircraft Group Type]. The third line also deletes the field [%Aircraft Group
Type], but only from the [Aircraft Types] table. If any other tables contain the
same field, those are left unaffected.

Setting variables
As we saw in the previous chapter, a variable is a symbolic name that can be used to
store a value or expression. Besides the frontend, variables can also be used within
QlikView scripts. For example, we may want to use a variable called vDateToday,
which we will set to the present day's date in our script:

LET vDateToday = Today();

The Today function is a built-in function that returns the present day's date. Once the
variable has been set, we can use its value everywhere in our statements.

QlikView has two statements that can be used to assign a value to a variable, SET
and LET. The difference between these two is that the SET statement assigns the
literal string to the variable, while the LET statement first evaluates the string before
assigning it. This is best illustrated with an example:

Statement Value of vVariable
SET vVariable = 1 + 2; 1 + 2

LET vVariable = 1 + 2; 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[239]

Controlling script flow
As we have seen before, QlikView script is executed from left to right and from top
to bottom. Sometimes, however, we may want to skip certain parts of the script or
execute a piece of script a few times in succession. This is where control statements
prove useful.

A control statement is a conditional statement whose results determines which path
will be followed. Let's open the script editor and follow these steps to conditionally
load Main Data based on a variable:

1.	 Select the Main tab.
2.	 At the bottom of the script, add the following expression:

SET vLoadMainData= 'N';

3.	 Select the Main Data tab.
4.	 Before the Main Data LOAD statement, create a new line that contains the

following statement:
IF '$(vLoadMainData)' = 'Y' THEN

5.	 At the bottom of the script, add the following statement:
END IF

Now when we reload the script, we will notice that the Main Data table will not be
loaded. Only when we change the value of the variable vLoadMainData to Y and
reload the script will the Main Data table be included. Also notice that we are using
Dollar Sign Expansion in the same way we've used it in the frontend earlier.

Before continuing make sure that the value of vLoadMainData
is set to Y in the script.

The control statement that we used in our example is IF .. THEN .. END IF. This
checks If a certain condition is met; if it is, a piece of script is executed. As QlikView
needs to know how much of the script should be executed, the statement is ended
with END IF.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[240]

Other control statements of interest are:

Control statement Explanation Example
DO

LOOP

Execute statements WHILE or
UNTIL a condition is met.

DO WHILE i< 10

 [executed while i is less than 10]
LOOP

FOR

NEXT

Use a counter to loop over
statements.

FOR i = 1 TO 10

 [executed for values 1 to 10]
NEXT

FOR EACH

NEXT

Loop over statements for each
value in a comma separated
list.

FOR EACH i IN A, B, C

 [executed for A, B and C]
NEXT

IF

THEN

ELSEIF

ELSE

END IF

Follow a different path based
on which condition is met,
this is the control statement
we used in our example. The
ELSEIF and ELSE conditions
are optional.

IF i = 1 THEN

[executed when i = 1]
ELSEIF i = 2 THEN

[executed when i = 2]
ELSE

 [executed when i not 1 or 2]
END IF

SWITCH

CASE

DEFAULT

END SWITCH

Execute a different group of
statements (CASE) based on
the value of an expression.
If no match is found for
the value, the DEFAULT
statements are executed.

SWITCH i

CASE 1

 [executed when i is 1]
CASE 2

 [executed when i is 2]
DEFAULT

 [executed when i not 1 or 2]
END SWITCH

A special type of control statement is the SUB .. END SUB statement. This defines a
subroutine, a piece of script that can be called from other parts of the script. We will
look into this in more detail later in the Re-using scripts section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[241]

Conditional functions
Often in QlikView, you want to modify the data based on a condition. For example,
we may want to classify any aircraft that was present in the database before 1990
as "Classic", and classify everything from 1990 onward as "Current". Let's open the
script editor and see how this is done:

1.	 Locate the [Aircraft Types] LOAD statement.
2.	 Add a comma behind the line END_DATE as [Aircraft End Date] and

press Return to create a new line.
3.	 On the new line, put the following expression: If(Year(BEGIN_DATE) <

1990, 'Classic', 'Current') as [Aircraft Age Classification]

4.	 As the 2010 update only contains aircraft that are newer than 2010, we do not
need to use the conditional expression, instead we can use a fixed value.

5.	 Add a comma behind the line END_DATE as [Aircraft End Date] and
press Return to create a new line.

6.	 Put the following expression on this line: 'Current' as [Aircraft Age
Classification]

7.	 Save and reload the document.
8.	 Add Aircraft Age Classification field to the Aircraft multibox.

When we select the value Classic from the Aircraft Age Classification drop-down
list, we see that only dates before the year 1990 are being selected.

The expression uses the If function as follows:

If(Year(BEGIN_DATE) < 1990, 'Classic', 'Current') as [Aircraft Age
Classification]

The If function takes three parameters:

•	 A condition, in our case Year(BEGIN_DATE) < 1990, which returns true if
the year of the date is before 1990. Otherwise false is returned

•	 The expression to use if the condition is true: 'Classic'
•	 The expression to use if the condition is false: 'Current'

As we will see later, QlikView has many other conditional functions. However,
the If function is the most common. For those who want to check the available
conditional functions, select Help | Help from the menu, choose the Index tab, and
search for Conditional functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[242]

Dealing with different data types
As we've seen in the previous section, QlikView offers a complete toolbox for dealing
with data. In this section we will be looking at some of the most important operators
and functions for dealing with strings, numbers, dates, and times.

Strings
Strings are pieces of text; in QlikView these are often used to provide context to
the numbers. You may have noticed that in the script, strings are always enclosed
between single quotes (').

String operators
The most common operation performed on strings is concatenating two or more
strings together into a single string. This is achieved by using the & operator, for
example:

[First Name] &' '& [Last Name]

This concatenates the values of First Name and Last Name, with a space between
them, into a single string containing the full name.

String functions
The following table shows the most important string functions.

Function Explanation Example Result
len(string) Returns the length of

a string.
len('QlikView') 8

left(string,
number of
characters)

Starting from the left
of the string, returns
the specified amount
of characters.

left('QlikView', 4) Qlik

right(string,
number of
characters)

Starting from the
right of the string,
returns the specified
amount of characters.

right('QlikView', 4) View

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[243]

Function Explanation Example Result
mid(string,
starting
character,
number of
characters
(optional))

Returns a substring
from the string,
starting at the
specified character.
Optionally, the
length of the
substring can be
specified. If no length
is specified, the
right-most part of the
string (starting at the
specified position) is
returned.

mid('QlikView', 5,
2)

mid('QlikView', 5)

Vi
View

index(string,
substring,
occurrence
(optional))

Returns the
position at which
the substring is
found in the string.
If an occurrence is
specified, QlikView
will look for that
specific occurrence,
otherwise the
first occurrence
is assumed. If a
negative number
is supplied for
occurrence, QlikView
starts searching from
the end of the string.
If no match is found,
the function returns
0.

index('QlikView',
'i')

index('QlikView',
'i', 2)

index('QlikView',
'i', -1)

3
6
6

upper(string) Converts the string
to upper case.

upper('QlikView') QLIKVIEW

lower(string) Converts the string
to lower case.

lower('QlikView') qlikview

capitalize
(string)

Capitalizes each
word in the string.

capitalize
('QlikView
document')

Qlikview
Document

replace(string,
search string,
replace string)

Replaces the search
string in the string
with the replace
string.

replace('QlikView',
'Qlik', 'Click')

ClickView

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[244]

Function Explanation Example Result
keepchar(string,
characters to
keep)

Returns the string
without the
characters that are
not specified in the
keep list.

keepchar('QlikView',
'ike')

ikie

purgechar
(string,
characters to
purge)

Returns the string
minus the characters
specified in the
purge list.

purgechar
('QlikView', 'ie')

QlkVw

textbetween

(string, start
text, end text,
occurrence
(optional))

Returns the substring
found between the
start and end text.
If an occurrence is
specified QlikView
will look for that
specific occurrence,
otherwise the first
occurrence will be
assumed.

textbetween
('<Qlik><View>',
'<', '>')

textbetween
('<Qlik><View>',
'<', '>', 2)

Qlik

View

trim(string) Returns the string
without any leading
and trailing spaces.

trim(' QlikView ') QlikView

ltrim(string) Same as the trim
function, but only
removes leading
spaces.

ltrim(' QlikView
')

QlikView

rtrim(string) Same as the trim
function, but only
removes trailing
spaces.

rtrim(' QlikView
')

QlikView

Information on other string functions can be found by selecting Help | Help from
the menu, choosing the Index tab, and searching for String functions.

Of course, all of these functions can be nested. For example, in our Airline
Operations document, origin and destination airports follow the following
naming convention:

[Name of town], [State or Country]: [Name of Airport]

For example:

New York, NY: John F. Kennedy International

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[245]

or

Amsterdam, Netherlands: Schiphol

If we are only interested in extracting the actual name of the airport, the part behind
the colon, we could use the following expression:

mid(index([Destination Airport], ':') + 2)

In this example, we first use the index function to retrieve the position of the colon.
We then tell the mid function to retrieve the string that starts two positions to the
right of the colon (we don't want the colon or the trailing space).

Similarly, we can use nested functions to retrieve the name of the town:

left([Destination Airport], index([Destination Airport], ',') – 1)

This tells the left function to retrieve all characters up to the first occurrence of
a comma.

Numbers and numeric functions
QlikView supports the basic arithmetic operators.

Operator Explanation Example Result
+ Add 2 + 2 4
- Subtract 10 - 5 5
* Multiply 5 * 5 25
/ Divide 25 / 5 5

The following table shows some of the most important numeric functions:

Function Explanation Example Result
Ceil() Round up. Optionally, a parameter can

be specified to indicate which multiple
to round up to.

Ceil(2.5)

Ceil(2.6, 0.25)

3
2.75

Floor() Round down. Optionally, a parameter
can be specified to indicate which
multiple to round up to.

Floor(2.5)

Floor(2.6, 0.25)

2
2.5

Round() Round the number. Optionally, a
parameter can be specified to indicate
which multiple to round to.

Round(3.14)

Round(3.16, 0.1)

Round(3.14, 0.1)

3
3.20
3.10

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[246]

Besides basic numeric functions, QlikView has an entire range of statistical, financial,
and mathematical functions. An overview can be found by opening the Help file by
selecting Help | Help from the menu, switching to the Index tab, and searching for
Script functions.

Additionally, the Functions tab on the tool pane in the script editor also gives you
access to the entire library of functions.

DUAL data type
Besides the usual data types, QlikView has a data type that can
be interpreted as both a number and a string—the DUAL data
type. This data type is often used for months, where a month
field may return both an abbreviation (Jun) and a number (6).
Dual values are created using the Dual() function. For example:
Dual('June', 6)

Date and time functions
Date and time are important attributes in a QlikView document. Being able to see
how things have evolved over time is practically a mandatory requirement in any
BI project.

It is important to understand that, underneath, the DateTime data type is
represented by a floating point number.

For example, 12 noon on May 22nd 2012 is stored as 41,051.5. The whole number
41,051 represents the date; it is the number of days that have passed since December
31st, 1899. The fractional part 0.5 represents the time. As a day (24 hours) is 1, an
hour is 1/24 and 12 hours is 12/24, which is equal to 1/2 or 0.5.

Knowing this, we can use many of the numeric functions that we saw earlier to
perform date and time calculations. For example, we can use the Floor()function to
remove the time information from a date.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[247]

Besides the numerical functions, QlikView has a broad range of functions that
specifically deal with date and time. The following list shows the most common
ones. For example, assume that Date equals 10.15 AM on May
22nd, 2012 , which is a Tuesday.

Function Explanation Example Result
Year() Returns the year part of the date. Year(Date) 2012
Month() Returns the month part of

the date.
Month(Date) 5

Week() Returns the ISO week number of
the date.

Week(Date) 21

Day() Returns the day of the month. Day(Date) 22
Weekday() Returns a number between

0 (Monday) and 6 (Sunday),
representing the day of the week.

Weekday(Date) 1

Hour() Returns the hour part of the time. Hour(Date) 10
Minute() Returns the minute part of

the time.
Minute(Date) 15

Today() Returns today's date, without a
timestamp.

Today() 2012-05-22

MakeDate() Creates a date from the supplied
year, month, and day. If no day
is specified, the first day of the
month is assumed. If no month is
specified, the first month of the
year is assumed.

MakeDate(2012, 5,
22)

MakeDate(2012, 5)

MakeDate(2012)

2012-05-22
2012-05-01
2012-01-01

An overview of all date and time functions can be found by opening the Help file by
selecting Help | Help from the menu, switching to the Index tab, and searching for
Date and time functions.

Now that we have seen how we can use different statements, functions, and
expressions to create QlikView scripts, it is time to see what options we have for
debugging our script.

Debugging script
As with every form of scripting, writing QlikView scripts carries with it the risk of
introducing bugs and errors. In this section, we will look at some of the available
options to find and solve bugs in your script.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[248]

Syntax check
Improper use of syntax is a common cause of errors. Fortunately, QlikView has a
feature that will catch these errors as they happen: Syntax Check.

As we saw earlier, QlikView script has syntax highlighting. Whenever incorrect
syntax is detected, the statement is underlined in a red squiggly from that point
onward. In practice, this means that often the error was made in the line that appears
before the red underlined text. The following screenshot shows a piece of script with
a syntax error, see if you can see what the error is.

If you looked closely at the script in the previous picture, you will have noticed that
there was a comma missing after the TableName column. This causes the statement
to be underlined in red from that point onward.

Besides catching errors on-the-fly, we can also run a syntax check over the entire
document by selecting Tools | Syntax Check from the menu, or by clicking the icon
showing an arrow underlined in red, the right-most icon on the toolbar.

Saving logs to disk
When a reload is performed in QlikView, a log of all activity is shown in the Script
Execution Progress window. A copy of this log can also be saved to disk so you can
review it at a later time. If you haven't already set this up for the current example
document, please follow these steps to generate log files:

1.	 Go to Settings | Document Properties to open the Document Properties.
2.	 On the General tab, check the Generate Logfile checkbox.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[249]

3.	 To create individual log files for each time the script is executed, check the
Timestamp in Logfile Name checkbox.

4.	 Click on OK to close the Document Properties dialog.

Now, each time the script is run, an additional log file is created in the
same folder as your QlikView document. The log file has the name of your
document, with the date, time, and .log extension post fixed to it. For
example Airline Operations.qvw.2012_07_07_10_24_43.log.

The script debugger
The Debugger offers some handy features to troubleshoot issues in your QlikView
script. We can open the Debugger window, shown in the following screenshot, by
clicking on the icon labeled debug on the toolbar, or by selecting File | Debug from
the menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[250]

Besides buttons that trigger the various actions, the debugger dialog contains, from
top to bottom, the following areas:

•	 The script from all tabs concatenated into a single script.
•	 The statement that is currently being executed.
•	 On the left, the script execution log file. This shows the same information as

the Script Execution Progress dialog window during normal reload.
•	 On the right, the current values of the document's variables.

We can run the script in the following different ways:

•	 Using the Run button, which will run the script in the regular manner to the
end, or until a breakpoint is reached.

•	 When clicking on the Animate button, the script is run in the regular manner,
but a small pause is added after each step. This way the script execution can
be monitored more easily.

•	 When the Step button is clicked, the script executes a single statement.

The statement that is currently being executed is marked with a yellow bar, in the
preceding screenshot this can be seen on line 73.

The following functions within the debugger are noteworthy.

Using breakpoints
Breakpoints are used to pause execution of the script at a particular point so that
the intermediate state of the environment can be inspected without having to Step
through the entire script.

A breakpoint is represented by a red dot, which is added by clicking on the
row number. The preceding screenshot shows a breakpoint on line 82. A single
breakpoint is removed by clicking on it. We can remove all breakpoints by clicking
on the Clear button.

Limited load
With their long load times, debugging scripts that load a lot of data can be rather
cumbersome. This is where the Limited Load option proves useful. When this option
is checked, QlikView will, for each statement, only load the number of rows that are
specified in the input box.

As a limited load does not load all data, it is important to note that
lookups, mappings, and joins may not function correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[251]

Tracing script
Another option that can be used to debug your scripts is the Trace statement. This
statement is called from the script and can be used to write all sorts of (debug)
information to the Script Execution Progress window.

For example, we can check if the amount of rows in the Aircraft Types changes
after we add the left join command to the data from the Aircraft_Group.csv file
to it. This is done by putting the following code before and after the statement.

LET vNoOfRows = NoOfRows('Aircraft Types');
TRACE >>> Number of rows in Aircraft Types: $(vNoOfRows);

The first line of this script uses the No Of Rows() function to assign the value of the
number of rows in the Aircraft Types table to the vNoOfRows variable. The
second line uses the TRACE statement to write this value to the Script Execution
Progress window.

The result is shown in the following screenshot; we can see that there are 369 rows
before and after the left join statement, in the table.

Now that we have seen the various options for debugging our QlikView scripts, it is
time to think about how to keep things tidy and understandable.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[252]

Standardizing and organizing script
Have you ever experienced the following situation? A challenging problem
presents itself. After many hours of thinking, developing, thinking some more, and
developing some more, you have crafted a solution. "This is brilliant work!" you say
to yourself, "It completely solves the problem, and in a very elegant way too."

Fast-forward a few months. A new business question presents itself and a small
change to your original solution is required. You look at your original work, and
after some poking around decide that you can make neither head nor tail of it."This
is horrible work!" you say to yourself, "What was I thinking at the time?".

Did your script really go from brilliant to rubbish over the course of 6 months?
Most likely not. You have just lost familiarity with the script. Fortunately, there
are ways to ensure that you (and others) are able to quickly get up to speed when
modifying existing QlikView script. The secrets are organizing your scripts and
using naming conventions.

Using tabs
As we saw when we first looked at the script editor, the script can be split up into
different tabs. It is advisable to divide your script into different tabs, each one
focusing on a different functional area or table.

To add a tab, select Tab | Add Tab from the menu or click the Add new tab button
on the toolbar. Tabs can be moved left and right by selecting Tab | Promote and Tab
| Demote respectively, or by clicking the corresponding buttons on the toolbar.

Let's organize our script by opening the script editor and following these steps:

1.	 Select Tab | Add Tab from the menu.
2.	 Name the tab Mapping and click on OK to close the Tab Rename window.
3.	 Promote the Mapping tab so that it is in front of the Main Data tab.
4.	 Move all MAPPING LOAD statements (Map_Manufacturer_Country, Map_

Table_Comments, and Map_Field_Comments) from the Aircrafts tab to the
Mapping tab.

5.	 Create a new tab by clicking on the Add new tab button on the toolbar.
6.	 Name the tab Comments and click on OK to close the Tab Rename window.
7.	 Promote the Comments tab so that it is in front of the Main Data tab.
8.	 Move all COMMENT statements from the Aircrafts tab to the Comments tab.
9.	 Save the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[253]

Now the script is starting to look organized.

Comments
Comments can be added in the script in two ways. A single line can be assigned as a
comment by prefixing it with //. For example:

// This is a single line comment

Additionally, multiple lines can be converted to comments by enclosing them
between /* and */. Like this:

/* This is the first line of the comment
This is the second line of the comment*/

It is advisable to comment the following things:

•	 Table names: They makes it easy to understand which script belongs to
which table

•	 General information: For example, who made this change, when, and also
which field is being used as a key field in a JOIN statement

•	 Business logic: It describes what the business logic is and why you are taking
a certain approach

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[254]

An example of comments added to the Aircraft Types tab of our document is shown
in the following image.

Adding an information tab
It is good practice to add an Information tab to your script. On this tab you
document, amongst other things, information about who developed the document,
what the goal of the document is, and when it was last modified. Additionally, a
change log can be included to track which changes were made over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[255]

Take a moment to add an information tab to your document. An example template is
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[256]

Script layout
Besides tabs, comments, and an information sheet, using a proper layout for your
script greatly increases readability. It is recommended to use indentation to visualize
the different levels in your script. It is also recommended to align all of your aliases
(the field name after the as part in LOAD statements). Compare the following script to
the commented script shown earlier and you will notice that it is much easier to read.

Naming conventions
Lastly, it is recommended to use naming conventions and to use these consistently
throughout your script. We will now have a look at the naming convention that is
being used for the documents in this book.

Table naming conventions
Tables that will be used in the final data model have a "business" name that is in
plural. That means, a business user understands what is stored in the table. So
instead of naming our table CST_DATA, we name it Customers. This also means that it
is permissible to have spaces in our table names.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[257]

Mapping tables are prefixed with the word Map so that they are immediately
recognizable as mapping tables. These tables can use technical names, for example,
Map_Manufacturer_Country.

Temporary tables are tables that are not used in the final data model, they hold
a temporary or intermediate result. We did not yet use any temporary tables in
our examples, but when we use them they are prefixed with TEMP. For example,
Temp_Flights.

Field naming conventions
Like tables that are used in the final data model, field names also have a
business-friendly name. For example, Aircraft Name instead of SSD_NAME.
As many of these names contain spaces, field names are enclosed in square
brackets by default, even if they do not contain any spaces.

Key fields, fields that are used to link tables together, are prefixed with a %
(percentage) sign. For example, [%Aircraft Type ID].

Hiding fields
Key fields can cause confusion in the QlikView frontend.
As these fields are used in multiple tables, they can return
unexpected results when used in an aggregation function. It is
therefore advisable to hide these fields from the frontend view.
There are two variables that can be used to hide fields:
HidePrefix and HideSuffix. The first variable hides all field
names that start with a specific text string and the second one
hides all field names that end with a specific text string.
To hide our key fields, we can add the following statement at
the start of our script: SET HidePrefix='%';

Measures, fields that contain amounts, are prefixed with a # (pound or hash) sign.
For example, [# Total Passengers].

Flags, fields that contain a Yes/No or 1/0 indicator, are prefixed with
a _ (underscore) sign. For example, [_Flight arrived on time].

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[258]

Re-using scripts
When developing QlikView documents, we often have to apply the same set of logic
or transformations to different data. I have often observed QlikView developers
taking a copy-paste approach for re-using a script. While this approach may initially
work, it does make the script a lot harder to maintain. When something needs to
be changed, you need to change it in each instance of the script, running the risk of
different versions of the same transformation process.

In this section, we will look at two better approaches for re-using data. The first
is the use of subroutines, which can be used to re-use script within an document.
The second is the use of include files, which enables re-use of script between
different documents.

Subroutines
A subroutine is a reusable block of script that can be called from other places in the
QlikView script by using the CALL statement. This block is formed using the SUB and
END SUB control statements. Subroutines can contain parameters so that processing
can be done in a flexible manner.

As the QlikView script is processed in sequential order, the
subroutine has to be defined before it can be called. Therefore, it
is advisable to create subroutines as early as possible in the script.
When executing the script, everything between the SUB and
END SUB control statements is ignored by QlikView. The
subroutine is only run when it is called via the CALL statement.

A good example of a candidate for a subroutine is the trace statement that we
used earlier to write the number of rows in a table to the Script Execution Progress
window. Let's see how we can package this into a subroutine. As we want our
subroutine to be flexible, we will add a parameter to specify the table that we want to
show a row count for.

We will create this subroutine by following these steps:

1.	 Open the script editor by pressing Ctrl + E.
2.	 Create a new tab called Subroutines and place it immediately after the

Main tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[259]

3.	 Enter the following script.
SUB TraceRowCount (SourceTable)
// Writes the number of rows in SourceTable
// to the Script Execution Progress window.

 IF '$(SourceTable)' <> ''
 LET vNoOfRows = NoOfRows('$(SourceTable)');
 TRACE >>> Number of rows in $(SourceTable): $(vNoOfRows);
 LET vNoOfRows = Null();
 ELSE
 TRACE >>> No table name specified;
 END IF

END SUB

4.	 Go to the Aircrafts tab.
5.	 Immediately after the first Aircraft Types load statement, enter the

following statement: CALL TraceRowCount('Aircraft Types');
6.	 Add the same statement after the LEFT JOIN ([Aircraft Types])

statement, just above the DROP FIELD statement.

Let's have a closer look at what this script does.

The subroutine is declared using the SUB control statement:

SUB TraceRowCount (SourceTable)

This tells QlikView that we want to declare a subroutine called TraceRowCount,
which takes a single parameter: SourceTable. This parameter is passed into the
subroutine as a variable, which only exists within the context of that subroutine.

The script checks if a value was given for the SourceTable parameter, if it has a
value the number of rows is written to the Script Execution Progress window in the
same way we saw earlier. If there is no value, an error message is returned.

The subroutine is ended using the End Sub statement.

You may wonder why we used the LET vNoOfRows = Null();
statement. By default, variables that are created in script are also
available on the frontend. To prevent this, we delete the variable
by assigning it the value Null(). This approach does not work for
variables that already exist, in that case you will first have to delete
them manually from the Variable Overview (opened by pressing
Ctrl + Alt + V in the frontend).

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[260]

On the Aircrafts tab, we used the CALL TraceRowCount('Aircraft Types');
statement to show the number of records in the Aircraft Types table before and
after joining the engine configuration information to it.

Including script files
As we have seen in the previous section, we can use subroutines to re-use pieces
of script within a QlikView document. It is also possible to re-use script between
documents by including external script files. Re-using script between documents
is a worthwhile goal as it eases development and simplifies maintenance.

We will see how we can take the row count subroutine that we created in the
previous section and turn it into an included script file that we can use in all of our
documents. Let's follow these steps:

1.	 Open the Script Editor and navigate to the Subroutines tab.
2.	 Select and copy the entire TraceRowCount subroutine to the clipboard by

pressing Ctrl + C.
3.	 Open Notepad (by pressing Windows Key + R, typing in notepad and

pressing Return) or any other text editor.
4.	 Paste the TraceRowCount subroutine to Notepad.
5.	 Save the file to the same folder you used for the QlikView document

and call it TraceRowCount.qvs.
6.	 Close Notepad and return to QlikView's script editor window.
7.	 Go to the Subroutines tab and remove the script for the

TraceRowCount subroutine.
8.	 Select Tab | Rename from the menu and rename the tab to Includes.
9.	 Select Insert | Include Statement and select the TraceRowCount.qvs

file.

The resulting code should look like this:

$(Include=tracerowcount.qvs);

This statement tells QlikView to include the contents of the script file in the
current script.

In this example, we put the script file in the same folder as
the QlikView document. In a real environment, we would
set up a folder structure with an include or library
folder that contains all reusable scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[261]

We've looked at how we can use include files to re-use script logic. As we will see in
the next section, the same principle can also be applied to configuration settings such
as file locations and database connection strings.

QlikView Components
Instead of creating your own library of scripts, you may also want to
consider QlikView Components (Qvc). Qvc is a free, open source
script library. Its mission is to implement scripting best practices,
improve the speed and quality of script development, and create a
common ground between script developers.
Qvc contains subroutines and functions to automate tasks of
intermediate complexity, such as creating calendars, incremental
loads, and the creation of link tables to support multiple fact tables.
Qvc can be downloaded from http://code.google.com/p/
qlikview-components/

Managing file locations and
connection strings
In our current example documents, we have always referred to the Data Files
folder for our source data. If, for any reason, this folder has to be moved somewhere
else, we will have to manually change the source data path in many locations in
many files.

Let's follow these steps to create an included script file to set the source data folder in
a single location:

1.	 Open Notepad (by pressing Windows Key + R, typing in notepad, and
pressing Return) or any other text editor.

2.	 Enter the following script:
SET vFolderSourceData = '..\Data Files\';

3.	 Save the file to the same folder as your QlikView document and call
it Config.qvs.

4.	 Close Notepad and return to QlikView's script editor window.
5.	 Go to the Include tab and place the cursor on the first line.
6.	 Go to Insert | Include Statement and select the Config.qvs file.

www.it-ebooks.info

http://www.it-ebooks.info/

Scripting

[262]

We have now created an include file that sets the vFolderSourceData variable to the
path of the source data folder.

In a real QlikView environment, it is advisable to specify paths
in UNC format, for example: \\myserver\source_data.

Now all we have to do is replace every instance of the hardcoded file path with the
new variable file path. To do this, follow these steps:

1.	 In the Edit Script window, select Edit | Find/Replace from the menu.
2.	 In the Find What input box enter ..\Data Files\.
3.	 In the Replace With input box enter $(vFolderSourceData).
4.	 Check the Search all tabs checkbox.
5.	 Click on the Replace All button.
6.	 Click on the Close button to close the dialog window.

Every hardcoded instance of the source data folder is now changed to the
vFolderSourceData variable. Now, if we need to change the folder location we
only need to change it in a single place. Of course, the same logic can be applied for
database connection strings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[263]

Summary
We have come to the end of this chapter on scripting. We have learned how to
navigate the script editor. We have seen the most important script statements, and
have applied them to our Airline Operations project. We also picked up a few tips
and pointers for working with different data types in QlikView, and for debugging,
standardizing, and organizing our scripts. We ended this chapter by looking at script
re-using, which makes our scripts easier to maintain.

In short, we learned about the Script Editor window, what the most important
script statements are and how to use them, operators and functions for dealing with
various data types, and what options exist to debug a script.

We also learned how to organize and standardize our script and how to re-use your
script within and between QlikView documents.

Now that we have learned the basics of QlikView scripting, in the next chapter we
will apply this new knowledge while learning about data modeling best practices.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices
In Chapter 4, Data Modeling, we started working with data modeling in QlikView and
reviewed some guidelines to follow when designing a data model. Now that we have
also reviewed how data manipulation via a script can be performed in QlikView,
we are ready to expand on both topics and review some best practices to accomplish
better and cleaner data model designs. We'll talk about how to overcome common
modeling challenges, such as multiple fact tables, and look at various techniques for
assuring that our data models are consistent and do not contain unnecessary data.
Additionally, we will look at some best practices for dealing with date and
time information.

We will learn how to:

•	 Make sure data models are consistent
•	 Work with complex data models and multiple fact tables
•	 Reduce storage requirements for a dataset
•	 Deal with date and time information

Let's get started!

Data consistency
The first set of best practices that we present on data modeling are those related to
data consistency. This is one of the most important things we need to take care of
when building QlikView documents. Let's look at some best practices that we can
use to assure our data is concise and consistent.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[266]

Dealing with dimensions without facts
Sometimes, a dimension table can contain values that do not have any associated
facts. To demonstrate this, let's take a second look at the data model we built in
Chapter 3, Data Sources, and have been using ever since:

1.	 Open the Airline Operations.qvw file.
2.	 Launch the Table Viewer by selecting File | Table Viewer or by pressing

Ctrl + T.
3.	 Hover the mouse over the %Aircraft Type ID field in the Aircraft Types

table, pay special attention to the Subset ratio value.
4.	 Next, hover the mouse over the %Aircraft Type ID field in the Main

Data table, again paying special attention to the Subset ratio. What you
will notice is that the Aircraft Types dimension table has a subset ratio
of 100% for the field %Aircraft Type ID, while the Main Data table
only has a 48% subset ratio, seen here:

We learned earlier what this means: of all the distinct possible values for %Aircraft
Type ID, 100% of those values appear in the Aircraft Types dimension table, while
only 48% of the values appear in the Main Data table. In other words, only 48% of
aircrafts have actually made any flights.

Before we look at how to remove these aircraft types from the model, let's first
quickly investigate which aircraft types have not logged any flights:

1.	 Close the Table Viewer window by clicking on OK.
2.	 Add a new sheet to the document by clicking on the Add Sheet button from

the Design toolbar.
3.	 Once the new sheet is created, right-click on the workspace area and select

Properties…. Then, from the Sheet Properties window, activate the General
tab and change the Title field to Data Consistency.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[267]

4.	 Now, navigate to the Fields tab and, from the Available Fields list on the
left, highlight the Year field as well as the Aircraft Type field, and click on
the Add > button. Then, click on OK and two new listboxes will be created.

5.	 We will now create a Table Box, so right-click on the workspace area again,
but this time select New Sheet Object | Table Box…, as seen here:

6.	 From the New Table Box window, enter Flights in the Title box.
7.	 Then highlight the following fields from the Available Fields list and click

on the Add > button: %Aircraft Type ID, # Air Time, # Available Seats,
Departures Performed, and # Departures Scheduled.
Remember to press the Ctrl key to highlight multiple fields at once.

8.	 Click on OK.
9.	 Right-click on the Year listbox and click on Select All. Notice that, by

association, this reduces the aircraft types list and keeps only those that have
logged flights in 2009, 2010, and 2011 (the selected years).

10.	 Now, right-click on the Aircraft Type listbox and click on Select Excluded
from the pop-up menu. This will switch our selection to those aircrafts that
have not logged flights.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[268]

By looking at the Flights table box, shown in the following screenshot, we can see
that the selected aircrafts indeed have no flight data associated with them:

Of course, it can be very useful for a business analyst to see which dimensions do
not have any fact data associated with them. For that reason, it may be worthwhile
to keep this information in the model. Whenever these types of issues present
themselves, it is important to check with the business users what their wishes are.

For our example, we will remove the aircraft types that do not have any associated
flight data. To do that, follow these steps:

1.	 Open the Script Editor window by selecting File | Edit Script in the menu
bar, or by pressing Ctrl + E.

2.	 Go to the Aircrafts tab.
3.	 Locate the following Load statement:

Aircraft Types]:
LOAD
 AC_TYPEID as [%Aircraft Type ID],
 AC_GROUP as [%Aircraft Group Type],
 SSD_NAME as [Aircraft Name],
 MANUFACTURER as [Aircraft Manufacturer],
 ApplyMap('Map_Manufacturer_Country',
 MANUFACTURER,
 'Unknown') as [Aircraft Manufacturer
Country],
 LONG_NAME as [Aircraft Name Full],
 SHORT_NAME as [Aircraft Name Abbreviated],
 BEGIN_DATE as [Aircraft Begin Date],
 END_DATE as [Aircraft End Date],
 If(Year(BEGIN_DATE) < 1990,
 'Classic', 'Current') as [Aircraft Age Classification]
FROM
[$(vFolderSourceData)CSVs\Aircraft_Base_File.csv]
(txt, codepage is 1252, embedded labels, delimiter is ';', msq);

4.	 From the preceding script, remove the semicolon (;) at the end and press
Return to create a new line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[269]

5.	 On the new line, type the following code:
Where Exists([%Aircraft Type ID], AC_TYPEID);

6.	 Now, locate the LOAD statement in which the Aircraft_2010_Update.csv
table file is being loaded, and add the following Where clause at the end
in a similar manner (the final semicolon gets replaced):
Where Exists([%Aircraft Type ID], AC_TYPEID);

7.	 Save and Reload the script.

The non-matching aircrafts are no longer in the data model after the reload. The
code that we added to the script uses a WHERE clause combined with the Exists()
function. We are essentially filtering out any records in which the AC_TYPEID field
from the dimension table does not have a corresponding value in
the %Aircraft Type ID field already loaded in the Main Data table.

The Exists() function takes two parameters:

WHERE Exists([%Aircraft Type ID], AC_TYPEID);

The first parameter specifies the field on which we need to check to see if there are
any occurrences of the values contained in the second field, the one specified in the
second parameter.

In some cases, the two fields being compared have the same name in both the input
dimension table and the fact table already loaded. If that's the case, we could use a
simplified, one-parameter, syntax as follows:

Where Exists([%Aircraft Type ID]);

Depending on how the field names from the input table are defined, we should use
the appropriate syntax from the two presented above. The main advantage of the
second scenario (one-parameter syntax) is that, when loading from a QVD, it will
still perform as an optimized load, while the first scenario will not.

An alternative to using the Exists() function is the use of the KEEP prefix, which
will be added before the LOAD keyword. As shown in the previous chapter, by using
LEFT KEEP or RIGHT KEEP, we can limit the records being loaded to those that have a
matching key in the already loaded fact table. A benefit of using this prefix is that the
result set can be limited on multiple fields, while the Exists() function can only use
a single field. However, script processing of the KEEP prefix can be a lot slower on
larger data sets, so the Exists()function is the preferred method whenever possible.

Let's take another approach to dealing with this problem this time using the
KEEP prefix.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[270]

An alternative approach
The previous example depends on the fact table being loaded before the dimension
tables. It often makes more sense to load dimension tables first and fact tables later.
In that scenario, the solution shown before will not work because the actual fact table
has not yet been loaded at the time we load the dimension table. There is no way for
us to "load only dimension values for which facts have been loaded." Therefore, the
Exists() function cannot be used.

The alternative approach consists of first loading the entire dimension table and then
reducing the record set based on the corresponding values in the fact table after the
facts have been loaded. Let's see how this works by following these steps:

1.	 Open the Script Editor window again and go to the Aircraft tab.
2.	 Comment out the lines we added previously by selecting the code

WHERE Exists([%Aircraft Type ID], AC_TYPEID); right-clicking
on it, and selecting Comment.

3.	 Then, add a semicolon on the next line to ensure that the LOAD statement is
properly ended.

4.	 Next, we need to make sure that the Aircrafts tab is run before the Main Data
tab. With the Aircrafts tab still active, press Ctrl + Q,T,P simultaneously twice
to promote it, or select Tab | Promote from the menu bar until the Aircrafts
tab is placed to the left of the Main Data tab.

5.	 Next, activate the Main Data tab and, after the end of the corresponding
LOAD statement, enter the following code:
Temp_Aircraft_Type_Dim:
RIGHT KEEP ([Aircraft Types])
LOAD DISTINCT
[%Aircraft Type ID]
RESIDENT [Main Data];

DROP TABLE Temp_Aircraft_Type_Dim;

6.	 Save and reload the script, and use the Table Viewer window to check
the result.

The code we inserted creates a temporary table, Temp_Aircraft_Type_Dim, which
contains all of the distinct %Aircraft Type ID values from the Main Data fact table.
By using a RIGHT KEEP statement, the data in the original Aircraft Types table is
reduced to only those rows that are associated with the Main Data table. After the
Aircraft Types table has been truncated, we remove the temporary table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[271]

The Left Keep prefix can also be used, accompanying the
Load statement corresponding to the Aircraft Types
dimension table, if the Main Data table had been loaded first.

We will now be able to see that when all values from the Year listbox are selected, no
aircrafts are being excluded in the Aircraft Type listbox.

A solo exercise
Most of the dimensions we loaded to the Airline Operations app in Chapter
2, Seeing is Believing and Chapter 3, Data Sources present the scenario described
previously. That is, the subset ratio for most key fields in the Main Data table
is lower than 100%.

The end users of our QlikView document, HighCloud Airlines, have decided that
they don't need unused values in the dimension tables as it corresponds to either
airlines that are no longer in operation or aircrafts that are no longer in use.

Take what you've learned in this section and reduce all of the dimension tables to
contain only those values that appear in the fact table and save the updated document.

The Origin and Destination Airports dimension tables
perform a direct query to the source database. Therefore, the
Exists() function cannot be used as described here. A QlikView
function might not be interpreted as expected in a direct database
query. Therefore, we need to use the Left Keep prefix approach
in those two cases to achieve the expected result.

Once you've reduced the dimension tables and saved the document, take a look at
the size of the QVW file and you'll see the impact of removing unnecessary data.
In this case, the document size on disk will be reduced from around 55 MB to
approximately 33 MB. This will also have a positive impact on RAM usage.

In the next section, we'll work with a side example, so you may now close the
Airline Operations.qvw document.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[272]

Dealing with facts without dimensions
Of course, when dimensions can exist without related facts, the inverse can also
be true. Let's look at how we can deal with facts that do not have any associated
dimension values.

As you may have noticed in the Table Viewer window, our current example data
model is a bit too tidy. There aren't any dimensionless facts. However, to illustrate
the new scenario, we've prepared a side example for which you will find the
corresponding datafiles in the Airline Operations\Side examples\Chapter
8 folder. Make sure you have the Flights.csv and Aircrafts.csv files in the
specified folder. Then, follow these steps:

1.	 Launch the QlikView program and create a new document. Save the
document into the Airline Operations\Side examples\Chapter 8
folder as Dimensionless Facts.qvw.

2.	 Next, go to the Edit Script window by pressing Ctrl + E, and load both the
Flights.csv and the Aircrafts.csv files with the methods you've learned
until now.

3.	 Explicitly assign a name to each table in the Load statement, using the
corresponding filename.

4.	 When creating the Load statement for each table, you'll notice that there are
no shared fields between them, at least not explicitly. Therefore, we'll need to
rename the AC_TYPEID field in the Aircrafts table to %Aircraft Type ID
so that an association is created between both tables through this field. To do
this, use the as keyword as follows:
AC_TYPEID as [%Aircraft Type ID],

5.	 You should now have the following code:
Aircrafts:
LOAD AC_TYPEID as [%Aircraft Type ID],
 [Aircraft Group],
 Manufacturer,
 [Aircraft Name],
 [Aircraft Short Name]
FROM
Aircrafts.csv
(txt, codepage is 1252, embedded labels, delimiter is ',', msq);

Flights:
LOAD Year,
 [Month (#)],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[273]

 [%Aircraft Type ID],
 [# Departures Scheduled],
 [# Departures Performed],
 [# Available Seats],
 [# Transported Passengers],
 [# Transported Freight]
FROM
Flights.csv
(txt, utf8, embedded labels, delimiter is ',', msq);

6.	 Save the entire document and then execute the script by clicking on the
Reload button from the toolbar.

After finishing the script execution, if we open the Table Viewer window (Ctrl + T),
we can analyze the subset ratio for the %Aircraft Type ID field, seen here:

Notice that the subset ratio is 100% in the Flights table, but below 100 percent in
the Aircrafts table. In other words, there are now flights with no corresponding
dimension data.

Having facts without an associated dimension is undesirable. When we use the
dimension in a dashboard, facts that are not associated all get grouped under a
hyphen symbol. Since this is basically a null value, this group of facts can not be
easily selected by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[274]

To illustrate this, let's create a new bar chart with the Aircraft Group
field as dimension, which is an aircraft attribute, and Sum ([# Departures
Performed])/1000 as the expression. We will end up having something like
the following:

On the other hand, we cannot just remove these dimensionless records from the fact
table as it will skew the total amounts.

While the appropriate response is always discussed with and decided by the
business users, a very common approach is to add dummy dimension values to the
dimension table. To do this in our current example, let's follow these steps:

1.	 Open the Script Editor window.
2.	 At the end of the script, add the following code:

Temp_Aircraft_Type_ID:
LOAD DISTINCT
 [%Aircraft Type ID] as Temp_Aircraft_Type_ID
RESIDENT [Aircrafts];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[275]

CONCATENATE ([Aircrafts])
LOAD DISTINCT
 [%Aircraft Type ID],
 'Unknown: ' & [%Aircraft Type ID] as [Aircraft Name],
 'Unknown' as [Aircraft
Group],
 'UNKNOWN' as
[Manufacturer],
 '???' as
[Aircraft Short Name]
RESIDENT Flights
WHERE NOT Exists(Temp_Aircraft_Type_ID, [%Aircraft Type ID]);

DROP TABLE Temp_Aircraft_Type_ID; // Clean up temporary table

3.	 Save and reload the document.

Here's what the added script does:

1.	 It copies all of the %Aircraft Type ID values from the Aircrafts
dimension table into a separate, temporary field called Temp_Aircraft_
Type_ID.

°° This separate field is necessary as we want to compare the Aircraft
Type ID values from the Flights table against only the Aircraft
Type ID values that exist in the Aircrafts table.

2.	 We append a dummy table segment to the Aircrafts table by using the
WHERE NOT Exists(Temp_Aircraft_Type_ID, [%Aircraft Type ID])
clause. This helps us load the missing aircrafts from the Flights table while
also ruling out all aircrafts that are already stored in the original Aircrafts
table, thus avoiding duplicates.

3.	 At the same time, for each of the missing ID's, a dummy record is created
with (a variant of) the Unknown value for each corresponding attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[276]

When checking the Table Viewer we'll see that the Subset Ratio value for %Aircraft
Type ID is now 100% on both tables. This can be verified by looking at the previously
created chart, which now groups all of the Unknown values, as seen here:

Additionally, when adding a new listbox with one of the various aircraft attributes,
we can see that the Unknown values are being listed as well, as shown in the
following screenshot:

Save and close the Dimensionless facts.qvw file to continue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[277]

Reducing storage requirements
While it is often tempting to include as much data as possible, this can also make
your data model more complex than it needs to be. Additionally, as QlikView uses
an in-memory database, it is also a good idea to not waste resources. RAM is still a
much scarcer resource than disk-based storage.

Using number-based key fields
When linking between tables using key fields, it is advisable to use numbers as key
values instead of text. The AutoNumber() script function can be used to generate
a unique integer value for an expression or compound key, thus compacting the
occupied RAM space.

Consider, for example, the following list of colors and their corresponding value
assigned by the AutoNumber() function. As each new value appears in the list, a
consecutive number is assigned. All subsequent appearances of the same value
will take the value assigned to the first instance. For example, all appearances of the
Blue color have been assigned the number 2, as it is the second value we encounter
on the list:

Color AutoNumber(Color)
Red 1
Blue 2
Green 3
Blue 2
Green 3
Yellow 4

A second parameter can be specified to handle more than one counter in the same
script and indicate which one should be used to assign the values. For example,
AutoNumber(Color, 'Color') would use a counter called Color. As QlikView is
very efficient at compressing sequential numbers, it is advisable to use a different
counter for each separate key.

It is important to note that the AutoNumber() function returns a number solely based
on the load order. Encoding the same value in different QVW files might return
different numbers. Therefore, it is not possible to use results of the AutoNumber()
function sourced from multiple QlikView documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[278]

Removing unused fields
Removing unused fields from the data model is a quick win in most QlikView
applications. It can save anywhere between a few to hundreds of MB on bigger
documents. Text fields, in particular, can take up a lot of space.

As the developer, you will probably have an idea of fields that are definitely not
being used. You can either remove those from the script, or comment them out if
you want to play it safe.

An automated tool that can help you spot unused files is Rob Wunderlich's
Document Analyzer. This QlikView document is used to process another QlikView
document and indicate which fields are not being used anywhere in the layout
or expressions. Since this tool does not always correctly identify unused fields, it
is advisable to always perform a sanity check before deleting fields. However, as
a starting point, this is an excellent tool. The QVW file can be downloaded from
http://robwunderlich.com/downloads/.

Splitting high-cardinality fields
QlikView utilizes various algorithms to compress the data to a fraction of its original
size. One way it does this is by storing only the unique values of a field. For example,
a table containing a list of colors, in which some of the values appear more than once,
would be compacted in the following manner:

You can imagine that columns containing few distinct values (or, low cardinality)
will be compressed much better than those with many distinct values
(high cardinality).

If possible, it is worth considering if a high cardinality field can be split into multiple
low cardinality fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[279]

Consider the example of a timestamp field, which contains a date and a time. If
we were to load data corresponding to a single year, it could potentially lead to
31,536,000 unique timestamp values: 365 days x 24 hours x 60 minutes x 60 seconds.

However, we could also decide to split the timestamp into two fields: a date field
and a time field. In this scenario the maximum number of unique values would be
reduced to 86,765, that is, 365 days for the date field and 86,400 for the time field
(24 hours x 60 minutes x 60 seconds). This is only 0.28 percent of the original volume,
and can therefore have a tremendous impact on the document size, especially on
larger data volumes.

In some cases, the time component is not needed at all, so it's
a good practice to simply truncate the timestamp value and
keep only the date component. The Floor() function can
be used to accomplish this, which removes the decimal part
of a given numeric value.

Two more cases where this technique is applicable are phone numbers and big
numbers. For example, if we have a measure that contains integer numbers ranging
from 0 to 100,000,000, we can potentially end up with 100 million unique values.
As an alternative, we could split the number into two 10,000 (the square root of 100
million) number ranges using the Div() and Mod() functions, shown here:

LOAD
 Div(BigNumber, 10000) as BigNumber1,
 Mod(BigNumber, 10000) as BigNumber2
FROM BigNumber;

The first expression in the preceding code performs an integer division of the value
of BigNumber by 10,000. This means that only the resulting whole number is stored.
The second expression performs a modulo operation, storing only the remainder of
BigNumber divided by 10,000. Both of these fields have a potential of 10,000 unique
values. That's 20,000 possible unique values when combined, or only 0.2 percent of
the original list.

In the final application, we can then restore the original number by multiplying
BigNumber1 with 10,000 and adding the remainder from BigNumber2:

(BigNumber1 * 10000) + BigNumber2

Of course, this calculation will be more processor-intense than a straightforward
calculation on a single value. What works best "depends," so it is best to always
perform a thorough test before implementing a solution like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[280]

Design challenges of data modeling
We will now provide some useful tips for dealing with more complex data
models, specifically those used for dealing with multiple fact tables in a single
QlikView document.

We will take a hands-on approach and we will continue using the Airline
Operations document that we have previously used. The design challenge
we will describe in this section will be aimed at integrating a new fact table
into our data model, one that contains Airline Employment Statistics.

The Airline Employment statistics table
The table we will be adding to the data model contains monthly information about
the number of employees per airline, separated by full time and part time, and also
showing the equivalent total of full time employees.

The table contains the following fields:

•	 Year

•	 Month

•	 %Airline ID

•	 %Unique Carrier Code

•	 Unique Carrier

•	 Carrier Code

•	 Carrier Name

•	 %Carrier Group ID

•	 # FullTime Employees

•	 # PartTime Employees

•	 # Equivalent FTEs

•	 # Total Employees

•	 Period

•	 Month (#)

As you can see, all of the dimension fields are already part of the Airline Operations
data model and the only new fields are those related to the actual measurements
of employment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[281]

Integrating multiple fact tables into one data model is one of the main challenges
we can come across when designing a data model. This is, in fact, a very common
scenario and we will present two ways of solving the task at hand:

1.	 By concatenating the two fact tables into one.
2.	 By creating a link table.

Let's see how each of these methods work and how the integration of this table will
take place.

Concatenating fact tables
The first approach suggests that we should combine the two fact tables into one.
This is a valid approach as all of the dimension fields of the new table are also
present in the initial table.

We have already used the concatenate function in the previous example, and we
will use it again to combine both fact tables.

This method will keep our data model simplified because there will be virtually
no additional tables in it. However, we should keep in mind one important
consideration: structural asymmetry.

Structural asymmetry
Although it is true that all of the dimension fields contained in the Employment table
are present in the Main Data table, the opposite is not true: not all of the dimension
fields in the Main Data table are present in the Employment table. There is an
asymmetric structure between them.

This structural asymmetry needs to be kept in mind when creating the frontend of
the document, simply because there will be analyses across certain dimensions that
will be impossible to make. For example, we will not be able to create a chart that
shows the number of employees by airport, as that dimension (airport) is not present
on the Employment table, and there is no way to get that data into our document.
However, we will be able to create, for instance, a chart that shows the number of
employees by airline or by month or by year.

In hand with this difference in table structure, there is another point we should
address: the Main Data table already contains Year, Month, and Quarter
dimensions, and those dimensions are included as listboxes in the user interface
to allow the user to filter through the data. However, the Employment data only
contains the Year and Month fields, but not the Quarter field.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[282]

There is something we can do about this: simply add a calculated field to the
Employment table before concatenating it to the Main Data table. In the end,
both table segments contain the Quarter field. If we do not add the Quarter
field to the Employment table, any user selection on this field will automatically
exclude all of the employment data.

Natural and forced concatenation
Moving on to concatenating tables, as we saw in the previous chapter, there are
two ways in which this operation can take place in QlikView:

•	 Natural concatenation
•	 Forced concatenation

Let's take a moment to revisit this subject and see how we can apply it to our
fact tables.

Natural concatenation
Natural concatenation happens when two tables are loaded with exactly the same
structure, that is, they contain the exact same fields (in both the number of fields
and field names).

When this condition is met, QlikView automatically combines all tables that are
similar and treats them as one logical table.

An example of this is shown in the next script:

Sales:
Load
 Region,
 Month,
 Year,
 [Total Amount]
From Sales2011.qvd (qvd);

Load
 Region,
 [Total Amount],
 Month,
 Year
From Sales2010.qvd (qvd);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[283]

As you can see, with the preceding script we are loading two tables into the data
model and both tables are loaded from a different QVD file. The first table contains
data for the year 2011, while the second table contains data for 2010. As they both
have the same structure (field names), they will automatically be merged into one
logical table in the QlikView data model. Also note that the order in which the fields
are defined in the load script is not relevant for natural concatenation.

NoConcatenate
In case we want to avoid the default behavior whenever
this circumstance is present in the script, we can add
the NoConcatenate keyword as a prefix to the Load
statement of the second table so that QlikView continues
treating them as separate tables in the data model.

Forced concatenation
Forced concatenation happens when we explicitly define that two tables should be
combined into one logical table in the data model, even if they don't have the same
structure or field names.

This is the method we have used earlier in this chapter, where we used the
Concatenate prefix to add the 'unknown' Aircrafts to the Aircrafts dimension
table. It will be useful in this case as well as there are only a few shared fields
between both tables.

As we also saw earlier, with the Concatenate prefix we can specify to which of
the previously loaded tables the new table should be appended. This is done by
adding the name assigned to the target table, enclosed by parentheses.

The following script shows how to explicitly concatenate two tables that do not
have the same structure:

Sales:
Load
 Region,
 Month,
 Year,
 [Total Amount]
From Sales2011.qvd (qvd);

Concatenate (Sales)
Load
 Region,

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[284]

 [Total Budget Amount],
 Month,
 Year
From Budget2011.qvd (qvd);

If we don't add the name of the original table (Sales, in the preceding example)
to the Concatenate prefix, the new table will be concatenated to the table loaded
immediately before it, no matter what that table is.

We recommend, as a best practice, to always explicitly define concatenation by adding
the name of the target table to the Concatenate prefix, even if both tables have the
same structure and would naturally be combined. This is mainly to avoid confusion
and makes it easier for other developers, and yourself, to understand the script.

Concatenating the Employment Statistics table
Now that we've revisited the subject of table concatenation and described the
considerations that we must keep in mind, let's put it into practice. We will be
integrating the Employment table into the already designed data model for the
Airline Operations document.

Follow these steps:

1.	 Make sure the T_F41SCHEDULE_P1A_EMP.qvd file is placed into the Airline
Operations\Data Files\QVDs folder.

2.	 Open the Airline Operations.qvw document we've been working with.
3.	 Save the file with another name. Let's call it Chapter 8_Concatenated

tables.qvw.
4.	 Go to the Edit Script window, activate the Main Data tab, and click on the

Add new tab button from the toolbar.
5.	 The Tab Rename dialog window will appear, in which we will enter

Employment Data and click on OK.
6.	 The new tab will be added to the right of the Main Data tab, which is

particularly important for our example.
7.	 Using the File Wizard dialog (click on the Table Files… button), create the

Load statement for the T_F41SCHEDULE_P1A_EMP.qvd file. Make sure the
Load statement is added on the Employment Data tab created previously.

8.	 Add the new Quarter field as a calculated field to address part of what we
discussed about structural asymmetry. The expression we will use for this is:
'Q' & Ceil([Month (#)]/3, 1) as Quarter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[285]

9.	 Add the Concatenate prefix to the load statement, specifying that the Main
Data table is the one to which this will be appended. The added script should
look as follows:

Concatenate ([Main Data])
LOAD Year,
 Period,
 [Month (#)],
 Month,
 'Q' & Ceil(Month/3, 1) as Quarter,
 [%Airline ID],
 [%Unique Carrier Code],
 [%Carrier Group ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 [# Full Time Employees],
 [# Part Time Employees],
 [# Total Employees],
 [# Equivalent FTEs]
FROM
[..\Data Files\QVDs\T_F41SCHEDULE_P1A_EMP.qvd]
(qvd);

It is of fundamental importance that this script be added in a tab that is to
the right of the Main Data tab, as we are referencing the Main Data table
and. For that to work, the table must have been loaded previously, during
the script execution. Remember that script executes sequentially from left
to right.

10.	 Save the changes and reload the script.

As no actual tables have been added to the data model, the resulting model will look
identical to the one we had before adding the script. The only difference will be the
new fields that are included at the end of the Main Data table that correspond to the
employment measures. Use the Table Viewer dialog to verify that the new fields
have been added.

We have described the first approach for dealing with multiple fact tables in a data
model. In the next section, we will present yet another option along with its pros
and cons, so that you, as a Developer, can better decide which one will suit your
needs best.

To continue, save and close the Chapter 8_Concatenated tables.qvw document.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[286]

Working with link tables
When we include two or more fact tables in a single QlikView document, it's
very likely they all are somehow related and will, therefore, have some common
dimension fields among them. However, as we've outlined before, in a QlikView
data model, two tables should not be associated through two or more fields
because it would generate a synthetic key.

So how do we incorporate two or more fact tables into one data model and treat
them as two separate logical tables while, at the same time, avoiding the synthetic-
key issue? At first sight, it can seem like both options are mutually exclusive, but
there is a workaround which is to create a Link Table.

As its name implies, a link table essentially "links" two or more fact tables by taking
all common fields out of the original tables and placing them into a new one (the link
table).The new link table contains all possible combination of values for that set of
fields and, through a unique key, is associated to the original tables.

A link table example
Take, for example, the following scenario:

•	 We are required to design a data model for analyzing Call Center
Performance data, and have two fact tables: Operations and Payroll. Based
on these tables, we need to be able to present cross-functional information in
a QlikView dashboard.

•	 The Operations table has the following fields: Call ID, Timestamp,
Employee ID, Supervisor ID, Department ID, Call Type ID, Customer
ID, Call Duration, and Total Hold Time.

•	 The Payroll table has the following fields: Payroll ID, Employee ID,
Department ID, Position ID, Amount.

•	 We also have the corresponding dimension tables to provide a description to
the fields Call Type ID, Employee ID, Department ID, and Position ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[287]

If we let QlikView make the default associations, we would get the following
data model:

From the preceding image, we can observe that a synthetic key has been created
because two fields (Employee ID and Department ID) are shared between the
Operations table and the Payroll table.

To solve this challenge, we will remove the synthetic key by using a link table.
As was mentioned earlier, the new link table will hold all combinations of the
key fields that are common for both tables. We should also create a new
compound key to connect the three tables.

Essentially, the link table replaces the synthetic key table, and in some cases, the
result in both performance and design is exactly the same. However, it's a good
practice to always "clean" the data model and remove all synthetic keys.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[288]

Our re-designed data model will look as follows, after applying the
appropriate changes:

As you can see, the synthetic key has been removed and the Payroll and
Operations tables are now connected to the Department and Employees
dimension tables indirectly and through the link table.

When designing a data model using this method, we should always consider
the following:

•	 The link table can become very large depending on the number of possible
combinations that exist between or among the fields it's composed of.

•	 We must make sure that all of thecombinations that exist in both fact tables
are also in the created link table. If they are not, the association between the
fact tables and the link tables might be "broken" or missing for some records.

•	 For performance optimization, the link table should not have repeated
records. Only one record per possible combination of values is needed.

•	 If the link table becomes immense, remember that QlikView needs to
"walk" through the defined path between tables each time it needs to
look for associations. An additional "hop" on this path, especially if it
is through a large table, might slow calculation times for the end user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[289]

Creating a link table in the Airline Operations
document
Now that we've described the creation of link tables and its uses, let's put it into
practice in our Airline Operations data model.

Remember that, in the previous section, we already added the Employment
Statistics table to the Airline Operations data model by using the Concatenation
method. We'll now do the same, but this time using the link table method. You can
compare each of them and see for yourself their pros and cons.

Follow these steps:

1.	 Make sure the T_F41SCHEDULE_P1A_EMP.qvd file we used previously is
already in the Airline Operations\Data Files\QVDs folder.

2.	 Open the Airline Operations.qvw document.
3.	 Save the file with another name. Let's call it Chapter 8_Link tables.qvw.
4.	 Head on to the script editor and add a new tab to the right-side of the

Main Data tab. Name the new tab as Employment Data.
5.	 Using the File Wizard (click on the Table Files… button), create the Load

statement for the T_F41SCHEDULE_P1A_EMP.qvd file. Name the table as
Employment Statistics.

6.	 Identify the common fields between the Employment Statistics table and
the already loaded Main Data table. The shared fields are:

°° Year, Period, Month, Month (#), %Airline ID, %Unique Carrier
Code, Unique Carrier, Carrier Code, Carrier Name, and
%Carrier Group ID.

7.	 For all of the shared fields listed above, identify those that will form a unique
key. In this case, the fields that must be included in the unique key are:

°° Period, %Airline ID, %Unique Carrier Code, and
%Carrier Group ID.

8.	 The fields we will leave out of the key will be:
°° Year, Month, Month (#), Unique Carrier, Carrier Code, and

Carrier Name.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[290]

9.	 Create a new compound key on both of the tables by using the following
script expression:
Period
& ' | ' & [%Airline ID]
& ' | ' & [%Unique Carrier Code]
& ' | ' & [%Carrier Group ID] as [%Key Field],

10.	 Add a new tab from the Tab menu and name it Link Table. Make sure this
new tab is located to the right-side of both the Employment Data and Main
Data tabs.

11.	 In the Link Table tab, add the following script:
[Link Table]:
Load Distinct
 [%Key Field],
 [%Key Field] as [%TEMP Key Field],
 Year,
 Period,
 [Month (#)],
 Month,
 Quarter,
 [%Airline ID],
 [%Unique Carrier Code],
 [%Carrier Group ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name]
 Resident [Main Data];

Concatenate ([Link Table])
Load Distinct
 [%Key Field],
 Year,
 Period,
 [Month (#)],
 Month,
 'Q' & Ceil([Month (#)]/3, 1) as Quarter,
 [%Airline ID],
 [%Unique Carrier Code],
 [%Carrier Group ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name]
 Resident [Employment Statistics]
 Where Not Exists([%TEMP Key Field], [%Key Field]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[291]

Drop Field [%TEMP Key Field];
Drop Fields Year,
 Period,
 [Month (#)],
 Month,
 [%Airline ID],
 [%Unique Carrier Code],
 [%Carrier Group ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name] From [Employment Statistics];

Drop Fields Year,
 Period,
 [Month (#)],
 Month,
 Quarter,
 [%Airline ID],
 [%Unique Carrier Code],
 [%Carrier Group ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name] From [Main Data];

With the preceding script we are doing the following:

a.	 Assign a name to the table: Link Table.
b.	 Create a list of distinct combinations of all shared fields from the

previously loaded Main Data table, including the new %Key Field,
by performing a Resident Load (more on Resident Loads in Chapter
12, Advanced Data Transformation).

c.	 Create a duplicate of the %Key Field attribute and name it %TEMP
Key Field.

d.	 Concatenate a new list of distinct combinations of all shared fields
from the previously created Employment Statistics table,
including the new %Key Field attribute and adding a calculated field
Quarter. From this new list we exclude all combinations that already
exist on the first list earlier, using a Where clause.

e.	 Remove the %TEMP Key Field field from the data model, as it was
only to be used in the Where clause.

f.	 Remove the shared fields from each fact table, except the %Key Field
attribute, as they will now be stored in the link table.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[292]

12.	 Save the changes we made and reload the script. The new data model will be
created and look as follows:

Two fundamental recommendations can be made regarding the creation of link tables:

•	 Always use the Distinct keyword when creating the link table. This is
done so we are only loading dimension fields into this table and we should
not have duplicate records.

•	 If the Key field is composed of several individual fields, it can be resource
intensive for the application. In these cases, we could use the Autonumber()
function described previously.

Proceed to save and close the document.

Finding a balance
We have outlined two ways for dealing with multiple fact tables in a data model.
If we were to ask which of these methods is better, we would need to say, again,
"it depends." There is no definite best, and the decision about which to use will
depend entirely on the specific scenario where it has to be implemented.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[293]

When deciding on data model design, you should always ask yourself if the
"structural asymmetry" we talked about before is something you could accept
in your data model, or if the asymmetry is highly significant and therefore you
would prefer to live with the "additional hop" in the data model.

Choosing between approaches can also impact the application's size. Take a look at
both of the files created using each of the preceding methods and see which one is
smaller in disk size .Can you guess why the link table approach produces a smaller
file? It's because we've taken out some fields from the relatively large fact tables and
placed them into a smaller link table.

For QlikView, both of these approaches are OK. They work as they should and there
should not be calculation differences resulting from using them one over the other.

For the purpose of continuity throughout the rest of the book, we will be working
with the new data model created using the first method: Concatenation. Therefore,
make sure to integrate the Employment Statistics table to the original Airline
Operations document by concatenating both fact tables as previously shown.

The master calendar
Finally, our last set of best practices on data modeling involves dealing with dates
and times. When analyzing data, time often plays an important role. Initially, it's not
much of the individual transactions and events that users are interested in, but rather
the rolled up totals per period, or trends over multiple periods.

Source systems usually record the date at which a particular transaction or event
took place, but do not contain any further information for time grouping. This makes
sense, as transactional systems strive not to include redundant data. In our QlikView
documents, however, we strive to make the selections and aggregations as easy
as possible for our users. That is why, in addition to the original date, we include
attributes such as the month, quarter, and year components in our data model.

Rather than placing these attributes directly in our fact table, as we've done until
now, the best practice is to create a separate master calendar dimension table. The
main advantage is that it lets us use the same master calendar for multiple fact tables.
Another important benefit is that if the fact table is missing any intermediary periods,
we can still create these in our master calendar. This way, when data is missing for a
certain period, we would still be able to see that period in our document.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[294]

Follow these steps to add a master calendar table to our Airline Operations
data model:

1.	 Open the Airline Operations document and go to the script editor.
2.	 Activate the Main Data tab. Then, locate the lines corresponding to the fields

Year, Quarter, Month (#), and Month.
3.	 Remove those lines so that these fields are not loaded. You can also comment

out the lines instead of completely removing them.
This way, we will only have the Period field in the fact table, which encodes
both the Year and Month fields. We will then use the Period field to link the
fact table to the calendar table.

4.	 Let's do the same with the Employment Statistics table. Activate the
Employment Data tab and remove the Year, Quarter, Month (#), and
Month fields from the corresponding Load statement. Make sure the Period
field is still loaded.

5.	 Insert a new tab directly after the Employment Data tab by simultaneously
pressing Ctrl + Q, T, A or by selecting Tab | Add Tab from the menu. Name
the new tab as Calendar.

6.	 On this tab, insert the following code:

//--- Select the lowest and highest periods
//from the Flights fact table.

Temp_Calendar_Range:
LOAD
 Num(Date#(Min(Period), 'YYYYMM'))as MinDate,
 Num(Date#(Max(Period), 'YYYYMM')) as MaxDate
RESIDENT [Main Data];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[295]

This code creates a temporary table that contains the lowest and highest periods
from the Main Data table. As these values are originally in YYYYMM format, we
need to convert them to a date value by using the Date#() function.

The Date#() function essentially takes a string value
representing a date and converts it to an actual date
value based on the specified source format.

By using the Min and Max aggregations functions, the resulting fields will have the
very first and very last date, respectively, appearing in the source table.

Once the corresponding date value has been obtained, it is then converted to its
numerical representation (which is the number of days that have passed since
December 31, 1899) using the Num() function. For instance, December 28, 2011,
would be converted to 40905. This ensures that all of the dates can be treated as
consecutive numbers.

Using these two dates contained in the temporary table, we will generate a master
calendar that includes each month in them:

1.	 Add the following code at the end of the previous Load statement:
//--- Assign the start and end dates to variables
LET vMinDate = Peek('MinDate', 0, 'Temp_Calendar_Range');
LET vMaxDate = Peek('MaxDate', 0, 'Temp_Calendar_Range');

DROP TABLE Temp_Calendar_Range; // Cleanup

Using the LET statement, we assign the lowest and highest dates to
temporary variables. The Peek() function is, which we will learn more
about in a later chapter, used to retrieve the values of these dates from
the Temp_Calendar_Range table. After creating the variable, we will no
longer need the Temp_Calendar_Range table, so it is deleted using the
DROP TABLE statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[296]

2.	 The next step is adding the code that will create the actual master calendar
table. Enter the following below the Drop Table statement:

[Master Calendar]:
LOAD DISTINCT
 Year(Temp_Date) * 100 + Month(Temp_Date) as [Period],
 Year(Temp_Date) as [Year],
 Month(Temp_Date) as [Month],
 Date(Temp_Date, 'YYYY-MM') as [Year - Month],
 'Q' & Ceil(Month(Temp_Date) / 3) as [Quarter]
;
LOAD DISTINCT
 MonthStart($(vMinDate) + IterNo() - 1) as Temp_Date
AUTOGENERATE (1)
WHILE $(vMinDate) + IterNo() - 1 <= $(vMaxDate);

//--- Remove the temporary variables
LET vMinDate = Null();
LET vMaxDate = Null();

You may notice that the first LOAD statement in the preceding script is
missing a source. When no source is specified, QlikView uses the result
of the next LOAD statement as the source. This is called a Preceding Load.
The script first creates a table with a single column called Temp_Date. By
using the AUTOGENERATE (1) WHILE $(vMinDate) + IterNo() - 1 <=
$(vMaxDate) statement, QlikView iterates over each day between the lowest
(vMinDate) and highest (vMaxDate) period and creates one record per day.
By applying the MonthStart() function, a table containing every first day
of the month for the intermediate period is created. The preceding load
statement then loads the Temp_Date table and applies various date functions
to it to create the final Master Calendar table. At this point, we also use an
expression to create the dimension key Period by concatenating the year
and month into a single number. For example, October 2011 will be stored as
201110. The Period field will then be used to associate the Master Calendar
table and the fact table.
After the master calendar is created, the temporary variables are deleted by
setting their value to Null().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[297]

3.	 Save and reload the application and the final data model will be created,
shown here:

As our data model only contains data on a monthly level, our master calendar
contains relatively little data. Other applications are often built with data at a daily
level. An example script for generating a day-based master calendar is included in
the solution files for this chapter. An example script for generating a day-based
master calendar is included in the solution files for this chapter. You can find this
script inside the Airline Operations\Side Examples\Chapter 8 folder, in the
file CreateCalendarFromField.qvs.

A final note on data modeling
To close this chapter, we should insist on something that, if followed, will save you
tons of hours spent guessing where a possible mistake might be. That is, always
confirm, test, and validate that the changes you make to the data model result in
what you expect.

It happens many times that we add a little table here and there, modify a field name,
join two tables, or something similar and that "small" change modifies our data model
a little, but the final calculations are affected greatly without us even noticing.

Always make sure the modification moves you forward instead of backward.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Modeling Best Practices

[298]

Summary
This brings us to the end of this chapter on data modeling best practices. If you
haven't finished all of the exercises, don't worry, all of the solutions are included
in the solution files.

To recap, in this chapter we learned how to deal with common consistency issues,
such as facts without associated dimensions, and vice versa, how we can reduce
storage requirements by using numeric keys, removing unused fields from our
model, and by splitting high-cardinality fields.

We also learned how to approach two of the most common design challenges,
concatenating two fact tables and creating link tables, and what the advantages
of the different methods are.

Finally, we learned how to create a master calendar.

In the next chapter, we will learn some basic data transformation techniques
that will help us cleanse source data and load data that isn't in a straightforward,
tabular format.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation
At this point in the book, we've already covered topics related to data sources such
as extraction, data visualization, scripting, and data modeling. These topics are all
interconnected in the development process. We will now complement these four
topics with a fifth subject that is of fundamental importance, and one that plays
an essential role when developing QlikView apps, taking to an advanced level the
lessons learned from all of the previous chapters: Data Transformation.

The topics we'll cover here will help us:

•	 Make the data sources adequate to meet our data model design requirements
•	 Deal with unstructured tables (such as Crosstables) and incorporate them

into our data model

On we go.

Changing the source table structure
We've seen how the QlikView engine works and the importance of having a data
model design that fully takes advantage of QlikView's associative algorithms. So,
the first section of this chapter deals with transforming source tables to make them
adequate for our data model. The different structure transformations we'll make are:

•	 "Cleansing" a dirty table
•	 Converting a Crosstable to a standard table
•	 Using hierarchy tables
•	 Loading generic tables

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[300]

"Cleansing" a dirty table
As we've said before, it's not that uncommon for business users to require
consolidated information from all sorts of different sources: the CRM, the company's
Data Warehouse, Excel tables, Legacy systems, and so on. In these scenarios, the
developer commonly faces the challenge of adapting a user file (Excel, CSV, TXT)
that has either a non-standard structure or contains "dirty" data which needs to be
removed, such as report headers or subtotal lines, and sometimes both.

Fortunately for us, QlikView's data extraction engine is powerful enough to be able to
interpret these tables, cleanse them before loading and convert them into a standard
table. However, for that to happen, we must specify the set of rules to follow when
loading a certain file. These rules and conditions can be set via the Transformation
Wizard, available when loading local table files and HTML web files.

To demonstrate how the Transformation Wizard works, we will be using a text file that
has been provided along with this book, named Production Planning – Legacy.
txt. Look for it inside the Airline Operations\Side Examples\Chapter 9 folder.

The exercises we will be doing in this chapter are just
for demonstration purposes and will not affect our
Airline Operations.qvw document.

File contents
The contents of the Production Planning – Legacy.txt file, as seen from a text
editor, are shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

The structure and contents of the file are described as follows:

•	 It has a 4-line header, with information about the report above the actual
field names.

•	 Columns in the data area are delimited with tabs.
•	 Column labels are placed in the fifth line.
•	 After the column heading there is a "garbage" line intended to be a

visual separator.
•	 The report shows daily data with a weekly subtotal.
•	 The report shows ten weeks of data, with five of them on the left and the

other five placed on the right.
•	 Records with no specified date correspond to the same date as the

previous record.

We have taken the preceding file as an example since it represents a very common
way of pulling data out of certain particular systems. Even in popular ERP systems,
such as SAP, reports can be generated in this manner. Of course, there may be ways
to circumvent the unstructured report and go right to the source table, but in some
cases access is a bit restricted.

So, let's start cleaning up this mess.

Working with the Transformation Step wizard
We will load this file into a new QVW file, so let's begin by creating a new QlikView
document and saving it as Production Planning.qvw. This new file will be saved
inside the Airline Operations\Side Examples\Chapter 9 folder. After saving
the file, make sure the Production Planning – Legacy.txt file is also at the
same location.

Next, open the Script Editor (Ctrl+E) and bring up the File Wizard by clicking on the
Table Files… button.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[302]

Then, browse to the folder in which the text file is stored, select it and click on Open.
Right after that, the File Wizard will show the following window:

Make sure the parameters are set as shown in the preceding screenshot so that
QlikView interprets the file correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

After clicking Next >, the File Wizard: Transform window will appear, showing a
brief description about it and a warning:

Essentially, the warning text indicates that the Transformation Step Wizard should
not be used for large tables. In our case, the example file contains no more than
50 lines of data, so it won't be a problem for us this time and will rarely be when
working with actual "dirty" reports.

Click on the Enable Transformation Step button to access the corresponding
features. We will be presented with the following wizard:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[304]

As you can see, the Transformation Step Wizard is split into several tabs, and each
one is used to handle different scenarios. We will be using three of the five tabs, but
will describe what all of them do and the types they could be used.

Throwing out the garbage
Our example file certainly has some garbage that needs to be thrown out. We will
use the first tab of the Transformation step wizard to:

•	 Remove the heading rows (first 4 lines)
•	 Remove the visual separator between the column headings and the

actual data
•	 Remove the weekly totals

Follow these steps to accomplish the above:

1.	 Click on each of the row numbers in the first four lines, as well as in the sixth
line, one at a time. The entire row should be highlighted and the Delete
Marked button should be enabled, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[305]

2.	 Click on the Delete Marked button to remove these rows. They should
instantly disappear.

3.	 Now, click on the Conditional Delete… button to continue removing the
weekly totals. A new window will appear, shown below, in which we will
specify the condition on which the remaining rows should be removed.

4.	 Make sure, as in the preceding screenshot, to set the following parameters:
°° The Compare with value radio button should be selected
°° The comparison operator will be set to contains
°° The comparison value will be the word Total
°° The Case Sensitive and Not options should be disabled

5.	 Click on the Add button to finish setting the condition and then click on OK
to return to the previous window.

The preceding procedure will remove the garbage from our file, but that is not all we
need to do.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[306]

Unwrapping table contents
There is another "formatting challenge" we will tackle with this file, which is,
that data is split into two parts: the first five weeks are on the left side of the
file and weeks 6 - 10 are on the right, occupying the same rows. So, we need
to unwrap them.

Essentially, we want to move the data located on the right part of the table and place
it below the data located on the left. To do that, we will activate the Unwrap tab from
the Transformation Step wizard and follow these steps:

1.	 Use the bar-shaped cursor to mark the beginning of the "right" part of the table
by clicking on the column border between columns 4 and 5. This will specify
the separation, as seen in the following screenshot. If you don't see where the
second part of the table begins, use the scrollbar to move to the right.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[307]

2.	 Click Unwrap to move the table content to the appropriate place. We should
now see the following result:

The preceding procedure leaves us with a new garbage line: the column
headings corresponding to the unwrapped content (shown at line 27 in the
preceding screenshot). To remove it, we need to go back to the Garbage tab
and follow these steps:

3.	 Click on the Conditional Delete… button to specify the condition on which
the rows should be removed.

4.	 From the Specify Row Condition dialog window, we will specify two
conditions, joined with an AND operator. For the first condition, mark the
following parameters:

°° The Compare with value radio button should be selected
°° The comparison operator will be set to contains
°° The comparison value will be the word Date
°° The Case Sensitive and Not options should be disabled

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[308]

5.	 Click on the Add button to include the first condition and then continue
setting the second condition with the following parameters:

°° Select the Range radio button

°° Click on the From button and set the Cell Index Position to 2 From
Top. Then, click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[309]

°° Now, click on the To button and set the Cell Index Position to 1
From Bottom. Click on OK.

°° Click on the Select button and set the Select value to 1 and the Skip
value to 0. Click on OK:

6.	 Click on the Add button to include this second condition and then click
on OK.

Now, the two conditions will be evaluated and those rows that match both
conditions will be removed.

We had to apply both conditions because if we had only specified the "contains Date"
condition the first row would have been removed as well.

Furthermore, if we had deleted line 27 directly by marking it with the mouse and by
clicking on the Delete Marked button, even though the effect would have been what
we expected, the final code instruction would always look for line 27 and remove it,
without first evaluating if that's actually a garbage line. What would happen when
the report is updated? Who knows if the garbage line will still be line 27. You can't
be sure. It's better to apply a certain logic so that even when you update the report,
the code can automatically identify the garbage line.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[310]

Filling missing cells
As we previously said, there are records with no specified date. We will use the
Transformation Step Wizard dialog to fill those values. Follow these steps:

1.	 Activate the Fill tab from the Transformation Step Wizard dialog.
2.	 Click on the Fill… button. The following wizard should appear:

3.	 The Target Column field should be 1, as that is where the date values
are stored.

4.	 The Fill type will be Above, to take the value that is in the immediate
previous record.

5.	 Click on the Cell Condition… button to specify which rows should be filled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[311]

6.	 In the Cell Condition window, make sure the Cell Value field is set to
is empty and the Not and Case Sensitive options are disabled. Click on
OK twice to return to the Transformation Step window and see the result
so far:

As you can see, the missing cells now have the correct date value. Click on the Next >
button to exit the Transformation Wizard.

From the File Wizard: Option dialog window, set the Label parameter to Embedded
Labels, and then click on Finish to generate the final Load statement.

The final result
After specifying the transformation criteria, the corresponding Load statement is
automatically generated and, as you will see, all of the settings are specified in the
script itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[312]

The generated script looks as follows:

LOAD Date,
 [Plant #],
 [Product Line ID],
 [Estimated Production]
FROM
[Production Planning - Legacy.txt]
(txt, codepage is 1252, embedded labels, delimiter is '\t', msq,
filters(
Remove(Row, Pos(Top, 6)),
Remove(Row, Pos(Top, 4)),
Remove(Row, Pos(Top, 3)),
Remove(Row, Pos(Top, 2)),
Remove(Row, Pos(Top, 1)),
Remove(Row, RowCnd(CellValue, 1, StrCnd(contain, 'Total'))),
Unwrap(Col, Pos(Top, 5)),
Remove(Row, RowCnd(Compound,
RowCnd(CellValue, 1, StrCnd(contain, 'Date')),
RowCnd(Interval, Pos(Top, 2), Pos(Bottom, 1), Select(1, 0))
)),
Replace(1, top, StrCnd(null))
));

After reloading the script, we can open the Table Viewer window and see that we
have a nicely formatted table with the Production Planning data:

As the code was generated and pasted into the script editor, every time the TXT
report is updated we just need to re-run the script to update the data in the QlikView
document, without having to go through of all the steps over again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[313]

We've successfully loaded a "dirty" file into QlikView by taking advantage of one of
its extraction capabilities. This capability broadens QlikView's ability to consolidate
data from disparate sources and empowers the QlikView developer in the data
model design process.

Other transformation tricks
Let's look at some other options the Transformation Step Wizard provides:

•	 Column: This tab allows us to copy data from one column, either in its
entirety or based on conditions, and place it into other columns. We can
also create new columns based on this copy.

•	 Rotate: This tab can be used to rotate an entire table to either side or by
transposing it.

•	 Context: This tab is only available when loading HTML files and can be
used to extract additional information about the cells, other than what is
actually visible (for example, URL links, tags, and so on).

We've uncovered one of the Transformation tools available in QlikView, and now
it's time to learn about other functions we can use when extracting data.

Loading a Crosstable
To be fair, the example we saw in the preceding section is possible but is actually
rare. A more common example of a source table that is unfit for QlikView is
the Crosstable.

In this section, we will describe what a Crosstable is for QlikView, why it's not
suitable for a data model, and how can we transform it into a traditional table
using QlikView's extraction engine.

A Crosstable example
Let's look at the following input table:

Department Jan Feb Mar Apr May Jun
A 160 336 545 152 437 1
B 476 276 560 57 343 476
C 251 591 555 195 341 399
D 96 423 277 564 590 130

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[314]

As you can see, we have one field (column) for each month. We also have a
Department field, with its corresponding field values in one single column.
The values in the data area of the table are amounts. Let's assume they are
Sales amounts.

The problem with this matrix-like structure is that if, for example, we want to
obtain the total sales for each department, we would need to create an expression
like the following:

Sum (Jan) + Sum(Feb) + Sum(Mar) + Sum(Apr) + Sum(May) + Sum(Jun)

At the same time, we wouldn't be able to create a trend chart, because all months
are stored as different dimensions. So, we need to make it fit our purposes.

For us to use this table better in a QlikView data model, we need to convert it to a
traditional table with the following structure:

Department Month Sales
A Jan 160
A Feb 336
A Mar 545
A Apr 152
A May 437
A Jun 1

This way, in our charts, we will be able to create expressions such as:

Sum(Sales)

Working with the Crosstable Wizard
Just as we did with our preceding example, we will load this file into a new QVW,
so let's begin by creating a new QlikView document and saving it as Crosstable
example.qvw. The new file should be saved in the Airline Operations\Side
Examples\Chapter 9 folder.

After saving the file, make sure the Crosstable example.xls file is also at the
same location.

Next, open the Script Editor window and bring up the File Wizard by clicking on
the Table Files… button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[315]

Browse to the folder in which the example file is stored, select it, and click on Open.
Right after that, the file wizard will show the following window:

Make sure the appropriate parameters are set, as shown in the preceding screenshot,
so that QlikView interprets the file correctly.

Click on Next > twice and the already familiar File Wizard: Options dialog window
opens. Locate the Crosstable… button at the upper-right corner of the window, shown
in the following screenshot, and click on it.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[316]

The Crosstable wizard only requires us to set three parameters, as shown below:

•	 Number of Qualifier Fields: Here, we specify the number of columns which
precede the table Data Area (where the amounts are). In our case, there is
only one Qualifier field: Department.

•	 Attribute field: This parameter is used to assign a name to the field that will
hold the new dimension values resulting from the transformation. For this
example, we will , set it to Month.

•	 Data Field: This indicates the name of the field that will hold the data values
resulting from the transformation. We will name it Sales.

After clicking on OK, the Result tab, at the lower pane of the File Wizard window,
will show a preview of the transformed table:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[317]

We can now click on Finish and the corresponding Load statement will be generated.
The code looks like this:

CrossTable(Month, Sales)
LOAD Department,
 Jan,
 Feb,
 Mar,
 Apr,
 May,
 Jun,
 Jul,
 Aug,
 Sep,
 Oct,
 Nov,
 Dec
FROM
[Crosstable example.xls]
(biff, embedded labels, table is Sheet1$);

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[318]

Notice there is a prefix to the Load keyword with the names of the new fields. After
reloading the script, we will have a table with three fields (Department, Month, and
Sales) ready to be used in a QlikView data model.

A solo exercise
We've covered the process of loading a Crosstable into QlikView, and now it's your
time to put it into practice. We've prepared a table file for you to load into QlikView.

The filename is Employment Statistics – CrossTable.qvd and it is located inside
the same Airline Operations\Side Examples\Chapter 9 folder. It contains
Airline Employment Data (number of total employees), which the same we used
in the previous chapter, but with a Crosstable format.

The challenge for you consists of:

•	 Identifying the Qualifier fields
•	 Identifying the name of the Attribute field
•	 Generating the corresponding Load statement
•	 Determining how the transformed table can be loaded into the Airline

Operations data model

Good luck!

Expanding a hierarchy
A hierarchy table is a common format to store information in a parent-child structure.
The hierarchical nature of the table allows one value to be related to one or more
values across the table, as a parent or as a child. In fact, one value can be related
to one or more other values as a child and to one or more other different values
as a parent.

The advantage of these tables is that they keep the information in a compact
format, and QlikView is able to handle them, and expand its relations with
a special function: Hierarchy.

In technical terms, the original table format is called
an Adjacent Nodes table, while the resulting table
is called an Expanded Nodes table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[319]

A hierarchy example
Consider the following table which contains hierarchical information about regions
of the world:

Parent Child
World Europe
World North America
Europe England
England London
Europe Italy
Italy Rome
North America United States
United States Washington
United States New York

The preceding data is the actual format in which the information is stored, but it can
also be read as follows, for easier interpretation:

We can see that the shown hierarchy has 4 levels (World – Continent – Country –
City). Each of these levels should be stored in a different field in the QlikView data
model after expanding the hierarchy.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[320]

Working with the Hierarchy Wizard
Again, to demonstrate the concept, we will:

1.	 Create a new QlikView document and name it Hierarchy example.qvw.
2.	 Store the QVW file into the Airline Operations\Side Examples\

Chapter 9 folder.
3.	 Make sure the Hierarchy example.xls file is also at the same location.
4.	 Open the script editor window and bring up the File Wizard dialog with

the associated example file.
5.	 In the first window of the File Wizard, make sure the following parameters

are set before continuing:

6.	 Then, click on Next > twice to get to the File Wizard: Options dialog
window. Locate the Hierarchy… button at the upper-right corner of the
window and click on it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[321]

We will then set the parameters in the next window as follows:

The three parameters at the top are mandatory, while the rest are optional.

If the source fields have special characters in their field name,
such as spaces, the Hierarchy Wizard will not enclose them
between brackets in the resulting script, so you might need to
add them after the script is generated.

From the preceding screenshot, we can observe the following fields:

•	 ID Field: This is the field that stores the IDs corresponding to the child nodes
•	 Parent ID Field: This is the field that stores the ID of the parent node
•	 Name field: This is the field that stores the name of the child node
•	 Parent Name: This is a string used to name a new field that will be created

containing the names of the parent nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[322]

•	 Path Name: This is a string used to name a new field that will be created
containing the list of nodes from the top level to the corresponding node

•	 Depth Name: This is the name to be assigned to a new field that will hold the
number of levels for each expanded node

•	 Path Source: This is the field from the source table that contains the value
that should be used to populate the hierarchy path

•	 Path Delimiter: This defines the string that should be used to separate the
hierarchy values in the path

If any of the optional parameters are left blank, the new
field that uses the missing parameter will not be created
when expanding the hierarchy.

Even if none of the optional parameters are going to be used, the Hierarchy
Parameters checkbox should be marked for the script to be created, otherwise
it will not be generated.

We've also noted that, at the time of writing of this book,
a bug in QV 11 SR2 build 11414 prevents the Depth field
(HierarchyLevel in the preceding example) from being
populated when using the wizard. Therefore, you may
need to manually modify the resulting script in order to
create the corresponding field, simply by adding the Depth
parameter to the Hierarchy statement, as shown below.

After finishing setting the hierarchy parameters, click on OK to return to the File
Wizard window, and then click on Finish to generate the resulting Load statement.

The resulting script for our example will look like this:

HIERARCHY(Child_ID, Parent_ID, Child, ParentName, Child, Path, ' - ',
HierarchyLevel)
LOAD Parent_ID,
 Child_ID,
 Parent,
 Child
FROM
[Hierarchy example.xls]
(biff, embedded labels, table is Sheet1$);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[323]

After reloading the script, we should have a new table in our data model with the
following structure:

As you can see, the resulting expanded nodes table has one field for each hierarchy
level, and one record for each node. Additionally, new fields have been created to
show Path and Depth information.

In cases where one node has multiple parents, the expanded nodes table will have
several records for these nodes.

Also, it's important to note that the expanded nodes table will exclude any orphan
nodes, that is, nodes that have no connection to a top-level node. Only nodes
connected to the highest hierarchy level will be kept in the final table.

Once we have a table with this structure, it is easy to use it on the frontend of
the QlikView document, for example, within a pivot table or in a hierarchy
dimension group.

The created fields can also be used in listboxes to make selections. In fact, let's quickly
explore a feature in which we can add a tree-like view to a simple list box.

The tree-view list-box
With the resulting data from the above example, we will create a new list-box object
by following these steps:

1.	 Select Layout | New Sheet Object | List Box… from the menu bar.
2.	 From the New List Box window, enter Tree View into the Title field.
3.	 Then, using the Field dropdown, select the Path field.
4.	 Still from the General tab, mark the Show as TreeView checkbox and

enter a minus sign (-), with a leading and a trailing space, into the With
Separator field.

5.	 Click on OK to create the new list box.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[324]

The new list box will be created. Here we are taking advantage of the hierarchical
path created in one of the fields from the previous exercise. The tree-view list box
only requires a field with the hierarchical definition for a set of values, and with each
hierarchical level separated by a specific character. The separation symbol can be any
character. In the preceding example, we used a minus sign along with a leading and
a trailing space since that's how each value is separated in the actual data.

The following screenshot shows a side-by-side comparison of a "normal" list box and
the tree-view list box. Both use the same field:

As you can see from the preceding screenshot, a tree-view list box is good at
representing hierarchical levels, and provides an easy way to collapse/expand the
hierarchy with the plus and minus icons to the left of each parent value.

When clicking a collapsed parent value, all of its children are selected as well.

Generic load
Another table structure we can come across when loading data into QlikView is
what we call a generic table.

A generic table is commonly used to store attribute values for different objects.
These attributes are not necessarily shared across all objects contained in the table,
and that's one of the reasons why a traditional columnar structure is not used for
these tables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[325]

The following is an example of a generic table:

Object Attribute Value
Ball Color Yellow
Ball Weight 120 g
Ball Diameter 8 cm
Coin Color Gold
Coin Value $100
Coin Diameter 2.5 cm
Hockey Puck Color Black
Hockey Puck Diameter 7.62 cm
Hockey Puck Thickness 2.5 cm
Hockey Puck Weight 165 g

As you can see, there are several different attributes (color, diameter, weight, and
so on) and only a few of them are shared among all objects. Some attributes, such
as thickness, are only used for a single object.

Using the preceding structure, the table is kept from growing too large in terms of
columns, regardless of new objects or attributes being added.

Using a traditional structure, the preceding table would have several columns
(one for each attribute), and each time a new attribute is added, a new column
should be added as well. Additionally, attributes (columns) that are not applicable
for certain objects (rows), would have a corresponding null or blank value.

Loading a generic table into QlikView
When loading a generic table, we can use the GENERIC keyword so QlikView treats
the table as such and converts its structure in a way that is more appropriate for the
associative data model and is easier for user interaction.

Let's load this table into a new QlikView document using the GENERIC keyword:

1.	 Start by creating a new QlikView document and name it Generic Load.qvw.
2.	 Store the QVW file into the Airline Operations\Side Examples\

Chapter 9 folder.
3.	 Make sure the Generic DB.xls file is also at the same location.
4.	 Open the script editor and bring up the File Wizard dialog with the

associated example file.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[326]

5.	 In the first window of the File Wizard, make sure the following parameters
are set before continuing:

6.	 Then, click on Finish to close the File Wizard dialog window and generate
the corresponding Load script.

7.	 Now, right before the LOAD keyword, enter the GENERIC keyword so that the
final script looks as follows:
GENERIC
LOAD
 Object,
 Attribute,
 Value
FROM
[Generic DB.xlsx]
(ooxml, embedded labels, table is GenericDB);

8.	 Save the document and click on the Reload button from the toolbar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[327]

By using the GENERIC keyword, QlikView will transform and process the contents
of the generic table so that, in the end, we have all attributes stored in a separate
field and associated to the corresponding object. The resulting data model for the
preceding example is shown in the following screenshot:

Each of the tables shown in the preceding screenshot will have only the necessary
rows, depending on how many objects share the corresponding attribute.

With the new associated tables, we can add different list boxes to our QlikView
document to allow the user to select different attributes and objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Data Transformation

[328]

Summary
We have seen four different scenarios in which the source table is not suitable for a
QlikView data model, and we have shown the tools QlikView provides to deal with
those formats. We have learned how to use the Transformation Wizard to remove
garbage from input tables, fill missing cells, and unwrap table files.

We also learned what a Crosstable is, why it's not fit for the QlikView data model,
and how to transform it into a traditional table. We saw how to deal with hierarchical
tables and identify parent and child nodes.

Finally, we learned what a generic table is and how to take advantage of QlikView's
ability to transform its structure.

In Chapter 12, Advanced Data Transformation, we will look at more advanced techniques
for transforming source data for use in different data model designs.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions
The current frontend of our Airline Operations document is made up of
charts that use straightforward aggregations, such as a Sum of values in a field.
Dashboarding, however, often requires more complex calculations, depending on
the nature of the data we are working with and the way some metrics should be
calculated. Also, we often need to add certain context to the numbers; for instance,
we might need to present the data in terms of relative growth (comparing current
year versus last year), or create visualizations in a way that is not exactly "natural",
in which case we could use calculated or synthetic dimensions.

In this chapter, we will dive into some of the complexities you can come across when
developing a QlikView application. In summary, we will learn:

•	 To expand the use of variables
•	 To use conditional functions and If expressions
•	 To handle advanced aggregations

So let's get to it.

Using variables
Simply put, variables in QlikView are used to store data, either static or dynamic,
and they can contain text, numbers, or any other data type. They are stored as a
separate entity and are given a name to be able to reference them from any object
in the whole document.

Even when one variable can store a single data value, their use can be extended to
a much broader scope once we understand its inner workings.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[330]

At a general level, we can say that variables in QlikView are used in two
different ways:

•	 To store a value or string either static or based on a formula. This type of
variable can also be used to receive and interpret input from the user.

•	 To store an expression definition that can be used in charts. This is an
approach we explored in Chapter 6, Building Dashboards.

The main difference between the previously mentioned options is that one calculates
the output before sending it to the sheet object that makes use of the variable,
whereas the other stores only the definition of the expression and the object using it
is in charge of evaluating it and getting a result.

In this section, we will cover the use of variables up to an advanced level, but let's
first get the basics in order and move on from there.

Creating a variable
We've already worked through the process of creating a variable in a previous
chapter, and you've seen that it is fairly simple. However, let's make a quick
review of the steps involved in using our Airline Operations document. Open
the corresponding QVW file and create a new sheet so that we don't mess up the
objects already created. Name this new sheet Variables.

After practicing with some examples in a separate
sheet, we will apply the learned concepts by
extending our Dashboard and Analysis sheets.

Now, go to the Variable Overview window by using the keyboard shortcut Ctrl +
Alt + V or by clicking on the Settings menu and selecting the Variable Overview…
option, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[331]

From this window, we are able to see the variables that have been previously
defined. Click on the Add button and the New Variable dialog will appear, where
we will type the name we want to assign to our new variable.

The default name is Variable1. Change it to vTop and click on OK. The variable will
be created and we will now be able to assign a value to it. To do that, highlight the
new variable by clicking on its name and, in the Definition pane on the lower part
of the window, type the number 5. Then, in the Comment field, add the following
comment to describe what the variable is for:

Variable used to dynamically change the number of displayed values in
a Top N Chart.

It's important to first highlight the variable by clicking on its name before entering the
variable's definition, otherwise the definition we enter will not be correctly applied.

Using variables in charts
Our new variable will, for now, contain a simple and static value. We will use that
value to manipulate a chart. Specifically, this value will represent the number of
carriers that should be shown in a bar chart, based on their number of flights. Only
the top five carriers shall be shown.

Create a new bar chart with Carrier Name as dimension and Sum([# Departures
Performed]) as the expression. From the Sort dialog window, make sure the Carrier
Name values are sorted by Y-Value in descending order.

Our new chart should so far look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[332]

As you can see, the chart is a little clogged with bars in the limited space we have
available. We need to limit the number of bars shown so that only the first N Carriers
are visible. N is the number that our vTop variable holds.

Go to the Chart Properties window and activate the Dimension Limits tab. Enable
the Restrict which values are displayed using the first expression checkbox. The
configuration for the limit we will set is:

•	 The Show only radio button must be selected
•	 From the drop-down list, the Largest value will be selected
•	 On the Values field, we will enter our variable using the following syntax:

$(vTop)

•	 The Show Others checkbox should be disabled

The previous configuration is shown in the following screenshot:

The syntax we used to enter the variable is called Dollar Sign Expansion. In this
particular case, the variable could have been entered without the dollar sign, but
there are some circumstances in which it is a must, so it's a good practice to always
include it. We will talk about this syntax later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[333]

After finishing setting the previous configuration, click on OK and the chart will be
more readable and will look like the following screenshot:

Change the chart's Orientation to Horizontal from the Style tab of the properties
window so that it's even more readable.

Interactively changing a variable's value
The reason for using a variable to limit the number of dimension values shown in the
chart is to enable the user to dynamically change it as pleased. There are two main
layout objects through which a variable's value can be changed:

•	 The Input Box object
•	 The Slider object

We will describe the two of them and their uses.

Using the Input Box object
The Input Box is basically an Excel-like cell on which the user enters values. An
Input Box can hold any number of variables, each one with its own associated cell.

To describe how it is used, click on an empty space of the sheet workspace and, from
the New Sheet Object section, select Input Box....

The New Input Box dialog window will appear and the General tab will initially be
active. From the Title field, we can assign a display text to be placed on the object's
caption bar. Type Enter number of top values into this field.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[334]

In the Available Variables list to the left, we will see all created variables. There is
also a button to create a New Variable, which is very convenient if we previously
forgot to add the variable we want to use.

We are going to add the vTop variable to the Displayed Variables list on the right.
Do this by highlighting the variable's name and clicking on the Add > button. Once
the variable is in the Displayed Variables list, highlight it and the Label field,
located below, will be enabled. On this field, replace the name of the variable with
Top Values.

There are other options that can be set in the rest of the tabs, but we can click on OK
at this point and the object will be created with just what we need.

Most of the other tabs hold settings that are similar to those
used in other sheet objects, such as charts. For instance, we
also have the Presentation tab or the Layout tab. We invite
you to explore those tabs and change their settings based on
what you've learned from previous chapters.

When the object is created, the input cell will have the number 5, which is the value
we previously defined for our variable. If we click on the value cell, we will enter
into edit mode and be able to change the variable's value; upon doing so, the chart
will be instantly updated to reflect the change.

Change the variable's value to 10 using the Input Box object and see the effect
on the chart.

Resizing the Input Box object is achieved using the method
previously described for resizing a multi box, which consists
of simply resizing the label cell and the value cell individually.

Using the Slider object
Similar to the Input Box object, the Slider object is used to interactively change a
variable's value from the frontend. The main difference is the way in which the user
interacts with the object. The Slider object is a little more visual.

To create a Slider object, right-click on an empty space of the sheet workspace and,
from the New Sheet Object section, select Slider/Calendar Object....

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[335]

The New Slider/Calendar Object dialog window will appear and the General
tab will be active. For a Slider/Calendar object, the Input Style option can be set
to either Slider or Calendar. The Slider object is the one we will be using in this
example, since the Calendar object is used to work with date values.

It's important to note that this object can be used not only
to interact with variables, but also to make field selections.

From the Data section, make sure to activate the Variable(s) radio button and select
the vTop variable from the drop-down list. The Mode and Value Mode settings will
be left with the default options.

We must set min and max values to delimit the slider's range of possible values. Set
the Min Value option to 5 and the Max Value option to 30.

To specify that only integers should be used in the slider, enable the Static Step
checkbox and set its value to 1.

Click on OK and the slider will be created in horizontal form. It can be changed to
vertical, if desired, from the Presentation tab of the slider's properties.

The initial value the slider will hold is the one we previously set the vTop variable
to. To modify the value, click on the thumb tack and drag it to its desired value. The
chart will automatically reflect any change made to the variable and, at the same
time, the value stored in the Input Box object we previously created will be kept in
sync with the Slider object, since both objects are using the same variable.

Using variables based on expressions
In the previous section, we used a variable to store a static value. That is to say,
the value was not based on a calculation and therefore didn't respond to user
field selections.

We will now create a variable with a dynamic value, one that responds to the
document state and calculates an output value based on user selections. To keep
this example as simple as possible, we will create a value that will hold and return
the total number of FTEs based, on current selections, and use that value
in a chart expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[336]

Go to the Variable Overview… window (Ctrl + Alt + V) and click on the Add button.
From the New Variable window, type vTotalFTEs to name the new variable and
click on OK.

Next, highlight the variable and type the following expression from the
Definition pane:

=Sum([# Equivalent FTEs])

Don't forget the equal to sign. This tells QlikView to calculate
the variable across all dimensions regardless of the context in
which the variable is used.

Click on OK to close the Variable Overview… window.

We will now proceed to create a new chart in the form of a straight table with Carrier
Name as the only dimension and having the following expression:

Sum([# Equivalent FTEs]) / $(vTotalFTEs)

From the Number tab of the Chart Properties window, assign a two-decimal format
and specify it to be shown as percentage.

These settings will result in a table with a list of carriers and the percentage of FTEs
each of them contributes to the total. Notice we have included our vTotalFTEs
variable as the divisor with the Dollar Sign Expansion syntax.

Since the variable holds a single value, all rows in the straight table will be divided
by the same number, which represents the total number of FTEs employed by all
reporting airlines; the numerator value, which is the number of corresponding FTEs,
will be different for each carrier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[337]

Since the variable's value is an active calculation, the output value will respond to all
user selections, and the chart will be updated to reflect the changes as well.

There are other ways for achieving the above calculation,
one of which is by using the TOTAL qualifier. We will
describe how to use it in a later section.
Another way is enabling the Relative checkbox in the
Expressions tab.

Using variables to store expressions
So far, we've discussed variables that store a single static value and variables whose
output value is based on a calculation. Now, it's time to take variables to a new level
and expand their usability.

You may remember from Chapter 6, Building Dashboards, how we used variables to
store expression definitions and then used them in charts. To expand on the topic, we
will quickly review the theory and proceed to discuss the advantages of these types
of variables and additional use cases.

Go to the Variable Overview… window and add a new variable, with the name of
eFTEs. The contents of this variable will be:

Sum([# Equivalent FTEs])

Add the following comment to the variable:

Total Equivalent FTEs.

Notice the variable definition is almost the same as that of the vTotalFTEs variable
we previously created. The difference, the equals sign at the beginning, though
small, is in fact huge in terms of impact.

When creating variables intended to store expression definitions,
the equals sign must be omitted so that the calculation is
performed on the chart side and not as the variable output.

After creating the variable, head on to create a new chart in the form of a straight
table with Carrier Name as dimension and having the following expression:

$(eFTEs)

The new straight table will be created with the total number of FTEs for each carrier,
just as if we had used a direct expression instead of a variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[338]

As discussed previously, the main advantage of using variables for handling chart
expressions is that, when using the same expression across several sheet objects,
it's easier to administer when a new change needs to be made to the expression.
For instance, suppose the number of FTEs should now be shown in thousands;
in this case, you just add the divisor to the variable definition and all charts are
automatically updated to reflect the change.

Sometimes, one single chart requires the use of the same expression to define
different properties; for example, to add a text in the chart with the expression result,
or to define thresholds with different colors for each. The use of a variable to store
the expression will ensure consistency across all these configuration settings.

Variable naming convention
We have now seen the different ways in which a variable can be used to interact with
a QlikView document and to handle different chart's calculations. Before continuing
let's review a quick guideline on variable naming convention.

It's important, when working with variables, to assign names based on certain
"rules" to help better understand what each variable's purpose is, how it should
be used, and to better administer them when the list of variables in a QlikView
document grows.

The one basic rule in naming consistency is the use of predefined prefixes. For
instance, you previously saw how we named the first two variables (vTop and
vTotalFTEs) with the v prefix. A v prefix was used in naming those variables
because the output is a single value, as opposed to the third variable we created
(eFTEs) where we use the prefix e as the variable value is an expression.

Being consistent to this convention will ensure that even when the list of variables is
long, any particular variable can be found on the list whether you are looking for an
expression or a value-based variable.

The Dollar Sign Expansion syntax
We have been using a particular syntax to reference variables; it's called Dollar Sign
Expansion (DSE). Let's quickly describe how and why we should use this syntax.

You can see the role of the Dollar Sign Expansion syntax as that of simply evaluating
a variable's contents, that is, calculate (expand) the result of the variable and then
return the output value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[339]

We said earlier that, when the variable's output value is simply a plain number
(such as the vTop or vTotalFlights variables) the Dollar Sign Expansion is not
actually required since there is actually nothing to "expand". However, it's good
practice to always use DSE even when the variable to be expanded does not require
it, because of the following two reasons:

•	 At any moment you might decide to change the variable's definition and
modify it to one that does actually require DSE syntax

•	 So that your objects maintain consistency with respect to the use of variables

There are, however, cases in which the DSE is ineffective on its own. When the
variable's output value is a text string, the result of the Dollar Sign Expansion will be
a null or missing value because a text value cannot be interpreted numerically, so we
need to either enclose the Dollar Sign Expansion into straight single quotes or simply
not use DSE. An example would be:

•	 Variable name:
vUsername

•	 Variable definition:
=OSUser()

•	 Variable output (as literal value):
Domain\Username

•	 When called from a sheet object (a text object, for instance) we should use
any one of the following two expressions:
='User Name: $(vUsername)'
='User Name: '& vUsername

As mentioned before, using the DSE syntax and enclosing it in single quotes is the
recommended approach in the previous example.

Dollar Sign Expansion with parameters
It is also possible to create variables with parameters and then call them via a DSE
specifying the parameter's value, thus allowing extended flexibility and reusability
of variables.

The way we create a variable with parameters is as follows:

1.	 Open the Variable Overview… window (Ctrl + Alt + V) and create a new
variable. Name it eDeparturesPerformed_VarUnit.

2.	 The variable definition will be:
Sum([# Departures Performed]) / $1

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[340]

3.	 In the Comment field, enter Variable to calculate the number of
departures performed with variable divisor.

4.	 Close the Variable Overview… window by clicking on OK.

We already have a similar variable, called eDeparturesPerformed, which is used
to store an expression that calculates the number of flights performed in thousands.
The difference this time is that we are inserting a parameter as the divisor. This
parameter is represented by $1, and will allow us to use the same variable to obtain
the corresponding expression and calculate the number of flights performed in
millions (by defining the parameter as 1000000), thousands (when the parameter is
1000), units, and so on.

To use the above variable in an expression, start by creating a new chart in the
form of a straight table with Carrier Group as the dimension and the following
three expressions:

1.	 The first expression, labeled # of Flights, will be:
$(eDeparturesPerformed_VarUnit(1))

2.	 The second expression, labeled # of Flights (thousands), will be:
$(eDeparturesPerformed_VarUnit(1000))

3.	 The third expression, labeled # of Flights (millions), will be:
$(eDeparturesPerformed_VarUnit(1000000))

The only difference in the previously mentioned expressions, apart from the label,
are the parameter values inserted into the variable.

After properly formatting the expression values and the chart's presentation, we will
have the following chart:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[341]

A variable can have any number of parameters defined, all specified with a dollar
sign and a number that indicates the parameter's number: $1, $2, $3, and so on.

When expanding the variable, the parameters are specified by enclosing them
in parentheses as a comma-separated list. For example, a variable with three
parameters would be expanded as follows:

$(VariableName(30, 20, 50))

Where the values 30, 20, and 50 are inserted into the corresponding parameter's
position in the variable definition.

Parameters in a variable can either be numbers or text; we can also arrange a
parameter to receive a field name to be used in the calculation, or even receive
values read from fields.

Double Dollar Sign Expansion
We've already discussed how storing expressions in variables can be a good idea for
re-using expressions, easily manage changes in them, as well as for data consistency
across sheet objects. We will push this idea a bit further by using those expression
variables to allow the user to switch among different metrics at his/her convenience.

1.	 First, make sure the following expression variables are already in the
Airline Operations document. If the variables are not yet defined, refer
to Chapter 6, Building Dashboards, to find their definitions and apply them:

°° eDeparturesPerformed

°° eEnplanedPassengers

°° eAirTime

2.	 Now, we will add a new island table to the data model via a Load Inline
statement. Open the Edit Script window and add a new tab at the end of the
script; name it Metrics. In this new tab, we will add the new table using the
Inline Data Wizard dialog (Insert | Load Statement | Load Inline):

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[342]

The corresponding script that will be generated will be:

LOAD * INLINE [
 Metric Name, eMetric
 # of Flights, eDeparturesPerformed
 Enplaned Passengers, eEnplanedPassengers
 Air Time, eAirTime
];

The first column of the previous table holds the metric names, which the user will be
able to select from a listbox. The second column holds the corresponding expression
variable names, used to calculate any of the selected metric.

1.	 Reload the script to add the new table to our data model.
2.	 Then, we will create a new listbox based on the Metric Name field and place

it in the Variables sheet.
3.	 Once the listbox is created, select one of its values and enter the listbox

properties window to enable the Always One Selected Value setting
from the General tab. This way, we ensure that we will have something
to calculate at all times.

The Always One Selected Value setting can only be applied
when there is one selected value in the listbox at the time the
properties window is opened. Otherwise, it will be grayed out.
Sometimes, this setting can be removed and might need to
be reapplied if the document is reloaded with no data in the
corresponding field (for example, in the case of a script error).

4.	 We are now going to create a new chart, whose expression will be
dynamically changing based on the Metric Name selection. The settings of
the new chart are as follows:

°° Select the Pie Chart option in the Chart Type section
°° Enter the following expression into the Window Title field:

=[Metric Name] &' by Carrier Group'

°° Disable the Show Title in Chart checkbox
°° Set the dimension as Carrier Group
°° Set the following as the expression:

$($(=eMetric))

°° From the Presentation window, enable the Limit Legend checkmark
and set it to 15

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[343]

Once the chart is created, we will be able to switch its active expression by selecting
the desired metric from the Metric Name listbox.

The metric selection based on a listbox works the same as having grouped
expressions in the chart to be able to switch them with a cycle button (as described
in Chapter 2, Seeing is Believing). However, the listbox selection makes it possible to
change the metric on several charts at the same time, something that is not possible
with the cyclic expression method.

Notice how we have also set a dynamic chart title that
changes according to the metric selection.

We are performing two expansions before actually arriving at the calculation we
need. The first, inner-most, Dollar Sign Expansion pulls the value from the island
table corresponding to the user selection and indicates which variable the second,
outer, Dollar Sign Expansion is going to evaluate.

Now that we have reviewed the different ways in which we can use variables in
QlikView objects, let's complement the acquired knowledge by exploring other uses
of advanced expressions.

Be sure to save the changes we've made to the
Airline Operations document before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[344]

Using the TOTAL qualifier
The TOTAL qualifier is added to aggregation functions to disregard chart dimensions
and make the calculation over the entire record set as defined by the current
selection state.

In a previous section, we calculated the percentage of FTEs each carrier performs
relative to the total number of FTEs and we used a variable (vTotalFTEs) to store
the divisor value. Instead of using a variable, the same calculation can be made
using the following expression:

Sum([# Equivalent FTEs]) / Sum(TOTAL [# Equivalent FTEs])

When the preceding expression is used in a straight table with Carrier Name as the
dimension, the numerator will calculate the value corresponding to each carrier,
which will be different on each row of the table. The divisor will calculate the total
number of flights made by all carriers, which will be the same for all rows of the
table, therefore disregarding the dimension value.

Additional modifiers can be used along with the TOTAL qualifier to disregard only
some of the dimensions in a chart, instead of all of them; that is, in cases where there
is more than one dimension in a chart.

For instance, if the straight table described earlier, besides the Carrier Name
dimension, also has the Year and Month dimensions, we can add any of those
dimensions to a list of fields enclosed in angular brackets, and separated by a
comma, to specify which of them should the TOTAL qualifier disregard.

Let's take the already created pivot table in the Reports tab of our Airline
Operations document and add three new expressions to it to better illustrate how the
TOTAL qualifier works. The three expressions we'll add, along with their labels, are:

•	 Participation to the whole:
Sum([# Departures Performed]) / Sum(TOTAL [# Departures
Performed])

This expression will return the percentage of flights for a particular carrier,
month, and year relative to the total flights of all carriers, and for all years
and months available in the current selection state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[345]

•	 Percentage versus the carrier's whole:
Sum([# Departures Performed]) / Sum(TOTAL <[Carrier Group],
Airline> [# Departures Performed])

This one will return the percentage of flights for a particular carrier, month,
and year relative to the total flights performed by that carrier in all years and
months available in the current selection state.

•	 Percentage versus the carrier's whole per year:
Sum([# Departures Performed]) / Sum(TOTAL <[Carrier Group],
Airline, Year> [# Departures Performed])

This will return the percentage of flights for a particular carrier, month, and
year relative to the total flights performed by that carrier in that year, but
for all months available in the current selection state that correspond to that
same year.

The result is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[346]

The Aggr function
The output of the Aggr function can be likened to the list of values a straight
table would display when evaluating an expression over a certain dimension.
For instance, the following straight table has the Flight Type field as the dimension
and Sum([# Departures Performed]) as the expression.

Essentially, the Aggr function creates a virtual straight table, similar to the earlier
one, so that we can further process the list of values that would appear in the
expression column, without even creating the actual object. The result of the Aggr
function can be used to:

•	 Create a calculated dimension and perform a nested aggregation
•	 Perform additional aggregations based on the resulting set of values

Let's see examples for both of these.

Using Aggr for nested aggregation
Since HighCloud Airlines' users are interested in discovering key players in the
industry from different perspectives, they now require a visualization object that
clearly identifies carrier coverage of interstate routes.

To know how many interstate routes each carrier covers, we would simply create a
chart similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[347]

Taking this a step further, we can ask a different, but in a way similar, question: If
we were to classify carriers by the number of interstate routes they serve, how many
carriers would fall under each category?

We could display a straight table with the number of Interstate Routes as the
dimension and the number of carriers that fall under each "category" as the
expression. The problem is that we don't have a "number of interstate routes" field
in our data model, nor can we add it as a calculated field in the script because the
calculation varies with each user selection; having a pre-aggregated field is simply
not the answer.

What we can do is perform a nested aggregation that dynamically constructs the
chart's dimension. To do that, follow these steps:

1.	 Create a new sheet to allocate the examples in this section; name it
Advanced Expressions.

2.	 Then, click on the New Chart button from the design toolbar.
3.	 From the initial dialog window, select Straight Table in the Chart Type

section and set the Title field to Carrier Classification by # of
Interstate Routes.

4.	 Click on Next and, from the Dimensions dialog window, click on the
Add Calculated Dimension…button.

5.	 The Edit Expression window will pop up and there we will enter the
dimension's definition, based on the Aggr function. Type the following
expression and click OK:
Aggr(Count(DISTINCT [From - To State Code]), [Carrier Name])

This expression will result in a list of values corresponding to the different
number of interstate routes each carrier serves, which is basically the
expression column in the straight table shown in the previous screenshot.
That list will now be our chart's dimension.

6.	 From the Dimensions window, highlight the calculated dimension we just
created from the Used Dimensions list and, in the Label field below, type
Interstate Routes.

7.	 Then, click on Next to move on to the Expressions dialog window. On the
Edit Expression window, enter the following and click on OK:
Count(DISTINCT [Carrier Name])

This expression will count all different carriers so that the final chart shows
the number of carriers each interstate-routes classification has.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[348]

8.	 From the Expressions dialog window, assign the # of Carriers label to
our expression.

9.	 Click on Finish and we will be left with the following chart:

According to the table we see in the earlier screenshot, there are 41 carriers that fall
into the two-route category. 32 more serve a single interstate route, 20 other serve 4
interstate routes, and so on.

To design such a table, as you just saw, it's not necessary to create any pre-
aggregations in the source tables, nor is it required to have an "Interstate Routes"
field per se. The chart, along with its calculated dimension, is completely self-
contained and does not require other objects to function.

In an upcoming section, we'll extend on the nested aggregation
topic to group dimension values with the use of ranges.

A word on calculated dimensions
As useful as they are, calculated dimensions (such as the one we created earlier) are
not performance-friendly. Besides delaying calculation time, they can sometimes
prevent a chart's state from being cached to RAM, hence stopping QlikView's
caching algorithm from coming into play.

As calculated dimensions are sometimes necessary for advanced aggregations, it
is advisable to use this feature only when there is no other way of accomplishing
certain visualizations. Whenever a calculated dimension can be created as a new
field from the script, it is advisable to do so in order to use it in a more natural way
in chart objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[349]

Aggregations over the Aggr output
It's also possible to perform additional aggregations over the result set that the Aggr
function outputs. Let's look at the following example:

To build upon the insight gained from the previous example, suppose we want to use
a text object to present the maximum, minimum, and average number of interstate
routes served by all carriers; our starting point would, again, be the following chart:

Since the chart is sorted by number of interstate routes in descending order, we
can easily see that the maximum value, regarding number of interstate routes per
carrier, belongs to Delta Air Lines Inc. and is 1,145. To get the minimum value, we
would sort the table in ascending order. To get the average value, however, it gets
kind of tricky. Let's use the Aggr function to display all three values at once. Follow
this procedure:

1.	 Click on the Create Text Object button in the design toolbar.
2.	 The New Text Object window will appear, with the General tab initially

active. The text we want displayed by the object is entered into the Text field.

If we want to define the display text based on an expression,
the Text definition must begin with an equal to sign.

On the Text field, type the following expression:
=Max(Aggr(Count(DISTINCT [From - To State Code]), [Carrier Name]))

Notice that the Aggr function part in the earlier expression is the same as that
which we used in the previous example to create the chart's dimension. We
are now adding the Max aggregation function to obtain the largest number
from the resulting list of values.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[350]

3.	 Click on OK to close the New Text Object dialog window. The text
object should display 1145.

We now have one of the three values we are interested in. To get the other two
values we will use essentially the same expression, only changing the Max function
with the Min and Avg functions to get the minimum and average values, respectively.

1.	 Right-click on the text object we just created and select Properties….
2.	 We will modify the Text definition to add the rest of the values. Replace the

previous expression with the one that follows:
='Max Value: ' & Max(Aggr(Count(DISTINCT [From - To State Code]),
[Carrier Name])) & Chr(10) &
'Min Value: ' & Min(Aggr(Count(DISTINCT [From - To State Code]),
[Carrier Name])) & Chr(10) &
'Avg Value: ' & Avg(Aggr(Count(DISTINCT [From -
To State Code]), [Carrier Name]))

As you can see from this expression, it gets quite lengthy and the Count
function is used three times with the same parameters. In this case, it would
be a good idea to apply the expression-in-variable concept described earlier
in this chapter. Once a new eRoutes variable is created, the preceding
expression could be changed to the following:

='Max Value: ' & Max(Aggr($(eRoutes), [Carrier Name])) & Chr(10) &
 'Min Value: ' & Min(Aggr($(eRoutes), [Carrier Name])) & Chr(10)
 &
 'Avg Value: ' & Avg(Aggr($(eRoutes), [Carrier Name]))

3.	 Click on OK to apply the changes and the text object should display
the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[351]

A word on using the Distinct qualifier
In some of our previous expressions, we have used the Distinct qualifier in our
Count aggregation function. The Distinct qualifier is used in this case to avoid
duplicate counts. However, the use of this qualifier can make the calculation perform
poorly as it causes the operation to be single-threaded.

In some cases, it is advisable to avoid using the Count function and the Distinct
qualifier by creating a counter field in the script (a field with the value of 1) and
then using a more direct aggregation such as Sum(RouteCounter) in the final
chart's expression.

Getting the Average Load Factor per
Route per Airline
HighCloud Airlines have a new requirement in which the Aggr function will prove
useful. They want to know the average load factor percentage per airline, but over
each route. In this case, a direct aggregation function like the Avg function will
not give the result we need because of the additional "dimension" required in the
calculation. To illustrate, take the following chart:

In this chart, we can see the different routes each carrier serves along with the
corresponding load factor. We should now take the individual load factor per route
and perform an average operation over the list of values for each airline to obtain the
value we are looking for.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[352]

We can't simply remove the Route dimension because even though we will get a
grouped Load Factor % value for each airline, it will not be what we are looking
for as the Average Load Factor per Route per Airline value is not the same as the
Load Factor per Airline value. Instead, we will use the Aggr function to solve the
requirement by entering the chart expression as follows:

Avg(Aggr($(eLoadFactor), Airline, [From - To Airport ID]))

Notice how we've included both dimensions in the Aggr function. Additionally, this
function will also account for routes with zero or missing load factors, which are by
default not shown in the straight table.

We will keep a second expression with the Load Factor per Airline value to show
the difference in both calculations. The second expression column will have the
following definition:

$(eLoadFactor)

Now, we can remove the Route dimension from our chart and we will get
the following:

With the use of the Aggr function, a QlikView document can be empowered
enormously and we are able to accomplish things that are almost impossible with
other tools, especially because all calculations are being performed on the fly.

Be sure to save the changes we've made to the Airline
Operations document before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[353]

Conditional functions
There are several conditional functions in QlikView that can be used in the frontend
to give our charts a higher level of flexibility in terms of handling and presenting the
data, both in expressions and dimensions. Let's go through some examples of these
functions to enhance the analysis in our QlikView app.

The If function
Though sometimes neglected because of its high resource usage when compared
to other methods (such as Set Analysis, which is covered in the next chapter), the
If function has important uses when creating QlikView documents. Essentially, it
is used when two or more different outputs should result from a single expression,
depending on a condition that is evaluated to either be true or false.

In this section, we'll explain how it works and discuss a use case.

The syntax
As the first step, we should describe the syntax used by this function and the
parameters it needs to work. If you've worked with Microsoft Excel previously,
then it's very likely you well have come across the If function in a spreadsheet.
The syntax of the If function in QlikView is almost the same as that in Excel.
The function takes the following three parameters:

•	 Condition: An expression that, when evaluated, results in either true or
false. Relational and logical operators are used to create the expression.

•	 Then: The expression or value set as the then parameter will be the output of
the If function whenever the condition results in true.

•	 Else: The expression or value set as the else parameter will be the output of
the If function whenever the condition results in false.

The pseudocode is:

if(condition , then , else)

The If function can also be used as a script function for creating calculated fields.
The syntax would be the same.

Additionally, a nested If expression can be constructed in the following manner:

If(condition1, expr1,
 If(condition2, expr2,
 expr3))

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[354]

A use case
You should be advised upfront that the If function is, in fact, resource heavy. It's
often a good alternative to move all calculations based on the If function from the
frontend to the script whenever possible and handle the results through calculated
fields or flags in the data model. However, there are cases in which the calculation
cannot be handled anywhere but in the frontend. Here, we describe one scenario in
which you can take advantage of the If function's capabilities.

Heat charts
A heat chart is a cell matrix in which each individual value is color-coded based
on a threshold. We will create one of those charts using the Airline Operations
document to demonstrate the concept.

1.	 From the Airline Operations.qvw document, activate the Analysis tab.
Then, click on the Create Chart button from the design toolbar.

2.	 From the New Chart dialog window, select the Pivot Table option in the
Chart Type section and enter Load Factor % Heat Map in the Title field.

3.	 Click on Next and the Dimensions dialog will appear, from which we will
add the Carrier Name, Year, and Month dimensions to our new chart. Click
on Next to continue to the Expressions dialog window.

4.	 From the Edit Expression window, type the following expression:
$(eLoadFactor)

5.	 Click on OK to close the Edit Expression window and, from the Expression
dialog, type Load Factor % as the expression Label.

6.	 Next, we will define a background color from the expression's attributes. To
do that, click on the small plus sign located next to the expression name in
the Expressions dialog window. Highlight the Background Color attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[355]

7.	 Once the attribute is highlighted, go to the Definition pane to the right
and click on the ellipsis button to bring up the corresponding Edit
Expression window.
The expression we will define for this attribute is as follows:

If([Load Factor %] >= 0.85, Green(),
 If([Load Factor %] >= 0.70, LightBlue(),
 LightRed()))

8.	 Click on OK to close the Edit Expression dialog.

Notice how we are not recalculating the Load Factor %
value but instead referencing the actual expression we
created in the previous step, using the label we set. This
will help us save some valuable CPU resources.

9.	 Next, highlight the Text Color attribute for the Load Factor % expression
and, in the Definition pane, type White(). This will ensure that the cell
text uses a white color to make it more readable within the three different
background colors we previously defined.

The "conditional formatting" functionality presented
here can also be accomplished using the Visual Cues tab
of the Chart Properties window. However, the Visual
Cues option only supports up to three levels. Using the
expression's attributes, we can define a more complex
formatting condition, with four or more levels.

10.	 Click on Next six times until you get to the Number dialog window; set the
following format to our expression:

°° Fixed to 2 decimals
°° Show in percent (%)

11.	 Click on Next three times to get to the Caption dialog window and enable
the Auto Minimize option.

12.	 Click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[356]

Initially, only the first dimension (Carrier Name) will be visible. Expand the other
two dimensions and drag them to the top to create the matrix. The heat map should
look like the following screenshot:

To accommodate the new chart into the Analysis sheet, enable the Auto minimize
option in the Passengers vs Mail scatter chart. Then, resize and position the new
heat chart to occupy the same space as the scatter chart.

Resize and position their corresponding minimized icons as well, just as we did with
the Reports tab previously.

A solo exercise
It's time for a little challenge. We've defined the threshold with static limits (0.85
and 0.7). How can we make them variable, and how can we let the users define
their own limits?

The key is in the first section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[357]

Building a heat chart with the Colormix wizard
In our previous example, we used the Green(), LightBlue(), and LightRed()
color functions in conjunction with the If function to define the Background color
attribute. Now, we will edit the attribute's expression to make use of the Colormix
Wizard option and see if we can come up with a better looking heat chart.

1.	 Right-click on the pivot table we created above and select Properties….
2.	 Then, navigate to the Expressions tab and click on the expand icon to

reveal the attributes list. Double-click on the Background Color attribute
to open the Edit Expression window, in which we will replace the current
attribute's definition.

3.	 Clear the expression's current content and, from the File menu, select
Colormix Wizard….

4.	 The Colormix Wizard window will pop up. Click on Next in the first dialog,
which is just informative, and we'll enter Step 1, which is about defining the
Value Expression.

5.	 Enter the name of the main expression, in our case Load Factor %, enclosed
in square brackets. This expression will be used to determine the color and
intensity that should be set on each cell.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[358]

6.	 Click on Next to move on to Step 2, in which we will define the upper and
lower limit specifications. The settings will be defined as follows:

°° The Auto Normalize option will be disabled for us to explicitly
define upper and lower limits, instead of using the chart's max and
min values

°° The Upper Limit value will be set to 1, which represents a 100
percent load factor level

°° The Upper Limit color will be left as the default green
°° The Intermediate color checkbox will be enabled, with a value of

0.75 and a blue color
°° The Lower Limit value will be set to 0.5, which represents a 50

percent load factor level
°° The Lower limit color will be left as default red

7.	 Click on Next to navigate to the third step in the wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[359]

8.	 We will use the default values in the Step 3 window (Enhanced Colors
enabled and Value Saturation set to Use Upper (Lower) Color), so just click
on Finish for the new color expression to be generated. The new expression,
which will be automatically inserted into the Edit Expression window,
should look like the following expression:
ColorMix2 (if(rangemin(1,rangemax([Load Factor
%],0.5))<0.75,-Sqrt(-(rangemin(1,rangemax([Load Factor %],0.5))-
0.75)/(0.75-0.5)),Sqrt((rangemin(1,rangemax([Load Factor %],0.5))-
0.75)/(1-0.75))), ARGB(255, 255, 0, 0), ARGB(255, 0, 255, 0),
ARGB(255, 0, 0, 160))

This expression uses a combination of different color functions, as well as
nested If statements. Even though the expression looks complex, it shouldn't
be a problem for us since it is auto generated by the Colormix wizard.

9.	 Click on OK in the Edit Expression window to apply the changes and then
OK again from the Chart Properties window.

The modified heat map should now adopt the following look:

If we compare the new chart to what we had previously, it's evident that the new
look is more dynamic and has additional levels of intensity, thus providing a more
detailed insight.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[360]

Numeric versus text comparisons
An important consideration when inserting comparisons into conditional functions is
that text-based comparisons will be slower than numeric comparisons.

Take the following two expressions, for example:

1.	 If(Month = 'January', expr1, expr2)

2.	 If(MonthNum = 1, expr1, expr2)

The only difference is that the first expression is comparing the Month value as a
literal value, that is, a text, while the second expression is performing the comparison
based on a numeric value. The latter will be faster.

Similarly, it's also important to consider that, when defining a numeric comparison
value, it shouldn't be enclosed in single quotes (MonthNum = '1') as it will cause
QlikView to treat it as a text-based comparison.

The Class function
Conditional functions are widely used in conjunction with numeric intervals either to
find where a specific value falls in a set of ranges, or to group results into predefined
bins. The Class function is particularly helpful in these cases.

Take, for example, the analysis we made in a previous section about the number of
interstate routes per carrier. The initial chart is:

We can group the carriers based on the number of interstate routes they serve, only
instead of using the individual number of routes, we can use intervals. Add the
following expression to our chart:

Class(Count(Distinct [From – To State Code]), 100)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[361]

The result will be the following screenshot:

Essentially, the Class function takes the individual result of an expression, in this
case the count of routes, and automatically creates the corresponding bin based on
the bin width specified.

The Class function only supports fixed bin widths.

We can take this further to use the Class function into a nested aggregation, by
having a new straight table chart with the following calculated dimension:

Aggr(Class(Count(DISTINCT [From - To State Code]), 100), [Carrier
Name])

Add the following expression:

Count(DISTINCT [Carrier Name])

The result will be as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[362]

As you can see, this one is easier to read than having all individual values listed in
the dimension column.

The dimension values presented just now show the default format for the bin names.
This is fixed within QlikView, but we can create our own custom format with the
Replace function, as follows:

Replace(Aggr(Class(Count(DISTINCT [From - To State Code]), 100),
[Carrier Name]), '<= x <', ' - ')

This expression will result in the following dimension values:

A solo exercise using the Class function
Now that you've seen how to create nested aggregations with the use of intervals,
take a moment to create a chart to visualize the number of airlines falling into
different load factor ranges with a bin width of 10 percent. Place it into the
Dashboard tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[363]

The fascinating thing about this chart is that when the user clicks one of the bars
corresponding to a specific interval, all carriers that fall into that interval will be
automatically selected. This selection would be made on the Carrier Name field, as
the Load Factor % bins do not exist as a field in the data model. This combination
of interactivity, associations, and complex calculations on the fly allows for further
navigation and extends the discovery experience.

The Pick function
Another interesting and powerful conditional function available in QlikView is
the Pick function. In a way, it can be said to act as a simplified nested If. The
parameters this function takes are:

Pick(n, expr1, expr2)

Where n is an integer number that determines which of the subsequent expressions
should be evaluated. expr1 is an expression to be evaluated when n= 1 and expr2 is
an expression to be evaluated when n= 2

The same result of the Pick function can be accomplished using a nested If;
for example:

If (n = 1, expr1, If(n = 2, expr2))

However, we can easily see that the Pick function is much simpler to use in this case
and can even be lighter in terms of resource usage.

The Pick function has no hard limit as to how many
expressions it can hold.

Let's look at a practical example.

Using Pick with Dimensionality
One of the examples we described using the Aggr function required us to make
a sub aggregation in the chart's expression to obtain the average load factor per
airline per route. In the example, we used only one chart dimension, Airline, and
the corresponding Aggr function only had two fields in the dimensions parameter:
Route and Airline. However, the defined expression will not work as expected when
a new dimension is added to the chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[364]

For instance, if we were to use a pivot table with several different dimensions, and
in which the active dimensions are dynamically being expanded or collapsed, the
sub-aggregation used to calculate the average load factor should be adapted with
each new dimension arrangement; the correct aggregation expression will depend on
which dimensions are visible in the pivot table.

To account for the different possible arrangements in the chart's dimensions, we will
make use of the Pick function in conjunction with the Dimensionality function and
the Aggr expression we previously used.

The Dimensionality function is used in pivot tables to indicate which level of
aggregation is active in the pivot table for each of its segments or rows. For instance,
if all dimensions are collapsed and only the first dimension is visible, then the
Dimensionality function would return 1; if the first dimension is expanded, the
Dimensionality function would return 2, and so forth.

The result of the Dimensionality function is row-specific, so we could have one
row with one level of aggregation (depending on which of its dimensions
are expanded) and another row with a different level. The Dimensionality
function will account for each rows' aggregation level to provide the
correct result. The following screenshot illustrates this concept, with the result
of the Dimensionality function presented as the second expression column and
color-coded for easier understanding:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[365]

So, to approach the presented scenario (of course, this will only keep working when
users do not modify the pivot table by dragging dimensions), start by activating
the Aggr sheet in the workspace and creating a pivot table with the following
dimensions: Flight Type, Carrier Group, and Carrier Name, in that order. Then,
enter the following expression:

Pick(Dimensionality() + 1,
 Avg(Aggr($(eLoadFactor), [From – To Airport ID])),
 Avg(Aggr($(eLoadFactor), [From – To Airport ID], [Flight
Type])),
 Avg(Aggr($(eLoadFactor), [From – To Airport ID],
 [Flight Type],
[Carrier Group])),
 Avg(Aggr($(eLoadFactor), [From – To Airport ID], [Carrier
Group],
 [Flight Type],
[Carrier Name]))
)

Label the created expression as Avg Load Factor per Route. Then, create another
expression and enter the following:

$(eLoadFactor)

Label the new expression as Direct Load Factor. Then, navigate to the
Presentation dialog window and enable the Show Partial Sums option for
all three dimensions.

The resulting chart will be:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Expressions

[366]

We can compare the result from both expressions in this screenshot. A higher result
in the Direct Load Factor % column means the low-occupancy routes have just a few
flights that don't affect the overall result. However, the impact of those routes can
still be seen in the Avg Load Factor per Route column since that's where all routes
are equally accounted for, no matter the amount of flights performed.

For each Dimensionality level, the chart depicted earlier is using a different sub-
aggregation to calculate the average load factor per route. Additionally, when
Dimensionality is zero (the total row at the bottom), the chart is calculating the
average for all routes, all carriers, and all flight types. We used Dimensionality() +
1 as the n parameter of the Pick function because otherwise there would be no way
of adding an expression for when Dimensionality()equals zero.

Since the expression's definition is based on a certain, predefined,
arrangement of the dimensions in our pivot table, we must be cautious
when using an expression like this because it will yield unexpected results
when the dimensions are re-ordered by the user (for by dragging the
corresponding columns).

A tip on copying expressions
We will close this chapter on advanced expressions by sharing a tip that can save
you quite some time when developing QlikView documents. You have noticed
that, when defining a chart's expressions, we not only define the formula, but also
expression attributes, number format, presentation, labels, alignment, and so on. It is
very common that, when using more than one expression in a chart (a straight table,
for instance), two or more of these expressions are very similar in terms of formatting
and sometimes also in the formula itself.

In those cases, we can simply copy and paste an expression within the Expressions
tab of the Chart Properties window to replicate the entire expression definition and
then adjust whichever parameters or definitions we need to, thus saving a great deal
of time and work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[367]

To do this, simply right-click on the name of the expression you want to replicate
and right-click again on the blank space below the expressions list to paste it.

Summary
We've come to the end of this chapter where we've been able to use some advanced
techniques for data aggregation and advanced expressions. We have learned how to
use variables in QlikView and embed them into expressions.

We also learned the use of conditional expressions, with the If function, to output
results based on logical comparisons.

Finally, we learned how to use advanced and nested aggregations in charts.

In the next chapter, we will be learning about Set Analysis, one of QlikView's most
powerful functionalities, and how it can be used for Point In Time reporting.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In
Time Reporting

Comparing performance metrics over a period of time is one of the most fundamental
tasks expected from any BI solution. There are a few ways to deliver these sort of
comparisons in QlikView, but the most flexible and dynamic ones involve the use of
Set Analysis. Set Analysis, by itself, is a powerful tool that can be used for not only for
Point In Time Reporting, but for many other complex calculations.

In this chapter, we will expand on what we've learned from all of the previous
chapters, and introduce the following new concepts:

•	 Set Analysis and modified record sets
•	 Point In Time Reporting
•	 Comparative analysis with alternate states

We will approach these topics with the use of some practical examples. Given the
harshness of the syntax we are going to use, and the complexity of the expressions
that can be built with Set Analysis, we recommend you to have a lot of patience and
dedication to the subject at hand. Even with the best reference material, Set Analysis
can take a while to master—so don't lose heart!

The magic of Set Analysis
We will now introduce one of the most powerful tools you, as a developer, have at
your disposal when creating QlikView documents. We must say upfront that, as
with anything, the excessive use of Set Analysis in chart expressions can yield poor
performance or low response times. However, we should also know that, when used
effectively, it can have a positive impact in both performance and user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[370]

In this section, we will cover topics such as when to use Set Analysis, why you
should use it, what the correct syntax is, and we will provide common examples
and several tips and tricks for maximizing performance as well.

What is it for?
Set Analysis is a great feature in QlikView that lets you, as a developer, take control
over what your charts display and allows calculations that wouldn't be possible
otherwise, at least not as dynamically. To understand its inner workings, we can
compare it to how selections that are made using listboxes work.

With UI selections, we can say that whatever is selected affects the entire document,
and all of the charts only display information associated with the set of data
corresponding to those selections; plain and simple. In a way, that is basically what
Set Analysis does. It restricts, predefines, or extends the set of data that charts base
their calculations on. Using a set expression, we can, for instance, specify that a
certain chart should perform an aggregation only based on records that meet a set
of criteria in certain fields (for example, Region A and Region B from the Region
field), even if the non-matching values are part of the user's selected record set. We
can also use Set Analysis to expand the selections made by the user to show, for
example, results of the previous year even when it has not been actually selected.
For example, when the user selects the year 2012 and a table displays data for 2012
in one column and 2011 in the other.

The modified record set specified in a set expression affects only
the expression in which it is being used, not the entire document.

That is the whole concept. However, it is sometimes not as simple to tell our chart
to "show the numbers of the previous year/month/period" as it would be using
selections. In Set Analysis, we need to specify the modified record set using an
expression with the correct syntax.

These are some situations in which the use of Set Analysis is practical:

•	 To compare results for two different time periods in one single view based
on the same selection state

•	 To restrict or exclude certain value(s) in a field from the calculation
•	 To create a cumulative sum or YTD (Year-To-Date) result, even if the user

selects only one month

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[371]

•	 To disregard selections in a certain field that may not be applicable to
calculate a particular metric

•	 To essentially ignore all selections
•	 To use the set of data returned by a Bookmark, even when the Bookmark is

not activated
•	 To replace If expressions that make use of lots of hardware resources
•	 A mix and match of all of the above

We will first work our way through the Set Analysis syntax, after that we will
apply the concepts to achieve something that is a must in almost every QlikView
document: Point In Time Reporting.

Syntax and examples
The details for creating a set expression are outlined in the following
step-by-step procedure:

1.	 We start off by defining the base expression. Say we want to sum the total
number of flights performed. So, we will begin with the following:
Sum([# Departures Performed])

2.	 Then, we need to construct the set part of the expression. It is the set
expression in which we specify the record set we want to use in our
calculation. The set definition is placed just after the first parenthesis in the
base expression, before the field name, and will be enclosed in curly brackets:
Sum({set expression} [# Departures Performed])

3.	 After the first curly bracket, we define a set identifier by adding either a
dollar sign (which means the alternative record set will be initially based on
the current selections), the number 1 (meaning we will use the full record
set of all the data contained in the document, ignoring all user selections) or
the ID of a bookmark (which uses the selection stored in the bookmark). To
illustrate our example, we will use the dollar sign identifier, since it is the
most common. We will now have:
Sum({$} [# Departures Performed])

Note that the dollar sign can be omitted, since it is the
default identifier, and the set expression will not be affected.
However, it is good practice to use it to maintain consistency.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[372]

4.	 Right after the dollar sign, we define the fields that will play the role of
set modifiers. This is the part in which we specify what to add or exclude
from the initial record set. The entire set of field-value definitions will be
enclosed in angle brackets (< >) and the syntax is FieldName = {NewValue}.
Different variations to this syntax are described as follows:

°° FieldName = {value}: when the NewValue parameter is a numeric
value, it is specified as such with no additional modifications

°° FieldName = {'TextValue'}: when the NewValue parameter is
text, we should enclose it in straight single quotes

°° FieldName = {"SearchString"}: if we want to use a search string
as the value definition, we should enclose it in straight double quotes

The value definition can also be a set of different values, in which case each element
is separated by a comma.

We can also refer to the NewValue parameter as
the Element List parameter.

Once we add the set modifiers, our set expression will be complete and have the
following structure (shown as pseudocode for illustration purposes):

Sum({$<Field1 = {NewValue1}, Field2 = {NewValue2}>} [# Departures
Performed])

Taking our base expression as a starting point, here are some examples:

•	 Sum({$<[Carrier Group] = {'Foreign Carriers'}>} [# Departures
Performed])

This will result in the total number of flights performed, but only taking into
account the record set defined by the current selections ($), and where the
Carrier Group field has a value of Foreign Carriers. All other Carrier
Groups are excluded.
In this example, if the user has specifically selected a different value in the
Carrier Group field, that selection will be overridden and the calculation
will be made based on the modified record set. It's important to convey this
fact to the end users of the QlikView document and add pointers in the user
interface as to what each calculation is being based on so that the use of Set
Analysis doesn't negatively affect the user experience.

•	 Sum({$<Year = {2010}>} [# Departures Performed])

This will use a record set based on current selections ($) where the Year is
2010 even if the user selects something else in the Year field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[373]

•	 Sum({$<Year = {"20*"}>} [# Departures Performed])

This will use a record set based on current selections ($) where the Year
matches the search string "20*", meaning all years that begin with 20 will be
taken into account.

•	 Sum({$<Year = {">=2010"}>} [# Departures Performed])

This will use a record set where the Year is greater than or equal to 2010
to calculate the number of flights. A search string is used in the field
value definition.

•	 Sum({$<[Carrier's Operating Region] = {'Domestic', 'Latin
America'}, Year = {2010}>} [# Departures Performed])

This will use a record set based on the current selections where the
Carrier's Operating Region field is either Domestic or Latin America,
and only those records corresponding to the year 2010.
Notice how two elements in the field value definition have been separated
by a comma.

•	 Sum({1<[Carrier's Operating Region] = {'Domestic', 'Latin
America'}, Year = {2011}>} [# Departures Performed])

In this expression, the only difference from the preceding example is the
use of the number 1 as the set identifier. The calculation will use the entire
document record set as a starting point, disregarding all user selections,
but take into account only those records where the Carrier's Operating
Region is either Domestic or Latin America, and will only look at those
records corresponding to the year 2011.

•	 Sum({$<[Carrier's Operating Region] = {'Domestic', 'Latin
America'}, Year = >} [# Departures Performed])

In this expression, there is no modifier value assigned to the field Year. The
calculation will use a record set initially based on the current selections, but
disregard the selections made in the Year field, and where the Carrier's
Operating Region is either Domestic or Latin America.

Internally, QlikView evaluates the field value definitions in Set Analysis in the same
manner as conditional expressions are evaluated (but usually faster), to determine
if a specific record should be part of the calculation or not. Therefore, the same rule
discussed previously about numeric versus text-based comparisons applies for
Set Analysis. That rule: using a set modifier based on a text-based field (Month =
{'Jan'}, for instance) is slower than using its numeric equivalent (MonthNum= {1}).

Similarly, it's also important to consider that, when defining a numeric comparison
value, it shouldn't be enclosed in single-quotes (MonthNum = {'1'}) as it will cause
QlikView to treat it as a text-based comparison.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[374]

Using variables in set expressions
It's sometimes convenient to make use of variables in set expressions to make them
even more dynamic. We've previously discussed how variables alone are used. We
will now go through some examples of Set Analysis expressions that make use of
variables instead of hard-coded field values.

As before, we use the Dollar Sign Expansion syntax inside the field value definition
or element list. If, for instance, our variable contains a number, we would type the set
analysis expression as follows:

Sum({$<Year = {$(vLastYear)}>} [# Departures Performed])

On the other hand, of our variable contains text, our expression would be:

Sum({$<[Carrier Group] = {'$(vInterestGroup)'}>} [# Departures
Performed])

If we want to use a variable's value as a search string, the expression would be:

Sum({$<[Aircraft Group] = {"$(vSearchAircraftGroups)"}>} [# Departures
Performed])

We have just gone through a basic introduction on the topic, but there is a lot more to
know about Set Analysis. Let's move to the next part and discover some more of it.

Dynamic record sets
In the previous section, we reviewed some basic examples using set modifiers with
explicit (hardcoded) field value definitions. Our next step will be about making
our modified record set dynamic and based on the user's current selections, that is,
using a calculated field value definition. By doing so, the alternative record set will
dynamically change depending on what the user selects.

To embed actual calculations into the field value definition in a set expression, we use
the Dollar Sign Expansion (DSE) syntax. The final expression would be as follows:

Sum({$<Year = {$(=Max(Year))}>} [# Departures Performed])

As you can see, it is just as if we were using a variable, just with an additional equal
sign and the expression itself. Here, the DSE function is to evaluate the enclosed
calculation and the set expression will only use the output value in the set modifier.

We should never forget the equal sign when embedding
calculations in set expressions. Otherwise, the embedded
calculation will not be evaluated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[375]

If we want to get the record set corresponding to the previous year to whatever year
the user selects, we would use:

Sum({$<Year = {$(=Max(Year)-1)}>} [# Departures Performed])

In this case, the DSE is first calculating the last possible year from the current
selections record set. It goes back one year and the output is then passed to the set
modifier as the field value definition. Anytime the user changes his selections, the set
modifier is changed as well.

At this point, we must reinforce our recommendation that it is very
important to let the user know exactly what records the calculation
is taking into account. By doing so, we will avoid confusion as
it might result counter-intuitive for the user to see values being
calculated that are not associated to his selections.

The same concept also works with Quarters, Months, Days, and so on. However,
additional considerations need to be made for some fields. For example, if we were
to use the previous calculation for the Month field, Max(Month) – 1 would not
work if the user selects January. The expression would return zero, which is not a
valid month. Although we can easily build an expression that returns the number
12 instead of zero (with the use of the If function, for instance), we will provide an
even simpler and straightforward solution for this scenario in an upcoming section
of this chapter (Point In Time Reporting).

More assignment operators
All of the preceding examples use set expressions which have predefined field values
in the element list definitions, overriding the user selections on the specified fields.
However, in some cases, we will need to first take the actual record set that the user
has selected and, from there, modify it by adding or removing certain values. To do
that, we need to use a different assignment operator in the field-value definition,
instead of the equal sign. The available assignment operators are:

•	 =: This is what we have been using, and it simply redefines the selection for a
certain field.

•	 +=: This operator implicitly defines a union between the selected field values
and the ones we specify in the element list.

•	 -=: This operator implicitly defines an exclusion of the values we specify
from the values the user has selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[376]

•	 *=: This operator is used to define the corresponding field values based
on the intersection between what the user has selected and the values we
specify. That is, the resulting record set will be the values that "intersect" or
are present in both the user's selection and the values we explicitly define in
our element list.

•	 /=: This one is used to define a symmetric difference (XOR), and the resulting
record set will contain the values that are present in either one set (the user's
selections or the explicitly defined values), but not in both.

Let's walk through some examples to better understand the assignment operators:

•	 Sum({$<Year += {2007, 2008}>} Sales)

This expression will return the sales for the years the user has selected and
also for the years 2007 and 2008 whether they are selected or not.

•	 Sum({$<Product -= {'Product X'}>} Sales)

This expression will return the sales for the products the user has selected,
but exclude records corresponding to Product X.

•	 Sum({$<Product *= {'Product X', 'Product Y'}>} Sales)

This expression returns the sales for the current selection, but only for the
intersection of currently selected products, and products X and Y.

•	 Sum({$<ProductNumber *= {"48*"}>} Sales)

This expression returns the sales corresponding to the current selections,
but only for the intersection of the currently selected products and all of the
products whose number begins with 48.

Set operators
Set modifiers, the part of the set expression that is enclosed in angle brackets, can
also be constructed by combining several different element lists in the field value
definition. Furthermore, the entire set expression can be composed using several
different set modifiers. This is accomplished using set operators.

The different set operators that can be used are:

•	 +: Union
•	 -: Exclusion
•	 *: Intersection
•	 /: Symmetric difference

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[377]

The exclusion operator (-) can also be used as a unary
operator to retrieve the complement set.

The set operators work in a manner similar to the assignment operators described in
the previous section. Let's review some basic examples:

•	 Sum({$<Year = {2007, 2008} + {"<=2000"}>} [# Departures
Performed])

This expression will return the total flights performed in the years 2007,
2008, plus all of the years that are less than or equal to 2000.

•	 Sum({$<[Carrier's Operating Region] = {'Latin America'},Year
= {2011}> + <[Carrier's Operating Region] = {'Domestic'},Year
= {2010}> - <[Carrier Group] = {'Foreign Carrier'}>} [#
Departures Performed])

This expression will result with the total number of flights performed during
2011 by carriers operating in Latin America plus flights performed during
2010 by carriers operating as Domestic, but exclude Foreign Carriers
from both sets.
This is one of those calculations that wouldn't be possible with
simple selections.

Just as in arithmetic operations, parentheses can be used to enclose different set
operations and ensure they are evaluated in the correct order.

Using element functions
There are two special functions that can be used in set expressions to implicitly
specify an element list. The functions are:

•	 P(): To use all possible values in a field as the element list
•	 E(): To use all excluded values in a field as the element list

A quick example:

•	 Sum({1<Year = p(Year)>} [# Departures Performed])

This expression will use the full set of data disregarding all user selections
(because the specified set identifier is the number 1), but take into account
those records corresponding to the years that the user has selected. In other
words, only selections made on the Year field are considered.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[378]

For more examples, head to the Help menu in QlikView,
select Contents, and activate the Index tab from the left
pane to search for Set Analysis. There is also a document
on QlikCommunity that explores additional examples:
http://community.qlikview.com/docs/DOC-1867

The possibilities are endless. Take a moment to try it out in the Airline Operations
document and see for yourself what you can do with Set Analysis. In the solution
file corresponding to this chapter, we've included an additional sheet, named Set
Analysis, with different examples of Set Analysis uses.

Point In Time Reporting
One of the most common use cases of Set Analysis is Point In Time Reporting.
Having the ability to perform period-over-period analysis is a basic requirement
in any BI tool and is easily performed in QlikView with the aid of set expressions.
However, needless to say, Set Analysis is also amazingly useful for the fulfillment of
other special requirements.

Let's combine the acquired knowledge and apply it to add Point In Time Reporting
to our Airline Operations document.

The challenge
HighCloud Airlines' executives require a dashboard to easily compare different
performance indicators in a period-over-period basis. The different period
comparisons they need are:

•	 Current Year-To-Date indicators versus the same period last year
•	 Current month versus same month last year
•	 Current month versus previous month

The comparisons should be dynamic and based on the user's selections. So, if the
user selects October 2010, the corresponding comparisons should be:

•	 From January through October 2010 versus January through October 2009
•	 October 2010 versus October 2009
•	 October 2010 versus September 2010

At the same time, all user selections across the different Airline, Aircraft, or Airport
attributes must be taken into consideration in all point-in-time analyses.

Let's work some Set Analysis magic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[379]

Defining the set modifiers
We'll start tackling each requirement by first defining the set modifiers each
period comparison would need. For that, we must remember that the current
time-related fields in which the user is able to make a selection are Year, Quarter,
Month, and Period.

However, not always will the user have explicitly selected values in all fields. There
can be selections in Year only, for instance, or Year and Month, or only Month, or
even no selection whatsoever.

The set modifiers we define when building our expressions need to account for all of
the possible scenarios and always show a clear result. This will ensure the user is not
confused as to what filters are being applied when navigating the document.

Even if the user has not made specific selections on all time-based fields, we can
easily infer a period in which to base our comparisons by taking the most-recent
period from the list of associated values. Let's suppose the user has the following
selection state:

•	 Year = 2010
•	 Quarter = Q2

From the previous example, we can infer that the "current month" (our base period)
is June 2010, as it is the most recent period in the list of possible values.

If, on the other hand, the user has nothing selected at all, we will take December 2011
as our base period, as it is the latest month available in the dataset.

Obtaining the base period record set
A simple Max(Period) expression will help us get the base period in all scenarios,
as the Period field contains both the Month and Year components. Therefore, the set
modifiers that we would use to get the record set corresponding to the base period in
each of the required comparisons are:

•	 Current Year-To-Date indicators:
<Period = {"<=$(=Max(Period))"}, Year = {"$(=Max(Year))"}, Quarter
= , Month = >

This set modifier will result in a record set containing all of the periods that
are less than or equal to the current period, and belong to the current year,
which would be all Year-To-Date records.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[380]

•	 Current month:
<Period = {$(=Max(Period))}, Year = , Quarter = , Month = >

This set modifier will result in a record set corresponding to only the
current period.

We have defined some "disregard" fields in our set modifiers because, depending on
user's selections, the base period we are trying to retrieve might already be excluded
from the active record set. Therefore, we need to override the restricting selections to
be able to access the periods we need.

Now that we have the base period, we are halfway through. We just need to
construct the set modifier for the compare-to period, which is a little trickier to obtain
and will naturally be different for each different period comparison.

Obtaining the compare-to period record set
The easiest of the compare-to periods to obtain is the "previous month." We
would use something such as Max(Period) – 1 to obtain its value. However,
this expression doesn't always work for our purposes. As pointed out previously,
when our base period is January, the previous month obtained using the above
expression would be an nonexistent one. For example, if the current period value
is 201101 (remember the field is in YYYYMM format), the expression would
return 201100.

One way we could solve it is adding an If function to the expression to account for
those particular scenarios:

If(Right(Max(Period) – 1, 2) = '00', (Max(Year) – 1) & '12',
Max(Period – 1))

However, this is very impractical, so here is another approach: instead of using the
actual period numeric representation in the YYYYMM format, we can assign each
of the period a new numeric ID using the Autonumber() function in the script. That
way, all periods in the calendar table will have a consecutive number assigned with
which we can easily use in our frontend calculations. Follow these steps:

1.	 Open the Airline Operations.qvw document and launch the
Edit Script window.

2.	 Activate the Calendar tab and modify the Master Calendar Load script
by adding the following code between the table name and the first LOAD
DISTINCT statement:
Load
 *,
 AutoNumber(Period, 'PeriodID') as [PeriodID]
 ;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[381]

3.	 Save and reload the script to apply the changes.
We simply added a new preceding Load statement to create a new PeriodID
field by taking the result in the Period field, which is being created in
another preceding Load, and applying the Autonumber() function to it using
a PeriodID counter. As the calendar is being populated in ascending order,
each new period will have a PeriodID value that is the consecutive to its
previous period.

4.	 Create a temporary table box with all of the calendar-related fields to better
visualize the contents of the Master Calendar table. It should look
as follows:

The Autonumber() function will only create the correct IDs
in chronological order when the calendar table is being loaded
or populated in ascending order. If that's not the case, an
alternative formula to generate a consecutive PeriodID field
in the script would be:

(Year(Temp_Date) – 1) * 12 +
Num(Month(Temp_Date))

This formula will, for example, assign the value 24120 to
December 2009, and 24121 to January 2010, and so on.

Now that we have the corresponding PeriodID field, we can use a simple expression
to retrieve the value for the previous periods. This will account for every scenario:

Max(PeriodID) – 1

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[382]

The corresponding set modifiers to obtain the compare-to periods are:

•	 Previous Year Year-To-Date
<PeriodID = {"<=$(=Max(PeriodID)-12)"}, Year = {"$(=Max(Year) -
1)"}, Quarter = , Month = , Period = >

This set modifier subtracts 12 from the current period's ID field to obtain the
corresponding period from last year. It also subtracts 1 from the Year value
to obtain the previous year. As we are now using the new PeriodID field, the
old Period field is specified as an ignored-selections field.

•	 Same month last year
<PeriodID = {"$(=Max(PeriodID)-12)"}, Year = , Quarter = , Month =
, Period = >

By subtracting 12 from the current period's ID, we obtain the corresponding
month from last year.

•	 Previous month
<PeriodID = {"$(=Max(PeriodID)-1)"}, Year = , Quarter = , Month =
, Period = >

By subtracting 1 from the current period's ID, we obtain the previous month's
record set.

Now that we have defined our set modifiers, it's time to construct the expressions.

Constructing the expressions
Using the base and compare-to set modifiers that we just defined, our final
expressions will be as described here.

The following examples use the # Departures
Performed field in the aggregation function, but it
can be changed to obtain any other indicator.

The following expressions are constructed in the following form to obtain a
variance percentage:

(BasePeriod / CompareToPeriod) – 1

•	 Current Year-To-Date versus the same period last year
(Sum({$<PeriodID = {"<=$(=Max(PeriodID))"}, Year =
{"$(=Max(Year))"}, Quarter = , Month = , Period = > } [#
Departures Performed])
 /

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[383]

Sum({$<PeriodID = {"<=$(=Max(PeriodID) - 12)"}, Year =
{"$(=Max(Year) - 1)"}, Quarter = , Month = , Period = > } [#
Departures Performed]))
 - 1

•	 Current month versus same month last year
(Sum({$<PeriodID = {"$(=Max(PeriodID))"}, Year = , Quarter = ,
Month = , Period = > } [# Departures Performed])
 /
Sum({$<PeriodID = {"$(=Max(PeriodID) - 12)"}, Year = , Quarter = ,
Month = , Period = > } [# Departures Performed]))
 - 1

•	 Current month versus previous month
(Sum({$<PeriodID = {"$(=Max(PeriodID))"}, Year = , Quarter = ,
Month = , Period = > } [# Departures Performed])
 /
Sum({$<PeriodID = {"$(=Max(PeriodID) - 1)"}, Year = , Quarter = ,
Month = , Period = > } [# Departures Performed]))
 - 1

The preceding expressions are used to obtain the variance
percentage from one period to the other. To obtain the
actual numbers corresponding to each period, or the net
change, these expressions can be adjusted.

However, the expressions alone are nothing if we don't create some charts to make
use of them. Take a moment to create some visualization objects, such as gauge
charts, straight tables, and so on, that allow HighCloud Airlines' executives to get the
performance overview they need in terms of period-over-period relative growth.

We have included some chart examples in the solution
file corresponding to this chapter.

Enabling additional period comparisons
The same concept used to build the PeriodID field can be used for the QuarterID
field. We can easily and seamlessly create a lot of expressions for Point In Time
Reporting after we've created the Calendar table with at least the following fields:
Year, Month, Quarter, PeriodID, and QuarterID.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[384]

Take a moment to add the QuarterID field to the master calendar table by using the
following script expression:

AutoNumber(Year & Quarter, 'QuarterID') as [QuarterID]

Therefore, the final Master Calendar Load script will be:

[Master Calendar]:
Load
 *,
 AutoNumber(Period, 'PeriodID') as [PeriodID],
 AutoNumber(Year & Quarter, 'QuarterID') as [QuarterID]
 ;
LOAD DISTINCT
 Year(Temp_Date) * 100 + Month(Temp_Date) as [Period],
 Year(Temp_Date) as [Year],
 Month(Temp_Date) as [Month],
 Date(Temp_Date, 'YYYY-MM') as [Year - Month],
 'Q' & Ceil(Month(Temp_Date) / 3) as [Quarter]
 ;
LOAD DISTINCT
 MonthStart($(vMinDate) + IterNo() - 1) as Temp_Date
AUTOGENERATE (1)
WHILE $(vMinDate) + IterNo() - 1 <= $(vMaxDate);

Save and reload the script to apply the changes.

More Point In Time Reporting examples
Let's quickly review some common Set Analysis expressions that we can use when
required. The following expressions calculate the total number of flights for different
specific periods of time:

•	 YTD (Year-To-Date) flights:
Sum({$<PeriodID = {"<=$(=Max(PeriodID))"},
 Year = {$(=Max(Year))},
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

•	 QTD (Quarter-To-Date) flights:
Sum({$<PeriodID = {"<=$(=Max(PeriodID))"},
 QuarterID = {$(=Max(QuarterID))},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[385]

•	 MTD (Month-To-Date) flights:
Sum({$<PeriodID = {$(=Max(PeriodID))},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

The preceding MTD expression is actually a current-month
expression. To construct a MTD expression, we should also include
a Date field, which we don't have in our example document.

•	 Previous Month flights:
Sum({$<PeriodID = {$(=Max(PeriodID) – 1)},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

When the QlikView document contains data at a daily
level, the previous month calculation can be defined to only
account for the same number of days as the days so far in the
current month. This would be done adding a new field value
definition, based on a Date or Day field, to our set modifier.

•	 Previous Quarter flights:
Sum({$<QuarterID = {$(=Max(QuarterID) – 1)},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

•	 Flights for the same Month of the previous Year:
Sum({$<PeriodID = {$(=Max(PeriodID) – 12)},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

•	 Flights for same Quarter of the previous Year:
Sum({$<QuarterID = {$(=Max(QuarterID) – 4)},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[386]

•	 YTD flights for the previous Year
Sum({$<PeriodID = {"<=$(=Max(PeriodID) – 12)"},
 Year = {$(=Max(Year) – 1)},
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

•	 Flights for rolling-12 months:
Sum({$<PeriodID = {">=$(=Max(PeriodID)-11)<=$(=Max(PeriodID))"},
 Year = ,
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

There you have it, a complete set of formulas to help you create Point In Time
Analysis in your QlikView documents in a very simple fashion. We invite you to try
them out with the Airline Operations document and build some context around the
already created dashboard.

Storing set expressions into variables
Period-over-period comparisons are widely used in QlikView documents and, as
you've seen, they can get somewhat messy. Instead of writing the set expression each
time for every expression in which it is used, it's a good practice to store its definition
in a variable, which can then be called from anywhere in the QlikView document
where it's required.

Take, for example, the following expression. It calculates the number of flights Year-
to-Date, based on user's selections:

Sum({$<PeriodID = {"<=$(=Max(PeriodID))"},
 Year = {$(=Max(Year))},
 Quarter = ,
 Month = ,
 Period = >} [# Departures Performed])

From the preceding calculation, we can take the set modifier part (the part which is
enclosed in angle brackets) and define it as a new variable, called vSetYTD. Then,
we would use this new variable into a modified version of the expression presented
above as follows:

Sum({$<$(vSetYTD)>} [# Departures Performed])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[387]

Look closely. You'll see we are inserting the set modifier into our formula with the
use of the Dollar Sign Expansion syntax, which results in the exact same expression
as the original.

The reason for only storing the set modifier without the angle brackets in the variable
definition is to allow for the flexibility to include additional modifiers in the end
expression. For example, we can extend the set expression as follows:

Sum({$<$(vSetYTD), [Carrier's Operating Region] = {'Latin America'}>}
[# Departures Performed])

By adding expression-specific set modifiers, all of the other expressions using the
base set variable remain unaffected.

Furthermore, we can define all of the set expressions used for period comparisons so
that they are ready to be used when required from any given expression:

Variable name Variable definition
vSetYTD PeriodID = {"<=$(=Max(PeriodID))"},

 Year = {$(=Max(Year))},
 Quarter = ,
 Month = ,
 Period =

vSetQTD PeriodID = {"<=$(=Max(PeriodID))"},
QuarterID = {$(=Max(QuarterID))},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

vSetMTD PeriodID = {$(=Max(PeriodID))},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

vSetPreviousMonth PeriodID = {$(=Max(PeriodID) – 1)},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[388]

Variable name Variable definition
vSetPreviousQuarter QuarterID = {$(=Max(QuarterID) –

1)},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

vSetLYMTD PeriodID = {$(=Max(PeriodID) –
12)},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

vSetLYQTD QuarterID = {$(=Max(QuarterID) –
4)},
 Year = ,
 Quarter = ,
 Month = ,
Period =

vSetLYYTD PeriodID = {"<=$(=Max(PeriodID) –
12)"},
 Year = {$(=Max(Year) – 1)},
 Quarter = ,
 Month = ,
 Period =

vSetRolling12 PeriodID = {">=$(=Max(PeriodID)-
11)<=$(=Max(PeriodID))"},
 Year = ,
 Quarter = ,
 Month = ,
 Period =

Once we have defined all of the preceding variables, the creation of new expressions
for period comparisons will be a very straightforward process.

Set expressions with parameters
We will expand the concept a bit further by incorporating what we discussed in the
previous chapter about variables with parameters and apply it to a set expression.
Let's follow these steps:

1.	 Open the Variable Overview… window (Ctrl + Alt + V) and create a new
variable. Name it vSetPreviousNMonth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[389]

2.	 The variable definition will be:
PeriodID = {$(=Max(PeriodID) – $1)},
Year = ,
Quarter = ,
Month = ,
Period =

Look closely and you'll notice that the new variable is almost the same as the
one defined previously, called vSetPreviousMonth. The difference between
both variables is that we are now inserting a parameter into the PeriodID value
definition. This parameter is represented by $1, and will allow us to use the same set
variable to obtain the corresponding record set either for the previous month (when
the parameter's value is 1), for two months ago (when the parameter's value is 2),
and so forth, all using the same set variable.

To use the preceding variable in an expression, start by creating a new chart in the
form of a straight table with Carrier Group as the dimension and the following
three expressions:

1.	 The first expression, which we will label as Current Month Flights,
will be:
Sum({$<$(vSetPreviousNMonth(0))>} [# Departures Performed])

2.	 The second expression, which we will label as Flights Previous Month,
will be:
Sum({$<$(vSetPreviousNMonth(1))>} [# Departures Performed])

3.	 The third expression, which will be label as Flights Two Months Ago,
will be:
Sum({$<$(vSetPreviousNMonth(2))>} [# Departures Performed])

The only difference among the preceding expressions, apart from the label, is the
parameter's value inserted into the variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[390]

After properly formatting the expressions' values and the chart's presentation, we
will have the following chart:

Awesome!

We can even take this one step further. We previously said that period comparisons
are widely used in almost any QlikView document, but what we've done with the
preceding procedure is define the variables in one document. What about all of the
other documents? Do we need to create each of these variables over and over again
for each of our QlikView documents? Well, let's discuss an alternative.

Portable set expressions
Now that set expressions are handled via variables, we can automate the process of
creating these variables, instead of doing it all manually. We will use an include
statement to create the variables during script execution and by using a text file
shared across different QlikView documents.

To begin, we will create a text file, containing the code used to define each variable.
The contents of our text file will be:

Let vSetYTD = 'PeriodID = {"<=' &Chr(36) & '(=Max(PeriodID))"},'
&Chr(10) &
'Year = {' &Chr(36) & '(=Max(Year))},' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetQTD = 'PeriodID = {"<=' &Chr(36) & '(=Max(PeriodID))"},'
&Chr(10) &
'QuarterID = {' &Chr(36) & '(=Max(QuarterID))},' &Chr(10) &
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[391]

'Month = ';

Let vSetMTD = 'PeriodID = {' &Chr(36) & '(=Max(PeriodID))},' &Chr(10)
&
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetPreviousMonth = 'PeriodID = {' &Chr(36) & '(=Max(PeriodID) -
1)},' &Chr(10) &
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetPreviousQuarter = 'QuarterID = {' &Chr(36) & '(=Max(QuarterID)
- 1)},' &Chr(10) &
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetLYMTD = 'PeriodID = {' &Chr(36) & '(=Max(PeriodID) - 12)},'
&Chr(10) &
'Year = {' &Chr(36) & '(=Max(Year)-1)},' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetLYQTD = 'QuarterID = {' &Chr(36) & '(=Max(QuarterID) - 4)},'
&Chr(10) &
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetLYYTD = 'PeriodID = {"<=' &Chr(36) & '(=Max(PeriodID) -
12)"},' &Chr(10) &
'Year = {' &Chr(36) & '(=Max(Year)-1)},' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

Let vSetRolling12 = 'PeriodID = {">=' &Chr(36) & '(=Max(PeriodID) -
11)<=' &Chr(36) & '(=Max(PeriodID))"},' &Chr(10) &
'Year = ,' &Chr(10) &
'Quarter = ,' &Chr(10) &
'Period = ,' &Chr(10) &
'Month = ';

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[392]

When defining our set variables in the script, we must be very cautious because
of the presence of the dollar sign inside the variable's text. If we were to use the
dollar sign directly inside the variable's definition, QlikView would interpret it as
something to be expanded in the process, causing the load script to fail. Therefore,
we have avoided the insertion of this symbol and used a string function instead.
Chr(36) results in the dollar sign, as it is the ASCII character used to represent the
symbol. The resulting string is concatenated to the rest when the variable is defined.

We have also inserted line breaks with the Chr(10) function.

We will name the text file as SetVariables.txt and store it in the same location as
the Airline Operations document.

A copy of the finished SetVariables.txt has been
included into the Airline Operations\Apps folder.

Now that we have the text file, we will include it into our script using the
following statement:

$(Include=SetVariables.txt)

Relative or full paths can be used with the Include statement.
Double-check the file path when using this statement, as there
are no error messages when the specified file is not found.

When we run the script, the corresponding variables will be created and are ready
to be used on the chart's expressions. The same statement could be used on any
QlikView document to make them execute the same SetVariables.txt script and
share the same set variables across them.

An alternative method for defining variables in an external
file and loading them into QlikView is described in Barry's
blog at http://www.qlikfix.com/2011/09/21/
storing-variables-outside-of-qlikview/. Be sure
to check that out too.

Set variables and the Master Calendar
As the set variables created with the preceding script are based on field names, all of
those fields must exist (preferably in a Master Calendar table) in the document that
uses the variables, otherwise they will not work as expected. Therefore, we advise
you to integrate both the set variables and the Master Calendar scripts into a single,
generic script stored in a text file to be called from any QlikView document, ensuring
consistency and functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[393]

Comparative analysis with alternate states
In addition to time-based comparisons, there are other scenarios in which the
comparison of two different sets of data can help enhance the analytical capabilities
of a QlikView document. In this section, we will present a feature available in
QlikView since version 11 which makes it easy to create highly dynamic comparative
scenarios that enables business discovery in an entirely new way.

A comparative analysis example
Let's discuss one of these scenarios by using our Airline Operations document.
Suppose we want to compare how the number of international flights arriving at
the city of Chicago, IL, and performed by US carriers, compares to the number
of domestic flights departing from Chicago and bound to the State of California,
performed by US Carriers as well. If we were to see this comparison in a bar chart
and over time, we would have the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[394]

In the preceding example, the total flights in Group A (represented by the blue bars)
correspond to those coming from outside the US, arriving at Chicago, and performed
by US carriers, as depicted in the corresponding current selections box on the left.
Group B (represented by the brown bars) covers flights departing from Chicago,
bound to California, and performed by US carriers as well, as depicted in the current
selections box on the right.

We can easily see how the amount of flights performed by Group A is greater to that
of Group B during the first five months of 2011, it is almost equal during June and
July, and it is lower during the rest of the year.

Alternate states step-by-step
We have been able to define two different record sets and compare the
corresponding results side-by-side by enabling the alternate states functionality.
To see how this works, let's build the preceding chart, step-by-step, by following
this procedure:

1.	 Open the Airline Operations.qvw document we have been working with.
2.	 Click on the Add Sheet button from the Design toolbar to create a new sheet.
3.	 Right-click on an empty space of the worksheet area of the new sheet and

select Properties….
4.	 From the Sheet Properties window, activate the General tab and enter

Comparative Analysis into the Title field.
5.	 Click on OK in the Sheet Properties window.
6.	 Now, navigate to Settings | Document Properties… and activate the

General tab from the Document Properties window.
7.	 Then, click on the Alternate States… button and a new pop-up window

will appear , as seen here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[395]

8.	 From the Alternate States window, click on the Add… button and enter
Group A into the New State Name window. Then, click on OK to create the
new alternate state and get back to the Alternate States window.

9.	 Click on the Add… button once more in the Alternate States window to
create a new state, and name it Group B.

10.	 Click on OK to close the Alternate States window and on OK again to exit
the Document Properties window.
At this point, we have defined two different states: Group A and Group B.
Each of these states will be used to save the two different record sets we want
to analyze, which will be given by user selections in a set of listboxes we will
now create.

11.	 Add the following listboxes by right-clicking on an empty space from the
worksheet area and clicking on Select Fields… from the context menu:
Origin Country, Origin State Code, Origin City, Origin Airport,
Destination Country, Destination State Code, Destination City,
Destination Airport, and Flight Type.

12.	 Now, create a container object with all of the above-listed listboxes in it.
13.	 From the General tab of the container object properties window, select

Group A in the Alternate State drop-down list, as seen here:

This drop-down list is available in the sheet object once the
Alternate States feature has been enabled by defining at least
one alternate state from the Document Properties window. If
no alternate state has been previously created, the drop-down
list will not be visible.

14.	 Enter Origin and Destination - Group A as the container object's title and
click on OK to close the Container Properties dialog window.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[396]

15.	 Now, clone the container object just created by copying it to the clipboard
(right-click on Copy to Clipboard and go to Object) and then pasting it again
(right-click on the sheet workspace area and select Paste Sheet Object).

16.	 Access the properties window corresponding to the new copy of the
container object and change the alternate state from Group A to Group B.
Change the title as well to Origin and Destination - Group B.

17.	 After arranging the presentation of the two container objects just created, we
should have the following:

What we've done is define two sets of listboxes to control selections and indicate
which data each alternate should state take into account. As the state of all new
objects, by default, set to inherited, all of our listboxes are using the alternate state
defined in the next higher-level object, which is the container into which they
were placed.

Any selection made on one state does not affect any
other state.

By using container objects to accommodate the various listboxes related to origin and
destination dimensions, we are able to save some valuable screen space and keep an
ordered layout in our document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[397]

We will now create a bar chart to visualize the comparison of the two record sets:

1.	 Before continuing, copy the listboxes corresponding to Year, Quarter,
and Month from one of the other sheets and place them into the new
Comparative Analysis sheet as linked objects.

2.	 Now, create a new chart by clicking on the Create Chart button from the
Design toolbar and setting the following properties:

°° Chart Type: Bar Chart
°° Window Title: Group A vs Group B
°° Show Title in Chart: Disabled
°° Dimension: Period
°° Expression 1:

Label: Group A
Definition: Sum({[Group A] * $} [# Departures Performed])

°° Expression 2:
Label: Group B
Definition: Sum({[Group B] * $} [# Departures Performed])

°° Primary Dimension Labels: With diagonal orientation
°° Number Format Settings: Integer for both expressions

At this point, our chart will respond to user selections on either state and show
the corresponding comparisons. Let's select the following values in each of the
alternate states:

•	 Group A:
°° Flight Type: International, US Carriers Only
°° Destination City: Chicago, IL

•	 Group B:
°° Flight Type: Domestic, US Carriers Only
°° Origin City: Chicago, IL
°° Destination State Code: CA

•	 Year: 2011
The selection in Year is made in the default document state, as the
corresponding listbox has not been associated to either alternate state.
This selection will apply to both chart calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[398]

Our comparative analysis chart will now show the trend we discussed previously.
Let's now look at how we constructed the preceding expressions.

State-based expressions
The syntax we used is very similar to the one we described when we introduced Set
Analysis. In this case, the [Group A] and [Group B] parameters are the equivalent
of a set identifier. To quickly recap, the two different set identifiers we described
previously are:

•	 $ (Dollar symbol): This set identifier is used to base the calculation on the
default current selections.

•	 1 (number one): This set identifier is used when the calculation should
be based on the entire document data, disregarding any selections made
by the user.

Similar to these two, we can use any defined alternate state as set identifiers in our
expressions so that the calculation is based only on selections made on listboxes
(or objects) linked to that specific state.

The syntax, apart from the set identifier (or state identifier), is basically the same
as with Set Analysis. This means we can integrate additional set modifiers into our
state-based expressions. We can also use the same set operators described in the Set
operators section in this chapter.

Combining alternate states and the default state
In the two expressions we just created, we are using the Intersection set operator
to further restrict our calculation and use a modified record set. Take, for example,
the expression corresponding to group A:

Sum({[Group A] * $} [# Departures Performed])

With this expression, the calculation will be based on both the selections made on
the alternate state named Group A and the selections made on the default state.
In other words, that is, only the data found in both record sets is considered in the
calculation. This is especially useful when we only need a few fields to differentiate
each alternate state (like the origin and destination dimensions), while selections in
all other fields should be equally considered in all alternate states. In our case, we are
using the intersection operation to be able to take into account selections made on the
Year, Quarter, and Month fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[399]

We must be careful, though, when using set intersections in our state-based
expressions. For this to work appropriately, no conflicting selections should be
made in the default state over the fields we have also defined in our alternate states.

However, you want to play it safe, there is another way in which we could construct
our expressions:

•	 Group A:
Sum({[Group A]<Year = p(Year), Quarter = p(Quarter), Month =
p(Month)>} [# Departures Performed])

•	 Group B:
Sum({[Group B]<Year = p(Year), Quarter = p(Quarter), Month =
p(Month)>} [# Departures Performed])

The preceding expressions will only consider the selections made in the Year,
Quarter, and Month fields from the default document state and add them to all
selections made on the corresponding alternate state. By doing so, we ensure
that all of the selections made in any other field outside the alternate state are not
taken into account.

Element functions are described in the Using element functions
section of this chapter.

Applying alternate states to layout objects
By default, all layout objects (that is, charts, listboxes, sheets, and so on) use
an Inherited state unless specifically overridden via its properties window.
Sheet objects can inherit states from a higher-level object, such as a sheet or a
container object.

There is another state that can be specifically applied to any sheet or sheet object: the
default state. The QlikView document is always in the default state.

Additionally, once the alternate states feature has been enabled, we can create new
alternate states from any layout object by selecting the <new state> option from the
Alternate States drop-down list.

www.it-ebooks.info

http://www.it-ebooks.info/

Set Analysis and Point In Time Reporting

[400]

Document navigation with alternate states
Just as with Set Analysis, the use of alternate states can become a bit confusing for
the end users if we are not careful. It is very important to develop our QlikView
documents in such a way that every state-based object is properly labeled. This will
help the user to easily identify how each calculation is being performed and the
record set it is based on.

One way we can do this is by adding current selections boxes to represent each
alternate state at any given time. Look at the image with which we started this
section and you'll see how important they are.

Clearing selections in an alternate state
By default, all of the buttons in the navigation toolbar affect all states. That is, when
we click on the Clear button, all selections from all states are cleared. Similarly, the
Back and Forward commands apply to all selections in all of the states.

However, it is possible to clear the selections in one specific state without affecting
the others. This is accomplished via a menu item found under the Clear button
drop-down menu, as shown below:

Always validate
Set expressions and alternate states can can get very complex, so it's a good practice
to always validate the results thoroughly. Here are a few ways in which we can
do that:

•	 When using calculations in the element list definition, take the individual
calculation out of the set expression and enter it into a text object to visualize
its result and ensure that it's what you expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[401]

•	 Once the set expression or state, has been constructed, play around and make
a few selections to see how each affects the calculation and ensure it's what
the user would expect.

•	 When you've arrived at a result using a set expression, replicate the base
expression, without the set portion, and try to arrive at the same result
using only selections. If everything is correct, the result should always be
the same, unless of course the modified record set cannot be replicated
using selections only.

Summary
We've come to the end of this chapter in which we've been able to use some
advanced expression techniques and Set Analysis to build period-over-period
comparisons. We have learned the syntax and variations of a set expression.

We also learned how to construct and use Set Analysis expressions to enable time
period comparisons, and also how to use some time-saving techniques to re-use set
expressions across different documents.

Finally, we learned how to use alternate states for comparative analysis.

Let's now move on to the next chapter, which expands on the concept of data
transformation at an advanced level.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data
Transformation

In this chapter we will dive into advanced transformation functions and techniques
available through QlikView's extraction engine. This will allow you, as a developer,
to finely process the source data and turn it into a clean design, while at the same
time keeping an efficient script.

The goals of this chapter are:

•	 To provide an overview of the most commonly used data architectures that
can ease QlikView's development and administration

•	 To describe the available functions for data aggregation
•	 To learn how to take advantage of some of QlikView's most powerful data

transformation functions.

Data architecture
Now that we have a decent amount of QlikView development experience under our
belt, we will introduce the concept of data architecture. This refers to the process
of structuring the different layers of data processing that exist between the source
tables and the final document(s). Having a well-designed data architecture will
greatly simplify the administration of the QlikView deployment. It also makes the
QlikView solution scalable when new applications need to be developed and when
the QlikView environment grows. There can be a lot of different data architectures,
but in this section we will discuss two of the most commonly used in QlikView
enterprise deployments.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[404]

Two-stage architecture
The following diagram depicts the two-stage architecture:

The two-stage architecture is composed of the following layers:

•	 Source Layer: composed of the source databases and original tables.
•	 Extract Layer: composed of QlikView documents, containing mainly script.

These are used to pull the data from the source layer and store it into QVD
files. The extraction scripts can either create a straight copy of the source
tables to store them into the corresponding QVD files, or perform certain
transformations before storing the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[405]

•	 QVD Layer: the set of QVDs resulting from the Extract Layer. These QVDs
become the data sources used by the final QlikView document.

•	 Presentation Layer: the set of QlikView documents used to provide the
data to the end user. These QlikView files will use the QVDs created in
the previous layer as data sources, and sometimes perform additional
transformations to create the final data model. No database calls are
performed from the presentation layer.

The advantages of using this approach and having a QVD Layer are reuse and
consistency. This approach promotes re-use because, in deployments where multiple
documents make use of the same source data, the original database (Source Layer)
is not overloaded with redundant requests. At the same time, the re-use process
ensures consistency across all different QlikView documents that make use of the
same data.

If you look closely, you'll notice that this architecture is the
one we've been using in the previous chapters, since we've
mainly loaded data into our QlikView document from
previously-created QVDs.

This approach is mainly used when the source data is good enough to be included
into the QlikView data model with little or no modification. However, when major
data transformation is needed, the administration gets a little messy with this
architecture since it is not clearly defined at which stage these transformations take
place.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[406]

Three-stage architecture
Now, let's take a look at the three-stage architecture:

In this architecture, two additional layers are added: Transformation Layer and
Transformed QVD Layer. The role of these two additional layers is to hold all
transformations that need to be performed upon the source data before it can be
integrated into the target data model.

This also suggests that all base QVDs will ideally keep a straight copy of the source
table, which will optimize the extraction process. Then, the Transformation Layer, in
which several base QVDs will be combined to create denormalized QVDs, performs
any required aggregation or segmentation, and adds new calculated fields or
composite keys to prepare the transformed QVDs for a clean and simple load into
the final data model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[407]

Since the documents in the Presentation Layer will use the transformed QVDs, and
sometimes some base QVDs that required no modification, and will (ideally) read
them "as-is", optimized loads will be ensured at this stage.

QVDs can also be reused with this architecture when the data model of two or more
QlikView documents require the same source data.

This approach is the one we will work from this point onwards
since new transformations will be made to our base QVDs.

A well-designed data architecture, as those presented in this section, can also enable
the possibility of having different QlikView teams working at different stages. For
example, IT developers can prepare the base and transformed QVDs, while business
teams can make use of those to build the end documents without requiring access to
the source database.

Setting up our environment
Now that we've discussed the advantages of using the three-stage architecture,
let's take a moment to set up our Windows folder structure following the
described guidelines.

By copying the files corresponding to this chapter into your QlikView Development
folder, you will have a structure like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[408]

The 0.Includes folder is used to store re-usable code that is called from the end
documents via an Include statement. The 1.Source Data folder represents the
Source Layer; this folder is used because our source database is composed of CSV
files but wouldn't be required otherwise. The 2.Workbooks folder holds all QVD
Generators (QVW files) for both the Base Layer and the Transformation Layer. The
3.QVD folder is used to store the resulting QVD files from both the Base Layer
(using the Source subfolder) and the Transformation Layer (using the Transformed
subfolder). The 4.Applications folder represents the Presentation Layer.

Inside these folders, you will find all source tables in CSV format, as well as the
extract QVWs and the base QVDs used in previous chapters. We will work directly
with the Transformation Layer in the coming sections.

Loading data already stored in QlikView
The first lesson in advanced data transformation will be about optimizing loads when
processing data. If you remember from Chapter 3, Data Sources, we discussed the
various ways in which we can pull data from different sources into QlikView. We also
described how we can take advantage of the QVD file format to store and read data in
super-fast mode. Now, we will describe yet another way of reading source tables, but
this time the "source" will be QlikView itself. There are different cases in which this
approach will prove useful and we will describe two scenarios to perform it:

•	 Accessing data already stored in a QlikView data model (QVW file) from a
separate QlikView document. We will call this approach Cloning a QlikView
data model.

•	 Accessing data from the same QlikView document in which the data model
resides. We will call this approach Loading from RAM.

Cloning a QlikView data model
This concept refers to the ability of replicating the data model of an already created
QlikView document and placing it into another QlikView document without
accessing the original data source. In technical terms, it's a Binary load. Once the
data model is cloned by the second QlikView document, it can be manipulated
further, integrated into a bigger data model (that is, adding more tables to it), or even
reduced by removing some of its tables or data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[409]

Suppose we have a QlikView file, with an already constructed data model and all of
the composing tables properly associated. We now want to use this same model in
another QlikView document, adding just a few more tables. The process for binary
loading a QVW is as follows:

1.	 Create a brand new QlikView document and save it to the disk.
2.	 Open the Edit Script window (Ctrl + E or File | Edit Script…)
3.	 Click on QlikView File… button, located in the Data tab.

4.	 Browse to the QlikView file we want to read and click on Open.
5.	 A new script statement will be created at the top of the active script tab,

which will be something like Binary [file name.qvw];

The Binary statement must be the first statement to be
executed in the script, so it has to be always at the top of
the first (left-most) script tab. Also, only one binary load
is allowed in a QlikView script.

6.	 At this point, we can add more tables to the already-loaded data model as we
would normally do. After reloading the script, the data model will now be in
the new QlikView document, along with any other added tables.

A Binary load statement is the fastest way to load data into a
QlikView document.

In the environment we've been working throughout the book, can you find a use case
for a Binary load? Which would it be?

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[410]

I can think of one. For example, we have an initial QlikView document with the
Airline Operations data (the one we constructed in Chapter 2, Seeing is Believing).
Based on this initial data model, we can create a new QlikView document, to
which we will only add the Employment data (used in Chapter 8, Data Modeling Best
Practices). As a result, we would have one Airline Operations document accessed
by certain users, and another with the same data but with additional information
about airline employment, which might be treated as confidential and accessed by
another group of users.

As a side note, we must point out that binary loads are used in yet another approach
to data architecture. We will not discuss it in-depth, but suffice to say that the new
layer is composed of QlikView documents consisting of only a data model without
any frontend objects, referred to as "QlikMarts". These QlikMarts then become the
source for the QlikView documents in the Presentation Layer.

Loading from RAM
In some cases, we will need to read the same table more than once in a single script
execution. This means, querying the database (or QVDs) and pulling data from it,
and then reprocessing that same data after the first read in order to make it adequate
for our data model. Since the data is being stored in RAM after each query during
the script execution, we can use that RAM-stored data instead of going directly to the
original data source. This is accomplished via a Resident load.

Resident load
The keyword Resident can be likened to the keyword From in a query. The
difference is that the Resident keyword is used to reference the data in RAM model,
that is, all the tables that have been previously read in the preceding queries of the
same script. The process for achieving this is as follows:

1.	 First, we must load data from a data source (any database or table file
described in the previous sections), so we create the corresponding query in
the script. An example would be:
SalesData:
LOAD
 InvoiceNumber,
 Date,
 SalesPerson,
 Department,
 Amount as InvoiceAmount;
SQL SELECT * FROM DataBaseName.dbo.Sales;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[411]

Note that we have defined a table name, at the beginning of
the query, so that we can use it to reference the table later on.
We have also renamed the Amount field to InvoiceAmount.

2.	 Next, we add a subsequent query, in the same script, to access the table
already in RAM using the Resident keyword. In this case, we will also
aggregate the data using a Group By clause, which is a data transformation
technique explained later in this chapter.
SalesTotals:
LOAD
 Department,
 Sum(InvoiceAmount) as TotalAmount
Resident SalesData
Group By Department;

Note that, when referencing a table that is now part of the QlikView data model,
we must use the field names with which they have been defined, which might
not necessarily be the same names as in the source table. In this case, we are using
InvoiceAmount, a name that was defined in the previous query. The same applies
for table names.

As a result, we will have two tables in our data model; one with all the data at an
atomic level, the product of the first query, and the other as an aggregated version of
the SalesData table with totals by Department, the product of the Residentload we
constructed in conjunction with the Group by statement.

Aggregating data
While QlikView shines in dealing with massive data volumes, sometimes we just do
not need to load everything at an atomic level. Data aggregation can, for example,
be used in deployments where document segmentation by detail is needed, in which
case two documents are created to serve different user groups and analysis needs:
one document will have all data with the highest level of detail and another one will
have a similar data model but with aggregated (reduced) tables. This way, users are
better served by keeping a balance between performance and analysis needs.

In this section, we will implement a document segmentation scenario by aggregating
the Flight Data table to create a second document intended for executive users, who
only require summary data.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[412]

Aggregating the Flight Data table
When aggregating data, the first step is always to define which dimension fields will
be left out and which ones will be kept in the summarized table. We should analyze
this question by looking at the data from the ground up, that is, by reviewing each
dimension from the most granular to the most general. The following list shows the
most important dimension fields in the Flight Data table, sorted by granularity:

•	 Airport (Origin and Destination)
•	 City
•	 State
•	 Country
•	 Aircraft Type
•	 Aircraft Group
•	 Airline / Carrier
•	 Carrier Group
•	 Region
•	 Month
•	 Quarter
•	 Year

If we analyze how removing each dimension would individually affect the result
of the summarization process, we can find that the most impact would come from
removing the Airport dimensions, both Origin and Destination, since those are the
ones with the greatest granularity. At the same time, we can say that the Airport
dimension does not add much value to the analyses we are looking to deliver in our
document, so it's a good choice to leave it out.

Dropping dimensions from the data directly impacts the
analyses that can be made in the resulting QlikView document.
Therefore, the decision to leave out certain fields for the sake of
summarization should always be discussed with the end user.

We could remove additional dimensions, for example, Aircraft Type or Carrier, but
as we move up the detail ladder to the most general dimensions, those dimensions
become more and more important to accomplish different analyses.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[413]

We must add that leaving dimensions out should be a thorough decision process,
thinking both in terms of analytical requirements and the aggregation rate we can
achieve. For example, removing the Country dimension would not result in any
substantial aggregation if we keep the State field. Also, what happens if we remove
the Airport dimensions but keep Origin City and Destination City? What happens is,
not surprisingly, that the table will not be significantly reduced since both fields keep
a close relation and their granularity is almost the same (there is only one airport in
most cities). Therefore, and for the sake of simplicity, we will also leave out all city,
state, and country fields.

Finally, before proceeding, we should keep in mind how many records the
original table has, in order to be able to measure how much reduction we achieved
in the summarization. In our case, the Flight Data table originally contains
1,256,075 rows.

Moving on to the aggregation process, follow these steps:

1.	 Create a new QlikView document and save it inside the 2.Workbooks folder
with the name Transform - Flight Data.qvw.

2.	 Go to the Script Editor window, click on the Table Files… button in the tool
pane and navigate to the 3.QVD\Source folder.

3.	 Select the Flight Data.qvd file and click Finish on the File Wizard window.
4.	 From the generated Load script, find the lines corresponding to those fields

related to origin and destination airports and erase them. The fields we
should remove are:

°° %Origin Airport ID

°° %Origin Airport Sequence ID

°° %Origin Airport Market ID

°° %Origin World Area Code

°° %Destination Airport ID

°° %Destination Airport Sequence ID

°° %Destination Airport Market ID

°° %Destination World Area Code Distance

°° Origin Airport Code

°° Origin City

°° Origin State Code

°° Origin State FIPS

°° Origin State

°° Origin Country Code

°° Origin Country

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[414]

°° Destination Airport Code, Destination City

°° Destination State Code

°° Destination State FIPS

°° Destination State

°° Destination Country Code Destination Country

°° From - To Airport Code

°° From - To Airport ID

°° From - To City

°° From - To State Code

°° From - To State

5.	 Next, from the list of fields we have kept, we need to identify those that are
dimensions and those that are measures. Our measure fields are:

°° # Departures Scheduled

°° # Departures Performed

°° # Payload

°° # Available Seats

°° # Transported Passengers

°° # Transported Freight

°° # Transported Mail

°° # Ramp-To-Ramp Time

°° # Air Time

6.	 The aggregation functions will be applied to these fields, that is, we will sum
the # of Departures, or sum the # Transported Passengers. Identify
where each of the listed fields are in the created load statement and replace
the field name with the following expression:
Sum(Field Name) as Field Name

where Field Name represents each of the listed measures.

Be careful not to remove the comma that separates each
field definition and remove the comma from the last
listed field, before the From keyword.

7.	 Finally, we will add a Group By clause to the end of the Load statement,
and list all dimension fields that have been kept in the script, separated by
a comma.

8.	 We will also add a table name preceding the Load keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[415]

9.	 In the end, the aggregation script will look like this:
Flights:
LOAD
 [%Airline ID],
 [%Carrier Group ID],
 [%Unique Carrier Code],
 [%Unique Carrier Entity Code],
 [%Region Code],
 [%Aircraft Group ID],
 [%Aircraft Type ID],
 [%Aircraft Configuration ID],
 [%Distance Group ID],
 [%Service Class ID],
 [%Datasource ID],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 Year,
 Period,
 Quarter,
 [Month (#)],
 Month,
 Sum([# Departures Scheduled]) as [# Departures Scheduled],
 Sum([# Departures Performed]) as [# Departures Performed],
 Sum([# Payload]) as [# Payload],
 Sum([# Available Seats]) as [# Available Seats],
 Sum([# Transported Passengers]) as [# Transported
Passengers],
 Sum([# Transported Freight]) as [# Transported Freight],
 Sum([# Transported Mail]) as [# Transported Mail],
 Sum([# Ramp-To-Ramp Time]) as [# Ramp-To-Ramp Time],
 Sum([# Air Time]) as [# Air Time]
FROM
[..\3.QVD\Source\Flight Data.qvd]
(qvd)
Group By
[%Airline ID], [%Carrier Group ID], [%Unique Carrier Code],
[%Unique Carrier Entity Code], [%Region Code], [%Aircraft Group
ID],
[%Aircraft Type ID], [%Aircraft Configuration ID], [%Distance
Group ID],
[%Service Class ID], [%Datasource ID], [Unique Carrier], [Carrier
Code],
[Carrier Name], Year, Period, Quarter, [Month (#)], Month;

10.	 Next, we will just save the changes and reload the script.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[416]

The resulting table will turn our 1,256,075 rows into only 100,091. A brief example of
what just happened is shown in the following screenshot:

Notice how the totals remain the same for both tables.

A smaller table will occupy fewer resources (RAM and CPU) and, therefore,
calculations will be faster. If the performance gain attained with data aggregation
doesn't mean reducing business value and/or functionality for the end user, then
it's a winning approach any day.

The Transformation output
We have loaded the base QVD containing flight data and transformed it by applying
aggregations, now what? Well, the next steps would be to store the transformed
table, using the store command, into a new QVD file that will reside in the 3.QVDs\
Transformed folder.

After that, a new data model could be created in the Presentation Layer based on the
Airline Operations document, but using the newly aggregated QVD and without
the Origin and Destination dimensions. This new QlikView document is intended
to serve the users who only need summarized information about the Airline
Operations document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[417]

Aggregation functions
Of course, QlikView offers more aggregation options than summing. The most
commonly used options are shown in the following table:

Function Explanation Example
Sum() Sums numeric expressions. Optionally a

DISTINCT qualifier can be added, this will
cause the function to ignore duplicate values.

Sum(DISTANCE)

Sum(DISTINCT AIR_
TIME)

Min() Returns the lowest value within a numeric
range. Optionally a rank can be specified,
this will return the nth lowest number. So 2
returns the second lowest number.

Min(DISTANCE)

Min(DISTANCE, 2)

Max() Returns the highest value within a numeric
range. Optionally a rank can be specified,
this will return the nth highest number. So 2
returns the second highest number.

Max(PASSENGERS)

Max(PASSENGERS, 2)

Only() If the aggregation of a value returns only a
single value, that value is returned, otherwise
the function returns null. For example, when
an expression contains the values {1, 1, 1}
then the Only() function will return 1. If an
expression contains the values {1, 2, 3} then
the Only() function returns null.

Only(SEATS)

MinString() Similar to the Min() function, but applied
to text strings. Also, it does not have the
optional rank parameter.

MinString
(MANUFACTURER)

MaxString() Similar to the Max() function, but applied
to text strings. Also, it does not have the
optional rank parameter.

MaxString
(MANUFACTURER)

Concat() Concatenates all the values of an expression
into a single string, which is separated by a
delimiter given as a function's parameter.
Has an optional DISTINCT qualifier which
will set the function to ignore duplicate
values.

Concat(AIRPORT_
NAME, ';')

Concat(DISTINCT
MANUFACTURER, ',')

Count() Counts the number of items in the input
expression. Has an optional DISTINCT
qualifier that sets the function to ignore
duplicate values. Instead of an expression
an * (asterisk) can also be used to count the
number of rows.

Count(AIRCRAFT_
NAME)

Count(DISTINCT
AIRCRAFT_NAME)

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[418]

Sorting tables
We will now introduce the Order By statement, which is added to a Load statement
and is used to sort an input table based on certain fields. There is one major condition
for the Order By statement to work: it must be applied to a Load statement getting
data from a Resident table, not from a table file or any other source.

Some databases can receive Order By instructions in the Select query, but in this
section we will only deal with Order By statements on the QlikView side.

The Order By statement must receive at least one field name over which the
ordering will be performed and, optionally, the sort order (either ascending or
descending). If the sort order is not specified along with the field name, the default
sort order will be applied, which is ascending.

An example script of an Order By statement at play is:

Load
 Region,
 Date,
 Amount
Resident SalesTable
Order By Date asc;

In this script, we are loading three fields (Region, Date, and Amount) from a
previously loaded table, named SalesTable, and, as the table is being read, the data
is being ordered by Date from older to newer records (ascending).

Ordering the Order-By fields
An important point to consider when using the Order By statement, is that not only
can one field be specified as the sorting value, we can also, for instance, sort the table
by Date from older to newer and by Amount from largest to smallest. The order in
which we specify the sorting fields will determine the output of the operation. Take,
for example the following two scripts:

A:
Load
 Region,
 Date,
 Amount
Resident SalesTable
Order By Date asc,
Amount desc;

B:
Load

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[419]

 Region,
 Date,
 Amount
Resident SalesTable
Order By Amount desc,
Date asc;

The difference between both scripts is the Order by clause. Look closely and you
will find that, in script A, the Date field takes precedence in the ordering of the data,
while in script B, Amount is the first ordering field.

Take a moment to think what you would expect as the output of both scripts. You'll
discover that the output of each script can be translated to plain English as:

•	 In script A, the table is first ordered by Date from oldest to newest and
then, for each date, the corresponding records are sorted by Amount in the
descending order

•	 In script B, the table is first ordered by Amount of the transaction, biggest
amounts at the top, and, for records with the same amount, they get ordered
by Date from oldest to newest

Normally we will want the table to be sorted by Date first and Amount as a second
sorting value. It's important to take this into account when adding it in to our
QlikView scripts.

As a final remark, remember to drop the table on which the
Resident load was based if it is no longer needed.

The Peek function
Another tool we'll add to our collection in this set of data transformation techniques
is the Peek function. The Peek function is an inter-record function that allows us to
literally peek into previously-read records of a table and use its values
to evaluate a condition or to affect the active record (the one being read).

The function takes one mandatory parameter, the field name into which we will
"peek", and two optional parameters, a row reference and the table in which the
field is located.

For example, an expression like:

Peek('Date', -2)

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[420]

This expression will go back two records in the currently-being-read table, take the
value on the Date field and use it as a result of the expression.

Or take this other expression:

Peek('Date', 2)

In this expression instead of "going back" two records, we will take the value in the
Date field from the third record from the beginning of the current table (counting
starts at zero).

We can also add a table name as the third parameter, as in the following expression:

Peek('Date', 0, 'Budget')

This expression will return the value that the Date field stores on the first record in
the Budget table.

Merging forces
On their own, the Order By statement and the Peek function are already powerful.
Now, imagine what happens when we combine both of these tools to enhance
our input data. In this section, we will use both of these functions to add a new
calculated field to our Employment table (the one we integrated to our data model in
Chapter 8, Data Modeling Best Practices).

A refresher
The Employment table provides information regarding the monthly number
of employees per airline. The total number is split between part and full time
employees, and it also shows the total FTEs (Full Time Equivalent).

The objective
The executives of HighCloud Airlines have asked the QlikView team to create a
report that shows the monthly change in number of employees in a line chart to
discover and analyze peaks in the employment behavior of each airline.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[421]

Getting it done
First, how do we find the total change in number of employees for this month
compared to the last? Well, we take the number of employees in the current month
and subtract the number of employees we had in the previous month. If the number
is zero, it means there was no change (no one fired!), if the number is greater than
zero, it means we have new hires in the house; last, and hopefully the least, if the
number is less than zero, it means we will be missing some colleagues.

To add this field to our Employment Statistics table, and following the best
practices we previously discussed, we will create a new QlikView document, used
for transformations, and save it inside the 2.Workbooks folder. Name this file as
Transform-Employment Data.qvw. The resulting table will then be saved as QVD
inside the 3.QVD\Transformed folder.

Loading the table
Once you have the new QlikView document created, saved and still open, go to the
Edit Script window (Ctrl + E) and perform the following steps:

1.	 Add a new tab to the script by clicking on the Tab menu and selecting
Add Tab….

2.	 From the Tab Rename Dialog window, type Initial Load as the name of
the new tab and click on OK.

3.	 Use the File Wizard dialog to load the Employment Statistics table from
the corresponding QVD file (T_F41SCHEDULE_P1A_EMP.qvd) stored in
the 3.QVD\Source folder.

4.	 Click on Finish on the first dialog window of the File Wizard dialog since no
alterations will be made to the file on the initial load.

5.	 Assign the table a name by typing Temp_Employment: before the Load
keyword of the generated script. Remove the Directory; statement
if necessary.

6.	 Now, add a new tab to the right of the Initial Load tab, by clicking on Add
Tab… from the Tab menu.

7.	 In the Tab Rename Dialog window, type Transformation as the name of
the tab and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[422]

8.	 Once in the Transformation tab, we will create the script to load the
previously created Temp_Employment table via a Resident load. We will also
name this new table as Employment. Write the following code:
Employment:
Load
 [%Airline ID],
 Year,
 [Month (#)],
 [# Total Employees],
 Period,
 Month,
 [%Unique Carrier Code],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 [%Carrier Group ID],
 [# Full Time Employees],
 [# Part Time Employees],
 [# Equivalent FTEs]
Resident Temp_Employment;

We are now ready to add the transformation functions to the table. It's important
to note that, if we reload the script at this point, the new employment data will
never be created because of the Natural Concatenation feature we talked about in
Chapter 8, Data Modeling Best Practices, since both the Temp_Employment table and
the Employment table will have exactly the same number of fields as well as the
same field names. However, with the functions we will apply, and the new fields
we will add, this structural similarity will be lost and we will not need to add the
NoConcatenate keyword.

Sorting the table
Using the techniques learned in the Sorting tables section of this chapter, we will
set the load order of the Resident table using the Airline ID, Year, and Month #
fields. The earlier script will be modified to:

Employment:
Load
 [%Airline ID],
 Year,
 [Month (#)],
 [# Total Employees],
 Period,
 Month,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[423]

 [%Unique Carrier Code],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 [%Carrier Group ID],
 [# Full Time Employees],
 [# Part Time Employees],
 [# Equivalent FTEs]
 Resident Temp_Employment
Order By [%Airline ID], Year, [Month (#)];

Take note of the order in which the sorting fields are defined. The ordering output is:
all records will be first sorted by Airline ID, for each airline, the records will then
be sorted by Year in ascending order, and then, for each year, the records will be
sorted by Month from first to last. In our case, the Airline ID sorting can be either
ascending or descending, it doesn't matter. However, Year and Month # must be
sorted in ascending order, which is the default if no sort order is specified.

Peeking previous records
The final step will be to take the sorted table and start comparing adjacent months
to find out the difference in number of employees between them. We've seen how
the Peek function will bring a value from previous records, but in our case it gets
a little trickier, since we need to be careful not to peek into and compare records
corresponding to different airlines. An If expression should be used in conjunction
with the Peek function. The adjustment we will make to the previous script will
result in:

Employment:
Load
 If(
 [Airline ID] = Peek('Airline ID', -1),
 [# Total Employees] - Peek('# Total Employees', -1),
 0
) as [# Delta Total Employees],
 [%Airline ID],
 Year,
 [Month (#)],
 [# Total Employees],
 Period,
 Month,
 [%Unique Carrier Code],
 [Unique Carrier],
 [Carrier Code],

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[424]

 [Carrier Name],
 [%Carrier Group ID],
 [# Full Time Employees],
 [# Part Time Employees],
 [# Equivalent FTEs]
 Resident Temp_Employment
Order By [%Airline ID], Year, [Month (#)];

We are almost ready to reload our script and see the result. We just need to add a
Drop statement to remove the Temp_Employment table from RAM after using it in the
Resident load script. Add the following code at the end of the Transformation tab:

Drop Table Temp_Employment;

After this, save the changes we've made to the QlikView document and hit Reload
(or press Ctrl+R). The script will perform the transformation and, after it's finished,
we can open the Table Viewer window and preview the resulting Employment
table. Here is what we'll see:

From the Preview dialog window, we can see how the very first airline (19386) has
had an erratic behavior in their headcount. In February 2009, they had a bump of
54 employees, and in the following month their headcount dropped by the same
amount. Then, a massive reduction of 3568 took place in May 2009.

Now that we've added the # Delta Total Employees field, let's add the corresponding
delta fields for part-time and full-time employees, as well as FTEs. We will also add
the store command to save the output table to a QVD file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[425]

Our modified script will be:

Employment:
Load
 If(
 [Airline ID] = Peek('Airline ID', -1),
 [# Total Employees] - Peek('# Total Employees', -1),
 0
) as [# Delta Total Employees],
 If(
 [Airline ID] = Peek('Airline ID', -1),
 [# Full Time Employees] - Peek('# Full Time Employees', -1),
 0
) as [# Delta Full Time Employees],
 If(
 [Airline ID] = Peek('Airline ID', -1),
 [# Part Time Employees] - Peek('# Part Time Employees', -1),
 0
) as [# Delta Part Time Employees],
 If(
 [Airline ID] = Peek('Airline ID', -1),
 [# Equivalent FTEs] - Peek('# Equivalent FTEs', -1),
 0
) as [# Delta Equivalent FTEs],
 [%Airline ID],
 Year,
 [Month (#)],
 [# Total Employees],
 Period,
 Month,
 [%Unique Carrier Code],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 [%Carrier Group ID],
 [# Full Time Employees],
 [# Part Time Employees],
 [# Equivalent FTEs]
 Resident Temp_Employment
Order By [%Airline ID], Year, [Month (#)];

Drop Table Temp_Employment;
Store Employment into [Transformed QVDs\Employment Statistics.QVD]
(qvd);

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[426]

Adding these fields to our table makes it easier to perform more in-depth analyses,
such as the ones shown in the following screenshot:

From the previous charts we can see that, while most carriers experienced a
downsize in headcount from April 2009 to April 2010 (the selected dataset), Delta
Air Lines Inc. grew its staff by about 32,000 employees in the same period.

By integrating this data into the final data model, may be able to find correlations
between hires, downsizings, # of flights, enplaned passengers, flight occupancy,
and so on. This enables the QlikView users at HighCloud Airlines to better make
business decisions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[427]

A solo exercise
By now, you are well armed, so what about a little challenge?

We've already added the fields for Monthly Headcount Change. How would we go
about adding new fields for Quarterly Headcount Change and Annual Headcount
Change? What information can you get from the resulting data?

Dealing with slowly changing dimensions
A slow changing dimension is one whose values vary across undefined time periods,
that is, it can have different meanings depending on the time period context.

To illustrate the concept, consider the evolution of Joey, a support technician
employee in a given company, over a certain period of time. When Joey joined
the company, he had the Junior Support Technician position. Then, after one year,
he gets promoted to Senior Technician. And now, one year later, has become the
Support Manager.

Now, imagine you want to visualize the number of cases resolved by the entire
support team over a three-year period and find out how many of those cases were
resolved by junior technicians, how many were resolved by senior technicians, and
how many were resolved by the support manager. If, for reporting purposes, we take
Joey's current status in the company, all cases he has resolved in the last three years
will be logged as if they were resolved by the Support Manager, which is not quite
accurate. We should, instead, identify which positions Joey has had and the specific
time frame for each of them. Then, count the corresponding number of cases he
resolved on each support role and report it. Quite a task if we are dealing with tables
of a respectable size.

To tackle challenges like these, we can make use of the IntervalMatch script function.

We will adapt our example to the Airline Operations data we've been
working with, so make sure you have the Carrier Decode.qvd file in the
3.QVD\Source folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[428]

The Carrier Decode table
Let's start by taking a closer look at the Carrier Decode table and its contents. If we
were to open the table in Excel this is what we would see:

As you can see, the table extract shown in the screenshot contains the data
corresponding to one particular carrier: Tradewinds Airlines. The first seven
columns of the table are not relevant for us right now, so let's focus on the remaining
four. We have a Carrier Group ID column which tells us if the carrier is catalogued
as a Major, Large, Medium Carrier, and so on. We also have a Region Code column
to indicate if the record corresponds to the domestic or international entity of the
carrier (one carrier can perform both types of flights). And last but not least, we have
a Start Date column and an End Date column, which will be the main fields we
will use to deal with the slowly changing nature of this particular dimension. Those
values indicate in which time frame the particular record is valid.

For example, the first two records shown earlier have a validity period from January
98 through December 99, in which Tradewinds Airlines was catalogued as a Medium
Regional Carrier (Group ID = 4). Then, from January 2000 all the way through
December 2010, the carrier was playing as a Large Regional Carrier (Group ID = 1).
Afterwards, and until December 2011, it rolled back to the Medium Regional
Carrier category but ascended back up as a Large Regional Carrier again for an
undefined time.

When reporting Tradewinds Airlines' operations, we must take into account the
carrier's classification in place (Carrier Group ID field) depending on the time
period(s) being analyzed. Dealing with this is not trivial, so let's get going and create
some IntervalMatch magic.

If we look at the original Flight Data table, we can see that we already have a
%Carrier Group ID field in it, which is the same to that shown in the Carrier
Decode table. However, to demonstrate how the IntervalMatch function can be
useful, let's assume the field is not already in the fact table and that we must obtain
it from the Carrier Decode table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[429]

IntervalMatch magic
Because of the associative nature of the data model, and the dynamic nature of the
queries a QlikView user performs, interval-based dimensions cannot be "queried"
as one would with SQL-syntax queries. That's OK, since the associative engine can
also handle such dimensions, just with a different, associative-based, approach.
Let's see how.

Since the dimension value is dependent upon a time frame, the basic concept is that
the key field, through which the dimension is associated with the rest of the data
model, must be composed of both the dimension ID and a time element.

We refer to "time element" as the individual pieces into which an interval can be split.

The splitting of intervals means that one interval-based record in a table will be
converted to several element-based records. If, for instance, an interval encompasses
the equivalent of three time elements, the individual record will then be expanded
into three different records, one for each of the corresponding time elements.

Expanding the intervals
The IntervalMatch function splits discrete, numeric-based, intervals based on
two inputs:

•	 A table composed of two fields: one for the start of the interval and one for
the end of the interval

•	 A list of values representing the individual data points into which the
intervals will be split (the time element), according to their matching

All intervals must be closed, that is, they all must have an end value.

Let's look at a basic example to better illustrate the concept. Suppose we have the
following intervals table:

ID Start End
A 6 8
B 2 15
C 9 20
D 1 8
E 8 15
F 10 15
G 6 9
H 8 9

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[430]

We also have a list of the individual data points to associate the data with. The list of
data points we will use has 20 values (from 1 to 20).

Make sure a file called Intervals.xlsx is in the
1.Source Data\Examples folder. It contains both
tables described above and is the one we will be using.

To apply the IntervalMatch function, follow these steps:

1.	 Create a new QlikView document, name it Intervals example.qvw, and
save it inside the 2.Workbooks\Examples folder.

2.	 Go to the Script Editor window and click on the Table files… button to load
the table called Elements from the Intervals.xlsx file.

3.	 Name the loaded table as Elements. The script so far should look as follows:
Elements:
LOAD
 Element
FROM
[..\0.Source Layer\XLSX\Intervals.xlsx]
(ooxml, embedded labels, table is Elements);

4.	 Next, create a new Load statement under the one we just created, this time
loading the Intervals table from our Excel file.

5.	 Modify the Load statement by:
°° Removing the ID field.
°° Adding the IntervalMatch prefix as follows:

IntervalMatch(Element)

6.	 Create a Drop statement at the end of the script to remove the Elements table
from the data model.

7.	 The final script should look like:
Elements:
LOAD
 Element
FROM
[..\..\1.Source Data\Examples\Intervals.xlsx]
(ooxml, embedded labels, table is Elements);

Intervals:
IntervalMatch (Element)
LOAD
 Start,
 End

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[431]

FROM
[..\..\1.Source Data\Examples\Intervals.xlsx]
(ooxml, embedded labels, table is Intervals);

Drop Table Elements;

8.	 Now, save the changes and reload the script.

After the script execution, we will end up with one table containing all the expanded
intervals and three fields: Element, Start, and End. If we add three listboxes to our
workspace, one for each of the fields, and a table box to see the intervals, we will be
able to appreciate the associations created by the IntervalMatch function. Some of
these associations are depicted in the following screenshots.

When selecting the first interval (1 through 8), we see that the elements associated to
that interval are all the numbers from 1 through 8:

Then, if we select 15 in the Element listbox, we will see the four intervals containing
that element within. All other intervals are now excluded:

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[432]

Finally, the actual output table, the one we now have in the data model, looks
like this:

Some considerations
When working with the IntervalMatch function, it is important to keep the
following in mind:

•	 This function is resource heavy, so, depending on the size of the input
intervals table and the elements list, you should first consider if the machine
you are working with will be able to handle the operation. Otherwise, you
may need to break the work in parts.

•	 The intervals might enclose elements that are not actually needed in the
data model, and we must ensure those elements are not considered when
expanding the intervals, so that we save CPU and RAM resources. To do
this, the elements list we input in the IntervalMatch function should only
contain the required elements.

•	 Similarly, the intervals table should contain unique records, with no
duplicates, to save resources. If one interval is present twice, then the
IntervalMatch function will split it twice. Using the Distinct keyword
will help us in this matter.

•	 When using the intervals table, the fields must be specified in the correct
order: the start value before the end value.

Applying IntervalMatch to the Carrier Decode table
Now that we've seen an example of how the IntervalMatch function works,
we are ready to apply the learned concepts to the Carrier Decode table we
discussed earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[433]

As a quick recap, our main objective will be to add the Carrier Group ID field
from the Carrier Decode table to the Flight Data table. When retrieving the ID
value for each of the records in the fact table, we must consider the date on which
the corresponding fact took place so that the correct value is assigned. Therefore, the
key between the fact table and the Carrier Decode table will be composed of a time
element (a Date field) and the %Unique Carrier Entity Code field, which exists in
both tables.

Let's follow these steps:

1.	 Create a new QlikView document; name it as Transform - Carrier
Decode.qvw and save it inside the 2.Workbooks folder.

2.	 Go to the Edit Script window and add a new tab. From the Rename Tab
dialog, type Facts data as the tab's name.

3.	 Once in the new tab, click on the Table File… button and browse to
theFlight Data.qvd file, located inside the 3.QVD\Source folder.

4.	 After selecting the file and clicking on Open, click on Finish in the File
Wizard window to create the corresponding Load statement.

5.	 Name the table to be loaded as Flight Data by typing it before the Load
keyword and enclosing it within square brackets. Don't forget the colon at
the end of the name.

6.	 Now we will create a new calculated field to build a date representation of
the Period field. Use the following expression to create the new field:
Date#(Period, 'YYYYMM') as Date

7.	 We will rename the original %Carrier Group ID field from the Flight Data
table to OLD_Carrier Group ID, so that we can use the new field resulting
from the transformation instead.

8.	 The rest of the script will not be modified, so our Load statement should be:
[Flight Data]:
LOAD
Date#(Period, 'YYYYMM') as Date ,
[%Carrier Group ID] as [OLD_Carrier Group ID],
[%Airline ID],
 [%Unique Carrier Code],
 [%Unique Carrier Entity Code],
 [%Region Code],
 [%Origin Airport ID],
 [%Origin Airport Sequence ID],
 [%Origin Airport Market ID],
 [%Origin World Area Code],
 [%Destination Airport ID],
 [%Destination Airport Sequence ID],

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[434]

 [%Destination Airport Market ID],
 [%Destination World Area Code],
 [%Aircraft Group ID],
 [%Aircraft Type ID],
 [%Aircraft Configuration ID],
 [%Distance Group ID],
 [%Service Class ID],
 [%Datasource ID],
 [# Departures Scheduled],
 [# Departures Performed],
 [# Payload],
 Distance,
 [# Available Seats],
 [# Transported Passengers],
 [# Transported Freight],
 [# Transported Mail],
 [# Ramp-To-Ramp Time],
 [# Air Time],
 [Unique Carrier],
 [Carrier Code],
 [Carrier Name],
 [Origin Airport Code],
 [Origin City],
 [Origin State Code],
 [Origin State FIPS],
 [Origin State],
 [Origin Country Code],
 [Origin Country],
 [Destination Airport Code],
 [Destination City],
 [Destination State Code],
 [Destination State FIPS],
 [Destination State],
 [Destination Country Code],
 [Destination Country],
 Year,
 Period,
 Quarter,
 [Month (#)],
 Month,
 [From - To Airport Code],
 [From - To Airport ID],
 [From - To City],
 [From - To State Code],
 [From - To State]
FROM
[..\3.QVD\Source\Flight Data.qvd]
(qvd);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[435]

9.	 Now, let's create a new tab by clicking on the Add new tab button on the
toolbar. The new tab will be named Intervals.

10.	 In this new tab, we will enter the following script:
[Carrier Decode]:
IntervalMatch (Date, [%Unique Carrier Entity Code])
LOAD
 [Start Date],
If(Len([End Date]) < 1, Today(1), [End Date]) as [End Date],
 [Unique Carrier Entity] as [%Unique Carrier Entity Code]
FROM
[..\3.QVD\Source\Carrier Decode.qvd]
(qvd);

With the preceding script, a new table is being created as the result of the
IntervalMatch operation. In this case, we are using the extended syntax of
the function so that the resulting table has one record for each combination
of interval (Start Date and End Date), data point (Date), and dimension
(%Unique Carrier Entity Code) value.

When using the extended syntax, all fields specified as the
function's parameter must exist in the previouslyloaded
fact table, as well as listed in the Load statement to which
it is being applied.

We are also ensuring that all intervals are closed, which is a requirement of
the IntervalMatch function, by using a conditional expression. Whenever
an open interval is encountered, the date of when the script is executed will
be set as the End Datefield for that interval.

11.	 Now that we have expanded the intervals, let's associate the dimension value
we are interested in (%Carrier Group ID) so that we can incorporate it into
the fact table. Do this by entering the following code below the previous one:
Inner Join ([Carrier Decode])
LOAD
[Start Date],
If(Len([End Date]) < 1, Today(1), [End Date]) as [End Date],
 [Unique Carrier Entity] as [%Unique Carrier Entity Code],
 [Carrier Group ID] as [%Carrier Group ID]
FROM
[..\3.QVD\Source\Carrier Decode.qvd]
(qvd);

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[436]

With the preceding script, we are simply adding the new field (%Carrier
Group ID) to the result of the IntervalMatch operation. This leaves us
with a table containing all possible combinations of Interval, Date,Unique
Carrier Entity ID, and the corresponding %Carrier Group ID value.

12.	 We will now end the transformation process by joining the expanded-intervals
table to the fact table so that the %Carrier Group ID field is added to it. Enter
the following script below the previous one:
Left Join ([Flight Data])
Load
 Date,
 [%Unique Carrier Entity Code],
 [%Carrier Group ID]
Resident [Carrier Decode];

Drop Table [Carrier Decode];
Drop Field Date;

The Join operation is performed by matching both the Date and %Unique
Carrier Entity Code fields between the two tables. In the end, we issue a
Drop statement to get rid of the Carrier Decode table since we don't need
it anymore. We also drop the Date field from the Flight Data table since it
was only needed during the IntervalMatch operation.

13.	 Now that the transformation has taken place and the new %Carrier Group
ID field has been added to the fact table, we can store the result into a new
QVD file and drop it from RAM with the following two statements:
Store [Flight Data] into [..\3.QVD\Transformed\Transformed -
Flight Data.qvd];
Drop Table [Flight Data];

Ordering, peeking, and matching all
at once
In the earlier sections, we have discussed three different functions commonly used in
data transformation. We will now present a use case in which all three functions will
complement each other to achieve a specific task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[437]

The use case
We know that the IntervalMatch function makes use of closed intervals already
defined in a table. What happens if all we have is a start date? To illustrate this
scenario, look at the following screenshot:

As you can see, the End Date field has disappeared. However, there is a way for
us to guess it and assign the corresponding value, based on the start date of the
immediate following record. That is, if one record starts on 1-Feb-1998 and the
immediate following starts on 1-Jan-2000, it means that the first interval ended on
31-Dec-1999, right?

In order for us to calculate the end date, we need to first sort the table values so that
all corresponding records are contiguous, then "peek" at the start value from the
next (or previous, if ordered backwards) record, subtract one day and that will be
our new end date. After that, we are now able to use the IntervalMatch function to
expand those intervals.

To complete the challenge, make use of the same Carrier Decode table we have
used previously, only ignore the End Date field as if it was not there. You will also
be able to compare your results with those we came up with in the previous section.

Good Luck!

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[438]

Incremental loads
Another important advantage of designing an appropriate data architecture, is the
fact that it eases the construction and maintenance of incremental load scenarios,
which are often required when dealing with large data volumes.

An incremental load is used to transfer data from one database to another efficiently
and avoid the unnecessary use of resources. For instance, suppose we update our
Base QVD Layer on a Monday morning, pulling all transactions from the source
system and storing the table into a QVD file. The next morning, we need to update
our Base QVD layer so that the final QlikView document contains the most recent
data, including transactions generated in the source system during the previous day
(after our last reload). In that case, we have two options:

1.	 Extract the source table in its entirety.
2.	 Extract only the new and/or modified transactions from the source table and

append those records to the ones we previously saved in our Base QVDs.

The second option is what we call an Incremental Load.

The following diagram depicts the process of an incremental load at a general level,
when a Base QVD Layer is used:

The process of performing an incremental load in QlikView varies in complexity
depending on the nature of the source table. At a general-level, we would approach
the task by following these steps:

1.	 We first query the source database using a Where clause with the appropriate
logic so that only new or updated records are extracted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[439]

2.	 Once the new records are read, we can append the ones we previously saved in
QVDs by using the Concatenate function.

°° In this second load, a Where clause might be required with the
appropriate logic so that previously-saved records that were updated
in the source table, and therefore read in the first load (step 1), are not
read again; by doing so, we will avoid inconsistencies with the data.

3.	 Finally, once the two tables are concatenated, we save it to the corresponding
QVD file, thus replacing the old one.

The basic requirement for an incremental load to be possible is that the new or
updated records in the source table can be identified. We can easily identify the
target records if the source table has a ModificationTime or Created on field
(or similar) and stores the corresponding timestamp or date for each record. This is
often the case in production environments, but sometimes this field is not available.

An example pseudocode script that performs the aforementioned procedure is
shown as follows:

Let vLoadTime = Num(Now());

QV_Table:
SQL SELECT
 PrimaryKey,
 Field_A,
 Field_B
FROM Source_Table
WHERE ModificationTime >= $(vLastLoadTime)
AND ModificationTime < $(vLoadTime);

Concatenate (QV_Table)
LOAD
 PrimaryKey,
 Field_A,
 Field_B
FROM OurFile.QVD
WHERE NOT EXISTS(PrimaryKey); /* This where clause is used to
ignore keys that already exist in QV_Table, which are new versions of
existing records. */

If ScriptErrorCount = 0 then

 STORE QV_Table INTO OurFile.QVD;
 Let vLastLoadTime = vLoadTime;

End If

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Data Transformation

[440]

In the script we just saw, we use two variables, vLoadTime and vLastLoadTime, to
keep track of when the script was last executed and query the database accordingly.
These variables are stored as numeric values, rather than using their timestamp
representation, to avoid issues regarding date formats. We must ensure the database
recognizes the ModificationTime comparison in numeric format, otherwise we
should adapt it accordingly. We also use the system variable ScriptErrorCount to
ensure that the QVD file and the variable vLastLoadTime are only updated when the
previous script is executed without errors.

The process outlined earlier accounts for two scenarios:

•	 When the source table is only updated by inserting new records (Insert-Only
scenario)

•	 When the source table is updated either by inserting new records or by
updating existing ones (Insert and Update scenario)

There is, however, a third scenario: when the source table can be updated either by
inserting new records, updating existing ones, or deleting existing records (Insert,
Update, and Delete scenario).

When records can be deleted from the source table, the complexity of the incremental
load increases and additional steps might be required in the process. One approach
that can be implemented, is to perform a second load from the source database, this
time pulling the entire list of record IDs (primary keys), without the rest of the fields,
and then perform an Inner Join operation with the updated table (the one resulting
from the second step in the earlier process) to discard deleted records before saving
the new QVD file.

To account for this scenario, the following code should be inserted above the If ...
Then ... Else statement in the example script presented previously.

Inner Join SQL SELECT PrimaryKey FROM Source_Table;

Having an incremental load logic in our Extract Layer can help reduce the amount
of data being transferred over the network from server to server during the
extraction process. It also helps to significantly reduce the time it takes for the
extraction to be completed.

When implementing an incremental load, it's essential to monitor and validate
the process to ensure that the logic employed in the extraction is appropriate and
the data stored in the QlikView document is consistent with the data stored in the
source table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[441]

Summary
We've come to the end of an intense chapter. I hope you have followed the topics
and, if not, I highly recommend to go back to read those sections which you found
most difficult, so that you learn the concepts at full.

In this chapter, we have learned the importance of having a well-designed data
architecture, how to load data from another QlikView document or previously
loaded table in RAM, and also data aggregation functions and their uses.

We then learned how to order tables during load, how to calculate fields based
on previously read records, how to deal with slowly changing dimensions to
incorporate those tables into the associative data model, and finally the general
process to perform an incremental load.

In the following chapter, we will continue exploring some front-end functionalities
that can help us improve the user experience for our apps.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and
User Experience

In the chapter on building dashboards, we looked at the various QlikView objects
and how we can create and configure these objects. This chapter will expand your
knowledge further, not aiming for mere technical competency, but it will also giving
you some solid rules of thumb that will help you create good QlikView documents.

This chapter consists of two sections. The first focuses on some best practices for
creating a consistent user interface in QlikView.

The second section looks at how we can add additional interactivity to our documents.

Let's get started.

Creating a consistent QlikView UI
As mentioned earlier in the Building Dashboards chapter, we will want to make sure
that the user interface, which includes language, layout, and design, is as consistent
as possible. A consistent user interface makes it predictable for the user, they will
have a better understanding of how things work, and will feel more in control.

Before you start, understand the users and their goals
Before you start designing your QlikView document and the UI,
it is key that you first understand the users and their goals. Only
when you are familiar with the goals of the document can you
design an interface that will help the users achieve those goals.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[444]

One straightforward example, which we've seen while developing our document, is
to place objects in the same location if they're being used on multiple sheets. If, for
example, the current selections box is always in the same place, then the user will
immediately know where to look for it. The linked object feature is the best way to
enforce this.

Screen resolution
One of the big no-no's in dashboard design is to create a dashboard that occupies
more space than the user's screen size. This will require the user to scroll around to
see the information.

If, for whatever reason, you need to create a dashboard
that occupies more space than is available on screen, it is
good to keep in mind that vertical scrolling is better than
horizontal scrolling. Most users will be used to vertical
scrolling from their web browser.

The easiest way to prevent this is to find out what default screen resolution is used
by your users. Or, if there is more than one, what the lowest common denominator
is. When this resolution is known, you can design all of your sheets and documents
to fit within it.

If your screen resolution does not match the target screen's
resolution, you can use the View | Resize Window option
from the menu to resize your QlikView document window
to the most common screen resolutions.

Background image
One way to give your document a consistent look-and-feel on each sheet (and even
between documents) is to use a background image. Usually, a background image has
a few predefined panels where objects can be placed. The following image shows an
example of a background image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[445]

The previous image does feature quite thick borders. In the
interest of reducing non-data pixels, you will probably want to
use a more minimalistic background in your own designs.

When setting up a background image, either at the Document Properties or Sheet
Properties level, it is important to configure the following settings:

•	 Image Formatting should be set to No Stretch
•	 Horizontal should be set to Left
•	 Vertical should be set to Top
•	 Background Color should be set to a color that matches the background

color of the image so that the edges of the background image blend in with
the rest of the background

QlikView Developer Toolkit
Creating a background image can be done using an image
editor such as Photoshop. If you do not have access to an image
editor, or if you're not really artistically inclined, QlikView
installation has the Developer Toolkit included. This toolkit
can be found in the folder C:\Program Files\QlikView\
Examples\Developer Toolkit and includes around 100
predefined backgrounds to use in your QlikView documents.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[446]

Of course, you can use multiple background images to fit the different requirements
of the sheets in your document. For example, you can use a background with two
horizontal panels for your dashboard sheet, while using a background with three
vertical panels for your analysis sheet.

Themes
While using background images can go a long way in standardizing the look and
layout of your QlikView document, when you really want to standardize—for
example, to enforce a corporate style—themes are what you need.

A theme is stored in an external XML file with a .qvt extension. It contains separate
sections for each type of object, document, sheet, and the various sheet objects.
For each of these objects, the object-specific properties are stored, as well as caption
and border properties and print settings. You can even store only part of the settings,
for example, adding the font type of a chart's axis to a theme while ignoring its
font color.

The following diagram shows the Theme File structure. Notice that there is a
separate section for each type of Sheet object:

Document
section

Sheet
section

Sheet object
section

Document
properties

Sheet
properties

Sheet object
properties

Caption/border
properties

Print setting
properties

Theme file

A theme is created using the Theme Maker Wizard and can contain settings for as
many or few objects as you want, from a single setting for a single chart type to the
entire look-and-feel of the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[447]

Applying themes
As theme files store properties at various levels (document, sheet, and object), we can
apply them at various levels too. Let's start with a practical example that shows how
to apply a theme to a complete document:

1.	 Open the NoTheme.qvw file that is located in the folder
4.Applications\Examples.

2.	 Go to Settings | Document Properties | Layout.
3.	 Click on the Apply Theme button and select the HighCloudCorporate_

finished.qvt file from the folder 0.Includes\Themes.

The result now looks similar to the style we've been using in our own documents.
Notice how, among other things, the background image, colors, and caption settings
have changed once we applied the theme:

As was said before, themes do not always need to be applied to the entire document.

We can apply a theme to a single sheet, by selecting Settings | Sheet Properties and
clicking on the Apply Theme button on the General tab.

We can also apply a theme to a single object (or a group of objects, if we first select
them) by opening the Object Properties window (right-click on the object, or group
of objects, and select Properties...) and clicking on the Apply Theme button on the
Layout tab.

Now that we've seen how to apply themes, let's see how we can create them.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[448]

Creating themes
A theme is always created by copying the properties of documents, sheets and sheet
objects which were already created. As we already spent quite some time styling our
document, we can use it as a base for a HighCloud corporate theme.

Creating a theme to style a complete document is no small
task and involves a lot of repetitive steps. For the sake of
brevity, we will only create the document and sheet sections
of the theme, along with the theme for two sheet objects.

We will start by adding the document settings.

Adding document properties
Let's follow these steps to create the first iteration of our HighCloud corporate theme,
based on the document properties:

1.	 Select Tools | Theme Maker Wizard from the menu.
2.	 Click on Next to go to the Step 1 – Select theme file dialog window.
3.	 Ensure that the radio button is set to New Theme and that Template is set to

<None>.
4.	 Click on Next, this will open a dialog window to save our theme file.
5.	 Browse to the folder 0.Includes\Themes and name the theme file

HighCloudCorporate.
6.	 In the Step 2 – Source selection dialog window, select Document from the

Source drop-down list and click on Next.
We have now reached the Step 3a-Object type specific properties dialog
window, seen in the following screenshot. Depending on which type of
object we've chosen, this dialog will show all properties that we can export
to the theme file. Note there are some omissions to what can be exported to a
theme, and some of the legends
in the list are not entirely helpful with defining what it is you are theming.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[449]

7.	 Enable the checkboxes so that they look like the preceding screenshot and
click on Next.

8.	 Click on Finish to close the Theme Maker Wizard wizard and save
the theme.

We have now reached the end of the Theme Maker Wizard dialog for the document
properties. Before we start on the sheet properties theme, let's first look at the final
dialog window of the wizard. In the Step 5 - Save theme dialog window, seen in the
following screenshot we can decide if we want to set the created theme as a default
for the current document, or set it as a default for all new documents. We've skipped
this option for now, but when you have created your own corporate theme, it may be
worthwhile to set it as a default theme for all new documents.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[450]

Out of style
You can always reset the default theme for the document
by selecting the Settings | Document properties from the
menu and changing the Default Theme for New Objects
drop-down on the Presentation tab.
To reset the default theme for all new documents, select
Settings | User Preferences from the menu and change
the Default Theme drop-down list on the Design tab.

Now that we've added the document properties, in the next section we will add the
sheet properties.

Adding sheet properties
Let's follow these steps to add the sheet properties to our template:

1.	 Select Tools | Theme Maker Wizard from the menu and click on Next to
open the Step 1 – Select theme file dialog.

2.	 Set the radio button to Modify Existing Theme and select Browse from the
drop-down list.

3.	 Select the HighCloudCorporate.qvt file that we created earlier, and click on
Next to open the Step 2 – Source selection.

4.	 From the Source drop-down menu, select the object Sheet Document\
SH03 – Dashboard. (The SH03 part may be different in your document.)

5.	 Click on Next to go to Step 3a – Object type specific properties.
As we can see in the following screenshot, the objects listed in this dialog
window are different from those listed at the document level. Also note that,
as we are modifying an existing theme, the options that are shown as selected
are those that are currently already included in the theme. These were
inherited from the document-level properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[451]

6.	 Enable the checkboxes for Color Map and Sheet Zoom and click on Next.
7.	 Click on Finish to close the wizard and add the sheet properties to the

HighCloudCorporate.qvt theme file.

Adding sheet object properties
Now that we have added the sheet properties to our template, we will add the
properties for two sheet objects: the list box and the pie chart. First, let's add the pie
chart by following these steps:

1.	 Select Tools | Theme Maker Wizard from the menu and click on Next to
open the Step 1 – Select theme file dialog.

2.	 Set the radio button to Modify Existing Theme and select Browse from the
drop-down list.

3.	 Select the HighCloudCorporate.qvt file that we have been working on
in the previous exercises, and click on the Next to open Step 2 – Source
selection.

4.	 From the Source drop-down menu, select the object Chart Document\
CH26 – Market Share. (The CH26 part may be different in your document.)

5.	 Enable all three checkboxes: Object Type Specific, Caption Border, and
Print Settings.

6.	 Click on Next to go to Step 3a – Object type specific properties.
7.	 This dialog is the same as we saw when we were adding the document and

sheet properties to the template. Leave all of the settings set to their default
value and click on Next to go to Step 3b – Caption and border settings.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[452]

As the name implies, in the Caption and border settings dialog window,
shown below, we can select which settings are related to borders and
captions. As we will see later, we can apply these settings not only to the
object we're adding to the template, but also for other objects. In practice,
this means that when we create a complete document template we will only
need to add these properties twice; once for objects with a caption, such as
listboxes, and once for objects without a caption, such as charts.

8.	 Enable the Show Caption checkbox, this will ensure that our caption settings
(or more specifically, no caption settings) will be included in the template.

9.	 Click on Next to go to Step 3c – Printer settings.
10.	 Leave all of the settings to their default value and click on Next to go to Step

4 – Insertion of properties in theme.

In this dialog window, shown in the following screenshot, we can specify which
objects we want to apply the Caption & Border and Printing settings to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[453]

Let's follow these steps to add the Caption & Border and Printing settings to every
object that needs similar styling:

1.	 In the Caption & Border settings column, select the Button, Line/Arrow
Object, Slider/Calendar Object, Container, Chart and Search Object
checkboxes. None of these objects by default need a caption.

2.	 In the Printing column, select every object to apply the same print settings to
each object.

3.	 Click on Next and then on Finish to save the theme.

We have now added the properties for the pie chart to our template, which already
contained the document and sheet properties.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[454]

Separate themes for separate objects
As you can see in the Insertion of properties in theme dialog
window, the settings for all charts are stored in a single Chart
type. This can create difficulties when you want to apply
different settings to different charts. For example, showing a grid
for line charts, but hiding it for bar charts. In that case, it is easier
to create separate theme files for each of your chart objects.

A solo exercise
By now, you have probably spotted the pattern of creating and adding settings
to a theme file, so it is time for a little solo exercise. We still need to add the list
box properties based on the Flight Type list box to our theme. Make sure to pay
special attention to the Show Caption setting as we want to ensure that a caption is
displayed on our list boxes. Besides the list box, make sure to apply the Caption &
Border settings to the following objects as well:

•	 Statistics Box
•	 Multi Box
•	 Table Box
•	 Input box
•	 Current Selections Box
•	 Bookmark Object

If you are able to successfully complete this exercise, then you have all of the skills
necessary to create and modify your own themes.

You can test your new theme file by applying it to the NoTheme.qvw file that we used
earlier in this chapter.

Additional interactivity
Besides properly styling your QlikView documents, how your document responds
to user interaction is also critical to ensuring a pleasant user experience. Fortunately,
most of the interaction is already built into the list boxes, charts, and so on, but there
are a few options that can help you make your document even more polished.

We will first look how we can make QlikView respond to certain events by using
triggers and actions. We'll then see how we can create an advanced search expression
that lets us search for data in a flexible manner. We will see how we can use these
advanced search expressions to send out alerts when predefined conditions are
met. We will end this section by looking at how to conditionally calculate or show
an object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[455]

Triggers
By using triggers, QlikView lets us respond to certain events (for example, when a
sheet is selected) with an action. Triggers can be defined at various levels.

Check before deploying to QlikView Server
Not all triggers and actions are supported when deploying your
document to QlikView Server. When your goal is to deploy
to QlikView Server, first check the QlikView Reference Guide
(included with your QlikView installation) during development
to see if the triggers and actions you are using are supported, or
take the practical approach and test it with a test document.

Document triggers
At the document level (which can be opened by selecting Settings | Document
Properties | Triggers), we can set Document, Field and Variable Event Triggers:

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[456]

Before we look at the individual triggers, let's first look at a practical example. Follow
these steps to always select the year 2011 when opening the document:

1.	 Select Settings | Document Properties | Triggers from the menu.
2.	 Select On Open from the list of Document Event Triggers.
3.	 Click on Add Action(s).
4.	 In the Actions dialog, click on Add.
5.	 In the Add Action popup, select Clear All in the Action list box and

click on OK.
6.	 In the Actions dialog, click on Add again.
7.	 In the Add Action popup, select Select in Field in the Action list box and

click on OK.
8.	 In the Field input box type Year.
9.	 In the Search String input box type 2011.
10.	 Click on OK.

Notice how the On Open Document Event Trigger trigger has been
postfixed with <Has Action(s)>. This indicates that an action is associated
with the trigger.

11.	 Click on OK to close the Document Properties window.
12.	 In the Year list box, select 2009 and 2010.
13.	 Select File | Save from the menu to save the document.
14.	 Select File | Close to close the document.
15.	 Reopen the document.

You will now notice that the document will open with the year 2011 selected,
even though we saved it with 2009 and 2010 selected. This happens because, upon
opening of the document, the OnOpen event is triggered. This event kicks off the
two actions we defined, first clearing all selections and then selecting the year 2011.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[457]

Besides triggers on the document, we can also define triggers on fields and variables.
All triggers which can be set in the Document Properties window are shown in the
following table:

Trigger type Trigger name Description
Document
event

OnAnySelect This is triggered any time a selection is made in
any field in the QlikView document.

OnOpen This is triggered when the QlikView document
is opened. This will not work when opening the
document in the AJAX client.

OnPostReduceData This is triggered when the Reduce Data command
has been used.

OnPostReload This is triggered when the QlikView document
has been reloaded.

Field event OnSelect This is triggered when a selection is made in the
selected field.

OnChange This is triggered when the selection in the selected
field is changed because of a selection made in
another field.

OnLock This is triggered when the field is locked.
OnUnlock This is triggered when the field is unlocked.

Variable
event

OnInput This is triggered when a new value for the
variable is directly entered (for example, in an
input box).

OnChange This is triggered when the value of the variable is
changed because of a change in other variables or
the selection state.

Sheet triggers
Besides document triggers, we can also set triggers at the sheet level. To set these
triggers, select Settings | Sheet Properties | Triggers from the menu, shown in the
following screenshot. We can define two events:

•	 OnActivateSheet is triggered when the sheet is activated

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[458]

•	 OnLeaveSheet is triggered when the sheet is deactivated (another sheet
is selected)

Now that we have seen how triggers work, let's see what actions we can attach
to them.

Actions
Throughout this book, we have used actions in various places and objects, for
example, while creating our Back, Clear Selections, and Forward buttons. Let's now
take a closer look at actions and what their possibilities are.

Besides triggers, actions can be attached to the following objects:

•	 Buttons
•	 Text Objects
•	 Gauges
•	 Line/Arrow Objects

As we have seen, from the Actions dialog window we can add an action by clicking
on the Add button, seen in the following screenshot. Deleting an action is done by
clicking the Delete button. The Promote and Demote buttons are used to change the
sequence in which the actions are executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[459]

When we click on the Add button, we are taken to the Add Action dialog window.
In this menu we can select an action from a few select Action Types.

Referring to sheets and other objects
Actions that need to perform a certain operation on a sheet or
object, such as a sheet object, report or bookmark, will refer to it
by an ID. This ID can often be found on the General tab of the
object, shown in the following screenshot. It is good practice to
give your objects recognizable (and predictable) names so that
you do not need to switch back and forth when setting up actions.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[460]

The following table lists all of the action types, associated actions, and their function:

Action type Action Description
Selection Select in Field Selects the value(s) in the specified field.

Select Excluded Selects the excluded (gray) value(s) in the specified
field.

Select Possible Selects the possible (white) value(s) in the specified
field.

Toggle Select Toggles between the current selection and the
current selection with the addition of the selected
value(s) in the specified field.

Forward Moves the selection one step forward. This is only
possible if you went back one or more steps first.

Back Moves the selection one step back.
Pareto Select Based on an expression, selects the top X percent of

values in the specified field.
Lock Field Locks the selection on the specified field.
Lock All Locks the selection on all fields.
Unlock Field Unlocks the selection on the specified field.
Unlock All Unlocks the selection on all fields.
Unlock and Clear All Unlocks the selection on all fields and clears all

selections.
Clear Other Fields Clears the selections on all fields, except for the one

specified.
Clear All Clears the selections on all fields.
Clear Field Clears the selections on the specified field.
Copy State Contents Copies the state from the source to the target state.

This option is only visible when alternate states
have been defined.

Swap State Contents Transfers the states between the two specified
alternate states. This option is only visible when
alternate states have been defined.

Layout Activate Object Activates the specified object.
Activate Sheet Activates the specified sheet.
Activate Next Sheet Activates the sheet to the right of the current

sheet. It is recommended to use Activate Sheet
instead since during development sheets might be
positioned in between, leading to wrong results.

Activate Previous
Sheet

Activates the sheet to the left of the current sheet. It
is recommended to use Activate Sheet instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[461]

Action type Action Description
Minimize Object Minimizes the specified object.
Maximize Object Maximizes the specified object.
Restore Object Restores the specified object.
Set State Name Assigns the specified state to the specified object.

This option is only visible when alternate states
have been defined.

Bookmark Apply Bookmark Applies the specified bookmark.
Create Bookmark Creates a bookmark from the current selection.
Replace Bookmark Replaces the specified bookmark with the current

selection.
Print Print Object Prints the specified object to the specified printer (if

not the default printer).
Print Sheet Prints the specified sheet.
Print Report Prints the specified report to the specified printer (if

not the default printer).
External Export Based on the current selections, exports data from

the specified fields to a file or the clipboard.
Launch Launches an external application.
Open URL Opens a URL in the default web browser.
Open QlikView
Document

Opens another QlikView document. We can
transfer our selections to this second document,
enabling document chaining.

Run Macro Runs a macro.
Set Variable Sets the value of the specified variable.
Show Information Shows the associated information (loaded via INFO

or BUNDLE LOAD) for the specified field.
Close This Document Closes the current document.
Reload Reloads the current document.
Dynamic Update Executes a dynamic data update statement.

Now that we've seen how triggers and actions work, let's have a look at how we can
use advanced search expressions to perform more detailed searches.

Advanced search expressions
Up until now, we have mostly used static text when performing searches in list boxes.
While this type of search is usually good enough, sometimes we need our searches to
be a little more fine-grained. This is where advanced search expressions are useful.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[462]

Let's start with a practical example. As HighCloud is still in the process of deciding
which US cities to include in their network, analysts want to keep track of destination
cities based on the following criteria:

•	 Cities that have been destination to flights originated outside the US
•	 Only cities within the US
•	 Their global load factor needs to be 80% or more

Follow these steps to create this search expression:

1.	 Locate the Flight Information multi box and click on the Destination City
drop-down to open the list of values.

2.	 Right-click anywhere on the list and select Advanced Search.
3.	 In the Search Expression input box, enter the following expression:

=[Origin Country] <>'United States' and
[Destination Country] = 'United States' and
$(eLoadFactor) >= 0.8

4.	 Click on Go to apply the selection and then click on Close to close the
Advanced Search dialog.

When we open the Destination City drop-down list, we can see that a selection has
been made. These are the cities that have an occupancy of 80% or more for incoming
international flights. We can also see that, instead of a list of fixed values, our
advanced search expression is shown in the Current Selections box, seen here:

In our example, we used the Advanced Search dialog to enter
the search expression. If you already know what expression
you want to enter, it is also possible to just select the list box or
drop-down, press the = key and enter the expression directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[463]

A solo exercise
Try to create an advanced search expression that selects all carriers that have
between 70 and 80 percent occupancy, and have transported more than 10
million passengers.

Note that advanced search expressions need to start
with the equal (=) sign, otherwise the expression will
be interpreted as regular text.

Dynamic bookmarks
Advanced search expressions are useful not only for ad hoc searches. When we
create a bookmark based on an advanced search expression, the resulting bookmark
will be dynamic. This means the advanced search expression is reinterpreted every
time the bookmark is selected.

Let's see how this works by creating a bookmark which will always select the top ten
carriers by number of enplaned passengers:

1.	 Clear all selections.
2.	 Right-click on the Carrier Name list box and select Advanced Search.
3.	 In the Search Expression input box enter the following code:

=Rank($(eEnplanedPassengers)) <= 10.

4.	 Click on Go to perform the search, check that this changes the selection in
Carrier Name.

5.	 Click on Close to close the Advanced Search dialog.
6.	 Select Bookmarks | Add Bookmark from the menu.
7.	 Enter Top 10 carriers by transported passengers as the Bookmark Name.
8.	 Check the Make bookmark apply on top of current selection checkbox.
9.	 Click on OK to save the bookmark.

We now have a bookmark that, based on the current selection, will always select the
top ten carriers based on the number of transported passengers.

Alerts
QlikView can be used to slice and dice our data in any way we wish. However, there
are times when we do not want to do all of the discovery ourselves, but instead want
to be alerted when a certain threshold is exceeded. This is where alerts are useful.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[464]

An alert can be triggered by three events: after the document is opened, after it is
reloaded, or after data reduction. The alert can show a pop-up message or send an
e-mail to one or more recipients.

Before diving deeper into alerts, we will first look at a practical example. We will
set up an alert that will notify us with a pop-up when the average occupancy for the
top ten carriers, based on number of transported passengers, falls below 85%. Let's
follow these steps:

1.	 Select Tools | Alerts from the menu.
2.	 Click on the Add button.
3.	 In the Description input box enter Top 10 carriers load factor %.
4.	 Select Top 10 carriers by transported passengers from the Bookmark

drop-down list.
5.	 In the Condition input box, enter $(eLoadFactor) < 0.85.
6.	 In the Message input box, enter the following message: The average load

factor % has fallen below 85% for the top 10 carriers.
7.	 Enable all events, On Open, On Post Reload, and On Post Reduce.
8.	 Click on OK to close the Alerts dialog.
9.	 Select File | Save to save the document.
10.	 Select File | Close to close the document.
11.	 Reopen the document.

As the condition we set is always true (occupancy for the top ten carriers is around
80 percent), when we reopen the document we will see the following alert pop up:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[465]

Let's take another look at the Alerts dialog, shown below in the following screenshot,
to see what other options are available:

The top-left corner of the dialog displays all of the alerts that have been defined.
For each alert, we see its unique ID, a checkbox to Enable or disable it, and the
Description field for the alert. Alerts can be added or removed from the list by using
the Add and Remove buttons. The ID input box can be used to assign an alternative
ID to an alert.

As we saw when we defined our alert, the Condition input box is where we put the
condition to test. By default, this condition is tested against the current selections. We
can override this setting by either enabling the All Clear checkbox, which will test
the condition against all data in the document, or by specifying a Bookmark against
which to test the condition, as we did in our previous exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[466]

In the Events group, we can define when the alert is checked: after opening the
document (On Open), after reload (On Post Reload), or after data reduction
(On Post Reduce).

In the Delay input box, we can specify how many days to wait after an alert is
triggered before triggering the alert again. This is to avoid receiving the same alert
over and over.

The Trigger level drop-down menu offers another option to suspend the triggering
of alerts. Always is the default option and means that the alert will always be
triggered when the condition is met. By selecting Message Changes, the alert will
only be triggered when the value of the Message or Mail Subject changes. Of course,
this only works when using a calculated expression for these fields. By selecting
State Changes, the alert will be triggered only once and will be suspended until the
alert condition is not met.

As we saw in our example, checking the Show Popup checkbox will show a popup
when the alert is triggered. We can customize the popup by checking Use Custom
Pop-up and clicking on Pop-up Settings.

In the Mode group, we can decide if an alert should be checked when a user uses the
document (Interactive, that is, opened in QlikView Desktop by a user) or when an
automated process, such as QlikView Publisher, uses the document (Batch).

In the Description input box, we can define a name or description for the alert. The
Message input box contains the message that needs to be displayed when the alert is
triggered. Note that both of these input boxes can also contain dynamic expressions.

Besides showing a popup, an alert can also be sent out via an e-mail. We can define
the Mail Subject and the Mail Recipients fields.

In order to send mail from QlikView Desktop, an e-mail
account and server need to be defined under Settings |
User Preferences | Mail. When deploying the application
to QlikView Server, there are similar mail settings that need
to be entered into the QlikView Management Console.

Now that we've seen how alerts work, let's look at the conditional display and
calculation of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[467]

Conditionally showing and calculating objects
While building our dashboard, we already saw how we can conditionally hide or
show a text object. As you may have already discovered, this does not only work
for text objects, but for any sheet and sheet object, and even for dimensions and
expressions within charts.

For sheet objects, the conditional show input box is located on
the Layout tab of the object properties. For sheets, it's located
on the General tab of the Sheet Properties window.
For charts, within the Chart Properties window, conditional
showing of dimensions can be set using the Enable
Conditional checkbox located on the Dimensions tab. For
chart expressions, conditional showing can be set using the
Conditional checkbox on the Expressions tab.

Conditional showing of objects can make your document much more user-friendly.
You can, for example:

•	 Show visual cues to make users aware of potential issues.
•	 Hide objects which, based on the current selection, would display incorrect

information. For example, a sheet that displays information on an individual
carrier that would not display correctly if more than one carrier is selected.

•	 Combined with buttons and variables, you can further refine the user
interface. For example, showing and hiding groups of objects within the
same sheet, or simulating pop-up windows.

Let's look at a small practical example in which we will add a sheet that will only be
visible when a single carrier is selected:

1.	 Select Layout | Add Sheet.
2.	 Using Layout | Promote or the Promote button on the toolbar, move the

sheet until it is next to the Reports sheet.
3.	 Press Ctrl + Alt + S to open the Sheet Properties dialog.
4.	 Use the following expression for the Title of the sheet ='Details for '&

[Carrier Name].
5.	 Click on OK to close the Sheet Properties dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[468]

Notice how the sheet tab says Details for, without including a carrier name. This
happens when there is more than one carrier selected. QlikView will only display
the name when a single carrier is selected. Let's make this right:

1.	 Press Ctrl + Alt + S to open the Sheet Properties dialog.
2.	 In the Show Sheet group, select the Conditional radio button.
3.	 Enter the expression:

count(distinct [Carrier Name]) = 1

4.	 Click on OK to close the Sheet Properties dialog.

If your selection contained more than one carrier, you will immediately notice that
the sheet disappears, as the expression counts the number of unique carrier names
that is selected. Only when you select a single carrier, or make a selection that is
associated with a single carrier, will the sheet be shown.

Show all sheets and objects
Ctrl + Shift + S overrides all conditional show conditions,
immediately making all hidden sheets and objects visible.
This is a very useful key combination to remember during
development. Be very careful to undo this change before
moving your application into a production environment.

Besides conditionally showing objects and sheets, we can also add a calculation
condition to our charts. When a calculation condition is added to a chart, it
will only be calculated when the condition is met. Use cases for the calculation
condition include:

•	 Preventing the calculation of charts which have specified requirements with
regards to the current selection. For example, a chart that compares two
carriers should only be calculated when two carriers are selected.

•	 Preventing the calculation of charts which would need a great amount of
resources. For example, a straight table with hundreds of thousands of
rows. No one is going to read them all and they require a lot of resources to
be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

[469]

Let's look at an example of the second use case. On the Reports tab, we created a
pivot table that shows passengers and departures by airline and period. Let's see
how we can use a calculation condition to only calculate the chart when less than 25
airlines are selected:

1.	 Right-click on the Passengers/departures per Airline/Period pivot table and
select Properties.

2.	 Select the General tab.
3.	 In the Calculation Condition input box enter the following expression:

Count(Distinct [Carrier Name]) <= 25

4.	 Click on the Error Messages button.
5.	 In the Custom Error Messages dialog, select Calculation condition

unfulfilled from the list of Standard Messages.
6.	 In the Custom Message input box, enter Please select fewer than 25

carriers for this pivot table to be calculated.
7.	 Click on OK to close the Customer Error Messages dialog.
8.	 Click on OK to close the Chart Properties window.

If you have more than 25 carriers selected, instead of the pivot table, you will now
see a blank square with the error message that we entered. Selecting 25 carriers or
less automatically recalculates and displays the pivot table.

By now, you have seen much of what QlikView has to offer in additional interactivity.

www.it-ebooks.info

http://www.it-ebooks.info/

More on Visual Design and User Experience

[470]

Summary
This brings us to the end of this chapter.

In this chapter, we have learned how to create a consistent QlikView UI by using a
fixed screen resolution, background image, and themes.

We also learned how to add additional interactivity to our documents by using
triggers, actions, advanced search expressions, dynamic bookmarks, alerts,
calculation, and show conditions.

In the next and final chapter, we will look at a very important aspect of developing
QlikView documents, how to properly secure them, and prevent unwanted access.

www.it-ebooks.info

http://www.it-ebooks.info/

Security
Until now, we have focused our efforts on getting data into QlikView and presenting
it in dashboards, analyses, and reports. Our documents were open to anyone with
access to QlikView. As QlikView documents can contain huge volumes of sensitive
data, in a real world scenario, leaving your data unsecured might be a very
risky proposition.

In this chapter, we will focus on how we can secure our QlikView documents. We
will first look at how we can make parts of the script only accessible to a limited
group of developers. Next, we will see how we can ensure that only authorized users
have access to our document. We will finish this chapter by looking at how we can
set different permissions for authorized users and can limit which data a user can
interact with.

Specifically, in this chapter you will learn:

•	 How to create a hidden script that is only accessible to a select group of
developers

•	 How to allow only authorized users to open your document
•	 How to limit what a user can do and see within your document

Time to start locking things down!

Hidden script
When QlikView script is being executed, the results of the actions are written to
the Script Execution Progress window (and, if enabled, the log file). While this is
a very useful feature to see what happened during reload, sometimes you do not
want certain things (for example, login credentials) to be visible to everyone. In fact,
sometimes you do not even want all developers to have access to the entire script.
This is where the hidden script comes into play.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[472]

The hidden script is a password protected part of the script. It is always the left-most
tab (and cannot be moved), so it is executed before the regular script is reloaded.
Anything that is executed within the hidden script is not written to the log.

Logging for the hidden script can be turned on by
checking the Show Progress for Hidden Script checkbox
on the Security tab of the Document Properties. Note that
this will allow others to use the debugger to step through
the hidden code. Since this defeats a main point for using
hidden script, it is not advisable to use this option.

The following screenshot shows us the Edit Script window:

Let's add a hidden script to our document by following these steps:

1.	 Open our Airline Operations.qvw document.
2.	 Open the Script Editor window.
3.	 Go to File | Create Hidden Script in the menu.
4.	 Enter the password hidden twice and click on OK to create the hidden script.
5.	 On the Hidden Script tab, enter the following statements:

TRACE This is a hidden script;

6.	 Save and reload the document.

Notice how the TRACE statement does not show up in the log file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[473]

Reopening hidden script
When the password for the hidden script has been entered, the script
remains visible in the Edit Script window. The script is hidden when
the document is closed and other developers will not be able to see it
without entering the password. To reopen a hidden script, select File
| Edit Hidden Script from the menu and enter the password. Also,
be aware that the password for hidden script cannot be recovered, so
be sure to keep the password in a safe place.

In the next section, we will see how we can use a hidden script to securely set up
user authorization.

Section access
Setting up user authorization under QlikView is generally referred to as section
access, named after the statement that initiates the authorization section of the script.
In section access, fields are loaded with details on which user is allowed which access
rights. These fields are loaded in the same way as any other field in QlikView and
can be sourced from an inline table, database, or external file.

Better Save than sorry (2)
It is strongly recommended to make a backup copy of your
QlikView document before setting up section access. If anything
goes wrong during the setup of section access, you will not be
able to open your document anymore. Be very careful!

Besides using an inline table, database, or external file, there is also the option of
storing and maintaining section access information under QlikView Publisher.
Logically, this is no different than storing a table file with section access information
in a (semi-)shared folder or, for example, on SharePoint. The data is loaded into the
QlikView document as a web file.

As this book is focused on development within QlikView
Desktop, storing section access information in QlikView
Publisher is out of scope, but it is a good idea to take note of.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[474]

Let's start with a simple exercise that protects our QlikView document with a
username and password:

1.	 Press Ctrl + E to open the Edit Script window.
2.	 Go to File | Save Entire Document As in the menu.
3.	 Save the file as Airline Operations SA.qvw.
4.	 Now that we've created a separate copy of the file, select the Hidden

Script tab.
5.	 Go to Insert | Section Access | Inline from the menu.
6.	 In the Access Restriction Table Wizard dialog click on the Basic User Access

Table button and click on OK.
7.	 In the Inline Data Wizard dialog, enter the data from the following table:

ACCESS USERID PASSWORD
ADMIN ADMIN ADMIN123
USER USER USER123

8.	 Click on OK to close the Inline Data Wizard dialog.

The following script should have now been generated:

Section Access;
LOAD * INLINE [
 ACCESS, USERID, PASSWORD
 ADMIN, ADMIN, ADMIN123
 USER, USER, USER123
];
Section Application;

As we can see, the script is started with the Section Access statement, which
indicates to QlikView that we will be loading user authorization data. This data,
ACCESS, USERID, and PASSWORD, is loaded in the next step using an inline table. The
script is ended with the Section Application statement, indicating that QlikView
should return to the regular application script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[475]

We used a hidden script tab to create our section access. When using regular
script, any user with privileges to view the script has full access to either the user
credentials in plain text (when using an inline table), or to the location of the access
files (when using an external table file). By using a hidden script, we can limit who
will be able to see the section access script, adding an extra layer of security.

Another thing that you may have noticed is that all field names and field data are
written in uppercase. While technically this is not necessary for data loaded from an
inline table, any data loaded in section access from an external source must always
be in uppercase. For the sake of consistency, it is a good idea to always load all data
in uppercase in the section access area.

Now that we've seen how a basic section access example is set up, let's see if it works
by following these steps:

1.	 Save the document by selecting File | Save Entire Document in the menu.
2.	 Click on OK to close the Edit Script dialog.
3.	 Close QlikView Desktop by selecting File | Exit in the menu.
4.	 Reopen QlikView and the Airline Operations SA.qvw file.
5.	 In the User Identification input box, enter admin.
6.	 In the Password input box, enter admin123.

If everything was set up ok, you should now be back in the document. Feel free
to repeat these steps and enter wrong usernames and passwords to verify that
QlikView will deny access to the document.

QlikView will only verify your user credentials once during
each session. You can verify this by closing the document and
reopening it, without exiting QlikView Desktop. QlikView will
not ask for your username and password the second time. Only
when you completely close and reopen QlikView Desktop will
you be asked for your credentials again. This is important to
remember when changing and testing section access.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[476]

Section access fields
Access rights can be defined based on (a combination of) various criteria. In the
previous example we used the ACCESS, USERID, and PASSWORD fields, but as we saw
in the Access Restriction Table Wizard dialog, there are more options, as seen here:

These options, and their description, are listed in the following table:

Field name Description
ACCESS A required field that defines the access level for the user. Access

level can either be ADMIN, for administrator level access with
privileges to change anything in the document, or USER, for
(restricted) user level access.
Opening the document via QlikView Server ignores the ACCESS
setting, so every user is treated as having USER level access.

USERID If set, QlikView will prompt for a user ID. This is not the same user
ID as the Windows user ID.

PASSWORD If set, QlikView will prompt for a password. This is not the same
password as the Windows password.

SERIAL A QlikView serial number, this can be used to tie a document to one
or more QlikView license numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[477]

Field name Description
NTNAME An NT Domain User Name or Group Name.

Please note that the Domain Name needs to be prefixed, so, for
example: DOMAINNAME\NTNAME

NTDOMAINSID A Windows NT Domain SID, which is code that identifies the
Windows Domain. It uses a value in the form of S-1-5-21-
479397367-1589784404-1244202989.
Only users that are logged on to the specified domain will be able
to open the document. Be very careful when using this option. An
upgrade to your network may mean that you get locked out of
your document.
The value for NTDOMAINSID can be entered in the script editor
by going to Insert | Domain SID.

NTSID A Windows NT SID, code which identifies a user using a value
in the form of S-1-5-21-479397367-1589784404-
1244202989-1234.
As with the NTDOMAINSID field, be very careful when using this
option since a change may lock you out of your document.
This value can be found by opening command prompt (Windows
Key + R, entering CMD) and typing wmic useraccount get
name,sid.

OMIT The name of a field that should be excluded for the user.

Note that just about any combination of fields is allowable. For instance, if just
NTNAME and PASSWORD is defined, the domain user will need to be logged on
correctly and provide the password associated with their domain account in section
access. Also, it is valid to just have USERID, so only a name needs to be given to get
access, regardless of domain user, and there will be no prompt for a password.

Order in which fields are checked
QlikView first checks if the fields SERIAL, NTNAME,
NTDOMAINSID, or NTSID grant the user access to the document.
Only if no match is found, or if these fields are not set, does
QlikView prompt for a USERID and PASSWORD (if set).

In the next section, we'll look at how we can use section access to restrict the data
that users can see.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[478]

Reduction fields
Besides the fields listed in the previous section, we can associate additional fields
with the security fields to reduce the set of data that individual users have access to.
Let's follow this example and see how we can limit the flight type (and associated
flights) that are available to different users:

1.	 Open the Edit Script dialog and select the Hidden Script tab.
2.	 Update the inline Section Access table so it contains the following

information:

ACCESS USERID PASSWORD %FLIGHTTYPE
ADMIN ADMIN ADMIN123 *
USER DF DF123 DOMESTIC_FOREIGN
USER DU DU123 DOMESTIC_US
USER IF IF123 INTERNATIONAL_FOREIGN

3.	 Next, place the cursor after the Section Application statement.
4.	 Go to Insert | Load Statement | Load Inline in the menu.
5.	 In the Inline Data Wizard, select Tools | Document data.
6.	 In the Import Document Data Wizard window, select the field Flight Type.
7.	 Make sure that Values to import is set to All Values and click on OK.
8.	 Add Flight Type as a column header, and add a second column header for

%FLIGHTTYPE.
9.	 Fill the table so it looks like the following table:

%FLIGHTTYPE Flight Type
DOMESTIC_FOREIGN Domestic, Foreign Carriers
DOMESTIC_US Domestic, US Carriers Only
INTERNATIONAL_FOREIGN International, Foreign Carriers
INTERNATIONAL_US International, US Carriers Only

10.	 Click on OK to close the Inline Data Wizard dialog.

The resulting script should look like this:

Section Access;
LOAD * INLINE [
 ACCESS, USERID, PASSWORD, %FLIGHTTYPE
 ADMIN, ADMIN, ADMIN123, *
 USER, DF, DF123, DOMESTIC_FOREIGN

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[479]

 USER, DU, DU123, DOMESTIC_US
 USER, IF, IF123, INTERNATIONAL_FOREIGN
];
Section Application;

LOAD * INLINE [
 Flight Type, %FLIGHTTYPE
 "Domestic, Foreign Carriers", DOMESTIC_FOREIGN
 "Domestic, US Carriers Only", DOMESTIC_US
 "International, Foreign Carriers", INTERNATIONAL_FOREIGN
 "International, US Carriers Only", INTERNATIONAL_US
];

In this script, we've created the %FLIGHTTYPE field. This field exists in both the
section access part of the script as well as in the actual data model, thereby acting
as a bridge field between these two sections. Through association, we can now limit
what a particular user can access within the data model.

Basing an inline table on existing data
One nice feature in the Inline Data Wizard dialog is the
ability to load the contents of an already loaded field by
using Tools | Document Data. This can be very useful
when we want to group the values of an existing field.

You may notice that for the ADMIN user, we used an asterisk (*) instead of a
%FLIGHTTYPE value. When we use an asterisk, it means that the user gets access
to all values listed in the reduction field. In this case, that means that ADMIN gets
access to the DOMESTIC_FOREIGN, DOMESTIC_US, and INTERNATIONAL_US flight types,
but not to the INTERNATIONAL_FOREIGN flight type, since that is not listed in the
section access table.

If we want the ADMIN user to be able to access the INTERNATIONAL_FOREIGN flight
type as well, we will need to add an additional line referencing the INTERNATIONAL_
FOREIGN flight type to the section access inline table. Let's do that now:

1.	 Create a new line after the line ADMIN, ADMIN, ADMIN123, *.
2.	 On this new line, enter the following values: ADMIN, ADMIN, ADMIN123,

INTERNATIONAL_US.
3.	 Go to File | Save Entire Document to save the document.
4.	 Click on the Reload button to reload the script.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[480]

In this exercise, we reduce the data model based on a single
field. To reduce the data model on multiple fields, we can
simply add another reduction column to the section access
table and add a bridge field to the data model.
One important caveat to be aware of in this scenario is that the
reduction will be performed over the intersection of all fields.
If, for example, we give a user access to the Domestic, US
Carriers Only flight type and to the Jet engine type, the
user will only be able to see domestic flights carried out by
US carriers using a jet-powered aircraft. Any flights that were
made using another engine type will be excluded.

Although we have now finished the script part of setting up section access with
reduction fields, we will need to make a few more changes before we can see the
results. Let's head over to the frontend.

Initial data reduction
We will need to tell QlikView to perform an Initial Data Reduction when opening
the document. When using initial data reduction, QlikView removes all of the data
the user does not have access to, based on the authorizations in section access.

Using initial data reduction is very important. Not using
it means that everyone with access to the document has
access to all of the data. This means he entire point of
using section access is all but lost.

Let's follow these steps to set up initial data reduction for our document:

1.	 Open the Document Properties window by pressing Ctrl + Alt + D.
2.	 Go to the Opening tab, and select the Initial Data Reduction Based on

Section Access checkbox.
3.	 Make sure that the Strict Exclusion checkbox is checked.
4.	 Check the Prohibit Binary Load checkbox (seen in the following screenshot).
5.	 Click on OK to close the Document Properties dialog.
6.	 Go to File | Save in the menu to save the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[481]

We have now set up the document to, upon opening, exclude all of the data that the
user does not have access to. Let's have a closer look at the options that we set in the
Document Properties:

•	 Initial Data Reduction Based on Section Access: This option enables initial
data reduction for the document.

•	 Strict Exclusion: When set, QlikView denies access to users whose data
reductions fields cannot be matched to values in the data model. This does
not apply to ADMIN users, who will instead get access to the entire data
model. It is recommended to always enable this option to prevent unwanted
access to data within the document.

•	 Prohibit Binary Load: When set, it is not possible to load the document
into another QlikView document using a binary load. It is recommended
to always enable this setting unless you are using a multitiered data
architecture that uses binary loads, for example, when using QlikMarts.

When a document containing section access is loaded into another document
using binary load, the new document will inherit the section access of the original
application. Take a minute to try logging in as the DUDF and IF users and see how
the data is reduced to show only the authorized flight types. After that, reopen the
document and log in as the ADMIN user, we'll need the privileges to make our next
changes.

Omitting fields
While looking at the fields in the Access Restriction Table Wizard, you may have
noticed that there is one field that is a little different from the others: the OMIT field.
While all of the other fields are used to identify a user, the OMIT field is used to
remove fields from the data model for the specified user.

In the next exercise, we will create a new user, NOCARRIER, and will remove the
Carrier Name field for this user. Let's follow these steps:

1.	 Open the script editor by pressing Ctrl + E and select the Hidden Script tab.
2.	 Update the section access INLINE table by adding the OMIT field.

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[482]

3.	 Set the value of the new OMIT field to null for all existing users, by adding a
comma (,) at the end of each ADMIN and USER line.

4.	 Add a new user at the bottom of the list by entering the following script:
USER, NOCARRIER, NOCARRIER123, *, Carrier Name.

5.	 Go to File | Save Entire Document to save the document.
6.	 Click on the Reload button to reload the script.

The resulting script should look like this:

Section Access;
LOAD * INLINE [
 ACCESS, USERID, PASSWORD, %FLIGHTTYPE, OMIT
 ADMIN, ADMIN, ADMIN123, *,
 ADMIN, ADMIN, ADMIN123, INTERNATIONAL_US,
 USER, DF, DF123, DOMESTIC_FOREIGN,
 USER, DU, DU123, DOMESTIC_US,
 USER, IF, IF123, INTERNATIONAL_FOREIGN,
 USER, NOCARRIER, NOCARRIER123, *, Carrier Name
];

We've created a new user, NOCARRIER, whose password is NOCARRIER123. This user
has access to all flight types, but cannot see the Carrier Name field.

Notice that the values in the OMIT column do not need to be in upper
case, instead they need to match the exact case of the field names that you
want to omit.

We'll test if this works according to plan, but this time we will use another method.
Let's follow these steps:

1.	 Keep your current QlikView application (the program) and document open.
2.	 Start a second copy of QlikView from the start menu or your quick

launch shortcut.
3.	 If you get an Auto Recover Files Found warning, click on Close to close it.
4.	 Go to File | Open and select the Airline Operations SA.qvw file.
5.	 When prompted for a user id and password, enter NOCARRIER and

NOCARRIER123 respectively.

If everything went well, we should see that the Carrier Name listbox is empty, and
that the field is marked as (unavailable).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[483]

By opening a second copy of the QlikView software and testing our file in that, we've
significantly reduced the risk of getting locked out of our document. If anything is
wrong, we can just revert back to the document that we did not close after saving
and make the required changes to section access before repeating the process to try
again. Using this approach is highly recommended.

Association works in section access too
So far we have been using a single table to store our section access
data. However, we can use multiple, associated tables as well.
For example, when we want to OMIT multiple fields for a single user,
we need to add each field on a separate line. We can do this within
the single table that we've been using so far. However, a better
alternative is to remove the OMIT field from the first table and create
a second, associated table that contains the USERID and OMIT fields.

Now that we've seen how we can limit who has access to our document, and what
they can see, we will now look at how we can restrict what users can do within the
document in the next section.

Document-level security
User privileges can be set on two levels within QlikView, at the document level and
at the level of individual sheets. We can open the document-level user privileges by
pressing Ctrl + Alt + D to open the Document Properties dialog and selecting the
Security tab. This tab is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[484]

The following table lists and describes the document-level security settings:

User privilege Description
Reduce Data Allows users to reduce data using File | Reduce Data.
Add Sheets Allows users to add new sheets by going to Layout | Add

Sheet.
Edit Script Allows users to edit the script by going to File | Edit Script. It

is advisable to not enable this setting.
Reload Allows a full reload of the document by going to File |

Reload. As this will always return a full data set, ignoring any
section access, it is not advisable to enable this setting.

Partial Reload Allows users to perform a partial reload by going to File
| Partial Reload. As this will always return a full data set,
ignoring any section access, it is not advisable to enable
this setting.

EditModule Allows users to edit macros by going to Tools | Edit Module.
It is not advisable to enable this setting.

Save Document (Users) Allows users with USER privileges to save the document by
going to File | Save. As this may risk a user overwriting the
document with a document containing a reduced data set, it is
not advisable to enable this option.

Access Document
Properties (Users)

Allows users to open the document properties by going to
Settings | Document Properties. While it is recommended to
disable this setting, even when users have this privilege they
will not be able to see the Sheets, Server, Scheduler, Security
and Scrambling sheets.

Promote/Demote Sheets Allows users to promote and demote sheets by going to
Layout | Promote Sheet and/or Layout | Demote Sheet.

Allow Export Allows users to export and print data, or to copy it to
the clipboard.

Allow Print (When
Export Is Prohibited)

If the Allow Export checkbox is disabled, setting this option
will allow users to still print data.

Access Tab row
Properties

Allows users to access the tab row properties.

Macro Override Security Allows users to bypass all security settings when executing
commands from a macro. It is recommended to disable
this setting.

Show All Sheets and
Objects

Allows users to override all conditional show expressions
on sheets and objects by pressing Ctrl + Shift + S. It is
recommended to disable this setting.

Show Progress for
Hidden Script

Shows progress for the hidden script in the Script Execution
Progress dialog. It is not advisable to enable this setting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[485]

User privilege Description
Allow User Reload If the Reload checkbox is enabled, selecting this checkbox

will prevent users with USER privileges from reloading the
document. It is recommended to enable this setting.

Admin Override Security When set, all security settings for the document and sheets
are ignored when a user with ADMIN privileges opens
the document, it is advisable to enable this setting.

Besides these settings, the Module Password button lets us password protect our
macros with a password.

It is important to note that these user privileges are applied
to all users (excluding those with ADMIN privileges). Within
QlikView Desktop, it is not possible, for example, to allow one
user to export data while not allowing another user to do this.

Besides the document level, we can also set security privileges at the sheet level, as
the next section will explain.

Sheet-level security
At the sheet level, we can also determine what actions our users are allowed to make.
The sheet-level privileges can be opened by selecting Settings | Sheet Properties in
the menu and selecting the Security tab. This tab is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Security

[486]

The following table lists and describes the various user privileges that can be set at
the sheet level:

User privilege Description
Add Sheet Objects Allows users to add new sheet objects.
Remove Sheet Objects Allows users to remove any of the sheet objects, not just the

ones that they created.
Move/Size Sheet
Objects

Allows users to move and size sheet objects. On sheets where
we do not want the users to move or size any of the objects,
this option is a lot more convenient than deselecting Allow
Move/Size on each individual sheet object.

Copy/Clone Sheet
Objects

Allows users to create a copy of existing sheet objects.

Access Sheet Object
Properties

Allows users to access the Sheet Properties dialog.

Remove Sheet Allows users to delete the sheet.
Access Sheet Properties
(Users)

Allows users to access the Properties pages of objects on
the sheet.

By selecting the Apply to All Sheets checkbox, we can apply the currently selected
privileges to all sheets in the document.

Summary
We have come to the end of this chapter on security, in which we first saw how we
can determine which users get access to our document. We then looked at how we
can restrict the data that different users have access to. We ended this chapter by
looking at how we can set user privileges at the document and sheet levels.

Specifically, in this chapter we learned how to create a hidden script and also that it
is very important to create a backup before introducing Section Access.

We also learned how to add Section Access to your document and how to identify
users on different criteria, such as USERID, PASSWORD, but also QlikView's
SERIAL number or NTNAME.

Finally, we learned how we can use Section Access to dynamically reduce the data
that is available to the user and how to set user privileges at the document and
sheet levels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

[487]

With the end of this chapter, we have also reached the end of this book. Over the
course of this book we've learned how to create scripts to extract data from various
data sources, transform it, and load it into QlikView. We've also learned how to
create and style frontend objects for use in dashboards, analyses, and reports, and
how to perform complex calculations and Point In Time reporting. Finally, we've
learned how to properly secure our data.

We hope that after reading this book and performing the various exercises you feel
confident that you have acquired the skills that you need to start developing your
own QlikView documents. We wish you good luck in your endeavors and welcome
you to the community of QlikView developers!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
-$ Exclusion operator 376
*$ Intersection operator 376
=$ operator 375
/$ Symmetric difference operator 376
.dll-based adapter 61
[Key] 105
-= operator 375
*= operator 376
/= operator 376
+= operator 375
[Perfect Key] 105
[Primary Key] 105
.qvt extension 446

A
Access Document Properties (Users),

user privilege 484
ACCESS field 476
Access Restriction Table Wizard

dialog 476, 481
Access Sheet Object Properties, user

privilege 486
Access Sheet Properties (Users), user

privilege 486
Access Tab row Properties, user

privilege 484
Accumulation option 156
actions

about 455-459
Activate Next Sheet 460
Activate Object 460
Activate Previous Sheet 460
Activate Sheet 460

adding, to text object 181
Apply Bookmark 461
Back 460
Clear All 460
Clear Field 460
Clear Other Fields 460
Close This Document 461
Copy State Contents 460
Create Bookmark 461
Dynamic Update 461
Export 461
Forward 460
Launch 461
Lock All 460
Lock Field 460
Maximize Object 461
Minimize Object 461
Open QlikView Document 461
Open URL 461
Pareto Select 460
Print Object 461
Print Report 461
Print Sheet 461
Reload 461
Replace Bookmark 461
Restore Object 461
Run Macro 461
Select Excluded 460
Select in Field 460
Select Possible 460
Set State Name 461
Set Variable 461
Show Information 461
Swap State Contents 460
Toggle Select 460
Unlock All 460

www.it-ebooks.info

http://www.it-ebooks.info/

[490]

actionsUnlock and Clear All 460
actionsUnlock Field 460

action types
bookmark 461
external 461
layout 460
print 461
selection 460

Add button 51
Add new tab button 435
Add Sheet button 43
Add Sheet Objects, user privilege 486
Add Sheets, user privilege 484
Admin Override Security, user

privilege 485
Advanced Color Map dialog window 137
advanced search expression

about 461
solo exercise 463

aggregation functions
Concat() function 417
Count() function 417
Max() function 417
MaxString() function 417
Min() function 417
MinString() function 417
Only() function 417
sum() function 417

aggregations
performing, over Aggr function

outputs 349, 350
Aggr function

about 346, 363
used, for nested aggregation 346-348

Aggr function outputs
saggregations, performing over 349, 350

aircraft dimension table, buidling
aircraft groups, adding 219-221
aircraft information, loading 217, 218
final testing 22-226
second aircraft table, loading 221, 222
source files 217

Airline Employment Statistics table 280, 281
Airline Operations

Average Load Factor per Route per
Airline 351, 352

DAR principle, adding to 142

document requisites 143-166
Air Time % gauge

creating 176
alerts

about 463
setting up 464

Alerts dialog
options 465, 466

alignment option 127
Allow Copy/Clone option 129
Allow Export, user privilege 484
Allow Maximize option 130
Allow Minimize option 130
Allow Move/Size option 129
Allow Print (When Export Is Prohibited),

user privilege 484
Allow User Reload, user privilege 485
alternate label 52
alternate states

and default state, combining 398, 399
applying, to layout objects 399
comparative analysis with 393
document navigation with 400
selections, clearing 400
step-by-step 394-397

Always One Selected Value checkbox 125
Always One Selected Value setting 342
analysis sheet

about 144
bar chart, adding to 147-149
buttons, adding to 163, 164
chart, adding to 145, 146
combo chart, adding to 158
creating 144, 145
line chart, adding to 154, 155
scatter chart, adding to 161, 162
statistics box, adding to 165, 166

analysts 139, 141
app

creating 32
requisites 32, 33

Apply Theme option 129
Apply to All Sheets checkbox 486
Apply To... option 129
assignment operators

=$ operator 375
-= operator 375

www.it-ebooks.info

http://www.it-ebooks.info/

[491]

*= operator 376
/= operator 376
+= operator 375
about 375
example 376

associative data model 94
associative user experience 9, 10
Attribute field parameter 316
Auto-Layout button 42
Auto Minimize option 130, 200, 201
AutoNumber() function 277
Available Fields listbox 116
Avg function 351

B
Background Color option 118
background image, QlikView UI 444, 445
background property 116
bar chart

adding, to analysis sheet 147-149
options 149, 150
versus line chart 154

best practices, data modeling
data consistency 265
design challenges 280
storage requirements, reducing 277

Binary Large Object (Blob) field 71
Binary load 408
Blank password checkmark 68
Block Chart 209
bookmark

creating 463
new bookmark, creating 18
retrieving 18
selections 17

Bookmark Object
adding 132

border width option 128
Business Discovery 9
Business Intelligence (BI) 8
buttons

adding, to analysis sheet 163, 164

C
calculated dimensions 348

calculation condition
about 468
used, for calculating chart 469

Caption Alignment option 129
Caption and Border Properties

dialog window 122
Carrier Decode table 428

IntervalMatch, applying 432-436
Carrier Group ID field 433
Case Sensitive and Not option 305
Cell Value field 311
chart colors

defining 136
chart components

resizing 174
Chart Properties dialog

about 156
Expressions tab 156
Presentation tab 157
Style tab 156

charts
adding, to analysis sheet 145, 146
inserting, in container object 159-161
selections in 16
variables, using 331-333

circular gauge option 197
circular reference 102, 103
Class function 360-363
Clone option 175
Color Area and Color dialog

windows 119, 120
Colormix wizard

heat map, building with 357-359
column tab 313
combo chart

about 157
adding, to analysis sheet 158

comparative analysis
alternate states and default state,

combining 398
alternate states, applying to layout

objects 399
alternate states, selections clearing in 400
alternate states step-by-step 394-398
document navigation, with alternate

states 400
example 393, 394

www.it-ebooks.info

http://www.it-ebooks.info/

[492]

state-based expressions 398
with alternate states 393

compare-to period record set
obtaining 380, 382

Compare with value radio button 305, 307
composite key

creating 101, 102
CONCATENATE statement 231
Concat() function 417
Conditional Delete� button 305, 307
conditional functions 241
conditional functions, QlikView

about 353
Class function 360-363
If function 353
Pick function 363

conditional showing, of objects 467
conformed dimension 92
Connect� button 70
connection strings

managing 261, 262
consistent QlikView UI

background image 444, 445
creating 443, 444
screen resolution 444
themes 446

container object
about 159
charts, inserting into 159-161

containers 20, 21
content. See QlikView application
context tab 313
Copy/Clone Sheet Objects, user

privilege 486
Count() function 417
Create Chart button 46, 55
Create Chart wizard 46, 49
Create New Data Source window 65
Create Search Object button 45
Create Select Statement wizard 69-71
crosstable 82
crosstable, source table structure

Crosstable Wizard, working with 314-316
example 313, 314

CSV attributes 77
Current Selections Box

about 131, 132

selections, making from 132
custom data sources 61
cyclic expressions 50

creating 51
cyclic groups

about 19, 192
creating 192, 193

D
DAR principle

adding, to Airline Operations 142
Dashboards 139
dashboard sheet

about 166
gauge charts, adding 170-174
linked objects, adding 168, 169
metrics, adding to 177
pie charts, adding to 182
setting up 166, 167

dashboard tab
creating 43
cyclic expression group 50, 51
logged flights, number 46-49
screen place, optimizing 45, 46
user controls, adding in list boxes

form 43, 44
dashboard users 140
data

aggregating 411
extracting, from MS Access 64
extracting, into QlikView document 63
flight data table, aggregating 412-416
ODBC connection, setting up 66
transformation output 416

data architecture
about 403
environment, setting up 407, 408
two-stage architecture 404

Database Management Systems (DBMS) 60
data consistency

about 265
alternative method 270
dimensions without facts, dealing

with 266-271
facts without dimensions, dealing

with 272-276

www.it-ebooks.info

http://www.it-ebooks.info/

[493]

Data Discovery tool 8
data, extracting from MA Access

airport tables, adding 71
Create Select Statement wizard 69-71
database, querying 69
driver, configuring 64
ODBC connection, setting up 64-66
OLE DB connection string, creating 66
script, reloading 73

Data Field parameter 316
Data Link Properties window 67
data model

about 33
fact table, loading 33-36
list boxes, playing with 37
result 74
script, structuring 40, 41

data model conflicts
avoiding 98

data modeling
about 297
best practices 265
design challenges 280

data point values
dimension value, adding to 185, 186

data transformation. See also source
table structure

data transformation 299
data types

about 242
arithmetic operators 245
DateTime data type 246, 247
numeric functions 245
strings 242

Data Warehouse (DWH) 59
Date and time functions

Day() 247
Hour() 247
MakeDate() 247
Minute() 247
Month() 247
Today() 247
Week() 247
Weekday() 247
Year() 247

Date field 436
Date#() function 295

default color map
setting 137

Delete Marked button 305, 309
Depth Name 322
Description fields 97
design challenges

Airline Employment Statistics table 280
balance, finding 292, 293
fact tables, concatenating 281
link tables, working with 286

dimension 46
dimensional data modeling 88
dimensionality

Pick function, using with 363-366
Dimensionality function 364
dimensional modeling

about 90
creating 92
snowflake schema 91
star schema 90, 91

dimensional models
in QlikView 93

dimension limits, pie charts 183, 184
dimension value

adding, to data point values 185, 186
dirty table, source table structure

cleansing 300
file contents 300, 301

Distinct qualifier 351
document chaining 461
Document Default color map 138
document level security

about 483
settings 484, 485

document level security, settings
Access Document Properties (Users),

user privilege 484
Access Tab row Properties,

user privilege 484
Add Sheets, user privilege 484
Admin Override Security,

user privilege 485
Allow Export, user privilege 484
Allow Print (When Export Is Prohibited),

user privilege 484
Allow User Reload, user privilege 485
EditModule, user privilege 484

www.it-ebooks.info

http://www.it-ebooks.info/

[494]

Edit Script, user privilege 484
Macro Override Security, user privilege 484
Partial Reload, user privilege 484
Promote/Demote Sheets, user privilege 484
Reduce Data, user privilege 484
Reload, user privilege 484
Save Document (Users), user privilege 484
Show All Sheets and Objects,

user privilege 484
Show Progress for Hidden Script, user

privilege 484
document properties

adding, to HighCloud corporate
theme 448, 449

Document Properties window
about 112, 395
design requisites 113

document requisites, Airline Operations
143, 144, 166

documents
themes, applying to 447

document triggers 455, 456
Dollar Sign Expansion (DSE)

about 332, 338
syntax 339
with parameters 339, 341

Double Dollar Sign Expansion 341-343
drill-down groups

about 19, 52-54, 192
creating 192, 193

Driver� button 70
drivers

installing 60
Drop statement 436
DUAL data type 246
dynamic bookmarks 463
dynamic record sets 374, 375

E
Edit Expression dialog 47
Edit Expression window

about 48, 150
Fields tab 152
Functions tab 152
Images tab 153
overview 151

Variables tab 152
Edit Groups� button 52
EditModule, user privilege 484
Edit Script, user privilege 484
Edit Script window 34, 472, 473
E() function 377
element functions

E() function 377
example 377
P() function 377

Enable Transformation Step button 303
Entity-Relationship Modeling. See

ER-modeling
ER modeling 89
events 455
Exists() function 269
Export values to Excel 22
expression option 126
Expression Overview window 153, 189-191
expressions

about 150
constructing 382, 383
storing, variables used 337
tips, for copying 366

Expressions tab 126
extract layer 404

F
fact table

loading 33
loading, steps for 34, 35

fact tables, concatenating
about 281
Employment Statistics table,

concatenating 284, 285
forced concatenation 283
natural concatenation 282
structural asymmetry 281, 282

Field information, Table Viewer
window 105, 106

fields
renaming 96
renaming, with qualify statement 97

Fields tab, Edit Expression window 152
file attributes

specifying 76, 77

www.it-ebooks.info

http://www.it-ebooks.info/

[495]

file locations
managing 261, 262

File Type option 35
File Wizard

Script dialog window 83
File Wizard dialog 35
Fixed Number of Columns option 127
flags 257
Floor()function 246
folder structure

setting up 30
Force 32 Bit checkmark 67
frequency option 127
From statement 36
FTEs (Full Time Equivalent) 420
Functions tab, Edit Expression window 152
Funnel Chart 208

G
gauge charts

adding, to dashboard sheet 170-174
object, cloning for re-use 175

gauge styles 177
generic load, source table structure

about 324, 325
loading, in QlikView 325-327

GetCurrentField function 195
Grid Chart 207
Group button 51
Groups dialog 52
Group Settings dialog window 53

H
heat chart

about 354-356
building, with Colormix wizard 357-359

Help Text option 130
hidden script

about 471
adding, to document 472
Edit Script window 472

hierarchy, source table structure
example 319
expanding 318
Hierarchy Wizard, working with 320-323
tree-view list box 323, 324

high cardinality 278
HighCloud Airlines sample

about 27, 420
objective 420
records, peeking into 423-426
table, loading 421, 422
table, sorting 422, 423

HighCloud Blue color 118
HighCloudCorporate.qvt file 450, 451
HighCloud corporate theme

about 448
document properties, adding 448, 449
properties, adding 453
sheet object properties, adding 451, 452
sheet properties, adding 450

I
ID Field 321
If function

about 353
syntax 353
use case 354

If function, parameters
Condition 353
Else 353
Then 353

image
displaying, text object used 179, 180

image option 196
Images tab, Edit Expression window 153
Import Document Data Wizard window 478
incremental load 438, 440
Initial data reduction

about 480
setting up, for document 480, 481

Initial Data Reduction Based on Section
Access option 481

Inline Data Wizard 85, 474
inline table

loading 85, 86
in-memory 22
Inner Join function 440
Input Box object 333, 334
Internal Table View option 107
IntervalMatch

applying, to Carrier Decode table 432-436

www.it-ebooks.info

http://www.it-ebooks.info/

[496]

IntervalMatch function
about 432
applying, steps for 430
considerations 432
intervals, expanding 429-431
use case 437

IntervalMatch operation 436
Intervals tab 435

J
Java Database Connectivity (JDBC)

data sources 62
JDBC connector

URL 62
Join operation 436
JOIN statement

about 227-229
INNER JOIN 229
LEFT JOIN 229
OUTER JOIN 229
RIGHT JOIN 229

K
KEEP statement 229, 230
key fields 257
Key Performance Indicators (KPIs) 140
KPI straight table

creating 194-196

L
layer option 129
LED gauge option 197
linear gauge option 197
line chart

about 154
adding, to analysis sheet 154, 155
properties 156, 157
versus bar chart 154

linked objects
about 167
creating 168
precautions, for deleting 169
working 168, 169

link option 197

link table
about 286
creating, in Airline Operations

document 289-292
example 286-288
working 286

listboxes
about 15, 37, 38, 124
adding 124
form, user controls adding in 43, 44
List Box Properties dialog 125
Multi Box 130, 131

List Box Properties dialog
Caption tab 129
Font tab 128
General tab 125
Layout tab 128, 129
Number tab 128
Presentation tab 127
Sort tab 126

List Box Properties dialog, Caption tab
about 129
Allow Maximize option 130
Allow Minimize option 130
Auto Minimize option 130
Caption Alignment option 129
Help Text option 130
Multiline Caption option 129
Special Icons option 130

List Box Properties dialog,
Expressions tab 126

List Box Properties dialog, Font tab 128
List Box Properties dialog, General tab

about 125
Always One Selected Value checkbox 125
Object ID option 125
Show Frequency and In Percent

checkboxes 125
title option 125

List Box Properties dialog, Layout tab
about 128
Allow Copy/Clone option 129
Allow Move/Size option 129
Apply Theme option 129
Apply To... option 129
border width option 128
layer option 129

www.it-ebooks.info

http://www.it-ebooks.info/

[497]

rounded corners checkbox 129
shadow intensity option 128
show option 129
Theme Maker option 129
use borders checkbox 128

List Box Properties dialog, Number tab 128
List Box Properties dialog, Presentation tab

alignment option 127
Fixed Number of Columns option 127
Order by Column option 127
Selection Style Override option 127
Single Column option 127
Suppress Horizontal Scroll Bar option 127
Wrap Cell Text option 127

List Box Properties dialog, Sort tab
about 126
expression option 126
frequency option 127
load order option 127
numeric value option 127
state option 126
text option 127

Load keyword 318
load order option 127
Load script 96
Load statement 36
low cardinality 278

M
Macro Override Security, user privilege 484
MAPPING tables

using 233, 234
master calendar

about 293
adding 294-297

Max() function 417
Max(Period) expression 379
MaxString() function 417
measures 257
Mekko Chart 206
menu options, Script Editor

File | Reload 215
File | Save Entire Document 215
Tab | Add Tab 215
Tab | Demote 215

Tab | Promote 215
Tab | Rename 215

metrics
adding, to dashboard sheet 177

Min() function 417
mini chart option 197
MinString() function 417
Module Password button 485
MonthStart() function 296
Move/Size Sheet Objects, user privilege 486
MS Access

data, extracting from 64
drivers 64

Multi Box 130, 131
Multiline Caption option 129

N
Name Field 321
naming convention

about 256
field 257
field, hiding 257
tables 256, 257

natural join 227
nested aggregation

Aggr function, using for 346-348
New Search Object dialog window 45
NewValue parameter 372
NO CONCATENATE statement 232
NTDOMAIN SID field 477
NTNAM field 477
NTSID field 477
Number of Qualifier Fields parameter 316
numeric comparisons

versus text-based comparisons 360
numeric functions

Ceil() 245
Floor() 245
Round() 245

numeric value option 127
Num() function 295

O
Object ID option 125
Object Linking and Embedding Database.

See OLE DB

www.it-ebooks.info

http://www.it-ebooks.info/

[498]

object properties
about 117
caption colors, changing 117-119
caption font, setting 120
captions, hiding 123
Color Area and Color dialog

windows 119, 120
content font, setting 121
default Sheet Object Style, setting 123
global font, setting 121, 122

objects
adding, to report 203
calculating 467, 468
conditional showing 467

ODBC 60
ODBC connection

setting up 64-66
OLE DB 60
OLE DB connection string

creating 66
OMIT field 477
OnActivateSheet 457
OnLeaveSheet 458
Only() function 417
Open Database Connectivity. See ODBC
Open Local Files dialog 75
Operations.qvw file 142
Order by Column option 127
Order-By fields

ordering 418, 419
Order By statement 418
outer join 227

P
Parent ID Field 321
Parent Name 321
Pareto analysis 184
Partial Reload, user privilege 484
PASSWORD field 476
Paste Sheet Object as Link command 167
Paste Sheet Object command 167
Path Delimiter 322
Path Name 322
Path Source 322
peek function 419
Peek() function 295

Personal Edition (PE) 12
P() function 377
Pick function

about 363
using, with dimensionality 363-366

pie charts
about 182
adding, to dashboard sheet 182
dimension limits 183, 184
dimension value, adding to data

point values 185, 186
pivot tables 146

about 198
creating 198-200

plyMap() function 234
Point In Time Reporting

about 378
base period record set, obtaining 379, 380
challenge 378
compare-to period record set,

obtaining 380, 381
examples 384-386
expressions, constructing 382, 383
period comparisons, enabling 383
portable set expressio 390
portable set expressions 392
set expressions, storing in variables 386-388
set expressions, with parameters 388, 389
set modifiers, defining 379
set variables and master calendar 392

presentation layer 405
Prohibit Binary Load option 481
Promote/Demote Sheets, user privilege 484
properties

adding, to HighCloud corporate theme 453
Properties dialog window 44

Q
QlikCommunity

URL 378
QlikView

about 8, 265
actions 458
advanced search expressions 461
alerts 463
application, navigating 14

www.it-ebooks.info

http://www.it-ebooks.info/

[499]

bookmark, retrieving 18
components 22
conditional functions 353
data, exploring with 13
differentiating, from traditional BI 8, 9
dimensional models 93
dynamic bookmarks 463
Edit Expression window 150-153
Expression Overview window 153
expressions 150
functional overview 23
generic table, loading 325-327
getting 13, 14
installing, steps for 13, 14
list boxes 15
new bookmark, creating 18
search 17
selections, bookmarking 17
selections, in charts 16
selections, undoing 19
Set Analysis 369
stored data, loading 408
triggers 455
user types 139
variables, using 330
view, changing 19

QlikView Access Point 25
QlikView application

consuming 26
creating 25
distributing 25
publishing 25
reloading 25

QlikView, components
content, consuming 24, 26
content, creating 24, 25
content, distributing 24, 25
content, publishing 24, 25
content, reloading 24, 25
data flows 23
in-memory 22
QlikView Access Point 25
QlikView Publisher 25
QlikView Server 25

QlikView Components. See Qvc
QlikView Data. See QVD
QlikView data eXchange. See QVX files

QlikView data format. See QVD
QlikView data model

cloning 408, 409
QlikView deployment

QlikView document 31
QlikView document, creating 31, 32
source data files 31

QlikView Developer Toolkit 445
QlikView Development folder 407, 408
QlikView, differentiating from

traditional BI
about 8
adoption path 11, 12
associative user experience 9, 10
technology 11

QlikView document
app, creating 32
creating, steps for 31, 32
data, extracting into 63
data model, constructing 32
design requisites 110-112
user interface, designing 32

QlikView file 409
QlikView JDBC connector 62
QlikView scripts 213
QlikView Server 25
QlikView UI 443
QlikView, users

about 139
analysts 141
dashboard users 140
report users 142

Qualify keyword 97
qualify statement

used, for renaming fields 97
Qualify statement parameter 97
quoting 78
Qvc 261
QVD 59
QVD files 23, 84
QVD layer 405
QVDs 407
QVD staging 84
QVSource

URL 62
QVSource connector 62
QVX files 84

www.it-ebooks.info

http://www.it-ebooks.info/

[500]

R
Radar Chart 206
Ralph Kimball' s article

URL 88
RAM-stored data 410
RDBMS 88
Reduce Data, user privilege 484
Relational Database Management System.

See RDBMS
Relative Paths option 35
Reload button 479
Reload, user privilege 484
Remove Sheet Objects, user privilege 486
Remove Sheet, user privilege 486
report

objects, adding to 203
Report Editor window

about 202
options 204, 205
working 202, 203

Report Editor window, options
Report Settings | Header/Footer 205
Report Settings | Selections 205
Single versus multi page 204

Report Settings | Header/Footer option 205
Report Settings | Selections option 205
reports sheet

about 187
Auto Minimize option 200, 201
pivot tables, creating 198-200
tables, creating 192-196
variable, creating for expression

storage 187, 188
report users 139, 142
Resident load 410, 411
Resident Load 291
RGB() function 119
rotate tab 313
rounded corners checkbox 129

S
Save Document (Users), user privilege 484
scatter chart

about 161
adding, to analysis sheet 161, 162

screen resolution, QlikView UI 444
screen space, dashboard tab

optimizing 45
script debugger

about 249, 250
breakpoints, using 250
limited load 250
script, tracing 251

script debugging
about 247
logs, saving to disk 248
syntax check 248

Script Editor
about 214
menu options 215
script pane 215
tool pane 216

Script Editor window 41
Script Execution Progress window 471
scripting 213
script organization

about 252
comments 253
information tab, adding 254
layout, using 256
tabs, using 252

scripts
debugging 247
layouting 256
organizing 252
reusing 258
standardizing 252
structuring 40, 41

scripts, reusing
files, including 260, 261
subroutines 258, 259

Script statements
about 216
aircraft dimension table, buidling 217
script flow, controlling 239
tables, manipulating 227
variables, setting 238

search 17
search expression

creating, steps 462
Search object 45

www.it-ebooks.info

http://www.it-ebooks.info/

[501]

section access
about 473, 475
fields 476, 477
fields, omitting 481, 483
Initial Data Reduction 480
Initial Data Reduction, setting up

for document 480
reduction fields 478, 479

Seeing is Believing. See SiB
selections

bookmarking 17
undoing 19

Selection Style Override option 127
Select statement 69
SERIAL field 476
Set Analysis

about 369
assignment operators 375, 376
dynamic record sets 374, 375
E() function 377
element functions, example 377
element functions, using 377
P() function 377
set expression, creating 371-373
set operators 376
uses 370
variables, using 374

set expressions
creating 371-373
portable 390, 392
storing, in variables 386, 387
variables, using 374
with parameters 388-390

set modifiers
about 372
defining 379

set operators
-$ Exclusion operator 376
*$ Intersection operator 376
/$ Symmetric difference operator 376
+$ Union operator 376
about 376
example 377

shadow intensity option 128
sheet handling 145
sheet ID property 116

sheet level security
settings 485, 486

sheet level security, settings
Access Sheet Object Properties, user

privilege 486
Access Sheet Properties (Users), user

privilege 486
Add Sheet Objects, user privilege 486
Copy/Clone Sheet Objects, user

privilege 486
Move/Size Sheet Objects, user

privilege 486
Remove Sheet Objects, user privilege 486
Remove Sheet, user privilege 486

sheet object properties
adding, to HighCloud corporate

theme 451, 452
sheet objects

aligning 135, 136
moving 133
multi box, resizing 134
resizing 134
selecting 133

sheet properties
adding, to HighCloud corporate theme 450

Sheet Properties dialog
about 115
Fields tab 116
General tab 116
Objects tab 116
Security tab 117
Triggers tab 117

Sheet Properties dialog, General tab
background property 116
sheet ID property 116
show sheet property 116
tab settings property 116
title property 116

Sheet Properties dialog, Objects tab 116, 117
Sheet Properties dialog, Security tab 117
Sheet Properties dialog, Triggers tab 117
Sheet Properties dialog window 37
sheets

copying 191
sheet triggers 457
Show All Sheets and Objects, user

privilege 484

www.it-ebooks.info

http://www.it-ebooks.info/

[502]

Show Frequency and In Percent
checkboxes 125

show option 129
Show Progress for Hidden Script, user

privilege 484
show sheet property 116
SiB 30
Single Column option 127
Single versus multi page option 204
Slider object

about 334
creating 334

slow changing dimension 427
slow changing dimensions

about 427
Carrier Decode table 428

snowflake schema 91
source layer 404
source table structure

about 299
crosstable, loading 313
dirty table, cleansing 300
generic tables, loading 324, 325
hierarchy, expanding 318

Special Icons option 130
Specify Row Condition dialog window 307
star schema 90, 91
state-based expressions 398
state option 126
statistics box

about 164
adding, to analysis sheet 165, 166

storage requirements reduction
high-cardinality fields, splitting 278
number-based key fields, using 277
unused fields, removing 278

straight table
about 194
versus table box 194

straight tables
options 196, 197

straight tables, options
circular gauge 197
image 196
LED gauge 197
linear gauge 197
link 197

mini chart 197
traffic light gauge 197

Strict Exclusion option 481
string

about 242
functions 242-244
operators 242

string functions
capitalize 243
index 243
keepchar 244
left 242
len() 242
lower() 243
ltrim 244
mid 243
purgechar 244
replace 243
right() 242
rtrim 244
textbetween 244
trim 244
upper 243

structural asymmetry 281
Structured Query Language (SQL) 69
sum() function 417
Support� button 70
Suppress Horizontal Scroll Bar option 127
Syntax Check 248
synthetic keys

about 98
removing, ways for 99, 100

T
table associations

about 95
creating 96
fields, renaming 96
fields, renaming with qualify statement 97

table box
versus straight table 194

table file
crosstable 82
CSV attributes 77
input table, refining 80
loading 75

www.it-ebooks.info

http://www.it-ebooks.info/

[503]

preview pane 78
quoting 78
reading 63
transformation step 79
Where Clause wizard 80, 81

Table Files� button 75, 301
Table information, Table Viewer window

105
table manipulation

about 227
comments, adding 235, 236
CONCATENATE statement 231, 232
fields, deleting 238
fields, renaming 237
JOIN statement 227-229
KEEP statement 229, 230
MAPPING tables 233, 234
NO CONCATENATE statement 232
tables, deleting 238
tables, renaming 237
tables, storing 237

Table preview, Table Viewer window 106
tables

creating 192-196
Order-By fields, ordering 418, 419
sorting 418

Table viewer menu, Table
Viewer window 106

Table Viewer window
about 42, 104
Field information 105, 106
Table information 105
Table preview 106
Table Viewer dialog 106

Tab Rename Dialog window 40, 421
tab settings property 116
Target Column field 310
text-based comparisons

versus numeric comparisons 360
text object

about 177
actions, adidng to 181
creating 178, 179
used, for displaying image 179, 180

text option 127

The Bureau of Transportation Statistics of
the United States website

URL 30
Theme File structure 446
Theme Maker option 129
Theme Maker Wizard 446
themes

about 446
applying, to documents 447
creating 448
solo exercise 454

third-party custom connectors
about 62
QlikView JDBC connector 62
QVSource connector 62

three-stage architecture
about 406
Transformation Layer 406
Transformed QVD Layer 406

title option 125
title property 116
tool pane, Script Editor

functions tab 216
Settings tab 216
Variables tab 216

Total Mode setting 55
Total Mode window 55
TOTAL qualifier

about 337, 344
using 344

Trace statement 251
TRACE statement 472
traffic light gauge option 197
transformation. See source table structure
Transformation Layer 406
transformation output 416
Transformation Step Wizard, source table

structure
about 300
column tab 313
context tab 313
garbage, throwing out 304, 305
missing cells, filling 310, 311
options 313
result 311, 312
rotate tab 313
table contents, unwrapping 306-309

www.it-ebooks.info

http://www.it-ebooks.info/

[504]

working with 301, 303, 304
Transformation Wizard 300
Transformed QVD Layer 406
tree-view list box

about 323
and normal list box, comparing 324

Trellis Chart 209, 210
triggers

about 455
OnAnySelect 457
OnChange 457
OnInput 457
OnLock 457
OnOpen 457
OnPostReduceData 457
OnPostReload 457
OnSelect 457
OnUnlock 457

triggers, types
document 455, 456
sheet 457

two-stage architecture
about 404
extract layer 404
presentation layer 405
QVD layer 405
source layer 404

U
use borders checkbox 128
use case

about 354
heat charts 354-356

user controls
adding, in list boxes form 43, 44

USERID field 476

V
values

modifying, for variables 333
variable naming convention 338
variables

about 329
creating 187, 188, 330, 331
naming convention 338
set expressions, storing 386, 387
used, for storing expressions 337
using 330
using, based on expressions 335-337
using, in charts 331-333
using, in set expressions 374
values, modifying 333

Variables tab, Edit Expression window 152
vFolderSourceData 262
vSetLYMTD variable 388
vSetLYQTD variable 388
vSetLYYTD variable 388
vSetMTD variable 387
vSetPreviousMonth variable 387
vSetPreviousQuarter variable 388
vSetQTD variable 387
vSetRolling12 variable 388
vSetYTD variable 387

W
What-If scenarios 141
Where Clause wizard 80, 81
workspace

preparing 30
Wrap Cell Text option 127

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
QlikView 11 for Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Business Intelligence Cookbook:
A Project Lifecycle Approach
Using Oracle Technology
ISBN: 978-1-849685-48-1 Paperback: 368 pages

Over 80 quick and advanced recipes that focus on
real-world techniques and solutions to manage,
design, and build data warehouse and business
intelligence projects

1.	 Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real time
examples to perform key steps and functions on
your project

2.	 Practical ways to estimate the effort of a data
warehouse solution based on a standard work
breakdown structure.

3.	 Learn to effectively turn the project from
development to a live solution

Pentaho 3.2 Data Integration:
Beginner's Guide
ISBN: 978-1-847199-54-6 Paperback: 492 pages

Explore, transform, validate, and integrate your data
with ease

1.	 Get started with Pentaho Data Integration
from scratch.

2.	 Enrich your data transformation operations
by embedding Java and JavaScript code in
PDI transformations.

3.	 Create a simple but complete Datamart Project
that will cover all key features of PDI.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

IBM Cognos 8 Report Studio
Cookbook
ISBN: 978-1-849680-34-9 Paperback: 252 pages

Over 80 great recipes for taking control of Cognos 8
Report Studio

1.	 Learn advanced techniques to produce real-life
reports that meet business demands

2.	 Tricks and hacks for speedy and effortless
report development and to overcome
tool-based limitations

3.	 Peek into the best practices used in industry and
discern ways to work like a pro

4.	 Part of Packt's Cookbook series-each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Oracle Business Intelligence :
The Condensed Guide to
Analysis and Reporting
ISBN: 978-1-849681-18-6 Paperback: 184 pages

A fast track guide to uncovering the analytical
power of Oracle Business Intelligence: Analytic
SQL, Oracle Discoverer, Oracle Reports, and
Oracle Warehouse Builder

1.	 Install, configure, and deploy the components
included in Oracle Business Intelligence
Suite (SE)

2.	 Gain a comprehensive overview of
components and features of the Oracle
Business Intelligence package

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgements
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Meet QlikView
	What is QlikView?
	How does QlikView differ from traditional BI?
	Associative user experience
	Technology
	Adoption path

	Exploring data with QlikView
	Getting QlikView
	Navigating the document
	Slicing and dicing your data
	List-boxes
	Selections in charts
	Search
	Bookmarking selections
	Undoing selections

	Changing the view
	Cyclic Groups
	Drill down Groups
	Containers

	But wait, there's more!

	The technology and components
behind QlikView
	The way the data flows
	When QlikView use expands
	Create content
	Reload, publish, and distribute content
	Consume content

	Meet HighCloud Airlines
	Summary

	Chapter 2: Seeing is Believing
	What is a SiB?
	Preparing the workspace
	Setting up the folder structure
	Creating the QlikView document

	Creating the app
	The requirements
	Constructing the data model
	What is a data model?
	Loading the fact table
	Playing with listboxes
	Associating additional tables

	Creating the dashboard tab
	Creating and positioning the filters and user controls
	Number of flights over time
	One chart and multiple analyses with cyclic expressions
	Adding a time drill-down group
	Top 10 routes

	Summary

	Chapter 3: Data Sources
	Using ODBC and OLE DB drivers
	Installing the drivers
	Accessing custom data sources
	Third-party custom connectors

	Reading table files

	Extracting data—two hands-on examples
	Extracting data from MS Access
	Configuring the driver
	Creating the OLE DB connection string
	Querying the database
	Reloading the script

	The resulting data model
	Loading a table file
	Specifying the file attributes
	The transformation step
	Refining the input table

	The resulting script

	QVD and QVX files
	QVD files
	QVX files

	Loading an Inline table
	Summary

	Chapter 4: Data Modeling
	Dimensional data modeling
	Back in the day
	Relational databases and ER modeling
	Dimensional modeling
	The star schema
	The snowflake schema
	Creating the dimensional model

	Dimensional models in QlikView

	The associative data model
	Guidelines for table associations
	How associations are created
	Avoiding data model conflicts

	The Table Viewer window
	Table information
	Field information
	Table preview
	Table viewer menu

	Summary

	Chapter 5: Styling Up
	Design requirements
	The Document Properties window
	The Sheet Properties dialog
	Setting the object properties
	Caption colors and style
	Changing the caption colors
	Setting the caption font
	Setting the content font
	Setting the global font

	Propagating the object appearance
	Setting the default Sheet Object Style
	Hiding captions

	Working with listboxes
	Adding listboxes
	The List Box Properties dialog
	The General tab
	The Expressions tab
	The Sort tab
	The Presentation tab
	The Number tab
	The Font tab
	The Layout tab
	The Caption tab

	The Multi Box
	The Current Selections Box
	Making selections from the Current Selections Box

	Adding a Bookmark Object
	Aligning and resizing sheet objects
	Selecting objects
	Moving objects
	Resizing objects
	Resizing a Multi Box

	Aligning sheet objects
	Do a little house keeping

	Creating and applying a default color map
	Defining chart colors
	Setting the default color map

	Summary

	Chapter 6: Building Dashboards
	User types
	Dashboard users
	Analysts
	Report users

	Applying the DAR principle to
Airline Operations
	Document requirements

	Creating the Analysis sheet
	Adding a new chart
	Bar Chart
	Additional bar chart properties

	Expressions and the Edit Expression window
	Expressions
	The Edit Expression window
	The Expression Overview window

	Line Chart
	Additional line chart properties

	Combo Chart
	Container
	Scatter Chart
	Button
	Statistics box

	Creating the new Dashboard sheet
	Linked Objects
	Gauges
	Cloning the object for re-use
	Adding Air Time %
	More Gauge styles

	Adding a Text object
	Using a Text Object to display an image
	Adding actions to a Text object

	Adding a Pie chart
	Dimension Limits
	Adding the dimension value to the data point values

	Creating the Reports sheet
	Variables
	The Expression Overview window in action

	Copying sheets
	KPIs per airline, origin, and destination country
	Cyclic and Drill-down groups

	Straight table
	Not all expressions are numbers

	Pivot tables
	Auto minimize
	The Report Editor window

	Other charts
	Radar Chart
	Mekko Chart
	Grid Chart
	Funnel Chart
	Block Chart
	Trellis Chart

	Summary

	Chapter 7: Scripting
	The Script Editor
	Menu and toolbar
	Script pane
	Tool pane

	Script statements
	Building the aircraft dimension table
	Loading the aircraft information
	Adding the aircraft groups
	Loading the second aircraft table
	Making it all right

	Manipulating tables
	The JOIN statement
	The KEEP statement
	The CONCATENATE statement
	The NOCONCATENATE statement
	Using MAPPING tables
	Adding comments
	Storing tables
	Renaming tables and fields
	Deleting tables and fields

	Setting variables
	Controlling script flow

	Conditional functions
	Dealing with different data types
	Strings
	String operators
	String functions

	Numbers and numeric functions
	Date and time functions

	Debugging script
	Syntax check
	Saving logs to disk
	The script debugger
	Using breakpoints
	Limited load

	Tracing script

	Standardizing and organizing script
	Using tabs
	Comments
	Adding an information tab
	Script layout
	Naming conventions
	Table naming conventions
	Field naming conventions

	Re-using scripts
	Subroutines
	Including script files

	Managing file locations and
connection strings
	Summary

	Chapter 8: Data Modeling Best Practices
	Data consistency
	Dealing with dimensions without facts
	An alternative approach
	A solo exercise

	Dealing with facts without dimensions

	Reducing storage requirements
	Using number-based key fields
	Removing unused fields
	Splitting high-cardinality fields

	Design challenges of data modeling
	The Airline Employment statistics table
	Concatenating fact tables
	Structural asymmetry
	Natural and forced concatenation
	Concatenating the Employment Statistics table

	Working with link tables
	A link table example
	Creating a link table in the Airline Operations document

	Finding a balance

	The master calendar
	A final note on data modeling
	Summary

	Chapter 9: Basic Data Transformation
	Changing the source table structure
	"Cleansing" a dirty table
	File contents
	Working with the Transformation Step wizard
	The final result
	Other transformation tricks

	Loading a Crosstable
	A Crosstable example
	Working with the Crosstable Wizard
	A solo exercise

	Expanding a hierarchy
	A hierarchy example
	Working with the Hierarchy Wizard
	The tree-view list-box

	Generic load
	Loading a generic table into QlikView

	Summary

	Chapter 10: Advanced Expressions
	Using variables
	Creating a variable
	Using variables in charts
	Interactively changing a variable's value
	Using the Input Box object
	Using the Slider object

	Using variables based on expressions
	Using variables to store expressions
	Variable naming convention
	The Dollar Sign Expansion syntax
	Dollar Sign Expansion with parameters
	Double Dollar Sign Expansion

	Using the TOTAL qualifier
	The Aggr function
	Using Aggr for nested aggregation
	A word on calculated dimensions

	Aggregations over the Aggr output
	A word on using the Distinct qualifier

	Getting the Average Load Factor per
Route per Airline

	Conditional functions
	The If function
	The syntax
	A use case
	Numeric versus text comparisons

	The Class function
	A solo exercise using the Class function

	The Pick function
	Using Pick with Dimensionality

	A tip on copying expressions
	Summary

	Chapter 11: Set Analysis and Point In Time Reporting
	The magic of Set Analysis
	What is it for?
	Syntax and examples
	Using variables in set expressions

	Dynamic record sets
	More assignment operators
	Set operators
	Using element functions

	Point In Time Reporting
	The challenge
	Defining the set modifiers
	Obtaining the base period record set
	Obtaining the compare-to period record set

	Constructing the expressions
	Enabling additional period comparisons
	More Point In Time Reporting examples

	Storing set expressions into variables
	Set expressions with parameters

	Portable set expressions
	Set variables and the Master Calendar

	Comparative analysis with alternate states
	A comparative analysis example
	Alternate states step-by-step
	State-based expressions
	Combining alternate states and the default state

	Applying alternate states to layout objects
	Document navigation with alternate states
	Clearing selections in an alternate state

	Always validate
	Summary

	Chapter 12: Advanced Data Transformation
	Data architecture
	Two-stage architecture
	Three-stage architecture
	Setting up our environment

	Loading data already stored in QlikView
	Cloning a QlikView data model
	Loading from RAM
	Resident load

	Aggregating data
	Aggregating the Flight Data table
	The Transformation output
	Aggregation functions

	Sorting tables
	Ordering the Order-By fields

	The Peek function
	Merging forces
	A refresher
	The objective
	Getting it done
	Loading the table
	Sorting the table
	Peeking previous records
	A solo exercise

	Dealing with slowly changing dimensions
	The Carrier Decode table
	IntervalMatch magic
	Expanding the intervals
	Some considerations
	Applying IntervalMatch to the Carrier Decode table

	Ordering, peeking, and matching all
at once
	The use case

	Incremental loads
	Summary

	Chapter 13: More on Visual Design and User Experience
	Creating a consistent QlikView UI
	Screen resolution
	Background image
	Themes
	Applying themes
	Creating themes

	Additional interactivity
	Triggers
	Document triggers
	Sheet triggers

	Actions
	Advanced search expressions
	A solo exercise

	Dynamic bookmarks
	Alerts
	Conditionally showing and calculating objects

	Summary

	Chapter 14: Security
	Hidden script
	Section access
	Section access fields
	Reduction fields
	Initial data reduction
	Omitting fields

	Document-level security
	Sheet-level security
	Summary

	Index

