
Workbook for CMPE 185

Technical Writing

for Computer Engineers

and Computer Scientists

Kevin Karplus
Department of Computer Engineering

Jack Baskin School of Engineering
University of California, Santa Cruz

Dan Scripture
Writing Program

University of California, Santa Cruz

February 13, 2003

Abstract

This document contains course notes and exercises for a course in technical writing. The course is intended for
third-year computer engineering majors, and emphasizes technical documentation directed to engineers, engineer-
ing managers, technical writers, and other specialized audiences. Exercises include job applications and résumés,
memos, electronic correspondence, algorithm description, in-program documentation, naive-user documentation,
poster presentation, proposal writing, document specification, progress reports, formal technical reports, and an oral
presentation.

Students are expected to have reading knowledge of PASCAL or C, and to be able to follow explanations of
recursive algorithms.

Copyright

Although the copyright for this workbook is retained by the authors, permission to make copies for UCSC students,
faculty, and staff is granted to any copy shop located in Santa Cruz County.

Acknowledgements

Some of the assignments in this workbook were originally created by Renny Christopher, and have been used here
with minor modifications. We thank Renny for giving us permission to use these assignments. Tracy Larrabee has
taught using this workbook several times—her feedback and editing have been invaluable.

0

Contents

1 Syllabus 5
1.1 Required Texts . 5
1.2 Recommended texts to buy . 5
1.3 Recommended books to browse in the library . 6
1.4 Homework Assignments . 6
1.5 Collaboration . 6
1.6 Schedule (due dates) . 7
1.7 Peer editing . 7

2 Intake Survey 9
2.1 Purpose of the intake survey . 9
2.2 Pre-requisite verification . 9
2.3 Language background . 9

3 Job application letter and résumé 11
3.1 Goals—audience assessment and letter writing . 11
3.2 Audience assessment . 11

3.2.1 Mass-mailed résumés versus tailored job letters . 11
3.2.2 Finding an employment possibility . 12
3.2.3 Doing the background research . 12

3.3 Writing process—letter writing . 12
3.3.1 Getting started . 12
3.3.2 Doing this assignment . 12
3.3.3 Doing the working draft . 13
3.3.4 Experimenting with formatting . 13
3.3.5 Tailoring your résumé . 13
3.3.6 Preparing for peer editing . 13

3.4 Things to keep in mind for editing . 13
3.4.1 Understanding confidence in its cultural context . 14
3.4.2 Including a statement of an objective or goal . 14
3.4.3 Including other categories . 14

3.5 The final draft . 14
3.5.1 Deciding about length . 15
3.5.2 Neatness counts . 15
3.5.3 Hints . 15

3.6 What to turn in . 16

4 Hiring Recommendation Memo 17
4.1 Goals—reading for content, writing memos . 17
4.2 Audience assessment—Personnel Director . 17
4.3 Writing process—persuasive writing . 17

4.3.1 How to go about persuading the personnel director . 17
4.3.2 Memo format versus letter format . 18

1

4.3.3 Writing in class . 19

5 Oral Reports 20
5.1 Goals—clear oral presentation . 20
5.2 Meeting the expectations of the audience . 20
5.3 Choosing your topic . 20
5.4 Writing process—finding, organizing, composing . 21

5.4.1 Library search . 21
5.4.2 Organizing the information . 21
5.4.3 Preparing your visual aids . 22
5.4.4 Practicing Your Presentation . 23

5.5 Evaluation of the presentation—form and content . 24
5.5.1 Form . 24
5.5.2 Content . 25

5.6 Scheduling the talks . 25
5.7 Note on oral presentations at SIGGRAPH . 25

6 Electronic mail and newsgroups 28
6.1 New forms of communication—new writing styles . 28
6.2 Flaming . 28
6.3 Humor . 29
6.4 Assignment—newsgroup discussion . 29

7 In-program Documentation 31
7.1 Goals—recognizing that programs are documents . 31
7.2 Audience assessment—maintenance programmers . 31
7.3 Example—knight’s tour . 31
7.4 Assignment—adding comments to minimal code . 33
7.5 Writing process—in-program documentation . 33
7.6 Format for in-program documentation . 39

7.6.1 Identify your work . 39
7.6.2 Use white space freely . 39
7.6.3 Indent to show block structure . 40
7.6.4 Name variables carefully . 40
7.6.5 Use a block comment for each procedure interface . 40
7.6.6 Use a block comment inside each procedure to explain method 41
7.6.7 Use a block comment for each data type . 41
7.6.8 Use a block comment for each data structure . 42
7.6.9 Use a one-line comment for each local variable . 42
7.6.10 Use comments sparingly inside the body of the code itself . 42
7.6.11 Use assertions. 43

7.7 Things to keep in mind for peer editing . 43
7.8 The final draft . 44

8 Naive-user documentation 45
8.1 Goals—better paragraphs and writing for non-technical audiences . 45
8.2 Audience assessment—non-technical audiences . 45
8.3 Writing process—paragraph structure . 46
8.4 Things to keep in mind for editing and partner work . 46
8.5 The final draft . 48

2

9 Library Puzzle 49
9.1 General library info . 49
9.2 Catalog database . 50
9.3 World-wide web . 50
9.4 INSPEC, PUBMED, and BIOSIS databases . 52
9.5 You figure out what indices to use . 52

10 Final project proposal memo 53
10.1 Goals—proposal writing, choosing the final project . 53
10.2 Audience assessment—the instructors . 53
10.3 Writing process—informal proposals . 54

11 Algorithm Description 55
11.1 Goals—multiple audiences, graphics, sophisticated audiences . 55
11.2 Audience assessment—writing for multiple audiences . 55
11.3 Writing process—algorithm description . 56
11.4 Figures and displays . 57

11.4.1 Graphics . 57
11.4.2 Pseudo-code . 58

11.5 Explaining recursion . 59
11.6 Titles, title pages, and executive summaries . 60
11.7 Things to keep in mind for peer editing . 60

11.7.1 About the algorithm . 60
11.7.2 Mechanical details . 61

11.8 The final draft . 62

12 Document specifications 63
12.1 Goals—three purposes for document specifications . 63

12.1.1 Economy of effort . 63
12.1.2 Work planning . 63
12.1.3 Writing Organization . 63

12.2 Audience assessment . 63
12.3 Writing process—document specifications . 64

12.3.1 Outlining is organizing . 64
12.3.2 The basic tripartite structure of a formal report . 64
12.3.3 Organizing the work and the writing . 65
12.3.4 Which projects do not use the Tripartite Structure? . 66

12.4 What to turn in . 66

13 Progress Report 67
13.1 Goals—writing progress reports, making sure there is progress . 67
13.2 Audience assessment—instructors and supervisors . 67
13.3 Writing process—short progress reports . 67
13.4 Professional Ethics . 68

13.4.1 Honesty is the basis of professional ethics . 68
13.4.2 1979 IEEE Code of Ethics . 69
13.4.3 1990 IEEE Code of Ethics . 70

13.5 Assignment—final draft only . 70

14 Final project 71
14.1 Goals—formal report writing . 71
14.2 Audience assessment—choose your own . 71
14.3 Writing process . 71

14.3.1 Writing the Report . 71
14.3.2 The tripartite structure of a formal report . 72

3

14.3.3 Explanation of Tripartite Structure . 72
14.3.4 A note on page numbering . 73

14.4 Citing your sources . 73
14.5 Oral Reports . 73
14.6 What to turn in . 74

15 Poster presentation 75
15.1 Goals—informal poster presentation, library work . 75
15.2 Textbook resources . 75
15.3 Audience Assessment—fellow students . 75
15.4 Preliminary Draft . 76

15.4.1 Choosing the graphic elements . 76
15.4.2 Preparing the poster . 76

15.5 Final draft . 77

A Grammar and format notes (read this appendix first) 80
A.1 Content errors . 80
A.2 Discourse structure errors . 80

A.2.1 Sections and section headers . 80
A.2.2 Paragraphs . 80
A.2.3 Pronouns . 81
A.2.4 Tone . 81

A.3 Format errors . 81
A.4 Sentence structure errors . 82

A.4.1 Faults in style . 82
A.4.2 Faults in grammar . 82

A.5 Punctuation errors . 83
A.5.1 Hyphens and dashes . 83
A.5.2 Quotation marks . 83
A.5.3 Parentheses and brackets . 84
A.5.4 Commas and related marks . 84

A.6 Word choice errors . 84
A.6.1 Commonly misused words and phrases . 84
A.6.2 Sentence grammar affects word choice . 85

4

Chapter 1

Syllabus

1.1 Required Texts

Strunk and White, The Elements of Style [SJW79]. Strunk and White is the best short book on writing style.
You should read it from cover to cover at the beginning and the end of this quarter, and re-read it every five
years thereafter. The examples are subtly humorous, but you might not appreciate the humor on the first
reading.

Huckin and Olsen, Technical Writing and Professional Communication for Nonnative Speakers of English [HO91].
We used the first edition of this text (which was called English for Science and Technology: a Handbook for
Nonnative Speakers) with good results for two years, and the new edition for several more. The new edition
seems to be even better—it is well-organized, has good examples, both positive and negative, has a fairly good
chapter on the use of visuals and a good chapter on oral presentations, and is available in paperback. Chapter 1
is a good explanation of why technical writing is a required course for computer engineers—reading it may help
you understand the importance of the entire course.

Also, Chapters 29 through 38 are a handbook designed primarily for advanced non-native speakers of English,
a necessity for this class. Parts of this handbook are useful for native speakers too; for instance Chapter 32
deals with modal verbs (would, could, should, and so forth), which many native speakers have difficulty using
correctly in writing. The appendixes include a good short summary of English punctuation of use to everyone.

The text’s major weakness for this class is that it is not aimed at computer engineers, but at engineers in
general, and especially mechanical engineers, judging from the examples and illustrative material in the text.

We will assign some chapters to read from Huckin and Olsen, but you’ll find that browsing through the
unassigned chapters will yield useful information. The book is well-written and easy reading—unlike so many
of the writing textbooks on the market.

Karplus and Scripture, Workbook for CMPE 185 Technical Writing for Computer Engineers. This workbook,
which will be available electronically, is where your assignments actually are, as well as some other material.
We are providing them electronically, rather than as a pre-printed workbook, to save paper and money (the
pre-printed ones cost more per page than laser-printing them would have!).

These assignments are designed to be appropriate for computer engineering, and have mostly been developed
in 1988 and 1989, although some of them go back several years to other courses at other universities. We
welcome motivated, specific, written comment on ways you think they might be improved. Don’t just tell us
there are too many and they’re too hard! We know that, and there’s not much we can do about it without
seriously weakening the class.

1.2 Recommended texts to buy

Hornby, Harris, Stewart, Oxford Student’s Dictionary of American English [HRHS86]. Particularly recommended
for non-native speakers, this may be the only dictionary that reports such important properties as whether a

5

noun is an uncountable noun (like information or bread) or a countable noun (like bits or computers). This ref-
erence is somewhat dated—the newest edition of the dictionary appears to be titles Oxford Advanced Learner’s
Dictionary with editors A.S. Hornby and Sally Wehmeier.

Diana Hacker, A Writer’s Reference [Hac89]. A dull, boring, but very straightforward undergraduate reference
grammar. Easy to use, clear examples, no mystification. Good for clearing up some of the fine points of
punctuation and grammar both for native and non-native speakers.

1.3 Recommended books to browse in the library

Marie-Claire van Leunen, A Handbook for Scholars [van78]. A well-written book that is a real pleasure to read,
despite the unpromising title.

Edmund Tufte, The Visual Display of Quantitative Information [Tuf83]. This is a superb book, but too expensive
to require. The publisher has a strange pricing policy (no discount to bookstores), so this book is not often
available in bookstores—you’ll have to order it directly from the publisher if you want a copy. We will not spend
as much time on the subject of graphical design as it deserves. We’ve been told that Computer Literacy in San
Jose, and Stacey’s in Palo Alto occasionally carry it. There is a companion volume Envisioning Information,
which has much of the same material, but is aimed at a somewhat more general audience.

Wilson Follett, Modern American Usage [Fol80]. This book explains words that are often mis-used. Unfortunately,
it only covers words in general usage, not the jargon used by engineers and computer scientists.

Donald Knuth, TeX, the Program [Knu86]. You are not expected to read much of this book, as it is a com-
plete source listing for the TeX document compiler. It is included as an example of what good in-program
documentation looks like.

Knuth, Larrabee, and Roberts, Mathematical Writing [KLR88]. This report is based on a course [CS 209] of
the same name given at Stanford University during Autumn quarter, 1987. We have deleted the mathematical
writing exercise from the course, but those of you planning to go on to graduate school may want to learn
something about mathematical writing anyway.

1.4 Homework Assignments

The homework assignments will be posted to the web in two formats: PDF and HTML. If the two disagree, then the
PDF should be regarded as the more authoritative.

To read the files on-line, use Netscape (or one of the other World-Wide Web browsers), and open the Uniform
Resource Locator (URL) http://www.cse.ucsc.edu/˜karplus/. This is the home page for Kevin Karplus, and contains
pointers to several other documents, including the assignments for this course. If you have not used Netscape before,
almost any of the CATS consultants in any of the computer labs can help you, because browsing the World-Wide
Web has become a major form of recreation for the consultants.

The easiest to read on-line is the HTML, Although it is possible to print directly from many World-Wide Web
browsers, I’ll also provide PDF files generated directly from the LATEX originals. These will generally produce a
better looking printed copy that will take up less paper. There will be hypertext links (pointers) from the WWW
pages to the PDF files.

Please read each of the assignments carefully—don’t rely on a vague memory of in-class discussion. Common
problems that have come up with the assignments in the past are discussed in the assignment writeups, but still
about half of the problems we see in turned in work are things that we specifically warn about.

1.5 Collaboration

Each paper you turn in must have the names of the authors prominently displayed at the beginning. Anyone caught
using a term paper service or copying from books, journals, or fellow students will be punished as severely as the
University allows. Flunking the course is an absolute minimum.

6

On some assignments (like the final project), we will encourage group authorship, and on others we will insist on
single authors. If you are not sure which category an assignment falls into, please ask.

We encourage you to have someone else read your drafts, point out errors and unclear passages, and make
suggestions, but not do re-writing for you. We will frequently use class time to exchange drafts of papers and discuss
them in small groups.

We also encourage you to use the tutors who are assigned to the course. In the past, predictably, only the best
students have made substantial use of the tutors. The tutors are students who have taken the course previously, and
who know what we want you to learn, and how to help you do it.

This is a difficult course, but anyone who uses the resources we provide can pass it, as well as learn something
worthwhile. A lot of you hate to write and think that you are not very good at it. We don’t guarantee that you will
learn to like to write, but we can guarantee that if you do what we ask, and work hard at it, that you will learn to
write competently, and perhaps a good deal better.

The colleges also provide writing tutors, and we encourage you to seek their aid as well.
Anyone whose help you use (including the instructors, tutors, classmates, spouse, . . .) should be acknowledged

in the turned-in assignment. Formal reports should have an acknowledgment section, but other document styles
usually need a separate cover memo to the instructors for acknowledgments—you should regard this cover memo as
a standard part of anything you turn in, even if it is not specifically requested for an assignment. Of course, any
books or journals you use as sources should be properly cited, and we intend to teach you how to do this, so that you
do not plagiarize (copy without citing) unintentionally. If you omit citations, if you copy blocks of text from your
sources without explicit indication of quotation, if you paraphrase more than a paragraph from a source, or if you use
information from a source without citation, you may be guilty of plagiarism. The minimum penalty for plagiarism
is failure in the course—I have failed people in the past, and will probably have to do so in the future—but let’s not
make in necessary this quarter.

Claiming someone else’s work as your own is the biggest academic sin.
If you are not certain about how much help is permitted, how much is encouraged, and how much will be

considered cheating, please talk with us. You may be pleasantly surprised to find out that we allow more assistance
than you thought—the key point is that all assistance must be acknowledged in writing.

1.6 Schedule (due dates)

The schedule posted on the web lists the assignments for this quarter with due dates. If the due dates are changed,
we will inform you in class. Note that many assignments overlap; this is the normal case for people who write for a
living, as engineers do (30–50% of the work day).

You are required to turn in your early drafts, as well as the final copy—the early drafts allow us to see how well
you edit and how well you respond to suggestions from your peers.

1.7 Peer editing

We will be doing peer-editing on-line this quarter, using the Collage system created by Tara Madhyastha especially
for CMPE 185. Go to the web pages for Collage (http://www.collage.soe.ucsc.edu/) and read the documentation
at http://www.collage.soe.ucsc.edu/peerEdit/doc/CollagePeerEditUserManual.pdf! There are some restrictions cre-
ated by the use of this software:

• First, you must turn in Portable Document Format (PDF) files. This is not a major restriction, as all Mac
OS X programs can print to PDF files, pdflatex can be used to create PDF from LaTeX files (which is how
I create PDF files on a linux machine), Acrobat Distiller is installed on all computers in UCSC instructional
computing labs, and even Microsoft Word can create PDF.

• Second, all peer-editing must be on on-line. This is not quite as easy as marking up a piece of paper, but
getting the comments back to the original author in a readable form is easier. In the current system, checking
out a document for peer-editing prevents anyone else from editing that document, so be prompt about checking
stuff back in!

7

• Third, you must have Acrobat (not just Acrobat Reader) to mark up the documents that you will do peer-
editing on. Again, all the computers in the instructional computing labs have Acrobat installed, and you can
buy it for your own machine at an “educational discount” at the bookstore (unfortunately, Acrobat does not
run under linux).

Acrobat has an awkward and unintuitive user interface—you’ll mainly be using the markup tools: Note,
Highlight, Strikeout, Underline, which are not too hard to figure out. There is no easy way in Acrobat to use
standard manuscript markup symbols (a disgrace for a tool whose main justification is allowing markup).

Please remember when using Acrobat to go to the general preferences and set the identity to being your collage
user id, so that the “Note” tool will have the correct id at the top.

• Fourth, deadlines are enforced by machine, and it is very, very difficult in the Collage system to make exceptions
(that may change as the software is improved). Don’t miss the deadlines as we will be very reluctant to do
anything special for you. In the event of major server failures, we will move deadlines for the whole class.

• Fifth, to be able to submit papers and do peer-editing, you must have the passphrase mentioned in class. Make
sure that you get your “collage” account set up well before the due date of the first assignment, or you could
run into trouble.

Here are the steps for getting started on peer editing:

1. Create a Collage account for yourself at
http://www.collage.soe.ucsc.edu/StudentHomePage.htm
You only need to create this account once.
You will need to have a peer-editing userid. This can be any sort of id and need not be traceable back to
your real id (except by the instructor and TAs). If you want other students to know who you are or be
able to communicate with you outside the peer-editing, you should use your CATS userid. If you want to
do the peer-editing somewhat anonymously, use a new id.

2. Log on (again at http://www.collage.soe.ucsc.edu/StudentHomePage.htm)
You will need to log on before doing anything on each peer-editing session.

3. Sign on to the class. You will need the following information:
Class Call Number: 185
Department: CMPE
Term: Winter
Year: 2003
The needed passphrase will be given out in class. You only need to join the class once.

4. Now you can access the class web page from the student home page. From here you can submit your
assignments (uploading PDF files), do peer-editing (download a fellow student’s file, mark it up, and
upload the marked up version), view your files that have been peer-edited or graded, and so forth.

You do not need to memorize, bookmark, or copy the long URLs—you can get to everything within a few
button clicks from the Collage main page at http://www.collage.soe.ucsc.edu.

• Sixth, online peer-editing is pretty much a one-way communication. You don’t enter into a dialog with the
author—you simply report your observations and make your suggestions. It is up to the author to decide what
to do with your comments, and they can’t easily ask you for clarifications—so make your comments crystal
clear.

By the way, the collage software checks that the main body of the text has not been altered by the markup—you
can add notes, highlighting, and so forth, but do not edit the text itself (stay away from the Text Select tool).

8

Chapter 2

Intake Survey

2.1 Purpose of the intake survey

This assignment will not be graded or returned to you, but we’ll discuss the survey results in the next class. The
survey’s purpose is two-fold: to give us some statistical information about the composition of the class and to let us
know early who will need special help to get through the class.

2.2 Pre-requisite verification

If you do not have the pre-requisites for CMPE 185 (or if the registrar can’t figure out that you have the pre-
requisites), you have to get a permission code from the instructor in order to register. For our benefit, we’d also like
to know exactly how everyone meets the requirements. Please answer these questions:

• How did you fulfill the Subject A (the high-school writing requirement) requirement? (test in high school,
transfer credit from elsewhere, test at UCSC) If you haven’t fulfilled the Subject A requirement, you may not
take this class.

• How have you fulfilled the general-education code C requirement? (Normally fulfilled by taking Writing 1 at
UCSC, by transfer credit, or by exam.)

• Do you have reading knowledge of C? What verification can you offer? (Note: most programmers who have
learned a block-structured language such as java, pascal, or algol have a reading knowledges of C at the level
required for this class. You must be able to understand a simple recursive program.)

• Have you taken CMP 16 (Applied Discrete Math) or CMP 12B (second programming course)? If not, how can
you show that you are familiar with induction and recursion?

2.3 Language background

Please write two paragraphs: one about your language background, and one about your writing experience and
ability as you understand them. Self-knowledge about your own writing will be a constant theme in this class, and it
begins here. Here are some questions to help you focus your paragraphs (don’t answer these questions in order—write
decently structured paragraphs):

What is your native language? (If Chinese, which language?) What other languages do you speak? What
languages are spoken in your home and in the community where you grew up? If English is not your native language,
how long have you been using English? Where did you learn English? How much of your formal education has been
in English?

Do you like to write? What writing instruction have you had before? How much do you write for other courses,
for work, or for pleasure? What process do you use when writing long reports? What kinds of writing do you do
best? worst? What has been your experience with writing tutors? What kinds of improvement have you seen in

9

your own writing in the past two or three years? If there has been no improvement that you know of, in what ways
do you think your skills have gone downhill?

10

Chapter 3

Job application letter and résumé

3.1 Goals—audience assessment and letter writing

This assignment has two major goals: learning to assess your audience, and learning to write and format an effective
job application letter and résumé. Most of this assignment sheet describes the correct content and style for an
effective application letter and résumé.

In preparation for this assignment, read Chapter 3 (Identifying Audiences and Purposes) and Chapter 10 (Résumés
and Job Letters) in Huckin and Olsen [HO91]. This assignment is an exercise in assessing your audience, and finding
the appropriate means to address it. These chapters are the background for the lecture and discussion related to
this assignment, so read them, even if you think you already know how to do this kind of thing.

The point is not just a good letter and résumé, but, much more importantly, how to write to the right audience.
The letter and résumé you will write are simply a practical exercise for learning something about the general problem
of audience assessment.

Select a standard letter format that seems appropriate to you from the examples in Huckin and Olsen, keeping
in mind the criteria and range of possibilities they suggest. The letter must be pleasing to the eye—not cramped
and crowded-looking. It must be easy and quick to read.

Format is even more important in a résumé, because it has to present a lot of information in a easy-to-read
form, leave the reader feeling good about the writer, and fit on one page. Again, Huckin and Olsen offer a range of
examples here, designed for particular situations. Bear in mind that there is no standard formula, but a range of
problems and possibilities, depending on the job you are applying for and your own background and experience.

3.2 Audience assessment

3.2.1 Mass-mailed résumés versus tailored job letters

Originally, a résumé was meant to be directed to no particular employer, unlike the job letter. However, as time has
gone by, résumés have been designed more and more to persuade a particular employer. The basic principle is as
follows: if you are sending your résumé with a job letter in application for a particular job which you know you really
want and have a good chance for, then by all means design your résumé to appeal to that particular prospective
employer.

There is another use for résumés: sending one with a letter of inquiry (an all-purpose job application letter),
when you are writing to many companies in hopes of locating a job possibility. The rate of response in an operation
like this is about like that of most direct mail solicitation: about 1%–3%, if you have a properly selected mailing list.
Consequently, it is important not to invest very much time in sending out résumés blind, since the rate of return is
very low.

The simplest solution to the low return rate (and in part the cause of it) is word-processing. With a computer,
it is very simple to maintain a full, well-written résumé, and a nice, well-written letter of inquiry, and whenever you
want to send a batch of résumés out, print what you need and send them. This doesn’t involve much investment in
time, except for the initial writing.

11

Once the full résumé is written you may do something else with it: make a copy and then edit and modify it
to suit an application for a particular job. When applying for a particular job, always write a new job application
letter, perhaps after consulting copies of old ones for ideas.

3.2.2 Finding an employment possibility

First, find an actual employment advertisement for a job that interests you and for which you are qualified (or will be
when you graduate, if you are graduating this year) from the newspaper, a recruitment notice at the Career Planning
Center, or other source.

• You must turn in a copy of the ad or notice with your letter.

3.2.3 Doing the background research

Next, find out something about the company. Significant data include the size, product or service offered, future
plans, and so forth. Use personal contacts if you know someone who works for the company: otherwise use reference
materials in the library. McHenry Library has directories that give information about local employers. Ask at the
reference desk. Don’t be shy about this! You may show them this assignment sheet if you don’t know what to ask.

You may also call the Personnel Office of the company you are interested in and ask for information. Sometimes
this works, and sometimes it doesn’t (the company may be too small to have a Personnel Office), but it is often
worth trying. Know what you want to ask before you call—write out questions if that will help you remember when
you’re nervous. Base your first questions on the job advertisement, and follow up with more general questions. Keep
notes of what you found out, and where you found it.

• You must turn these notes in, too.

3.3 Writing process—letter writing

3.3.1 Getting started

Now you are in a position to start a draft of the letter. You might begin by making two short lists that answer the
following questions:

• What do I have to offer them?

• What do they have to offer me?

Don’t be alarmed if all you have to offer is a moderately good grade-point average from a decent university in the
right major, and all they have to offer is a reasonable salary and a short commute—but try to pick a job that offers
you more than that: experience in an area of your field that you are interested in. And even a short commute can
be transformed into “wanting to work in your own community for a company that you already know and respect.”

First, the general résumé: get together the necessary information. This includes dates, names and locations of
companies you have worked for, organizations you have belonged to, colleges and universities you have attended,
special honors or scholarships for academic achievement or merit, and so forth. You may want to include other
categories, but if you do, don’t call them “Other”—that makes them sound unimportant. You can call the category
“Skills” or the like.

Having this information all together in a general résumé will be handy for you in the future; it is surprising how
easy it is to forget or lose information of this kind. For those of you who will be needing security clearances from
the government in the future, probably about half of you, it is important to keep a file containing every address you
have ever lived at, as well as the particulars of all previous employment.

3.3.2 Doing this assignment

Consequently, for this assignment, you will actually be writing two résumés: the first one a full, general one that has
everything in it that normally appears in résumés—education, job history, and so on—and the second one tailored
to the specific job you are writing the job letter for.

12

3.3.3 Doing the working draft

Keeping in mind what you learned in class about writing job letters, try writing a draft of your letter. Be as specific
and detailed, in relevant areas, as possible. Use your lists as a rough outline.

If it helps you to get organized, you may turn your lists into a more formal outline. Remember that you needn’t
tell your whole life story in the letter—the people who read these read many, many of them, and they appreciate
people who stick to the point and only write about relevant topics. Unless they relate directly to the job, your
hobbies are best left out. “I love sports . . . ” is not of interest to most employers you will be applying to.

Remember that in a job letter you are asking for an interview, not for a job. Normally no one will hire you sight
unseen, on the basis of a letter and résumé.

When you’ve completed this working draft, set it aside for a few hours and do something else—leaving it overnight
is best, if possible. The next day, look it over. You will probably find some things you want to change; perhaps you
may have thought of things you want to add. Make these changes and additions right on your working draft. When
typed, your letter should fit comfortably on one page. This is your first draft.

3.3.4 Experimenting with formatting

Use the writing of the general résumé as a chance to experiment with formatting: we will not be concerned with
grading your general résumé so far as formatting goes. We are mostly concerned that it be a complete record of any
information you might need to write any other résumé. Do organize it in reverse chronological order, the standard
format for any résumé, since otherwise it will be difficult for you to use it to construct the résumé to go with your
job letter. Educational history goes into reverse chronological order, as well as job history. If you are working on a
word processor, print out a version of this résumé to look at.

3.3.5 Tailoring your résumé

This next step is the core of the résumé assignment. In this assignment, what matters is tailoring the information
you have available for the particular job you are applying for. Refer to Chapter 10 in Huckin and Olsen [HO91] for
further guidance in tailoring.

When you have a working draft of the tailored version, either print out a copy, if you’re using a word processor,
or else type it to see what it looks like, and modify it if necessary. Formatting is very important in this version. A
well-done résumé should get you a job when it’s upside-down. That means it should look sharp, as well as containing
the relevant information. This version is the first draft of your résumé.

Do not use many fonts or particularly unusual ones. A well-tailored résumé is like a well-tailored business
suit, it is subtly elegant, not garish.

3.3.6 Preparing for peer editing

Read Testing and Revising in the text [HO91, Chapter 7].
Before turning in your first draft, bring your first draft of your letter, your tailored résumé, and your general

résumé to class, so your classmates may read them.

Be sure to bring the job advertisement and the information you collected.

We will do some looking at general and tailored résumés in class, to get you prepared for the peer-editing you will
do online. After you turn in your first draft, you should request a copy of someone else’s draft to edit. After you have
checked out the PDF file from the web site, use Acrobat (available on the instructional computing lab machines) to
add mark up the text, adding comments to help the author improve without rewriting the text for them.

3.4 Things to keep in mind for editing

Your letter, along with your résumé, is meant to persuade your prospective employer to grant you an interview.
These are the main points your letter should conform to:

1. It should be neat.

13

2. It should contain specific information about you.

3. It should show that you know something about the company and the job.

4. It should sound confident, but not arrogant.

The first three generally give no problems if you have done your background research and are applying for a job
suited to your education and experience. Point 4 is about tone. How do you set a confident tone in your writing?
Briefly, give information about yourself in a brisk, straightforward way, without a lot of qualification: that is, do
say things like, “I believe my education and experience suit me for the position,” not “I feel I probably meet the
qualifications for the position,” and not, “I am the one and only candidate for the job.”

3.4.1 Understanding confidence in its cultural context

There is another issue involved in writing a confident job letter, one of importance to students who have learned to
write letters in other languages in their culture of origin. Displaying confidence in writing is largely a traditional
American virtue, originally mostly a male virtue. It is linked with other virtues and values, such as ambition,
mobility, and individuality. Other cultures and societies value different virtues in this context: explicitly mentioned
sincerity and respect in many Asian cultures, for instance.

There is also a contrast between cultures in how these valued virtues are conveyed in writing. In many cultures, it
is expected that one will say in so many words, for instance, “I am a sincere person and very hard working,” because
if you don’t say it, your prospective employer will wonder if you know what you are getting into, and also if you were
brought up properly. American culture, on the other hand, is very indirect and circumspect in a situation such as
a job letter: one does not say right out something like “I am a very confident person.” Rather, one is supposed to
write something that will, through the tone of the writing, encourage the reader to conclude that you are confident.

3.4.2 Including a statement of an objective or goal

This is a purely optional item. If you use it, it serves as the first line of the résumé (after your name and address).
State your future aspirations that might be seen as a reasonable progression from the position you are applying for.
Keep this short—one sentence at most. Be specific and accurate; this is why it matters to know something about
the job you are applying for and what it can lead to.

3.4.3 Including other categories

Hobbies, sports, and other extraneous activities: be very careful of this category—it is often irrelevant, and therefore
a waste of the reader’s time. When is a recreational pastime relevant? Suppose you are applying for a job at a firm
in Colorado, and you are a dedicated mountain climber and hiker. Then it is relevant, because it will mean to your
prospective employer that you will be happy in the area and likely to stay with the company. Don’t, however, make
it sound like your interest in climbing is the only reason that you are interested in the job.

3.5 The final draft

Rewrite your letter, making any changes you see as necessary, and incorporating any suggestions your classmates
made which you feel work. Don’t be afraid to make major changes. Editing is a vital part of writing. Editing may
be major reconstructive surgery, or minor cosmetic changes. Make your letter the best it can be by making as many
changes as you think it needs.

The final draft must be typed perfectly, just as you would prepare an actual letter to send for a real job application.
You are selling yourself to this company, and this letter is your product packaging. Check your spelling carefully! (Ad
is not the same as add, greater than is not the same as greater then,) Typos or any other sloppiness are a sign
that you have not proofread carefully, giving the impression that you are careless. No one wants careless employees.

14

3.5.1 Deciding about length

One page is appropriate for your tailored résumé, unless you have already had a substantial career (10 or 20 years
in the industry), and even then, try to keep it as short as possible. One exception is academic jobs—the academic
CV (curriculum vitæ) is expected to be a cumulative list of all your publications and all your teaching or research
employment. It may run for 10 or 20 pages.

3.5.2 Neatness counts

There should not be a single typo in your letter or your résumé. It should be neat, have nice margins,
and be printed on clean white or off-white paper (pink, blue, orange and so forth do draw attention—generally
negative attention). We will accept résumés printed on a dot matrix printer; however be aware that employers
strongly prefer to see letter-quality printing in a résumé, because it’s so much easier to read.

There is no need to type the word résumé at the top—it’s obvious from the format what it is—just start with
your name.

3.5.3 Hints

Does the résumé list languages spoken besides English? With the current emphasis on global markets, knowledge of
other languages can be a significant asset.

Does the application letter mention which issue of the newspaper or journal contained the advertisement being
answered? Mis-understandings about what position you’re applying for can cost you a job interview.

Professionals should probably not include typing speed on their résumés, to avoid being stereotyped as typists.
Typing speed should only be included in résumés for jobs in which keyboard skills are important.

Are addresses in standard format for the United States (or for the country mentioned in the address)? In this
country the standard format is

Personal Name
Company name
mail-stop
number street
city, ST zip code
USA

It is customary to put two or three spaces before the zip code, to make it easier for mail sorters to find, and to use
the official two-letter Post Office abbreviations for state names.

Phone number formats are different in different parts of the world—try to be clear when applying for a job at an
international company by including the country code in your phone number. Luckily for US residents, our country
code is very simple, just the number 1. I prefer a format that includes the full phone number that works from
anywhere in the world: 1-831-459-4250. (Note: you have to dial an international access code in most countries before
the country code, but that is specific to the local phone system, so should not be included in your résumé.)

Be consistent in your level of formality. Thank you is a neutral level, Thank you very much is more formal, Thanks
is informal. If you mix them up, you get Thanks very much, which sounds insulting.

Watch the word choices! Change utilize to use and due to to because. Try to reduce the number of “noise” words
in your writing—phrases like the fact that are immediately suspect. Most UNIX systems have a program called
diction that checks for some commonly mis-used phrases. Similar programs exist for most personal computers.

One trap for both native and non-native speakers is the tendency for some verb-particle pairs to be separate when
used as verbs, but combined when used as nouns. For example, you can lay out a layout or set up a setup. Try not
to mix up the nouns and verbs (the mixup would be embarrassing).

Watch out for the suffix -type used as a separate word. You can’t have an IBM type PC, but you can have an
IBM-type PC. Even if you get the hyphenation right, the suffix -type is grossly overused—try to replace it (IBM-
compatible PC). The word type is also over-used—you can often remove it without loss. For example, you can replace
what type of skills by what skills.

Watch out for noun clusters! (See http://www.soe.ucsc.edu/˜karplus/185/noun-cluster.html for examples.) You
can often make a an ugly string of nouns much more readable by grouping words together with hyphens. Huckin and

15

Olsen mention this on page 659 (second edition), but do not give a good heuristic for determining when to insert the
hyphens. The simplest rule is to fully hyphenate any noun phrase that is used like an adjective as a modifier inside
another noun phrase. For example, computers with eight bits are 8-bit computers, part-time workers work part time,
and just-in-time delivery is not a moment too soon. If you have more than one level of nesting, there is no way to
make the noun phrase clear without extra information. For example, is just-in-time inventory control talking about
technique for managing inventory so that it arrives at the right time or a control system that was finally delivered?

Watch the commas and semicolons! When you make a list of three or more items, separate them with commas,
including a comma before the last conjunction. (Note: the British style for punctuation does not have a comma
before the conjunction, but the American style is more consistent and allows conjunctions within list items, and so
we prefer it.) If your list items include commas, you may have to switch to semicolons as list separators.

Here’s a tiny bit of typographic lore that will help out those of you who are obsessed with details. There are four
different symbols that are commonly typed with the - key of a typewriter.1

1. Most computer people think first of the minus-sign, used for indicating subtraction or negation (for example,
x− y or −1). This is conventionally typed with a single -.

2. The second most common symbol is the hyphen, used to join compound words together, and to indicate that
a word continues across a line break. If you use a word processor, you should never type a hyphen to fix a bad
line break, as subsequent editing or reformatting may move that hyphen to the middle of a line.

3. Somewhat longer than a hyphen is an en-dash (–), used to indicate ranges (for example, 1988–89 or pages
1–100). En-dashes are usually typed with one -, but most systems that let you change fonts support a separate
en-dash. For example, in TeX [Knu84], you use -- and in most Macintosh fonts you can use option--.

4. The longest dash is the em-dash, which is used as punctuation between clauses of a sentence, to indicate sudden
changes of thought. These dashes are usually typed as -- with no surrounding spaces, but in TeX you use ---
and in Macintosh fonts you can use shift-option--. Be careful not to use too many dashes—they make it look
like you can’t keep to one subject for very long.

See Section A.5.1 for more information about hyphens and dashes.
Even capitalization can make a difference. If you are applying for a job at Apple Computer, make sure you know

the difference between a Macintosh (the computer) and a MacIntosh (a Scotsman from a particular family).

3.6 What to turn in

Turn in

• the announcement of job you are applying for,

• the notes you took in researching the job,

• the final draft of job application letter,

• the final draft of tailored résumé,

• a readable draft of general résumé,

• the first draft of job application letter, and

• the first draft of tailored résumé.

1This section looks fine in the PDF output, but terrible in HTML, since HTML does not support the different types of dashes.

16

Chapter 4

Hiring Recommendation Memo

4.1 Goals—reading for content, writing memos

The purpose of this assignment is for you to put yourself on the other side of the job application process. Instead of
acting as job applicant, you will pretend that you are the person who requested the new employee.

You have two goals. The first is to assess honestly the applicant’s presentation of her or his qualifications for
the position she or he is applying for. The second is to present your conclusions in a persuasive memo, either
recommending that the applicant be granted an interview, or that the applicant be turned down.

Bear in mind that your memo is not a hiring recommendation but an interview recommendation. If you recom-
mend an interview, the memo should be a guide to the interviewer, who may not be you, about what the candidate
might be asked in the initial interview. The initial interview is designed to confirm relevant knowledge and experience
for the position. You, the Senior Engineer, are the best judge of what those things are. In short, the reasons you
give for interviewing the candidate are the things the candidate will be asked to talk about.

4.2 Audience assessment—Personnel Director

This memo will be addressed to the Personnel Director of the company (us) from the Senior Engineer (you). Write
it as a memo with proper formatting [HO91, Chapters 12 and 13]. You will need the first four items of the normal
heading, as well as the optional Enclosure:, since you will be attaching your memo to the application and résumé.

You must use your imagination for this assignment, putting yourself into the position of a Senior Engineer who
has just received an application from someone you don’t know. Therefore, even if the résumé you are reviewing is
from your lifelong best friend, don’t refer to her or him by first name! For this assignment, you don’t know each
other.

4.3 Writing process—persuasive writing

4.3.1 How to go about persuading the personnel director

First, decide whether to grant an interview for the position. Try to be as realistic as possible in your evaluation;
base your decision on a careful study of the job advertisement, on how closely the applicant’s qualifications match,
and on how well the job letter and résumé are written. Don’t worry if you want to recommend that the applicant
not be granted an interview: you will turn this memo directly in to us, and he or she need never see it. (Of course,
most students do a good enough job of selecting job openings that they are well-qualified for the job—don’t be
unreasonably picky.)

Start by saying whether you are recommending that this applicant be interviewed for the position or not—the
most important information should always appear at the beginning of a memo, and of most technical documents.
The applicant’s name should appear immediately, both in the Subject line and in the first sentence of the body.

If you decide the person deserves an interview, persuade your personnel director to call her/him in. The tone
can be very formal: “We should grant an interview to Joseph P. Undergraduate for the position of technician

17

in underground wiring.” Or you can be very casual: “We’ve got a live one for digging ditches! Check out Joe
Undergrad.” You’ll probably be most effective if you match your style to the Personnel Director’s tastes. If you are
not sure, it is better to be a bit too formal.

Remember, you will be attaching your memo to the applicant’s letter and résumé and sending the packet to the
Personnel Director. The first thing she will read is your memo. She will know nothing about the applicant, other
than what you tell her. Therefore, be specific and detailed. Don’t say something like “Her summer at Lockheed
qualifies her” Say rather, “She designed voltmeters at Lockheed, which qualifies her to work on”

Also, make it clear what position the applicant is applying for—the company may have more than one position
open. Present your applicant’s strongest qualifications first—remember, you are selling this person to the director.
If you have reservations (“This person’s qualifications are excellent, but her résumé was sloppy, so she may be a
careless worker . . . ”) put them last. Emphasize the positive.

If you decide to recommend that the person be turned down, state all the negative things about the application
first. Then, if you are unsure, and want to say some positive things, stick them at the end. Remember, the first
impression of the person reading your memo will be based on what you say first. It’s very startling to read a memo
that begins with positive statements about an applicant, and ends with a recommendation not to interview.

If you want to soften the negative tone, you can start with something like “Although Ima Genius has excellent
grades, she has no experience or training in computer engineering” The word although warns the reader that
what follows is not evidence for the case you are making.

Remember that you are only recommending this person for an interview, not for the job itself. Don’t say “We
should hire Joe Wong as”

4.3.2 Memo format versus letter format

Memos are usually formatted differently from letters—mainly because doing so is traditional, but also to keep people
from accidentally mailing out internal memos.

One difference is that memos usually do not indent anything—everything starts at the left margin. However,
many businesses have adopted a “block” style for their letters, which also has no indenting.

Memos usually have four or five fields at the beginning:

To: The name and mail-stop of the recipient.

From: The name and mail-stop of the sender.

Date: The date and, often, the time the memo was sent.

Subject: A concise summary of the memo (for example, Interview John Doe as a tech writer). Making a subject
line both concise and specific is an art—practice it!

Don’t assume that the reader has read the subject line. Repeat anything important in the first sentence or two
of the body of the memo.

Re: Re is the Latin ablative form of res and means referring to. It is used to refer to a previous document or file.
Some people mistakenly use Re: for Subject:—it may be used in addition to a subject line, but should not
replace it. For example,

Subject: Interview Jane Smith for project manager
Re: Job opening 89-103, application 89-1139

The way the UNIX mail program builds Subject: lines for replies contributes to the misuse of Re:.

Cc: A list of additional recipients. The letters stand for carbon copy, even though almost everyone uses photocopies.
On a letter the list of names goes at the end, but memos put everything at the beginning.

Enclosure: A list of attached documents. You should have this filed for your memo, as you will be attaching a
résumé and job application letter.

18

You must include From, To, Date, and Subject fields, but Re, Cc, and Enclosure fields are only included when
they are needed.

No salutation or other greeting is needed in a memo—get to business right away. Similarly, no closing is needed—
say what you need to and stop.

In many businesses, it is common to initial memos next to your name in the From field, rather than signing at
the bottom. Either place is OK, but you must initial or sign a memo, to show that it is the final draft, and not an
earlier one that needed to be changed. Dr. Karplus prefers signing at the bottom, to indicate that the memo has
ended, and that there are no more pages, but Mr. Scripture prefers the more traditional initials by the From field.

4.3.3 Writing in class

You will write this memo in class and turn it in immediately. Plan what you want to write, make yourself an outline
if you like, then write the memo as neatly as possible. You may make a second draft if you have time.

The only preparation you should do ahead of time is to read this assignment and the appropriate chapters of the
book, and have your own job letter and résumé ready for others to read. Do not try to write this memo before class!

19

Chapter 5

Oral Reports

5.1 Goals—clear oral presentation

Oral reports are often a form of advertising—either internally, within a company, where people from different de-
partments see projects displayed by their creators, or externally, where a company presents something to people
from outside the company in an attempt to sell it. Oral presentations are often an opportunity for people who read
your reports—senior engineers, managers, sales staff—to see who you are and how you work. This means they’re as
interested in you, and how you handle yourself, as in the material you present. Therefore, present a problem and a
solution with just enough technical detail to make your point. What you want to do is let these people know how
competent you are, and what sorts of work you do. You will be showing them your thinking style, your working pat-
terns, and your problem-solving ability. With this in mind, try to put on the most professional, persuasive, confident
display of your project that you can.

5.2 Meeting the expectations of the audience

Your oral report is a presentation of the material that you know well—in the past, this has generally been related to
the final written report, but the growth of the class has made scheduling all the oral reports at the end of the quarter
rather difficult. Instead, we will do three 5-minute oral reports at the beginning of (almost) every class. There will
be a sign-up sheet for presentation slots.

You will have five minutes to present your report (again, the increase in size of the class has necessitated shrinking
the time per presentation). You may use less time, but you may not exceed the limit. In industry, oral reports are
often given before consultants, who charge extravagantly for their time; therefore, you must learn to budget the time
allotted you and not exceed it. You will know in advance precisely when, day and time, to the minute, you will be
expected to give your report. Be ready to go as soon as you stand up—don’t waste time with preparatory goofing
around, as the clock starts ticking even if you aren’t ready.

Rehearse your talk ahead of time. Practice turning transparencies, advancing PowerPoint slides, writing on the
blackboard, or using whatever visual aids you choose.

5.3 Choosing your topic

In choosing your topic for your oral presentation, pick some technical issue or problem with which you are already to
some degree familiar, and would like to learn more about. Picking some topic about which you are largely ignorant
will make it impossible for you to do a good job with this assignment. Although your talk can be on the same topic
as your final project, it need not be. We would like for the talk to involve some library research, even if your final
project is of a type that does not require it.

We will also discuss appropriate topics in class.

20

5.4 Writing process—finding, organizing, composing

The process of writing this assignment can be broken down into four steps: the library search, organizing the
information, preparing the visual aids, and practicing the talk. These steps are similar to those used in preparing
any technical presentation: oral, written, web-based, poster, or whatever. You always have to collect your facts,
organize them, order them, and present them.

5.4.1 Library search

The library search itself has three steps:

1. The topic statement. Write a short, quick topic statement that explains what you want to research, and what
you would like to know about it. Be as specific as you can, but don’t labor over punctuation, sentence structure,
and paragraph structure. It is meant to get you started, and will be completely re-done later, or perhaps even
thrown out. Mostly you are trying to generate the key words you will need for on-line data base searches and
for index use. A couple of paragraphs should be sufficient.

Be careful about the breadth of your topic. If you choose too narrow a topic, you’ll have difficulty finding
information. If you choose too broad a topic, you’ll never be able to organize the overwhelming material well
enough to say anything. You should probably start with a slightly broader topic, and focus on some narrower
part once you have found some material.

2. The library. Take your topic statement and head for the library, and use your key words (or key terms) in the
manner described by the reference librarian in the guest lecture. Be sure to take good notes on this lecture—it
is a key part of this assignment.

Don’t be afraid of reference librarians if you get completely lost in the library. They have the jobs they have
because they like working with students, and really do want to help you learn how to use the resources the
library offers. They have more time available in the morning, however, than they do late in the afternoon,
when most students seem to descend on them in desperation, so it’s wiser to get started early in the day.

If you want to use an on-line index, try the Current Contents, INSPEC, or Computer Articles databases on
MELVYL. The MELVYL catalog can be reached from almost any machine on the Internet (you can start from
the UCSC library at http://cruzcat.ucsc.edu/), but you need to set up an http proxy if you are not coming from
the ucsc.edu domain to get access to the specialized databases. See http://library.ucsc.edu/services/sluglink/
for more information about connecting from a non-UCSC computer.

Try to find three to five articles relevant to your topic—don’t pick the first three you find, however. Find the
most relevant and useful ones. Be sure you can read and understand the articles you choose!

3. Photocopying. Photocopy the articles you intend to use, or the parts you intend to use, if the article is
excessively long.

Whenever you photocopy an article, make sure you have written on the copy a complete citation for the article,
so that you can attribute quotes or paraphrases. It is very frustrating to have a perfect quote, and not be able
to use it because you have forgotten where you found it. Many journals and conference proceedings make this
easier, by providing adequate citation information in the headers and footers of each page. A lot of journals
are now available electronically, which allows you to print out clean copies with citation information—better
than you can photocopy from the paper journals.

5.4.2 Organizing the information

1. Deciding what to look for. First, make some preliminary decisions about different aspects of your topic. You
will need to decide what is most important in a talk—there is much less room in a talk than in a paper. Make
a short list of these subtopics: five to seven is likely to be too many. You will need to have read through all
your articles in order to make these decisions. You may change some of these subtopics later, as you go on.
Some of them, at least, will be the same or similar to the key words and terms you used in your library search.

21

2. Locating the needed information. How you do the next step is pretty much up to you. You need to go through
each article and find the information relevant to your subtopics. Here follow some practical suggestions for
doing this. Taking notes from each article is the most traditional way, and was the way everyone did library
research before the invention and general proliferation of photocopy machines. Copious note taking is still a
very good way to proceed if the material is very new to you, since it helps you learn it.
Since you have photocopies, however, you may, rather than taking extensive notes, simply mark up the article
to locate all the information you intend to use from it. There are less and more complex ways of doing this,
ranging from penciled marginal marks to different-colored highlighting for each subtopic. Work something out
for yourself.

3. Ordering your information. When you have located all the information relevant to your subtopics, you are
ready for the next steps.
First, note any major contradictory factual or theoretical claims. You will need to address any area like this
very carefully, comparing the different claims carefully and faithfully. You don’t have to try to decide who is
right; you’re not an expert. What you need to do is get across to your reader what the different prevailing
opinions are.
Second, find the clearest explanations for each subtopic, by comparing similar parts for each subtopic from
each article.
Third, experiment (on paper) with different arrangements of the information you have found, using keywords
or icons to stand for the different ideas. When you have found one that seems sensible to you, you are ready
to begin preparing the talk.

5.4.3 Preparing your visual aids

Read Chapter 19 (Oral Presentations) of Huckin and Olsen. They give some good basic advice on planning and
presenting an oral report.

Oral reports are not the best nor the easiest way to present technical information, because the information is
difficult to assimilate, often full of statistics, numbers, equations, and so forth, which are hard to follow when given
verbally. Therefore, using transparencies, charts, tables, graphs, diagrams, and illustrations can help a great deal.
Don’t hesitate to use them.

Overhead projector transparencies used to be the commonest way in computer science and computer engineering
for giving presentations to audiences with fewer than 100 people. There will be an overhead projector available
in the classroom for your use. Nowadays, computer presentation using PowerPoint, Acrobat reader, or some other
presentation software is popular, though the failure rate of laptop/projector combinations at conferences is still quite
high, so savvy presenters usually carry overheads as a backup. For large audiences, computer projection has become
the industry standard, and high-power overhead projectors are no longer commonly found at conference centers and
hotels.

Here are some tips on using visual aids and notes:

• When using transparencies, don’t leave a blank screen, don’t flip back and forth between transparencies, and
don’t cover up substantial parts of your transparency with opaque objects.

• When using computer projection, don’t waste a lot of time with gratuitous animation—reserve it for places
where it will help you make a point more clearly. Learn the idiosyncrasies of your presentation software—I’ve
gotten very tired of presenters saying “oops” as they accidentally advance in PowerPoint when they didn’t
mean to.

• You can point to important things either on the screen (by standing to one side and pointing with your arm or
a long stick), or on the transparency (by standing beside the projector and using a thin opaque object, such
as a pencil). In either case, be careful that you do not block the image on the screen.
Some people use laser pointers, which makes for a very lightweight pointing device that greatly magnifies hand
tremor if you are nervous. The laser pointers are also dangerous to people’s eyes if you accidentally point one
at the audience—if you are going use a laser pointer, practice holding it steady and not waving it around.
When there is no laser pointer, people using computer presentation often try to use the mouse and cursor to
point with. This can work well, but seems to be a major cause of accidental advances in PowerPoint.

22

• You may hand-write your transparencies, photocopy a black-and-white original onto plastic, or do a computer
presentation. In any case, you should not have more than 10 lines of text on each slide. You should use
24-point fonts (1/3” high or larger if you are writing by hand) for standard text, and 18-point fonts for “fine-
print”. Anything smaller will not be readable in the back of the room. A handy guide is that the unenlarged
transparency or laptop screen should be readable from ten feet away. If you are using 35mm slides (an obsolete
technology now, but still popular with biologists), the equivalent rule of thumb is that the slide should be
readable at arm’s length. Use the most readable fonts you can find, not fancy, decorative fonts.

• Many speakers like to write on their transparencies as they talk, highlighting the points dynamically. If you
plan to write on a transparency produced by photocopying, wipe it off with a damp rag first. This wipes off
any oily residue from the photocopying process, and eliminates the static that can cause transparencies to be
difficult to separate.

• The usual rule of thumb for transparencies is that you should talk about each one for one to two minutes.
That means that you should have two to four transparencies for a 5-minute talk, not counting the title-page
transparency (if you have one).

• You may use notes to talk from, but don’t stand up, bury your face in your notes, and read them verbatim.
Write your notes in outline form, with just the major points you want to cover listed. If you’re afraid of
forgetting major topics, have something on your transparencies for each one, and use them as your mnemonic
device. Using your transparencies as the notes for your talk reduces your reliance on hand-held notes and
increases the eye contact you have with your audience. It looks much more professional to know your material
well enough not to need a sheaf of notes.

• It often helps to have a transparency near the beginning that amounts to an outline of your presentation. This
will not only help you stay on track, but it will help your audience follow what you are doing and see where
you are going.

• This assignment is a speech, not an exercise in reading aloud. You should be somewhat spontaneous in your
delivery—the audience will be much more with you if you are. If you’re shy about looking out into the audience,
pick one person to look at. It’s important not to speak to the blackboard, or the door, or the ceiling. If you
look out into the audience, people will feel as if you are really speaking to them, and they will be much more
receptive to what you have to say.

• You aren’t expected to present a lot of data. If someone wants all the data, he or she can read your written
report. You are to give an idea, an overview, of what your project is about in your oral presentation. Be
prepared to answer questions regarding specific data either with a pre-prepared transparency, or with an offer
of a specific time and place when you will provide the data.

• If your report involves interpreting some complex set of data that your audience needs to see, have it ready on
a handout that you may distribute, rather than writing it on the board, or expecting your audience to read
it from a displayed table. Graphs are much easier to comprehend at a glance than tables, so you can usually
present them on transparencies without hardcopy.

5.4.4 Practicing Your Presentation

Practice presenting your report at least once before presenting it in class. Time your talk so you know exactly how
much material you can fit in, and how to pace the material. Don’t just read your notes to yourself—stand up and
give the talk the way you will to the class. You will find it very difficult to speak clearly at your normal silent reading
speed. Nervousness may make you speak faster or slower than in your rehearsal. Be prepared with a little extra
material, in case you speak too fast.

You will probably find, if you are like most people, that you have too much material. If possible, practice
presenting your report in the room where you are going to present it formally. Learn to fill the room with your voice,
as described in lecture. Concentrating on the sound of your voice will also help you not to be nervous when you are
presenting the report. I find it annoying at professional conferences when people get up and mumble inaudibly into
a microphone in a room small enough that they shouldn’t even need a mic. Learn to speak loudly and clearly—it is
a very useful skill that is easily acquired. Here are some tips for speaking loudly:

23

• Breathe deeply. To be loud it helps to be moving a lot of air. Practice filling your lungs by lowering your
diaphragm (“belly breathing”).

• Face your audience. Sound does not radiate uniformly from all parts of your head—you are much more audible
from directly in front than from the side or back.

• Open you mouth. Although English can be spoken around a clenched jaw (some say English is a pipe-smoker’s
language), it can be spoken loudly and clearly that way.

• Relax your vocal cords by dropping your pitch into the lower part of your register. A lot of people, when
they get nervous, tighten up their vocal cords, resulting in a quiet, somewhat squeaky voice that is harder to
understand. Deliberately drop your pitch into your normal register or slightly lower, to get greater clarity and
volume.

• Practice outside. In an open field with no walls around you to bounce the sound off of, you have to speak louder
to be heard. Practice with a friend—stand about 50 feet apart in an open area and try to have a conversation
or read poetry to each other (not anything private, of course, as everyone around should be able to hear you
clearly).

• Practice inside. When you are in a room, listen for the echoes off the back wall. In a room the size of a normal
classroom, the echo is too soon to be heard as a separate sound, but is experienced as an extra fullness to your
voice. Try adjusting your volume until you can tell whether or not your voice is filling the room—have a friend
sit at the back to give you feedback. When you have a large audience, they will be making some sound, so you
have to be a little bit louder to be heard.

If English is not your native language, and you find speaking without a prepared text difficult, or if you are
overwhelmingly nervous about speaking publicly, it is all right to write your presentation out verbatim and memorize
it. However, you must treat memorizing a report in the same way you would treat memorizing a play script. This
means that you must memorize it with normal pauses, emphasis, and intonation, and take special care not to speak
faster than the normal speech rate. If humanly possible, don’t do your report by memorizing a speech—it is not the
best way. Huckin and Olsen have some advice and exercises for helping non-native speakers with pronunciation and
intonation [HO91, Chapter 38]. Confidence in your understanding of your material, and taking your time will make
up for a lot of awkward English and hyper-nervousness. So will substantial practice presenting your report.

Get enough sleep the night before. I have seen someone present a paper at a professional conference after running
on adrenalin for a few days, then pass out and fall off the platform when he was asked a question.

Above all, remember that in an oral presentation, you must make each major point in several ways. The old
saying about this is, “First you tell ’em what you’re going to tell ’em, then you tell ’em, and then you tell ’em what
you told ’em.” Of course, using exactly the same words each time does not help comprehension—what you are trying
to do is to find the explanation that works for each member of the audience, and different people in the audience
will understand different explanations.

5.5 Evaluation of the presentation—form and content

5.5.1 Form

You will be evaluated on the basis of what may be generally called “professional behavior”. This means being
prepared, being dressed appropriately for your audience, speaking clearly and loudly enough, making eye contact
with your audience and maintaining it, handling questions with grace, using equipment and displays skillfully, and
generally making your audience comfortable.

Note that being dressed appropriately for a presentation to fellow students or engineers is quite different from
being dressed appropriately for a presentation to venture capitalists or the Board of Directors for a large company.
You may choose what style of presentation you wish to give in class, but let us know, so that we may judge it by the
appropriate standards.

24

5.5.2 Content

Content means having a well-organized presentation, presenting enough information to make your point but not
overwhelming your audience with irrelevant detail, and being accurate about what you say. Many speakers, in their
rush to get as much information as possible into their talk, lose their audiences almost immediately, and end up
conveying no useful information. Pace your material to the rate at which your audience can understand it.

Some people have been taught that it helps to “soften up” your audience with a joke. Humor is valuable when
it is relevant, that is, if the point you are trying to make can be illustrated with a short joke, go ahead and use it.
Be careful not to waste any time on irrelevant jokes—you’re not auditioning for a job as a stand-up comic, you are
trying to convey as much information as possible in a short time. Jokes that may offend part of your audience are
strictly forbidden—you can’t convey useful information to people who are angry at you for being an insensitive clod.

5.6 Scheduling the talks

Because class periods are only 70 minutes long, the first person will have to start on time, and we’ll have to keep a
strict schedule. There will be no room for running overtime, and no time for setting up between talks.

Please come every day, even when you are not speaking—on those days you are the audience! Don’t let your
classmates down. We will be especially attentive about attendance during oral presentations.

The best thing is to do your presentation as early as possible, rather than as late as possible—being human, we
tend to judge the presentations against the ones we have heard previously, so we are going to expect more of the
later presentations.

5.7 Note on oral presentations at SIGGRAPH

The following article is a column by Jim Blinn from IEEE Computer Graphics and Applications containing suggestions
about presenting technical material to a large audience [Bli88], reprinted with the permission of the publisher.

Things I Hope Not to See or Hear at SIGGRAPH

No, I’m not going to talk about flying logos or glass balls. I am going to talk about that special form of
performance art known as Giving a Technical Presentation. These ideas apply to speakers in panels and
tutorials as well. I realize that the direct audience for this subject is somewhat small, but others of you might
be able to use this information in your own talks elsewhere. Also, you should expect this from presentations
you hear at SIGGRAPH. SIGGRAPH sends out a lot of stuff about how to prepare visuals, etc. There is no
good excuse for not reading it, although from what I see, not many do. The following ideas are just my own
personal biases. I will phrase many of them as things not to say or do, because let’s face it, it’s a lot easier to
complain.

Talks read verbatim

A technical talk is just one facet of a multimedia event built on your work. An adventure story appears
different in the film version and the book version. Likewise, different things are more appropriate for the
spoken version of your paper than for the printed version. A much more conversational style is best for the
talk. Tell a story about what got you interested in the problem in the first place. Briefly relate some routes
that you tried that turned out to be dead ends. But please don’t read your paper verbatim. We are people
out here in the audience; we’re all your friends; just talk to us. The only exception to this rule is if you are
not a native English speaker. If you are not fluent in English, it is probably best to have your words already
prepared.

25

Illegible slides

The most important part of your talk is the visuals; this is SIGGRAPH after all. I am sometimes amazed
at how many illegible slides are shown, most especially by representatives of organizations (who shall remain
nameless) that sermonize about high-quality imaging. Here are some things that have disturbed me most
about slides I have seen.

Microtext

Many of you are involved in the microcircuit revolution and tend to think this also applies to the text on your
slides. It doesn’t . My personal rule is to put no more than six lines of text on any one slide. And while
you’re at it, use the biggest font you can that will fit on the slide. Six lines of teeny-weeny text with gigantic
borders is still not readable. But, you may ask, what if I have more than six lines? Well, just use more than
one slide. See? Simple. A good check for readability of slides is to hold them at arm’s length and see if they
are still readable1. (That is what I do, and my arms are probably longer than yours.) Believe me, that is how
small they look from the back of the room. In fact, I make all my slides on my animation system, which has
only video resolution. This may seem to be a disadvantage, but it’s not. It forces me to keep the slides simple
enough to be legible from a long distance. One effect of this restriction concerns equations. You simply can’t
have a complex equation on a slide. Even if you shrink its many terms down so they will fit, it will look like
grey noise from the back of the room. Recast your equations into simpler chunks and give each chunk its own
name. Make one master slide with the basic equation in terms of these names. Then make a separate slide
to define each chunk. Don’t put more than one equation on a slide unless it is fantastically necessary. Use
separate slides for each equation to focus attention while you are talking and give you more room for each
one.

Yellow lines on a white background

Another design issue concerns colors and contrast. Your best bet is to use some dark background (like a dark
blue) with very light color text (like white or yellow) on it. In any event the main idea is to keep high contrast
between the text and the background. Even then, I have seen some terrible slides that use black letters on a
white background. Even though the letters were big, the slides were illegible because the lines were too thin.
Light areas seem to expand visually, so dark lines tend to get eaten up by a white background. If you must
use light backgrounds, use a much thicker line width for the dark lines to compensate for this phenomenon.
If you want to emphasize some items on the slide, make them in a lighter color than the rest (not just in a
different color).

The entire text of the talk echoed on slides

The audience is not going to want to read a lot of text while simultaneously trying to pay attention to what
you are saying. Text on slides should consist of just section headings. If you have a section of your talk that
you don’t have any obvious graphics for, don’t feel compelled to put the text you are reading on a slide just to
have something there. The days of silent movies are over. If you must have something, try showing a picture
of a pretty waterfall. And remember, folks, no overhead transparencies allowed. There is a reason for this:
They look terrible no matter what you do.

“I’m sorry these slides are so dark.”

I don’t think I have ever seen a slide at SIGGRAPH that was overexposed When you film your efforts, make
several exposures and pick the brightest one. In general err on the side of overexposure; make the exposures
longer than you think will be necessary. But for heaven’s sake if, despite my sage advice, your slides don’t

1This suggestion is for 35mm slides not 8 1
2

′′ × 11′′ transparencies—stand back 8–10 feet from transparencies to check readability.

26

come out bright enough, don’t make a big production out of apologizing for them. It doesn’t make them any
more readable, and may just call attention to problems that might not be as noticeable as you thought. Just
show them and get on with the talk. Remember that your view of the slides from where you speak is not
the best one. The slides will look a lot brighter to the audience than they do to you. Likewise, don’t spend
a lot of time fiddling with the focus (which requires shouting at the AV people in the back of the room). In
the first place, your slides should be big and bold enough that a little bit of out-of-focus shouldn’t bother
them. Remember, from the back of the room the screen looks like a postage stamp. Problems with focus that
appear bad to you, with your nose three feet from the screen, won’t show up to the audience. Talking about
and taking time with these issues detracts from your presentation.

The tops of the speakers’ heads

No, I’m not saying this because I’m tall. I mean that speakers should look straight out at the audience instead
of burying their noses in their notes. I know it looks like a black hole out there, what with the dim house
lights and the spotlight on you. You can’t really see the audience, but there are people there. If you look
down all the time, all that people will see is the top of your head. This is so important that I’ll say it again.
Look up at the audience; it looks a lot better for the TV cameras. Furthermore, don’t turn around to admire
your face on the big TV screen. It just won’t work. All people will see is the back of your head. Likewise,
don’t turn around and look at your slides all the time (except maybe for a brief glance to make sure you are
on the one you expect). People really are traditionally more used to seeing the front of people’s heads than
any other side.

“I’m almost out of time so I’ll just run through the rest of the slides real fast.”

You are hereby warned: You have only about 15 minutes to do your brain dump (for a talk in the technical
session). The time you have is well known to you in advance. You must use it wisely. About all you can
expect to do in this amount of time is give an overview of your paper and inspire those in the audience to
read the paper itself for details. Plan to spend most of your time talking about your new ideas. I have seen
talks where the speaker spends 13 minutes giving a review of the field and a justification for why the specific
problem is interesting. Then—what do you know—there’s no time left for the meat of the talk. I think you
can safely assume that most everyone in the audience thinks computer graphics is a good idea and that, in
fact, the specific problem you are addressing is worth solving. You can probably do fine with about two
minutes introduction before getting to the good stuff. Don’t go into enormous detail in derivations of the
math; just give the basic assumptions and the results. This simplification process goes hand in hand with
the simplification of your equation slides. The gist of the math should be describable without going into a
lot of fine details that people will best get out of the paper. If you have a videotape, time it and make sure
it doesn’t eat up the whole time for the talk. Speaking from experience, I know it is very embarrassing for a
session chairman (whose main duty is time police) to have to interrupt a nifty tape because there’s no time
left.

“Uh, I guess that’s all I have to say.”

Probably the most important parts of your talk are the first and last sentences. Have these all figured out
before you go up to the podium. Try to have something snappy to end with rather than just drizzling off.
You also must give the audience a signal for when to applaud. Usually a simple “Thank you” will suffice.

Remember

Look up, bright slides, big letters. Uh, I guess that’s all I have to say. Thank you.

27

Chapter 6

Electronic mail and newsgroups

6.1 New forms of communication—new writing styles

Electronic mail (e-mail) is a new form of writing that has appeared in the last twenty years. E-mail has become
the preferred form for communications for many of us who would previously have used written memorandums or
the telephone. A new form of informal publication, newsgroups, is closely related. We will be using e-mail and the
newsgroup ucsc.class.cmpe185 extensively this quarter.

Because it offers easier response and quicker interchanges than traditional hardcopy mail, e-mail tends to be less
formal and more spontaneous. Items that are not important enough to justify writing a letter can be quickly sent
with e-mail, and quick answers are also possible.

Electronic mail has the advantage over the telephone of not requiring both participants to be available at the
same time. Also, with e-mail it is possible to edit one’s replies and present them in a coherent fashion, not getting
talked into things simply because one can’t marshal one’s words fast enough.

Because electronic mail is a new medium, there is no consensus on the correct writing style for it. Some people
view it as essentially identical to hardcopy mail—only appropriate for fairly formal, well-thought out communications.
Others see it as equivalent to chatting in the hall—a quick way to communicate something informally, without the
formality imposed by more traditional writing. Still others go even farther, being more blunt than they would be in
person, on the phone, or in more formal writing.

Because you will be spending much of your careers reading and responding to e-mail, you should spend some
time thinking about which ways of using it are appropriate and which are inappropriate.

6.2 Flaming

One common occurrence in e-mail and newsgroup discussions is flaming—verbal attacks on a person who makes
an argument you disagree with. It is very easy to get angry at someone who makes a statement that is stupid or
hateful, and that anger often causes people to write rude replies. These attacks are generally counterproductive—they
antagonize the person they are directed at and often irritate others who are participating in the same discussion.

When you read a statement you disagree with strongly, feel free to write a reply, but don’t send it immediately.
Give yourself a day to cool down, then re-read your reply. You might find that it is rude and unpleasant to read.
Re-write it, removing snide comments and ad hominem attacks, adding coherent arguments that bolster your side
of the matter. Try to concentrate on what the person wrote, and not on the person. Also decide whether the reply
needs to be posted so that everyone can see it, or whether it should be sent privately to the recipient.

Another useful thing to do when editing an e-mail or news posting is to try to cut it in half. Long rambling
messages generally get skipped or read very hastily, while messages that are short and to the point get remembered.
Don’t forget your paragraph breaks—you can get away with much longer messages if they look well-organized.

Don’t go so far in trimming your writing that your message is incomprehensible out of context. When replying to
someone else’s message, remember that the person you are mailing to may not have a copy of the original message.
Don’t quote long messages either—just pull out the salient parts that need to be quoted to establish context.

28

One of the joys of e-mail and newsgroup discussions is that you don’t have to respond immediately—you can
take the time to think up the arguments and examples that make your case stronger. A discussion that would last
minutes face-to-face may take days electronically, but the issues are likely to have been examined more thoroughly,
and there is a better chance of persuading someone to a rational conclusion.

6.3 Humor

Humor, particularly irony, is extremely difficult to convey in writing. In fact, humorous writing is one of the most
difficult kinds of writing—good humor writers are even rarer than good stand-up comedians.

If you make jokes on a newsgroup, or in widely distributed e-mail, nearly always someone reading your joke takes
it seriously, and starts trying to correct you. There are several ways to avoid this problem:

• Never make jokes. This works, but can be boring. Often a humorous way of presenting an argument is more
memorable, and has more lasting effect than a carefully reasoned one.

• Make all your jokes innocuous. Try not to insult anyone when you make a joke—if no one is offended, then it
might not matter much if someone interprets your joke as a serious statement.

• Be careful that you don’t joke about anything serious. (Anybody remember Reagan’s gaffe, when he jokingly
threatened to start bombing Moscow on a microphone that he didn’t realize was live?)

• If you do make a joke, direct it at what has been said, not the person who said it. This means that clever
puns and wordplay are better than simple abuse of another writer. Wit is also more difficult than insults and
therefore funnier. Directing an insult at yourself is not sufficient—in many cases you will be inadvertently
insulting others as well.

• Mark all your humor explicitly. One common punctuation device that has been adopted by many e-mail users
is the smiley face. You make it with three keystrokes “:-)” and put it at the end of any sentence or phrase that
you do not want people to take seriously. Some people have gone overboard, and proposed dozens of different
variants on the smiley face for different purposes—so far, none of the others has become as widespread. The
smiley face may seem stupid (and it is never used in normal writing), but it has become such a standard
convention for e-mail and newsgroups that many readers assume that any statement not marked with a smiley
is intended seriously.

6.4 Assignment—newsgroup discussion

We have set up an electronic conference in the form of a UNIX newsgroup local to the campus (ucsc.class.cmpe185).
The newsgroup can be read with nn ucsc.class.cmpe185 (or xrn on an X-windows display). Please read the manual
pages (man nn) for more information. Other newsreaders (rn, trn, and so on) also exist, and you may read the news
with whichever you prefer.

We got the idea for the quarter-long conference from some instructors at Michigan Tech [CS90]. They thought it
worked well enough to be worth a 23-page journal article.

Good e-mail and newsgroup style requires practice, preferably in an environment where it won’t matter much
if you make mistakes. A major purpose of this conference is to provide that environment. We will not be grading
your writing in the newsgroup! Feel free to be yourself, and don’t worry too much about what we’ll think of your
newsgroup writing.

Another purpose of the newsgroup conference is to have the discussions that are difficult to have face-to-face in a
large classroom. As teachers, we are well aware that there are a lot of things not mentioned in class. Even when we
stress that we don’t mind students having different opinions, and would enjoy having a good discussion, there are
still many good reasons why students don’t argue.

Using one’s authority as a teacher to get students to disagree is a challenge that verges on the paradoxical. We
will be reading the newsgroup and participating in the discussions, but as colleagues, not as teachers. Unless remarks
are directed specifically at us (like requests for clarifications of assignments), we’ll try to keep quiet and listen, so
that the newsgroup discussion is truly a student discussion. If the discussions get really interesting, we may not be
able to refrain from tossing in our opinions as well.

29

In a newsgroup discussion, you get a chance to see what several people have said, think carefully about their
arguments, and then present your own ideas without fear of interruption. This means that even those students who
rarely get a chance to speak in class will be able to participate fully.

Anything we talk about in class is fair game for the conference. If you disagree with something we say, or don’t
get a chance to make a coherent argument in class, bring it up at the conference! This is also a good forum for
complaints about the readings, the assignments, the tutors, the instructors, or anything else related to the class.
Cooper and Selfe compare this sort of communication to the whispered remarks between audience members at
conference presentations and lectures [CS90, p. 848]. A better comparison might be to the conversations that occur
in the coffee breaks between the presentations—the criticisms may be just as harsh, but are often more politely
phrased, and more fully supported.

It is perfectly acceptable to use the newsgroup for requests (like asking for someone to read and comment on a
draft, or trying to find out who borrowed one of the reserve materials), but personal messages should be sent by
e-mail, not to the whole class.

The topic of discussion will vary from time to time, and we may inject new topics when it looks like the class
hasn’t had anything to talk about for awhile. For example, we never seem to have enough time to talk about
practical ethics—what to do when a supervisor asks you to do something sleazy or illegal, how to avoid situations
where you’ll be asked to compromise your principles, and so forth. We may, for example, quote one of the ethics
problems presented in IEEE Spectrum, or one that has come up for a former student, and ask your opinions about
how to handle it.

Everyone in the class is expected to participate in the conference on a regular basis. Even if you have just been
listening in, and don’t have much to say, you should post a line or two to let us know you are there. This is not
an onerous task—we’re looking for short (one- or two-paragraph) messages that make it clear that you have been
reading and thinking about the topics under discussion. The goal is to learn to argue persuasively in the electronic
mail and newsgroup format.

E-mail does not require the same standards of polish as a final draft of a paper, but it is still a good idea to re-read
your replies and run them through a spelling checker before sending them—people give little weight to arguments
that are badly written or mis-spelled.

30

Chapter 7

In-program Documentation

7.1 Goals—recognizing that programs are documents

In-program documentation is the most common, and most neglected, form of writing for computer programmers.
We hope that this exercise teaches you

• what information to put in in-program documentation,

• one way to format the information so that it can be used, and

• the importance of in-program documentation.

7.2 Audience assessment—maintenance programmers

Just as tailors spend more time making alterations than sewing new suits, most programmers spend more of their
working time modifying old code than they do writing new code. If a program is difficult to change, it will be
clumsily modified, and the resulting mess will be blamed on the original programmer. To protect your reputation,
it is essential that you make your programs easy to modify cleanly.

Writing easily modifiable code is still an art, rather than a science, but all the techniques of structuring and
modularization taught in programming classes help. Kevin disagrees with Niklaus Wirth, who used a book title to
claim that Algorithms+Data Structures=Programs [Wir76]. Certainly, algorithms and data structures are necessary
for programs, but interface specifications and maintenance documentation are also essential.

Programs are read by compilers and by people. Far too many programmers stop when they get a program that
is readable by a compiler—totally ignoring their other audience. Who are the people who read programs? Mainly
other programmers. Most often the programmers are not reading to learn the language or to admire your style,
but to make specific changes to the program. They usually read only those parts of the program they think will be
relevant, so you must provide cross-references to information not immediately visible.

Many programs rely on external documentation. For student work, the external documentation is often the
assignment sheet. External documentation may be easier to write than in-program documentation, but is not nearly
as useful to a programmer attempting to modify your code. First, the external documentation often gets separated
from the source, so the programmer doesn’t have it to read. Second, the source is often modified without changing
the external documentation, so the two may no longer agree. It is essential that maintenance documentation be
included in the source code itself.

7.3 Example—knight’s tour

To give you an example of a reasonably well-documented piece of code, I am providing a solution to the knight’s-
tour problem [Wir76, 137–142]. The program has not been modified substantially from Wirth’s code (though I was
tempted to do so), but has been translated from Pascal to C.

31

program knightstour(output);

const n=5; nsq=25;

type index = 1..n;

var i,j: index;

q: boolean;

s: set of index;

a,b: array [1..8] of integer;

h: array [index, index] of integer;

procedure try(i: integer; x,y: index; var q: boolean);

var k,u,v: integer; q1: boolean;

begin k := 0;

repeat k := k+1; q1 := false;

u := x+a[k]; v := y+b[k];

if (u in s) and (v in s) then

if h[u,v] = 0 then

begin h[u,v] := i;

if i<nsq then

begin try(i+1,u,v,q1);

if not q1 then h[u,v] := 0

end else q1 := true

end

until q1 or (k=8);

q := q1

end {try};

begin s := [1,2,3,4,5];

a[1] := 2; b[1] := 1;

a[2] := 1; b[2] := 2;

a[3] := -1; b[3] := 2;

a[4] := -2; b[4] := 1;

a[5] := -2; b[5] := -1;

a[6] := -1; b[6] := -2;

a[7] := 1; b[7] := -2;

a[8] := 2; b[8] := -1;

for i := 1 to n do

for j := 1 to n do h[i,j] := 0;

h[1,1] := 1; try(2,1,1,q);

if q then

for i := 1 to n do

begin for j := 1 to n do write(h[i,j]:5);

writeln

end

else writeln(’NO SOLUTION’)

end.

Figure 7.1: Wirth’s version of the Knight’s tour program in Pascal

32

Figure 7.1 gives the original Pascal code and Figures 7.2 through 7.7 give the documented rewrite of the program
in C, each figure representing one page of the source code. (With most program editors, you can separate source
code into pages by including a control-L character as a page separator.)

7.4 Assignment—adding comments to minimal code

You will have to do a similar rewrite to another piece of recursive code. The program you have to rewrite attempts
to solve the following puzzle:

Put the numbers 1 through 30 in order such that every adjacent pair adds up to a perfect square.

In fact, the program goes further and attempts to solve the puzzle for 1 through n, where n is varied from 1 to
45. The program works by a simple back-tracking search, using 3 data structures: the “s” array keep tracks of the
sequence of numbers, the “u” array keeps track of which numbers have been used, and the “q” array is used for
determining quickly whether a particular number is a perfect square. The work is all done by the recursive “c”
procedure, which tries to extend the sequence in s into a complete sequence. It is given a partial sequence which
has the first “i” slots filled with numbers that satisfy the pairwise summation constraint, and returns 1 if the partial
sequence can be completed to a complete sequence (leaving the complete sequence in s). It returns 0 if the partial
sequence cannot be completed.

You will have to change the variable names and the procedure names. You can play with the indenting and
other aspects of formatting, if you think it makes the program more readable. You may also rearrange parts of the
program for better modularity, it that will make the documentation easier to write. Make sure you document the
preconditions and postconditions for procedure “c”—what must be true of the globals before each call? what is true
of them after each return?

Your finished product should be an executable, well-documented program. Kevin’s name should appear promi-
nently near the beginning (as the original programmer), but you should take credit for the changes and documentation
you provided.

7.5 Writing process—in-program documentation

Despite the way this assignment is structured, in-program documentation is not the last thing you do to a working
program. It is most needed in the early stages of the programming, as scaffolding to support the incomplete program
fragments. Whenever you write a procedure, you should write the explanation of the interface and function before
writing the procedure itself. If you aren’t crystal-clear about the purpose of the procedure, you won’t be able to
write it correctly.

In good programs, the documentation is written first, and the program written to match the documentation.
For large programs with multiple programmers, it is particularly important to get the interfaces between modules
well-defined early in the process. If the interface specification isn’t written out completely, isn’t distributed to the
programmers, or isn’t comprehensible, it might as well not exist.

At this point in your academic career, you’ve probably been told a hundred times that you need to document your
programs better. When pressed, your instructors have probably mumbled vaguely about wanting more documentation
but not precisely what was lacking. We might not do much better at telling you what is expected, but we’ll try.

Of course, the best way to find out what is needed in the way of program documentation is to try modifying
someone else’s code. Whenever you run into something you can’t figure out, or, worse yet, something you think you
understand but are wrong about, then you’ve found a place where the documentation is inadequate.

To forestall such misunderstandings, you have to write far more documentation than you, as the creator of the
code, believe you need. Because well-documented programs are so rare, you’ve probably never seen one and aren’t
aware what they look like. Perhaps the best example is Knuth’s type-setting program TEX [Knu86]. We have put
the source code on reserve in the Science Library—take a look at it to see what a well-documented program looks
like. Note that the ratio of documentation to code is large and that the documentation concentrates on explaining
data structures and techniques, not on repeating what the code says.

33

/* knight’s tour program

*

* Original code in Pascal by Niklaus Wirth

* For an explanation and the original code see

* Niklaus Wirth

* Algorithms+Data Structures=Programs

* Prentice-Hall 1976

* pages 137--142

*

* Translated to ANSI C by Kevin Karplus, 19 February 1993

* Further modifications made by Kevin Karplus 7 February 1999

*/

/* ABSTRACT:

* This program determines whether a knight can visit all the squares of

* a chess board exactly once, using the normal movements of chess.

* The size of the chess board is specified by compile-time constants

* (NumRows and NumCols), as is the initial position (StartRow and

* StartCol).

* There are no run-time inputs.

*

* A "tour" is a sequence of squares, each visited only once, that

* reflect a possible sequence of knight’s moves.

* A "partial tour" includes some, but perhaps not all squares.

* A "complete tour" includes all the squares, and is the desired solution.

*

* The output is either a message indicating that no complete tour exists,

* or a display of the board, with a number in each square.

* The numbers range from 1 to the number of squares on the board, and

* indicate the order in which the squares were visited.

*

* The three examples of knight’s tours given on page 141 of

* Algorithms+Data Structures=Programs

* can be obtained with the following settings of the constants:

*

* NumRow NumCol StartRow StartCol

* 5 5 0 0

* 5 5 2 2

* 6 6 0 0

*/

/* KNOWN BUGS and possible future changes:

*

* ChangeRow and ChangeCol should probably be a single array

* of 8 structs, each of which has a row and col value.

*

* It might be cleaner to replace the PartialTour array

* with a data structure that would hold the array, the number of

* squares visited, and the location of the most recently visited

* square. Even better might be to replace the recursion stack with

* a stack of moves in the PartialTour data structure, so that

* output could be provided in other notations, and "backtrack"

* could be defined as an operator on PartialTours.

* If this were C++ instead of C, PartialTour would be defined

* as a class.

*/

Figure 7.2: Initial block comment for knight’s tour program.

34

/* CHANGE LOG:

* 19 February 1993, Kevin Karplus

* Translated to C, variable names changed, comments added.

*

* globals and local variables of main program:

* n=> NumRows, NumCols

* nsq => NumSquares (macro)

* type index eliminated

* i=>row made local to main()

* j=>col made local to main()

* q eliminated (using return value, no variable needed)

* s eliminated (replaced by procedure OnBoard(r,c))

* a=> RowChange, b=>ColChange (subscripts now 0..7, not 1..8)

* h=>board (made local to main, and passed as parameter.

* also, made to be of new type RectangularBoard)

*

* parameters and local variables of "try" procedure:

* try=>CompleteTour

* i=>SquaresVisited (meaning changed by 1, for easier naming)

* x,y => AtR, AtC

* q,q1 eliminated (using return value instead)

* k=>direction

* u,v => NextR, NextC

*

* Moved the SquaresVisited test down one level in the recursion,

* to make the termination of the recursion easier to understand,

* and to make the behavior correct on 1x1 boards.

* (Note: this bug fix was not part of the assignment given to the

* class, but having identified the bug in Wirth’s code, I couldn’t

* stand leaving it in my translation.)

*

* 23 February 1993, Kevin Karplus

* Minor editing of comments, based on suggestions from David Patmore.

*

* 7 February 1999, Kevin Karplus

* Changed "board" to "when_visited", "RectangularBoard" to "PartialTour".

* Added "NotVisited" constant.

* Added efficiency hack to OnBoard, using unsigned ints.

* Added ASCII-art lines to make output look more like a chess board.

* Added assertions to check that compile-time constants were legal.

* Added return value from main (0 if tour found, 1 otherwise);

* Moved RowChange and ColChange arrays into CompleteTour to eliminate

* all globals from CompleteTour, and made them static const to

* avoid repeated allocation and initialization.

* Modified CompleteTour to accept the NEXT move, rather than the LAST

* move, allowing starting from an empty board.

* Eliminated NextRow and NextCol variables from CompleteTour.

*/

Figure 7.3: Change log for knight’s tour problem.

35

#include <stdio.h>

#include <assert.h>

/* COMPILE-TIME CONSTANTS and TYPES */

/* These constants define the size of the board.

* They are macros (rather than "const int") so that they can be used

* for specifying array dimensions.

*/

#define NumRows 5

#define NumCols 5

#define NumSquares (NumRows*NumCols) /* the number of squares to visit */

/* StartRow and StartCol give the initial position of the knight.

* Positions range from (0,0) to (NumRows-1,NumCols-1).

*/

#define StartRow 0

#define StartCol 0

#define NotVisited 0

/* A PartialTour holds a tour or partial tour.

* If a square has the value NotVisited, then that square has not been

* visited yet on this partial tour.

* Otherwise, the value is the time at which the square was visited

* (from 1 to NumSquares for a complete tour, from 1 to n for a

* partial tour with n squares visited).

*/

typedef PartialTour[NumRows][NumCols];

typedef short int boolean; /* used for true=1/false=0 values */

Figure 7.4: Type definitions and global variables for knight’s-tour.

/* OnBoard(r,c)

* tests to see if a coordinate pair is a legal board position.

* Inputs: r,c a coordinate pair

* Returns: 1 if the row and column position is on the board,

* and 0 if it is not.

*/

boolean OnBoard(unsigned int r, unsigned int c)

{

/* This test uses a trick to detect rows or columns less than zero.

* Because the parameters are passed as UNSIGNED, negative numbers

* are interpreted as very large numbers, which then fail the

* either the r<NumRows or c< NumCols test.

*/

return r<NumRows && c<NumCols;

}

Figure 7.5: OnBoard test for knight’s-tour.

36

/* CompleteTour(when_visited, NextMoveNum, AtR, AtC)

* attempts to complete the partial tour in when_visited.

*

* Inputs:

* when_visited holds the partial tour

* AtMoveNumber one more than the number of squares already visited

* AtR, AtC the next position to try in the partial tour

*

* Returns: 1 if the partial tour can be completed to a full tour.

* 0 if no complete tour starts with this partial tour.

*

* Outputs:

* when_visited holds complete tour if 1 is returned, but

* is restored to the partial tour from before call, if 0 returned.

*/

boolean

CompleteTour(PartialTour when_visited,

int AtMoveNumber, int AtR, int AtC)

{

/* Try adding the new move to the partial tour.

* If tour is still not complete, try all possible directions for

* continuing the tour.

* If no direction results in complete tour, retract the move

* and return 0 for failure.

*/

/* The pair (RowChange[i], ColChange[i]) is one of the eight possible

* directions for the knight to move.

* A knight at (r,c) can move to (r+RowChange[i], c+ColChange[i]),

* if that destination is on the board and not already used.

*/

static const int RowChange[8] = { 2, 1, -1, -2, -2, -1, 1, 2};

static const int ColChange[8] = { 1, 2, 2, 1, -1, -2, -2, -1};

int direction; /* loop counter for the 8 directions a knight can move */

if (! OnBoard(AtR,AtC) || when_visited[AtR][AtC]!=NotVisited)

return 0; /* can’t visit this square, so no legal tour */

/* visit the square */

when_visited[AtR][AtC] = AtMoveNumber;

if (AtMoveNumber >= NumSquares)

return 1; /* partial tour is already complete */

/* Try adding a move and completing the new partial tour. */

for (direction=0; direction<8; direction++)

{ if (CompleteTour(when_visited,AtMoveNumber+1,

AtR+RowChange[direction], AtC+ColChange[direction]))

return 1; /* tour completed successfully */

}

/* None of the eight directions led to a complete tour with this

* move added, so backtrack.

*/

when_visited[AtR][AtC] = NotVisited;

return 0;

}

Figure 7.6: Recursive procedure for knight’s-tour.

37

/* main

* looks for a knight’s tour, and prints the tour if it finds one,

* as described in the abstract at the beginning of the file.

*

* The main procedure has no inputs, outputs, or return values.

* All parameters are set by compile-time constants.

* The only side effect is the printing of the solution,

* or a message saying that no tour exists.

*/

int main(void)

{

int row,col; /* row and column loop indices */

PartialTour when_visited;

/* check that the compile-time constants are all legal */

assert(NumRows>=1);

assert(NumCols>=1);

assert(OnBoard(StartRow,StartCol));

/* clear the when_visited array to get an empty partial tour */

for (row=0; row<NumRows; row++)

for(col=0; col<NumCols; col++)

when_visited[row][col]=NotVisited;

if (CompleteTour(when_visited, 1, StartRow,StartCol))

{ /* print the solution found */

for (row=0; row<NumRows; row++)

{ for(col=0; col<NumCols; col++)

printf("+---");

printf("+\n");

for(col=0; col<NumCols; col++)

printf("|%3d",when_visited[row][col]);

printf("|\n");

}

for(col=0; col<NumCols; col++)

printf("+---");

printf("+\n");

return 0;

}

printf("No knight’s tour for %d x %d board, starting at (%d,%d)\n",

NumRows, NumCols, StartRow, StartCol);

printf("Possible positions range from (0,0) to (%d,%d)\n",

NumRows-1, NumCols-1);

return 1;

}

Figure 7.7: Main procedure for knight’s-tour.

38

7.6 Format for in-program documentation

Everybody has her or his own ideas about the best places to put documentation in source code, and the best ways
to format it. The “correct” style depends on the language and on the practices of the company that will maintain
the program. We’ll try to concentrate on the universal features of source code documentation.

Much program documentation is contained in comments. In most documentation styles, two different types of
comments are used: block comments and one-line comments. Block comments are multi-line chunks of text, often
containing several paragraphs. One good style for block comments in C is the following:

/*

* Block comments contain ordinary text written in good English.

* Several lines may be needed, and blank lines are left

* between paragraphs.

*

* If variables or expressions are needed, they should be typed

* exactly as they would appear in the code. For example,

* alpha[char] is 1 for each alphabetic character, 0 for others.

*

* For ease of later editing, each sentence can be started on a new line,

* and no "enclosing box" is used.

* The vertical line of stars makes the block comment easy to find.

* If you feel obligated to enclose the block comments, you can

* put a horizontal line of stars as the first and last line,

* but don’t put a right-hand column of stars, as it discourages

* programmers from changing the comment when they change the code.

*

* A similar style can be used in C programs (with /* and */ delimiters).

* Ada programs and assembly language programs use a delimiter

* ("--" for Ada) at the beginning of each line of a block comment.

*/

This style for block comments has several advantages:

• blocks are clearly marked, and so are easy to find,

• sentences and paragraphs are easy to modify as corrections are made to the program,

• comments are not crowded and sloppy,

• not much time and memory are wasted on “noise” that conveys no information.

One-line comments are used to mark interesting places in the program, and often are simple declarative or
imperative sentences (for example, “x[i] is now the largest element.” or “Swap leftmost and rightmost
incorrect elements.”).

The following sections explain when to use block comments and when to use one-line comments.

7.6.1 Identify your work

Put your name and corporate address in a block comment at the beginning of every file. When you modify someone
else’s code, do not remove the original names, but add a comment saying that you modified the code, what you did
to it, and when. In this way you retain the modification history of the program with the source code. These block
comments can be extremely useful when tracking down a new bug to find out what changes have been most recently
made to the program.

7.6.2 Use white space freely

Ideally, each procedure and its accompanying documentation should fit on a single page. Use page breaks and blank
lines to make the printed appearance of the source code correspond to the logical structure of the program. The
emphasis on appearance is not to satisfy some perverse artistic æsthetic, but to make the program more readable.

39

Within procedures, adding a blank line between sections of code acts like a paragraph break to indicate a change
in emphasis. Starting a new page before each procedure acts like a section or chapter break, to indicate a whole new
topic. The page-break character (often called a form-feed) is control-L—put it before a procedure’s block comment
to make the whole thing start on a new page.

Because white space is a powerful tool for grouping text together visually, try to use it in semantically meaningful
ways. Don’t break code up arbitrarily, just because it has gotten too long—do add white space between sections
performing different tasks. If you feel that a section has gotten too long, then look for a way to break into explainable
subparts, don’t just add a blank line in the middle.

7.6.3 Indent to show block structure

Block-structured languages are commonly printed with varying indentation. The more deeply nested a statement is,
the more deeply it is indented.

Some programmers use tabs for indenting, but the resulting programs are often too wide to fit on a screen or
piece of paper. Other programmers use only one or two spaces for indenting, making the level of nesting difficult to
see. Each level of indentation should be about four spaces deeper than the previous, and indentation levels should
be consistent. (If you use vi, try “:set shiftwidth=4 autoindent”.)

Slightly different styles of indenting are used by different programmers, which can get confusing when reading a
program that has been written by a larger team or modified by several different programmers. It is good practice
for all members of a programming team to use the same indenting style and for all subsequent modifications to use
the same style. Large development projects often have a style guide containing the conventions to be used by the
programmers.

One popular style calls for the bodies of loops and then- or else-clauses to be indented 4 spaces deeper than the
loop- or if-statement, with the punctuation (begin and end or { and }) at the same level as the outer text:

if (test)
{ action;
}

A sequence of tests that determine which of several actions to perform should have all the tests indented to the
same level, and all the actions one level deeper:

if (test1)
{ action1;
}
else if (test2)
{ action2;
}
else
{ default_action;
}

This style is particularly nice in that it lines up matching open and close braces, making it easy to find missing-
brace errors.

7.6.4 Name variables carefully

A variable name should tell the reader (not just the programmer) what its function is; calling a variable rownum is
much better than calling it i. Try to avoid using the same variable for multiple purposes.

7.6.5 Use a block comment for each procedure interface

A procedure’s block comment should describe the external view of the procedure. As a minimum, the comment
should tell which parameters are input, which are output, what global data structures are used, and what side-
effects the procedure may have. The function of the procedure should be clearly explained. Any preconditions that
must hold before the procedure can be safely executed should also be included. Choose a standard format for all
procedures, perhaps something like

40

/* procedure-name

*

* action: explain what the procedure does (not how it does it).

* inputs: list each variable that is input and what it means.

* outputs: list each parameter that is an output and what it

* means.

* returns: what is the meaning of the value returned by a

* function?

* globals: list any global variables or data structures needed by

* procedure.

* preconditions: what must be true before each call

* postconditions: what is guaranteed to be true when the

* procedure returns

* side-effects: list any changes expected as a result of running the

* procedure.

*/

The same variable may occur in globals, inputs, and outputs. A global constant may be listed as a global, but
not as an input. A global variable that is used, but not changed, may be listed as both a global and as an input. A
global variable that is set should be listed as an output or as a side-effect. For example, if a procedure reads data
from a file and puts it into a global array, that array is properly viewed as an output of the procedure. On the other
hand, if a procedure finds a path through a maze and keeps some statistics about the search as it goes, the changes
to the global statistics are a side-effect.

A side-effect is any action performed by the procedure that is not completely contained in the values of the output
variables. Common side-effects are changing other global variables, reading input (thus advancing the position in the
input stream), and printing output. You often have to mention a global variable twice—once in the section listing
global variables, to indicate that the global variable is used in some way, and once in the side-effects section, to
explain how the global variable is changed by the procedure.

In many cases, it is better to say something like “side-effects: none” than to leave the reader trying to
decide whether a procedure has no side-effects or you simply forgot to document the side-effects. But be careful—
programmers have written block comments that claimed a procedure had no inputs, outputs, global variables, or
side-effects—in other words that the procedure did nothing at all! In most cases, the procedure printed a message
or read something from an input—both of which are classified as side-effects.

7.6.6 Use a block comment inside each procedure to explain method

Unless a procedure uses a completely trivial technique, a sentence or two of explanation at the beginning will make
it much easier for the reader to understand. You do not have to cram 30 pages of analysis from a text book into a
couple of sentences. If you can’t say all that needs to be said in a couple of paragraphs, you should at least mention
what technique is being used and give a complete citation to a more complete external description.

The interface description comment is not the correct place for an explanation of the techniques used. You should
be able to change techniques (say, from insertion sort to heap sort) without changing the interface description. Use
a separate comment for methods.

The methods comment explains what is done, why it is done, and when it is done. The details of how it is done
should be left for the code. If you are not sure how much to put in the methods comment, it is probably better to
put in too much than to put in too little.

7.6.7 Use a block comment for each data type

When you define a record or array structure, explain the purpose of each field. Give an overall view of the data
structure (is it a binary tree? a linked list? a heap?). What special properties of the data structure are you relying
on?

41

7.6.8 Use a block comment for each data structure

You will often use apparently simple data structures (such as arrays) without having to declare a special type. Often,
the simpler the data structure, the more ways it could be being used. Elementary data structures may need more
commentary than the structured types that have special declarations. The more generic the data structure, the more
explanation is needed. If you are using an array, it is totally useless to tell the reader that it is an array—any fool can
see that from the declaration. A simple array may have many different possible meanings. It may store a mapping
from one set to another—what are the sets? what does the mapping mean? Or the array may be being used as a
hash table—what are the keys? what method is used to resolve collisions?

Identify global variables that are used as constants throughout the program.

7.6.9 Use a one-line comment for each local variable

Each local variable should have a single, distinct purpose. The purpose is hinted at by the name of the variable, and
explicitly stated in a comment where the variable is declared. For example,

int L; /* A[L] is the leftmost unchecked value. */

The one-line comment may be just a noun phrase, with an implicit “The variable foo is” in front of it. For example,

int L; /*the index of the leftmost unchecked value*/

Watch out for slightly inaccurate statements. If you’re in a hurry you might write “first unchecked value”
when you mean “the index of the leftmost unchecked value”. Saying “SP is the stack pointer” is much
less valuable than saying

int SP; /* STK[SP] is the top element of the stack, and
* STK[SP-1] is the next available empty slot
*/

If you are cramped for space in the comment, you can sometimes leave out the definite articles (for example,
/*index of leftmost unchecked value*/). Don’t do it if any confusion could result; make the comment multi-line
instead.

Be sure your names are not misleading. Using x for a variable that indexes the vertical direction in a printout,
and y for the horizontal variable is a common mistake—people are conditioned to expect x to be the horizontal
direction. Be particularly careful in checking input and output loops.

7.6.10 Use comments sparingly inside the body of the code itself

Many beginning programmers, when told to document, attempt to be explicit and write useless comments like

i = i +1; /*increment i*/

Many short comments interfere with reading the code itself. A long block comment at the beginning of the
procedure can be far more helpful and is usually easier to write. Reserve one-line comments for such tasks as

• identifying cases in a long if-then-elseif-else statement

• headers at the beginning of a new section of code (after a blank line)

• identifying end statements

• displaying loop invariants

• translating complex expressions back into meaningful pseudo-code.

42

7.6.11 Use assertions.

Many languages support (or, by using macro packages, can be made to support) assert statements. The format
varies with the implementation, but usually consists of an expression that is supposed to evaluate to true and an
error message to print if the assertion is not true. When an assertion fails, it usually breaks to a debugging program
(or causes the program to abort). For example, at the beginning of a procedure, one might test a precondition as
follows:

assert(L<R, "left and right pointers are crossed");

Loop invariants are particularly good things to put in assertions. David Gries recommends using the loop
invariants as the foundation for designing new algorithms and accurately implementing existing algorithms [Gri83].

If your language does not support assert statements, it is still worthwhile to put the assertions in as comments,
since they tell the reader something about what you were expecting when you wrote the code.

7.7 Things to keep in mind for peer editing

Read your partner’s code as if you had never seen the algorithm or data structures before. Consider what you
would need to know to make a major modification. For example, consider writing a graphical procedure to draw the
sequence as chords on a circle or changing the simple backtracking search to an “intelligent” heuristic search. What
do you need to know about the data structures? about the algorithm?

Look at the spacing and indentation on the page. Is the code visually divided into natural chunks? Compare
with the guidelines in Sections 7.6.2 and 7.6.3. Can you see at a glance where each loop begins and ends?

Check that all block comments are in good English. Telegraphic style, in which you leave out articles and verbs,
may be used only in one-line comments.

Check that the variable names are meaningful. For example,

• The name width may be used for a size, but not for a horizontal position.

• The word solution is a poor name for a Boolean variable, unless the problem is to answer a yes/no question.
One better name would be SolutionFound, but this is still a bit too generic. A name specific to the problem,
such as SequenceCompleted, is better.

• The name c is a poor one for the recursive search procedure, as it does not say what is being done. It might
be better for the procedure to be a function called something like CompleteSequence. After all, the purpose
of it is to complete a partially completed sequence, or to report that no such sequence exists.

Check that the global data structures are well-commented. It is important to document the meaning of the
contents, not just of the indices. What does the number in the array s mean?

Is the output format for the program described? To say that a program “prints the solution” is not particularly
helpful. There are many ways to print the solution— the description of the format should be explicit enough that
another programmer can write an interface to the program without having to learn all the internal data structures
and operations.

Is the input format correctly described? Even if there are no run-time inputs to the program, there may be
compile-time constants that a suer might want to change. What are they and what do they mean?

Is the explanation of the recursive procedure clear? The best way to describe a recursive procedure is with
preconditions and postconditions. How much of the sequence is already completed before each call to the procedure?
What do the different possible return values mean? If global variables are changed, what do they contain before and
after the procedure? Re-read Section 11.5 about how to explain recursion.

Termination criteria are also useful—when does the recursion stop? Does the programmer clearly distinguish
between the action of one iteration of the recursion (lengthening the sequence by one) and the overall effect of the
procedure (determining whether there is a sequence that starts with the current partial sequence)?

Are the side-effects properly described? The main purpose of the recursive procedure is to change the global
s array—the returned Boolean value is just an output to flag when the procedure is finished. The documentation
should make it clear what the contents of the array are after the procedure returns. Warning: the values are different
depending on whether a sequence was found or not.

43

Are the words carefully chosen? Don’t slavishly copy words used in the external documentation, as they may
not be the best ones to describe what is happening in the program. You should write using your own words, being
particularly careful with any words that you have only recently acquired.

Watch out for vague words like valid or good. When they occur, look for a more descriptive word.
When technical words are used, make sure they are used consistently. Try to have only one meaning for each

word, and only one word for each concept. As an example of what can go wrong, one programmer on the knight’s
tour used square, field, record, record field, box, location, playing field location, and board square interchangeably for
two concepts that were not distinguished, the coordinates of an element of the board array and the contents of that
element.

Watch out for off-by-one errors in both the programs and the comments!

7.8 The final draft

Typos in programs are not just minor inconveniences; they can be fatal errors. Make sure your final program compiles
and runs before handing it in. It is easy to insert a comment that isn’t properly terminated, and so even if all you
edit are the comments, you have to recompile and re-run to make sure you didn’t break anything.

Run your final program—it does no good to document the program if you’ve broken it!
Try to keep each procedure and its documentation on one page. If you must print a procedure on two pages,

make the page break in a natural division in the code. Insert page breaks and white space to make the appearance
of the printed source code correspond to the logical structure of the program. The unix filter pr will automatically
add the file name, date, and time to the top of each page. If you’re using UNIX, look into using pr (or the equivalent
lpr -p option). Some of the machines on campus have enscript, which does an even better job of printing program
listings.

Do not double space what you hand in. There should be enough white space in a well-formatted program for
us to write whatever comments we need. If you end up with dense blocks of code or text, something needs to be
changed.

In past years, this assignment has proved to be the most failed assignment—with many students not getting the
idea of external descriptions of recursive procedures. Because of this difficulty, we have provided an example of the
sort of code we are looking for and requested two drafts with peer-editing on each draft before the final draft is due.

44

Chapter 8

Naive-user documentation

8.1 Goals—better paragraphs and writing for non-technical audiences

This assignment has two purposes—to improve your paragraph structure and to make you appreciate how difficult
writing for an ignorant audience is.

Huckin and Olsen [HO91] have an excellent chapter on paragraphing, Chapter 22, and another on parallelism,
Chapter 23. Section 12.1 has good general ideas about engaging more-or-less ignorant audiences. This is also a good
time to read Chapter 3 (Identifying Audiences and Purposes). Of course, Chapter 17 (Instructions, Procedures, and
Computer Documentation) is worth reading for this assignment.

Notice how the paragraph you have just read is parallel in structure to the introductory one that precedes it.
This is an example of an important kind of parallelism, and is discussed in Huckin and Olsen [HO91, Section 23.3].

Also notice that Section 8.1 of this workbook has rather short paragraphs. Short paragraphs are one of six impor-
tant formatting conventions for making reading easier [HO91, 177–179]. Read Sections 9.3 and 9.4 and Chapter 21
of Huckin and Olsen for more suggestions on increasing readability [HO91].

Finally, take a good look at Scott Brookie’s Unix for Luddites [Bro86]. This manual is a classic for introducing
a complex system to an audience who is not only ignorant, but hostile. Brookie recognizes, and attempts to defuse,
this hostility—his first sentence is:

Luddites are people who believe that new kinds of technology will make their lives worse.

Huckin and Olsen discuss introducing a problem with two directly conflicting terms in their Chapter 5. Brookie’s
sentence is a rather subtle version of this. After you have read Huckin and Olsen’s Chapter 5, see if you can figure
out how Brookie’s first sentence, and the two introductory paragraphs of his manual, work to make effective contact
with the naive user.

8.2 Audience assessment—non-technical audiences

You have been hired as a training consultant by the Boring Business Company. Boring Business has decided they
need to build and maintain a web-site, but they don’t want to hire a lot of designers. One employee suggested that
everyone in the company have a web page, to give the company a more human face.

They have mainly UNIX workstations for their employees, and so most of the commercial software for beginner’s
to create web sites is not really useful to them.

You have to write a training manual explaining how to use HTML to create a personal web page.
Most of the readers will be typists and receptionists, but some executives at Boring Business will glance through

the manual so that they can pretend they created their own web pages, rather than having a secretary do it for
them. You can assume that all your readers know how to use a keyboard, but at least some of the readers will not
have looked at any other training manuals.

You do not need to explain all the details of HTML and creating web pages, only as much as a person needs to
create a simple personal web page. You can use any existing documentation as a reference, but be sure to cite it
properly. There are many HTML references on the web itself—it is a good (though easy) exercise to use web search

45

engines to find some of the lists of references. Remember that you were hired to write this manual because Boring
Business was not happy with the documentation already available, so don’t just copy an existing document.

8.3 Writing process—paragraph structure

Paragraph structure is an aspect of writing that used to be taught in grade school and high school, but seems to
have disappeared from the American school curriculum. Students who learned English as a second language may
never have gotten past sentence structure. Fortunately, proper paragraph structure is not complicated and can be
learned quickly.

For programmers, there is a useful analogy between program structure and document structure. A sentence is
analogous to a program statement, and a paragraph to a procedure. Like a procedure, a paragraph should have a
single well-defined purpose. Just as a procedure begins with a block comment explaining its function, a paragraph
begins with a topic sentence that gives the main subject of the paragraph.

Although some writing texts mention other possible paragraph structures, for technical writing the topic sentence
should always be the first sentence. Check the first sentence of each paragraph to see if it says what the paragraph
is about. If it doesn’t, try to decide whether the sentence should be fixed to match the paragraph, or the paragraph
fixed to match the sentence.

The two most common paragraphing faults are rambling paragraphs and artificial breaks. A rambling paragraph
has several topics, often not closely related. It can be fixed either by breaking the paragraph into smaller ones or
by removing extraneous material. Artificial breaks occur when novice writers try to divide paragraphs that are too
long. The lack of topic sentences defeats the entire purpose of having paragraphs.

The proper length for a paragraph varies, depending on the content and the importance of the information. Three
to five sentences (about 30 to 60 words) is a common length. The topic sentence is supported by a few, well-chosen,
additional sentences. If your paragraph runs on and on, your readers may glance at the first sentence or two, then
skip to the next paragraph. Never bury the key points in the middle or end of a long paragraph.

Short paragraphs make emphatic statements. Use them sparingly.
The continuity between paragraphs is as important as the internal structure of the paragraphs. Sudden changes

of subject will make readers stumble, but choosing a suitable ordering for your topics will often let you flow smoothly
from one to the next. When no ordering seems to work, try breaking the text into separate sections, each on a
separate subject.

Within a section, paragraph breaks can be made less abrupt by anticipating the next subject at the end of one
paragraph, or by referring to the previous subject in the topic sentence of the new paragraph. Notice how abrupt
this paragraph would have been if I’d left off “Within a section”.

Paragraphing is especially important in naive-user documentation, because documentation is consulted, not read
like a novel. Related information must be brought together into one paragraph or into contiguous paragraphs, so
that users looking for one piece of information will see the essential related material. Using headlines for sections (as
in this workbook) helps guide the user to the right place.

8.4 Things to keep in mind for editing and partner work

Students usually write for a single audience, their teacher. Because the teacher usually knows more than the students,
the purpose of the writing is usually to impress, and not to inform. The teacher’s purpose is to find out whether you
learned anything, and, sometimes, whether you can articulate your thoughts clearly. Rarely is the teacher interested
in the ostensible content of the paper.

In this assignment, you are writing for a different audience, one presumed to know less than you. Your readers
will not know all the jargon you use almost unconsciously, so you’ll have to be extra careful about which words you
use. You’ll also have to be careful about the order in which you present new ideas. New computer users do not want
to have to read documentation twice—most don’t even want to read it once.

Not everyone will choose the same features of HTML to cover in an introductory document. Consider carefully
the intended purposes of the web pages before deciding whether to describe particular features. You should make
your decisions based on how important it is for the users to be able to use the features, not on how easily you can
describe them.

46

word computer usage normal usage
code software instruction cryptic message
boot load operating system footwear
virus makes computer sick makes you sick
memory data storage retained ideas
news Usenet NBC/CNN/C-Span
mail electronic letters bills/junk mail
FIDO subnet dog
pen pointing device writing with ink thing
SLIP serial line interface protocol a fall/undergarment
TIP open line for comm. money for waiters/waitresses
mouse pointing device rodent
screen terminal face metal mesh
spool place to save mail or output thing that holds thread
thread code structure method stuff on spools
OOPS C++ or Ada a booboo
ports serial, parallel, . . . place where ships dock
floppy removable disk limp
hard drive fixed disk difficult trip
Windows GUI nightmare cleaning nightmare
root UNIX system administrator bottom part of plant
Smalltalk programming language chit chat

Table 8.1: Some common jargon, modified from a list posted to the newsgroup rec.humor.funny.

A one-page quick summary can be a useful adjunct to the more detailed tutorial you have written. It should
be usable as a reference both by those who have read the entire chapter, and by those who think they know what
they’re doing, and don’t have time to wade through the introductory stuff.

Be careful not to assume too much knowledge on the part of the user. (Will a novice UNIX user know how to
use more?)

Watch out for sentence fragments! Fragments? Noun phrases without verbs. Ex-President Bush, famous for
fragments. Very hard, figuring out what fragments are supposed to be saying, especially when they are as long as
this one and contain verbs in subsidiary clauses.

Avoid Latin abbreviations! The most often abused Latin abbreviation is etc., and abbreviation for et cetera which
means and other things. Do not say “and etc.”, and do not use etc. for people. If you must use a Latin abbreviation
for and other people, use et al. (for et alia), but the use of Latin in formal writing is a relic of the era when all
literate people were expected to know Latin, and all writing was done with pens. With word processors, there is
little reason not to use the equivalent English expressions.

Other Latin abbreviations to avoid are i.e. and e.g. If you must use them, punctuate them properly (i.e., like
this). I prefer to use the simple English phrases (for example, I use in other words for i.e.).

Watch the jargon! Using login as a synonym for login name is a UCSC idiom that will not be understood in other
contexts. In standard usage, login as a noun refers to the process of logging in, not the person who does it. The verb
is log in—like many verb-particle pairs, the verb is two words, but the corresponding noun is one. Table 8.1 gives a
table of other jargon words adapted from a list posted to the newsgroup rec.humor.funny.

Another sloppy usage that seems to be common at UCSC (and perhaps more generally) is the use of substitute
y with x when substitute x for y is intended.

Watch out for words beginning with any. In my dictionary, only anybody, anyhow, anymore, anyone, anyplace,
anything, anyway, and anywhere begin with any. Any time you find yourself using a different word beginning with
any, break it up. Sometimes, words beginning with some are spurious compounds also—a good spelling checker can
be a big help.

Although English allows almost any noun to be used informally as a verb (a process known, appropriately, as
verbing), formal writing does not allow this process. For example, access is a noun not a verb, you should get access or
obtain access—but this abuse is widespread enough that within a decade or two it will probably become acceptable.

47

Another abused noun is reference, which is formed from the perfectly good verb refer.
It is perfectly acceptable to use we in a formal document, if you mean you and I or we, the multiple authors.

The singular pronoun I is much more problematic, and should only be used when the human being peeks out from
behind the formal facade: the first time I used UNIX mail, I managed to send blank messages to all the faculty in
the department, because I didn’t understand the difference between reply with R and reply with r.

Watch out for split infinitives. For some reason, this assignment always brings out a rash of them (for example,
to simply send and to just send). Many times, the offending word could be dropped from the middle of the infinitive
without loss.

Some amusing dangling modifiers have occurred as well: After typing in the subject, the cursor will

8.5 The final draft

As always, the final draft should incorporate any improvements that resulted from your partner’s editing. You will
probably have to add more material at the beginning of the chapter and change the order in which you cover the
topics. If you use a word-processor to rearrange your first draft, be careful to redo the transitions so the seams don’t
show.

The final draft should be on 8 1
2” × 11” paper, stapled together or bound on the left edge. Paper clips and slip-on

plastic binders are not suitable, as pages tend to slip out of them and scatter. We generally prefer papers with one
staple in the upper left corner—they are easy to handle and to photocopy.

Make sure you remove all spelling and punctuation errors. Good typists will not trust documentation that
contains errors in their area of expertise.

Check your use of articles and subject/verb agreement. For example, mail is not a countable noun, and so it
can not be used with plural verbs or indefinite articles. If you need to count items of mail, you can use the word
messages.

Use a standard form for citing your sources of information. There is no widely accepted form for citing on-line
documentation, but the UNIX man pages have been printed as a book, which can be cited.

Check that all your examples are 100% accurate. Try them out to be sure. It is very frustrating to read a manual
that says “you will now see . . . on your screen,” and to have something else entirely appear. Make your examples
explicit, rather than using the Backus-Naur Form notation that computer scientists often adopt for describing syntax
in a generic way. People are much better at reasoning by analogy than computers, and much poorer at substituting
values for variables. Give them examples they can modify, rather than rules for which they have to fill in the blanks.

When you give examples of what people are to type, or what they should see on the screen, use displays. That
is, put the material on a line by itself, even though it is part of the surrounding sentence or paragraph. Punctuate
the sentence normally—it is incorrect to add a colon before a display, unless the display is a list that would require
a colon before it anyway. For example, this sentence has

one line displayed,

but is otherwise normally punctuated.
Since manual chapters don’t usually have acknowledgements, prepare a separate short memo to the instructors

saying who helped you with the editing. Turn in both the first and final drafts. This memo should also explain why
you chose to include or omit certain material from the manual.

48

Chapter 9

Library Puzzle

This assignment is an exercise to get you more familiar with the resources in the library, particularly with the
computer indexes available on Melvyl (now called the California Digital Library) and with the hardcopy indices of
most value to computer people. The puzzle was devised by Kevin Karplus, in imitation of puzzles created by Alan
Ritch, a librarian at UCSC, who wrote and edited the Mind of Melvyl newsletter (affectionately known as MOM),
which sometimes contained such puzzles.

The puzzle will stretch your library and web search skills beyond the level of competence attained by most
students or faculty. We hope that the assignment will make it easier for you to do any necessary library research
for your final paper, and the library search skills exercised should also be applicable to other courses and research
projects.

Some of the questions below are simple, straightforward exercises of the obvious Melvyl commands, others are
puzzle questions requiring ingenuity and perseverance to find the requested information. These library puzzles often
appeal to crossword puzzle fanatics.

Remember this is a writing class! For each question below, give one or two sentences as an answer—not
just the one word or number the question asked for. Show the search command that found the answer you got, and,
perhaps, some commands that you thought should work and didn’t. When you get a negative result, show partial
solutions (e.g., UCSC doesn’t have it, but someone else does, and we have something else by the same author). Also,
give full call numbers for books, so that someone could take your solution set and go straight to the place on the
shelves where the book ought to be. Cut-and-paste answers that include large chunks of the results from the searches
are a good thing for this assignment (though not for other assignments in this class).

Here is an example question and answer:
Does UCSC have the latest edition of The Joy of TEX ?

No, UCSC does not have the latest edition, based on the exact-title search f xt joy of tex. UCB,
UCD, UCI, UCLA, and UCSD have the most recent edition:

UCLA Engr/Math Z 253.4 T47 S673 1990

but the UCSC library has only the 1986 edition:

UCSC McHenry Z253.4.T47 S673 1986

Most of the questions can be answered without visiting the library, since Melvyl is accessible from any terminal
on campus. You can also access the library databases from off-campus computers if you set up the http proxy of your
web browser—seehttp://library.ucsc.edu/services/sluglink/slink connect.html. Although the puzzle is mostly doable
from any web-connected computer, you might want to visit McHenry library or the science library to see some of
the books and journals that you find, and you will probably need help from a reference librarian in doing some of
the searches.

9.1 General library info

1. Where can you find a list of all the journals for which UCSC provides free electronic access? (Give the URL.)

49

2. What are the hours for the Science Library? Where can you find changes to the hours during quarter breaks
and holidays?

9.2 Catalog database

1. LATEX is a popular tool for computer scientists to use to create documents. How many books on the tool does
the UCSC library have? Note: I’m not interested here in books on rubber plantations or safer sex. Which of
the books would you try to find if you wanted to create HTML documents with LATEX? Which would you try
to find for help creating a slide presentation?

2. Find a recent (twenty-first century) conference on computer game playing for which UCSC has the Proceedings.
Give full information about the name, location, and date of the conference, as well as the call number for the
hard copy. How many talks were there at the conference?

3. Bioinformatics is a relatively new field, and “bioinformatics” has only recently been added as a subject term in
the catalog. Find four other subject search terms that help find bioinformatics materials, and say how many
books are found at UCSC with each term. Explain how you found and chose the terms.

4. How many computer files does UCSC have cataloged? How many entries (all forms) does UCSC have in the
CAT database? What fraction of UCSC’s holdings are computer files? I was not able to answer the second
part of this with the Web interface to the catalog—it provides much poorer access to such information than
the older text-based interface. They’ve dumbed things down for the novice user, making it harder for people
who know what they are doing to find information. You may have to telnet to melvyl.ucop.edu and try “help
stats” to find the relevant information.

5. Most of you have taken, or are about to take, CMPE 16. Find the textbook for the class. Does the UCSC
library have the edition currently being used? How many other books can you find that appear to cover
approximately the same subject matter (perhaps at a different level)? What search did you use to find the
books?

9.3 World-wide web

The following questions are intended to improve your web-searching skills. I used to find the Alta Vista Advanced
Query page (http://www.altavista.digital.com) the most useful of the web search engines, but I have since switched
to Google (http://google.com), which gives more precise hits without the advertising junk that overwhelmed Alta
Vista. Actually I have set up my browsers to use http://www.google.com/advanced search as my home page (or
as a button on the tool bar), as I find the Advanced Search page of Google a little easier to use than the standard
Google page.

1. Find official statistics on the enrollment growth at UCSC from Fall 1996 to Fall 2001. There has been talk
about how the growth of the graduate schools at UCSC has come at the expense of undergraduate education—
is there any evidence for this? Do the grad students make up a larger or smaller fraction of UCSC than they
used to?

2. I now use the Prosper package with LATEX to produce my overhead transparencies and PDF files for computer
display. Find documentation for installing and using this package.

3. Find a report from the National Academy of Sciences on responsible conduct in research.

4. List at least 16 web sites with meaty information about computer ethics or engineering ethics (that is, I don’t
want web sites that are just pointers to organizations or other web sites).

5. Find explanations and analyses of the Challenger shuttle disaster in 1986. Find out how to get the videotape
filmed at MIT of the talk given at MIT about the aftermath of the Challenger disaster for the engineers involved
in warning about the danger of launching. Note: one of the engineers got a prize from the American Association
for the Advancement of Science for his honesty and integrity in the wake of the disaster—who and when?

50

6. You have a PC board with a part on it that you suspect is a digital signal processor. The part number on the
chip is 21160M. Find a data sheet for the part.

7. You need a large, fast FIFO chip to act as an input buffer for your latest interface project. Find a directory
listing at least 50 different FIFOs. Who are the main manufacturers? Give the manufacturer and part number
for a 32k × 9-bit FIFO.

51

9.4 INSPEC, PUBMED, and BIOSIS databases

The Inspec database is probably the most useful index for computer science, computer engineering, and electrical
engineering majors. Bioinformatics majors will find it useful, as well as PubMed and BIOSIS. Actually, anyone can
find PubMed useful, as it is the best index to medical literature, which any one may need to access after being
diagnosed with something they don’t know much about.

The INSPEC and BIOSIS databases are ones which UC has a license to use. You must come from a UC network or
use the HTTP proxy server at libproxy.ucsc.edu port 3128 (see instructions at http://library.ucsc.edu/services/sluglink/slink connect.html).

1. Using BIOSIS, find an article about the synthesis of indigo in plants, particularly speculation about making
blue flowers in plants that don’t usually have that color (such as roses).

2. Using INSPEC, find a survey paper about using computers to play the oriental game “go”.

3. Using INSPEC, find articles about light-emitting polymers. Find at least 10 from the past year.

4. Using PubMed, find at least three different substances used to cement broken bones or use as bone-graft
substitutes. Provide a recent paper on each of the substances.

9.5 You figure out what indices to use

For the following questions it may be useful to use paper sources in addition to the computer indices. Please outline
your search strategy, and tell us what false leads you followed, as well as how you finally found the solution.

1. Find papers on algorithms for aligning the sequences of RNA molecules.

2. What are Kevin Karplus’s first and second published papers? How many times has each been cited? What is
his most cited paper?

3. What is the largest independent used bookstore in the US? How many copies do they have in stock of Norton
Juster’s The Dot and the Line: A Romance in Lower Mathematics? Don’t forget to count both hardback and
paperback, and explain how you got your answer!

4. Find an interview with Jim Kent that mentions learning French the hard way. Give a pointer and explain the
question.

52

Chapter 10

Final project proposal memo

10.1 Goals—proposal writing, choosing the final project

The purpose of this memo is for you and your partner to propose your final project to us. We would prefer to have
people work in groups of two for the final project, as it reduces the number of reports that we have to read, and gives
you practice in working with another author on a document. Individual projects are quite acceptable, but groups
larger than two usually are not.

Your proposal memo will allow us to respond and help you focus and organize your project. We will provide
guidance in class about possible topics, and will try provide a list of possible projects around the department that need
doing at the moment. The final project can be a description of a design project you have done, a detailed proposal
for a senior thesis, user or maintenance documentation for existing software or hardware, or any other technical
writing except in-program documentation. (Warning: each year someone tries to write a game specification, and
each year the technical content and writing quality have been low—we will question closely any attempts at game
specification.)

Ways to generate ideas are included in Huckin and Olsen [HO91, Chapter 2]. Their Section 16.2 offers guidelines
for writing a short informal proposal, as well as a sample informal proposal. Their Section 16.3 discusses editing
your proposal. Read these sections before attempting this assignment.

Because this assignment is the beginning of a sequence of assignments, including a document specification, a
progress report, a formal technical report, and an oral report, you should read those assignments as well as this one.
(That is, read Chapters 12–5 of this workbook.)

10.2 Audience assessment—the instructors

Your audience for this assignment is your instructors, and your purpose is to get our advice and approval for your
final project. In order for us to give good advice, we need a clear idea of what you propose to do, and how you
propose to do it.

Huckin and Olsen’s guidelines cover a fuller proposal than you need write for this assignment. For our purposes,
if you cover the three areas they suggest for the introduction to an informal proposal, that will be sufficient. These
three areas are

1. the problem,

2. the objectives of the proposed work, and

3. the significance of the work.

To cover these areas adequately, you will have to do some preliminary research—you can’t just name an abstract
topic, like compiler design, and expect approval. Your poster presentation should have provided you with enough
background to narrow the focus adequately—broad enough that you can find information to provide, but narrow
enough that you can say something meaningful about the topic.

53

10.3 Writing process—informal proposals

Even though this memo should be relatively brief and to the point—a page or two at most—and even though it is
an informal proposal, these facts do not mean it is casual. Even a memo like this requires planning and a simple
outline.

Make notes or an outline of all the things that your supervisor (namely us) would want to know. You should
indicate whether you are writing a formal proposal, reporting on an investigation, writing documentation, or doing
a library research project. Next, include the subject and scope of your report, using the breakdown provided by
Huckin and Olsen.

For joint projects, as most of yours will be, discuss how you propose to divide the work, being specific about
exactly what each of you is going to do first, and giving us some idea of the division of labor for the rest of the
project.

Bear in mind that you are aiming at an upcoming assignment, the document specification, where you will be
making a completely specific division of labor for the whole project. If you are successful in this division of the work,
you will not have to change it later, and each of you will do your fair share of the work.

Also keep in mind that most of the areas discussed in your proposal will reappear in your progress report, which
is the assignment following the outline. It is normal procedure for your supervisor or sponsor to compare your first
major progress report quite closely with your original proposal. We do not mean that nothing can be changed, but
rather that you will need to tell us in the progress report what changes you have made in your goals. Reporting
changes is discussed in more detail in the progress report assignment (Section 13.3 of this workbook).

54

Chapter 11

Algorithm Description

11.1 Goals—multiple audiences, graphics, sophisticated audiences

This assignment practices

• writing to a technically sophisticated audience,

• writing to two different audiences at the same time,

• describing a recursive algorithm, and

• proper use of displays and figures.

11.2 Audience assessment—writing for multiple audiences

The Dinky Database Dantai1 has had complaints from their customers about the slowness of the zip code sorting
operation. You have been hired as a consultant to diagnose the problem. They can’t afford your consulting fees
for the time it would take you to code and debug the routines yourself, so you have to prepare a report to their
programmers explaining the fixes to be done. You cannot talk with the programmers who wrote the code, because
they are all working for Bit Bucket Enterprises now. The new DDD programmers are mainly entry-level programmers
(a euphemism for high school and junior college students working in their spare time).

On examining the code, you find that

• zip codes are stored alphabetically as variable-length character strings,

• all sorting is internal (all zip codes read into memory before sorting),

• the sorting is done by a variation of bubble sort (an order n2 algorithm),

• comparisons are done by passing the pointers to the two strings to a function, and

• exchanges are done by swapping two pointers in an array, not by copying entire strings.

Because Canadian and other foreign addresses use non-numeric mail routing codes, and even US codes vary in
length, you decide that the data representation is appropriate, and that alphabetical order is the correct ordering
for zip codes (00002-4455 is very close to 00002, not to 24455). The comparison and exchange operations seem to be
correctly written, with only minor gains in efficiency possible from re-implementing them more carefully.

After checking with DDD, you find that customers have not complained about the number of entries they can
sort, only about how long it takes. This means that internal sorting is a reasonable choice, and the extra complexity
and speed penalty for external sorting is not justifiable.

You cannot find any reason for using bubble sort, and decide to recommend a faster sorting technique (quicksort,
heapsort, merge sort, shell sort, radix sort, . . .). You have to explain briefly why you are recommending a change of

1Dantai is the Japanese word for a private corporation.

55

algorithms, then give a detailed description that the programmers can understand. You do not have to give a full
theoretical analysis of the algorithm, but a few sentences to explain why you chose the algorithm you did would be
helpful.

Your report will be read by two audiences: the managers of DDD and the programmers. The managers have no
formal training in computer science, but want to know that you’ve solved their problem. The programmers know a
little computer science, but are not familiar with sorting algorithms. The programmers may know as much as you
do, but because they can’t write nice reports, they get sweatshop wages while you earn consultant rates.

11.3 Writing process—algorithm description

Your first task is to choose an algorithm. You may already know one that is good enough. If not, Knuth’s Volume
3—Sorting and Searching [Knu73] should provide the information you need. Of course, you don’t want to read all
of Volume 3 before making up your mind. If you don’t have a copy of Knuth, almost any sophomore or junior data
structures book will describe a few of the more important sorting algorithms. You may want to check the serial
published by the ACM containing nothing but algorithms for various problems [ACM].

Choose your sorting algorithm to be fast and to require minimal changes to the data structures in the existing
program. You know that they use bubble sort, and so the information is stored in an array, with comparison and
exchange operations available. If your algorithm requires some other data structure, you will have to describe how
to build that data structure as well. For example, merge sort may be somewhat easier to describe than quicksort,
and less subject to “off-by-one” errors, but the simplest implementation requires linked lists, which would increase
the memory requirements. If you do describe merge sort, be sure to include the appropriate information about
error-checking and pointer manipulation: in the past, many students have used x->next->next in their pseudo-code
without warnings about odd list lengths and checking for null pointers.

When describing an algorithm, you have to pay careful attention to the level of abstraction. You do not want to
describe everything in gory detail—that’s the programmer’s job. You also don’t want to treat the whole problem as
a single black box either. If you knew the programmers were highly skilled, it might be enough to tell them “Use
quicksort!”, but for this crew you’ll need more detail than that.

The main parts of an algorithm description are

• purpose (what is the result of running the algorithm),

• data structure (what is manipulated by the algorithm),

• technique (what steps does the algorithm perform),

• justification (proof of correctness, often reduced to hand-waving),

• analysis (speed, space, cost, . . .).

Different audiences and different purposes demand attention to different aspects of the algorithm description.
When presenting a new algorithm for a well-known problem to the research community, the emphasis is usually on
technique, justification, and analysis. In that situation, you’re trying to show how much better you’ve done than
previous researchers. When presenting a new data structure (say a better representation of a priority queue), the
data structure and analysis might be stressed.

For this report, you will be presenting a well-known algorithm as the solution to a specific problem. Here data
structure and technique are most important. You can point to the literature for a proof of correctness and the details
of the analysis.

Some of the tools used for proving correctness are also useful for explaining the technique, so don’t ignore them
entirely. For example, the termination condition for a loop needs to be known both for the justification and for the
coding. Loop invariants (statements that describe a property that is unchanged as the loop is repeated) are essential
for correctness proofs, and handy for generating the loop in the first place. David Gries gives a detailed presentation
on using loop invariants to help write programs [Gri83].

56

11.4 Figures and displays

A manager reading your report will look at the executive summary and at the figures, to see what the report is about
and whether it is worth passing on to the programmers who’ll read the complete report. It should be possible to get
a fair idea of the content of the report just from looking at the figures and reading the captions. Look at the articles
in Scientific American for an excellent example of how figure captions can be used to convey most of the substance
of a technical article.

You have several opportunities for figures in this report—you can use them for the pseudo-code for the algorithm,
for showing the change in the data structure as the sorting progresses, for displaying the relative speed of different
algorithms as a function of the number of items to sort, and so forth.

There are two ways to insert non-textual material into a report: figures and displays.
A figure can appear anywhere in the report, and usually appears on the same page as, or slightly after, the first

reference to it. Figures are numbered and have a caption explaining what the figure is illustrating. Each figure must
be referred to somewhere in the text, either as part of a sentence, like this: “Figure 37 illustrates the relationship
between . . . ”; or as a parenthetical remark, like this: “(See Figure 38.)”. Remember to capitalize the word “figure”
when it is used as part of the name for a particular figure.

A display differs from a figure in that it is inserted in a fixed place, and is not allowed to “float” to a different
place in the text. Displays are used for math formulas, very small program fragments, and quotations that are too
long just to put in quotes in the middle of a paragraph. Some empty space is usually inserted before and after each
display to set it off from the surrounding text, and displays are often centered on the page. Mathematical formulæ
are usually inserted as displays, and are grammatically part of the sentence before them. For example, I can define
the golden ratio as the positive solution to the quadratic equation

x2 = x+ 1 ,

and continue writing the same sentence.

11.4.1 Graphics

Pictures are often the clearest way to explain data structures, particularly when pointers are required. Whenever a
picture is used, it should be a numbered, captioned figure. Figures should be (nearly) comprehensible without the
accompanying text. Make sure the caption explains what the figure means. Something like “Figure 3. Step 2 of the
algorithm.” is nearly useless. A better caption might be “Figure 3. Swapping out-of-order data elements pointed to
by i and j.”

The pictures you are likely to draw are block diagrams, symbolic representation of pointer structures, maps of
contiguous sections of memory, and graphs showing how something (time, cost, current, voltage, . . .) varies when
changing various parameters. The rest of this section will talk only about numerical graphs, though you probably
will need to generate other sorts of graphics, even for this assignment.

Proper treatment of graphics is really beyond the scope of this class. A fairly good introduction is included
in Chapters 8 and 9 of Huckin and Olsen [HO91, 137–184]. If you want a comprehensive treatment of presenting
numerical (mainly statistical) data in a professional form, the best book is Tufte’s The Visual Display of Quantitative
Information [Tuf83] on reserve in the Science Library. Other books can be found under subject headings like
“Engineering Graphics,” “Graphic Methods,” and “Computer Graphics.” For examples of how not to present
numerical information, see almost any mass-market magazine or newspaper. USA Today is particularly good at
distorting tiny data sets into fancy pictures that hide the data. Another particularly good collection of bad examples
can be found in a book by Time Magazine illustrator Nigel Holmes [Hol84], although they are presented as if they
were the best way to illustrate data.

Tufte summarizes his theory of data graphics as follows [Tuf83, 105]:

Five principles in the theory of data graphics produce substantial changes in graphical design. The
principles apply to many graphics and yield a series of design options through cycles of graphical revision
and editing.

• Above all else, show the data.

• Maximize the data-ink ratio.

57

• Erase non-data ink.

• Erase redundant data ink.

• Revise and edit.

Tufte also has some strong comments about “chartjunk”, the cluttering of graphs with non-informative decora-
tions [Tuf83, 121]:

Chartjunk does not achieve the goals of its propagators. The overwhelming fact of data graphics is that
they stand or fall on their content, gracefully displayed. Graphics do not become attractive and interesting
through the addition of ornamental hatching and false perspective to a few bars. Chartjunk can turn
bores into disasters, but it can never rescue a thin data set. The best designs (for example, Minard on
Napolean in Russia, Marey’s graphical train schedule, the cancer maps, the Times weather history of
New York, the chronicle of the annual adventures of the Japanese beetle, the new view of the galaxies)
are intriguing and curiosity-provoking, drawing the viewer into the wonder of the data, sometimes by
narrative power, sometimes by immense detail, and sometimes by elegant presentation of simple but
interesting data. But no information, no sense of discovery, no wonder, no substance is generated by
chartjunk.

Forgo chartjunk, including
Moiré vibration,

the grid, and the duck.

One problem that has appeared repeatedly is that students have given us plots of n2 and n lg n for n ranging from
1 to 10, to show the advantages of one of the O(n lg n) algorithms over bubble sort. There are two flaws: internal
sorting of 10 elements is so fast that no one cares which algorithm is used, and for such short lists some of the O(n2)
algorithms are faster than the O(n lg n) ones. If the plots showed from 100 to 10,000 records being sorted, the graph
would be both more meaningful to the reader and more honest.

Also, the graphs are often misleading, in that they are labeled with seconds or some other inappropriate unit. If
you had done some real speed tests, then seconds would be the right unit, but if you have just done a theoretical
analysis, then it is better to be more explicit about what you are plotting—in most analyses the number would be
the number of comparisons or the number of exchanges done. If you want to provide a good graph, you might look
up the formula for the expected number of comparisons actually done by each algorithm. The best place to find
accurate formulas for the standard sorting algorithms is Knuth’s Sorting and Searching [Knu73].

Here are some quick hints for creating usable graphs:

• Make sure that each graph has a single, clear purpose, and use the caption to point out what the reader is
supposed to notice.

• Label both coordinate axes.

• Do not print a grid, but do put tick marks on the axes.

• Don’t clutter up the graph with cute pictures.

• Make sure the ranges of the axes are appropriate.

11.4.2 Pseudo-code

Most of you have seen flowcharts for describing techniques. Although touted as a cure-all to programming woes in the
1960’s, they have essentially disappeared from professional programming. They encouraged unstructured “spaghetti”
code, and didn’t help much in understanding the resulting mess. The small boxes in flow charts give far too low an
information density, using lots of paper to say very little.

Instead of flowcharts, most algorithms are now described using pseudo-code. The pseudo-code syntax can be
based on any structured language (Algol, Pascal, C, Ada, . . .), but should be readable by someone familiar only with
a different language. Tests and statements are not written in full detail, instead the intent of the statement or test
is given. For example, pseudo-code for finding the minimum of an array might look like

58

min←∞
for each ēlement of array
if element<min then min←element

Pseudo-code should be properly indented and either displayed like the example above, or put into a figure with
a figure number and caption. Figures are generally easier for magazine and book typesetters to handle, and are
essential for big chunks of pseudo-code, but displays are easier to read for small pieces of code.

If you do put the pseudo-code in a figure, try to arrange the layout so that the figure comes after the explanation
has started. It is unfair to the reader to dump a big chunk of unexplained code in front of him or her. It can be very
frustrating to slog through the code only to find an explanation after you turn the page.

11.5 Explaining recursion

Many students choose to describe a recursive algorithm, such as quicksort, for this assignment. Here are some hints
on how to describe recursive algorithms so that they are comprehensible to someone who doesn’t already know the
algorithm, and who may not be entirely comfortable with recursion.

• First describe the outside view of the recursive function when viewed as a “black box” whose internal operations
are not visible. For example, when describing a recursive procedure that sorts an array, say something like

The procedure sort(arr,low,high) sorts the elements of the array arr[low] through arr[high]
into increasing order.

• Describe how the problem is subdivided and recombined in fairly general terms. For example,

Sorting is accomplished by dividing the sequence to be sorted into two smaller sequences, sorting
each sequence independently, then merging the two sorted subsequences.

Note that the above description could apply equally well to quicksort or merge sort. The differences between
the two algorithms come in how the partitioning and merging are done. Merge sort uses a trivial partition and
a more complex merging operation, while quicksort uses a fairly complex partitioning operation and a trivial
merge.

• Describe the boundary conditions that cause the recursion to stop.

A sequence with only a single element is already sorted, so no partitioning and merging are necessary.
Fast variants of divide-and-conquer sorting algorithms often use insertion sorting when the sequence
has fewer than five or six elements, as the overhead for recursion is quite high on conventional
machines.

• Describe the details of the algorithm after giving the overview. Only after you’ve described the divide-and-
conquer sorting strategy should you start giving the details that distinguish between merge sort and quicksort,
and only after that should you start distinguishing between the different variants of quicksort. Here is the place
to describe the importance of good pivot selection in quicksort, and to describe which of the many partitioning
strategies you recommend.

• Do not attempt to walk through an execution of the code without explaining the structure. It is tempting
to describe what happens in chronological order, but you’ll lose the readers very quickly if they have to keep
a six-deep recursion stack in their heads. Iterative algorithms are often best explained in chronological order,
but recursive algorithms are not. If you are explaining quicksort, you may find it helpful to illustrate the
partitioning step (which is iterative, not recursive) with pictures that show what operations happen, and in
what order.

59

11.6 Titles, title pages, and executive summaries

When you prepare a formal report, it is worth taking a little extra care to make sure that the report will reach the
intended audience, and that they will decide to read it. There are several things you can do to make it more likely
that your report ends up in the right place:

• Use an informative title. If your report is titled Quicksort or A report on certain problems within a database
company, no one will have any idea who to send the report to, where to file it, or whether it is worth reading.
A title that a secretary or an executive can understand is much more valuable: Speeding-up DDD’s zip-code
sorting by using quicksort.

• Use a title page. Put the title and your name on a separate page from the body of the report. Not only does
this look more professional than cramming everything into the body of the report, but it makes it easier for a
busy executive to sort the reports he or she has to read. You can put your address and phone number on the
title page also, so that anyone who wants to hire you again as a contractor can find you easily.

• Put an executive summary on a separate page from the body of the report. If the summary is short enough,
it can go on the title page. The summary should tell the executives all they need to know about the report:
what the problem is, what the solution is, and how much work will be needed to implement the solution, in
just a few paragraphs. Remember that the executive may be handling dozens of reports for different problems
in different products, and so a concise summary of the problem is as important as the solution.

11.7 Things to keep in mind for peer editing

11.7.1 About the algorithm

• This is a writing class, not an analysis of algorithms class. We don’t really care which of the many decent
sorting algorithms you choose. If you know something about sorting, there are a few obvious choices—quicksort,
heapsort, and radix sort. Your explanation of the algorithm is far more important than which algorithm you
choose. If you’re clever, you’ll choose an algorithm that is easy to explain, rather than the one that has the
best asymptotic performance.

• When you read your partner’s draft, check for bugs in the algorithm. Is the termination condition clearly and
correctly specified? Does s/he explain how to be sure the program will not bomb when sorting zero entries?
How are null strings handled? Could you take the description and write a procedure from it? Would the
resulting procedure work?

• Particularly watch out for abuse of “big-O” notation. Many of you have just learned about asymptotic analysis,
and tend to get carried away with its notations. The notation f(n) = O(g(n)) is badly designed—it is not an
equality. Saying that f(n) is O(g(n)) asserts a property of the function f , but does not give you a right-hand
side that you can substitute for f(n). The property is simply that, for sufficiently large n, f(n)/g(n) remains
bounded by some constant. Because the constants are all unspecified, it makes no sense to talk about O(1.5n)
or O(n+ 5)—both are just O(n).

Frequently, students misinterpret a statement that an algorithm takes O(n2) steps to mean that it takes exactly
n2. You can’t claim that switching from an O(n2) algorithm to an O(n lg n) algorithm will give you a 100-fold
speedup for n > 1000, because you don’t know what the multiplicative constants are. The only way you can
make such strong claims is to do a more detailed analysis of the algorithms.

If you look in Volume 3 of Knuth [Knu73, 107–110], you’ll find that bubble-sort requires at most 1
2 (n2 − n)

comparisons and 1
2 (n2 − n) exchanges to sort n items, and that on the average it takes 1

4 (n2 − n) exchanges
and 1

2 (n2 − n lnn−O(n)) comparisons. All of these numbers are O(n2), but they do differ significantly. Two
popular algorithms, heapsort and quicksort, are both O(n log n) on the average, but heapsort is guaranteed
to have fewer than nblog2 nc comparisons [Knu73, 149], while quicksort could take as many comparisons as
bubble sort. On random data, quicksort is usually the fastest sorting algorithm, but on non-random data it
can be slower than bubble sort!

60

• You should also check the verbal translations of the big-O order notation. For example, “grows exponentially”
has a specific technical meaning. The formula 2n grows exponentially, but n2 does not—n2 grows quadratically.

• When you report the relative speeds of different algorithms, know what it is you are reporting! In most analyses
of sorting routines, the number of comparisons or the number of exchanges is counted. Given the description
of the problem, which is likely to be more important?

• When you cite further sources for an algorithm, make sure that the source you cite uses the same variant of the
algorithm that you do. This is particularly important for algorithms like quicksort, where every author picks a
slightly different variant. For quicksort, the main variations are in how the pivot element is chosen and in how
the partitioning is done. The average behavior is O(n log n) for all the variants, but some of the variants are
much easier to program or have less probable worst cases.
If you have trouble understanding one author’s version of quicksort, check another’s. But, please, don’t get
two different versions mixed together! Warning: many authors pick a pivot for quicksort that gives the worst
possible behavior with an already sorted list. Because zip code lists are likely to be re-sorted after a few new
entries are added, you want to be sure that the algorithm you recommend will be fast even if the list is already
sorted.

11.7.2 Mechanical details

• Check your partner’s use of articles. Particularly look for articles with names. For example, “quicksort”
is the name of a sorting algorithm, so is used without an article. There is a substantial difference between
implementing quicksort and implementing a quick sort.
If you are having trouble with definite and indefinite articles, read Chapters 29 and 30 of [HO91]. Particularly
watch out for the word data; it used to be a plural noun (the plural of datum), but has come to be an
uncountable one in American usage. Under no circumstances is it a singular, countable noun, so it can never
be used with the indefinite article.

• Check your partner’s word choice for accuracy. For example, one popular phrase for this assignment is the
oxymoron slow speed, which should be replaced with a phrase such as slowness or low speed. Another meaningless
phrase that has been popular is fast time, which could have been replaced by short time, little time, rapidly, or
quickly, depending on the context. You could also use more technical phrases such as a shorter response time
or better throughput, but there is no point to being over-specific.

• Watch out for the back-formation recurse from recursion. The noun recursion comes from the verb recur. To
recurse would be to swear at someone again. Verbs that add -ation to from nouns sometimes get corrupted
by back-formation. The verbs that form permutation and formation are permute and form, not permutate and
formate. Nouns with irregular plurals sometimes get corrupted also—the singular of vertices is vertex.

• Check your partner’s use of type styles carefully. For example, the names of variables and procedures are
often done in a fixed-width typewriter font (such as Courier). If such a convention is used, it should be used
consistently.

• Another common convention is to italicize important words when they are being defined. (Use underlining if
you do not have italics on your typewriter or printer—do not use both underlining and italics.) For example,

A divide-and-conquer sorting algorithm has three steps: partitioning the sequence into two shorter
sequences, recursively sorting each subsequence, and merging the two sorted subsequences to form a
complete sorted sequence.

Italicizing words tells the reader that you believe the word is important, that the particular use you are making
of the word may be unfamiliar to the reader, and that you are clarifying it here. Do not italicize jargon words
every time you use them, but only when you are defining them. Italics are also used for foreign words that
have not yet been Anglicized, and for general emphasis. In some documents, italics are also used for comments
on program fragments, to make it clear that the comments are not part of the program itself.

• If you use the same typographic convention with many different meanings, it ceases to be helpful to the reader,
so try to pick just a few related meanings for each typographic convention you use.

61

11.8 The final draft

Your report will be read by executives who understand the problem, but not programming. The format of the report
can aid them considerably in finding the information they need. A jargon-free executive summary at the beginning,
explaining the problem and its solution, may be all they need to read.

Use good section headings and captions for your figures. Read Sections 9.3 and 9.4 of Huckin and Olsen [HO91,
176–183] for suggestions about formatting a report for maximum readability.

Prepare your report as neatly as you can. A professional consulting job may produce a 10–20 page report from a
$2000 study. At more than $100 a page, a consultant can afford to do it right. You do not need to spend enormous
amounts on type-setting or professional illustrators. A typescript is still acceptable in industry, though laser-printing
is becoming the standard, rather than the exception. Figures can be prepared on separate pages, pasted in, and
photocopied. Photoreducing hand-drawn figures before pasting them in can hide the wiggly lines somewhat. The
software available on the Macintosh and Windows machines makes combining graphics and text easy.

Choose an appropriate font size for your document. Unless you are writing a document that you don’t want
anyone to read (a warranty, perhaps?), choose at least a 10-point font. Unless you are writing for young children or
people with bad eyesight, use at most a 12-point font. Standard elite and pica typewriters fall in the correct range.
Using too large a font usually strikes readers as childish, which is not the effect you want in a report that you are
charging hundreds of dollars for. If you want to impress someone with the bulk of a report, use 24-pound rag bond
paper, a moderately wide font (say Palatino or Bookman instead of Times), slightly wider margins, and slightly more
leading (space between lines), not 14-point fonts.

Check your spelling and punctuation carefully. Check even the spaces around your punctuation:

• Have two spaces after each colon, question mark, exclamation point, or sentence-ending period. (This is
typewriter advice—when typesetting with variable-width fonts, no extra space is used after these punctuation
marks.)

• Have spaces outside, but not inside parentheses and quote marks.

• Have no spaces before any punctuation marks except “(” and open-quote marks.

• Have no spaces around dashes.

Because of the difficulty students have had in the past describing sorting algorithms, we have requested two drafts
with peer-editing on each draft before the final draft is due.

62

Chapter 12

Document specifications

12.1 Goals—three purposes for document specifications

A document specification contains several parts: a description of the audience(s) for the document, a detailed outline
giving the structure and contents of the document, and a work plan showing who is responsible for each part of the
document and what the deadlines are for completing each task. For large documents, there may other managerial
information, such as number of pages allocated for each section, graphics budgets, printing costs, and so forth. We
do not expect you to produce this level of detail in your document specification.

In the workplace, formal document specifications serve three important functions: economy of effort, work plan-
ning, and writing organization.

12.1.1 Economy of effort

First, document specifications are used to help you reduce the amount you have to write. When you are requested to
write a major report, quite often you will be told something like, “Do a draft and then come see me with it.” After
talking with your boss, you will have to revise the draft completely so that it will have in it what the boss really
wants, since he/she hadn’t thought about the project carefully until reading your draft. You can often save yourself
(and your boss) much work if you write a detailed document specification instead. A document specification is much
easier to create, change, revise, and add to than a draft is.

12.1.2 Work planning

The second major function of a document specification is work planning. This can mean either budgeting your own
time, or, in large formal reports, distributing the work among many people. Multi-author writing is probably the
most common form of workplace writing. The more you know about the specification, the more likely you are to get
only your fair share of the writing and no more.

For the purposes of the class, the document specification will serve to distribute the work between you and your
partner. You should bear three things in mind in dividing the work: even work load, respective areas of expertise, and
getting things done in the order that you need them. These points sound obvious, but achieving a fair distribution
of the work is not always easy. It involves keeping to a schedule, for one thing, and staying in close touch with your
partner, for another.

12.1.3 Writing Organization

The third major function is the organization of the report itself. This function is discussed in Section 12.3.2 below.

12.2 Audience assessment

As with the proposal, we are the supervisory audience for this document specification. However, we are not the
audience for your final report. Don’t get confused on this point. If you are writing user documentation for software

63

meant to be used by first-year students in a chemistry lab, they are your audience, not us. For more on this issue,
refer to the final report assignment (Chapter 14).

The document specification you are writing is a working document, meant to allow us to help you with your
project. The fuller and more complete your document specification is, the more we can help you.

A tool that is useful for doing the audience assessment for your final report is a user matrix. Each row of a user
matrix corresponds to one group of readers for the final document, and each column corresponds to one topic in
your report (perhaps a section heading). Each entry in the matrix indicates how important that topic will be to
that group of readers. For example, in hardware documentation the parts list may be essential to Manufacturing,
but useless to Marketing.

You can use any quantification scheme you want for the entries of the matrix, but there is no need to get fancy.
In most cases, a single bit (needs to read this/doesn’t need to read this) is sufficient.

Before writing your document specification, try to make a list of the different readers you expect for your final
project. At the very least, you should include your classmates, as they will be the audience for your oral report. If
your project is the final project for some other class, you should include the instructor for that class and students
who are planning to take the class.

Once you have the main topics of your report identified, you can use the user matrix to help you order them. Try
to put the most important information first—the things that everyone needs to read should be near the beginning,
and the things that only a few readers need later or in separate appendices. If possible, try to arrange things so that
most readers can read a contiguous chunk of the report, not having to skip irrelevant pieces.

The user matrix is an important part of the document specification, so please include it in what you turn in.

12.3 Writing process—document specifications

12.3.1 Outlining is organizing

Some of the material that follows is also found in the final project assignment. The material will be repeated because
it is about organizing technical reports. Here the stress will be on the detailed outline in a document specification
as a management tool for writing technical reports.

Outlining is organizing. This is a point sometimes obscured in presentations that get bogged down in what type
of number to use for the third innermost nested subhead. We assume here that you can figure out how to do that kind
of thing in a clear and consistent way, and concentrate instead on the underlying principle involved—organization
of technical reports, and organizing the process of producing them. Organization, of the writing process and of the
report itself, is the basis for two of the three major functions of document specifications.

In preparation for this assignment, read Chapters 12 and 15 in Huckin and Olsen, where a somewhat similar
scheme for organization is discussed. Their scheme differs mostly in detail, not in principle. The process and the
product are the same. If Huckin and Olsen’s scheme makes more sense to you, then use that one.

12.3.2 The basic tripartite structure of a formal report

The outline that follows is the core of the one presented in the final project assignment (Chapter 14). It displays the
basic tripartite structure of most technical reporting. This outline is very general, and very abstract, and is designed
to show you the internal structure of virtually all technical reporting, not provide you with headings for your own
document specification. These headings used here show internal structure, but they have no technical content.

Your headings must contain the primary content of your report. Generic headings, like the ones used
here, will not be acceptable.

1. Front matter Each of the sections of the front matter should include a brief version of your problem statement
and your recommendation, if appropriate. (See parts 2.2 and 3, below). Most documents use only two or three
sections in the front matter—it depends on what you are writing.

1.1 Executive summary. In the workplace, your recommendation is the most important part of an executive
summary, and should immediately follow a brief statement of the project or problem.

1.2 Abstract. It is unusual to have both an abstract and an executive summary, because both serve essentially
the same function in different types of reports.

64

1.3 Preface. A preface usually contains a description of the target audience and intent of the document, and
a list of acknowledgements for contributions made by people other than the authors.

1.4 Introduction. An introduction is used to explain the background or significance of the main part of the
paper.

2. Technical Discussion

2.1 Problem Statement.

2.1.1 What was studied, designed, built, or investigated
2.1.2 What the purpose of the study, design, or investigation was
2.1.3 What you found out

2.2 Full explanations for Heading 2.1, above, that is

2.2.1 How you did it, including, as appropriate, tests, procedures, methods, materials, processes, equip-
ment, programs (if they’re short, otherwise leave them for the Appendices)

2.2.2 What happened, including, as appropriate, test results, data collected, full description of design(s),
procedures modified, processes completed

2.2.3 Your interpretation of your work

3. Recommendations (especially important in the workplace: finding out what to do is why they have you do
the report)

3.1 Description of solution to problem or proposal for change

3.2 Benefits to the company

3.3 Rejected alternatives

For research reports, this section is often titled “Future Work”, giving recommendations for new ideas to pursue.
A design document may end with suggestions for improvements to make, a marketing plan, or whatever else
needs to be done with the design. User’s documentation will often end with suggestions for further reading for
those interested in more details.

12.3.3 Organizing the work and the writing

The sequence described in Section 12.3.2 is typical of the sequence of topics in a technical report. It is not, however,
the sequence in which the report is written or the work is done. In terms of organizing work and writing, this is the
crucial point: the work, and the writing, begins in the middle!

Everything begins in the middle because, if you look at part 2.2, you will see that this section deals with things
that engineers actually do. Here you are working with ideas for your project based on your proposal, which, once you
have done the work and know how it really came out, you use as a basis for writing part 2.1, the Problem Statement.

The work in part 2.2, and the writing that goes with it, are the first things that you and your partner need to
divide up. Divide both work and writing. For this paper, you may very well be documenting an already completed
project, in which case you will be dividing just the writing, but be sure to go over each step of the project together,
so you both agree on what you think was done. What documentation actually exists almost certainly amounts to
notes for part 2.2 of the Technical Discussion, so work with them accordingly.

Thus, the first writing that gets done covers the areas in part 2, Technical Discussion. Your interpretation of
your work (part 2.2.3), leads to the next section normally written: Recommendations (part 3). Once you have this
figured out, you can go back and write the Executive Summary (part 1), because you now know what the work you
did was designed to find out or produce, namely, the answer, the solution, the usable design, which provides the
basis for your recommendation.

Since this is what you are being paid to figure out, it goes right up front in the Executive Summary, where your
employer can see it!

65

12.3.4 Which projects do not use the Tripartite Structure?

The outline in Section 12.3.2 is the basic tripartite structure of formal reports. This structure is especially appropriate
for documentation of your own research projects, what we are calling here design documents. However, if you are
doing user documentation, your format is likely to be more like the formats used in the naive-user documentation
assignment (Chapter 8). If you’re doing user documentation, review Chapter 8, re-read your notes from the guest
lecture, and take a good close look at UNIX for Luddites again.

12.4 What to turn in

The document specification should be written as a memo to us. Leave plenty of white space, so we have room to
make suggestions and amendments.

You and your partner should turn in to us as full and as explicit a document specification as you possibly can—the
Technical Discussion section should be particularly detailed. It should also identify, item by item, who is doing and
writing what.

By now, your project should have a title. Use it on your document specification.
Turn in your user matrix. We’d like to see who you are writing for, and what you think they need to know.
Turn in your project proposal again with the document specification. We want to see that your document

specification matches your proposal—if it doesn’t, you should have an explanation of the discrepancies, perhaps even
a modified proposal. We cannot be expected to remember the details of all the projects being done!

66

Chapter 13

Progress Report

13.1 Goals—writing progress reports, making sure there is progress

This assignment is an opportunity for you to tell us, in writing, how you are doing on your final project. Put your
progress report into the form of a memo.

The example in Figure 13.1 shows the format, but not, we hope, the content of a progress report. The body
of the memo was written by William Cohen of China Lake, California, as an example of the many cliches and
circumlocutions that appear in technical reports. Translations of the phrases appear in parentheses.

13.2 Audience assessment—instructors and supervisors

Your audience for this assignment is your instructors, and your purpose is to tell us what progress you’ve made on
the final project. In industry, you will often need to file progress reports with your supervisor. The goal of such
progress reports is either

• to convince your audience that you are making progress, that it’s the proper progress, and that you will finish
on time, or

• to explain problems and to request assistance or guidance.

13.3 Writing process—short progress reports

Even a brief, one-page memo requires planning and perhaps a simple outline. Make notes or an outline of all the
things that your supervisor (namely us) would want to know. You should include a brief description of the general
outline of the report, whether you are writing a proposal, reporting an investigation, writing documentation, or doing
a library research project. Next, include the subject and scope of your report, including the major areas your table
of contents will cover, and then tell us how you’re doing on it. Talk about any research you’ve done, how the actual
writing is going, and any problems you’ve run into. Don’t be afraid to mention problems–there may be something
we can help you with. Include any information you find relevant.

For joint projects discuss how the division of the work is working out, if you think changes should be made, and
if so, what.

Be sure to tell us, right at the beginning, if you have changed the topic or the scope of your report in any
substantial way since we approved your proposal for a final report. These are the kind of changes that we need to
know.

67

To: Kevin Karplus and Sharman Murphy, Instructors
From: A panicky student
Date: 26 Feb 1993
Subject: Progress on the report that hasn’t been started
During the current reporting period, considerable progress has been made in the
preliminary work directed toward the establishment of the initial activities. (We
are getting ready to start, but we haven’t done anything yet.) The background
information has been surveyed and the functional structure of the component parts
of the cognizant organization has been clarified. (We looked at the problem and
decided that George would do it.) Considerable difficulty has been encountered in
the selection of optimum materials and experimental methods, but this problem is
being attacked vigorously, and we expect that the development phase will proceed
at a satisfactory rate. (George is looking through the handbook.) In order to prevent
unnecessary duplication of previous efforts in the same field, it was necessary to
establish a survey team which has conducted a rather extensive tour through various
facilities in the immediate vicinity of manufacturers. (George and Harry had a nice
time in New York.) The Steering Committee held its regular meeting and considered
rather important policy matters pertaining to the overall organizational levels of
the line and staff responsibilities that devolve on the personnel associated with the
specific assignments resulting from the broad functional specifications. (George and
Harry were complaining about their jobs at the corner bar again.) It is believed that
the rate of progress will continue to accelerate as necessary personnel are recruited
to fill vacant billets. (We’ll get some work done as soon as we find someone who
knows something.)

Figure 13.1: Example of good memo form and bad style in a progress report (by William Cohen).

13.4 Professional Ethics

13.4.1 Honesty is the basis of professional ethics

Progress reports call for complete honesty. If you have good reason to believe that a project will not be completed
on time, say so, and explain what additional resources would be needed to be able to complete it. Your manager
may want you to write glowing progress reports, then when the project falls apart, he can point at the reports and
say that so far as he knew everything was on track, and that the whole mess is the fault of lying subordinates. Don’t
get stuck with the blame!

Even when routine progress reports are not required, you may want to write one when a project is going badly,
to inform management of a problem. There is always some risk in being the bearer of bad news, as the managers
will start looking for someone to blame long before they start looking for a solution.

Sometimes you will be asked, with more or less subtlety, to aid in a deception—to make things look better either
to higher management or to a customer. Resist such requests! A firm “I can’t do that, it would be dishonest” is often
all it takes to avoid some very messy situations. As an honest, competent engineer, you are far more employable
than the dishonest managers who would ask you to compromise your principles—if they insist, you can walk away
from the job, writing a letter to higher management explaining why you cannot work for the company any more.

It is much easier to resist pressure if you have enough money in the bank to live for six months without a job.
Build up that cushion before you buy a new car, a new stereo, or a new house. Even if you never have to quit for
ethical reasons, layoffs are common in the computer and electronics industry. Usually you can get re-hired somewhere
else fairly soon, but having some money in the bank allows you to pick your job a bit more carefully.

Huckin and Olsen also have some mention of ethical issues for engineers [HO91, Chapter 2].
The next section includes the 1979 text of the IEEE Code of Ethics for electrical engineers. The Code was revised

recently, mainly in attempts to strengthen the wording about engineers’ responsibility to society (see Section 13.4.3).
Other than some rather obvious self-serving provisions, the 1979 code is still a pretty good one. We will discuss
aspects of the code in class—please read it carefully to identify parts that you disagree with, that are open to
misinterpretation, or that emphasize one aspect of integrity at the expense of another.

68

13.4.2 1979 IEEE Code of Ethics

Preamble

Engineers, scientists, and technologists affect the quality of life for all people in our complex technological society.
In the pursuit of their profession, therefore, it is vital that the IEEE members conduct their work in an ethical
manner, so that they merit the confidence of colleagues, employers, clients, and the public. This IEEE Code of
Ethics represents such a standard of professional conduct for IEEE members in the discharge of their responsibilities
to employers, to clients, to the community, and to their colleagues in this Institute and other professional societies.

Article I

Members shall maintain high standards of diligence, creativity, and productivity and shall

1. Accept responsibility for their actions;

2. Be honest and realistic in stating claims or estimates from available data;

3. Undertake technological tasks and accept responsibility only if qualified by training or experience, or after full
disclosure to their employers or clients of pertinent qualifications;

4. Maintain their professional skills at the level of the state of the art, and recognize the importance of current
events in their work;

5. Advance the integrity and prestige of the profession by practicing in a dignified manner and for adequate
compensation.

Article II

Members shall, in their work,

1. Treat fairly all colleagues and co-workers, regardless of race, religion, sex, age, or national origin;

2. Report, publish, and disseminate freely information to others, subject to legal and proprietary restraints;

3. Encourage colleagues and co-workers to act in accord with this Code and support them when they do so;

4. Seek, accept, and offer honest criticism of work, and properly credit the contributions of others;

5. Support and participate in the activities of their professional societies;

6. Assist colleagues and co-workers in their professional development.

Article III

Members shall, in their relations with employers and clients,

1. Act as faithful agents or trustees for their employers or clients in professional and business matters, provided
such actions conform with other parts of this Code;

2. Keep information on the business affairs or technical processes of an employer or client in confidence while
employed, and later, until such information is properly released, provided such actions conform with other
parts of the Code;

3. Inform their employers, clients, professional societies, public agencies, or private agencies of which they are
members or to which they may make presentations, of any circumstance that could lead to a conflict of interest;

4. Neither give nor accept, directly or indirectly, any gift, payment, or service of more than nominal value to or
from those having business relationships with their employers or clients;

5. Assist and advise their employers or clients in anticipating the possible consequences, direct and indirect,
immediate or remote, of the projects, work, or plans of which they have knowledge.

69

Article IV

Members shall, in fulfilling their responsibilities to the community,

1. Protect the safety, health, and welfare of the public, and speak out against abuses in these areas affecting the
public interest;

2. Contribute professional advice, as appropriate, to civic, charitable, or other nonprofit organizations;

3. Seek to extend public knowledge and appreciation to the profession and its achievements.

13.4.3 1990 IEEE Code of Ethics

The Board of Directors of the IEEE approved a new code of ethics at their August 1990 meeting [IEE90], to replace
the rather wordy 1979 one. Note how the writing style has changed, and how much terser and crisper the new code
is.

We, the members of IEEE, in recognition of the importance of our technologies in affecting the quality
of life throughout the world, and in accepting a personal obligation to our profession, its members and
the communities we serve, do hereby commit ourselves to conduct of the highest ethical and professional
conduct and agree

1. to accept responsibility in making engineering decisions consistent with the safety, health, and welfare
of the public, and to disclose promptly factors that might endanger the public or the environment;

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected
parties when they do exist;

3. to be honest and realistic in stating claims or estimates based on available data;

4. to reject bribery in all its forms;

5. to improve the understanding of technology, its appropriate application, and potential consequences;

6. to maintain and improve our technical competence and to undertake technological tasks for others
only if qualified by training or experience, or after full disclosure of pertinent limitations;

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and
to credit properly the contributions of others;

8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or
national origin;

9. to avoid injuring others, their property, reputation, or employment by false or malicious action;

10. to assist colleagues and co-workers in their professional development and to support them in following
this code of ethics.

13.5 Assignment—final draft only

The progress report is short enough that we do not expect you to take several days preparing it. Because the progress
report has significant time value (we want to know the current progress–not last week’s), we do not ask that you
bring in a draft for comments before turning in the final memo.

Please use standard memo format [HO91, Chapter 13].
Don’t forget to tell us the title of your project, preferably in the “Subject” field at the beginning of the memo—we

can’t remember exactly what everyone is doing!

70

Chapter 14

Final project

14.1 Goals—formal report writing

The main goal of this assignment is to learn how to write a formal report in several defined steps, each of which is
a separate sub-assignment. You will have done, in sequence, the Proposal Memo, the Document Specifications, and
the Progress Report. This chapter will discuss the final form of the Final Project. Some of what is covered here
was also discussed in the document specification assignment, although largely from the perspective of organizing the
writing process. Here we will be discussing the sequential organization of the report itself, and the reasons for it.
The relevant sections of Huckin and Olsen are Chapters 12 and 15 and Sections 9.3 and 9.4 [HO91].

Your final project can be a design description (for a design you did yourself), a library research paper, a formal
proposal for a future design project, or user documentation.

14.2 Audience assessment—choose your own

You must define your own audience for this project.
If you do a design description, your audience might be the management of your company, or one of your professors,

or students who will be doing similar design projects in future years. Writing for future students is probably the
easiest, as you can have a better idea what things they will be interested in.

For a library research report, your audience might be the readers of a magazine in which you intend to publish
the survey article. (If you pick this sort of audience, specify the magazine or journal you’re aiming at.)

If you are doing user documentation for any of the things suggested on our project list, think carefully about
the real audience, which differs considerably from project to project—some are for beginning students, some for
advanced students and professors. Remember that the audience is not the instructor for the writing class, nor the
professor you have contacted about the needed documentation.

Keep in mind that for the oral report based on this assignment, your audience will be the class.

14.3 Writing process

14.3.1 Writing the Report

We will go over the elements of a formal report, and the reasons for them, in class. The tripartite structure discussed
below is especially appropriate for documentation of your own research projects, what we have been calling design
documents in class. If you have any questions as you are working, refer to this chapter or to Huckin and Olsen,
Chapters 12 and 15 [HO91], for the structure of formal reports.

Some moderately useful stuff for library papers can be found in Chapter 16 of Huckin and Olsen, but you should
also consult one of the other texts on reserve for this sort of paper. McGuire and Putzell [MP88, Chapter 12] and
Trzyna and Batschelet [TB87, Chapters 3 and 4] may be useful. Also, your experience with the poster presentation
is relevant. Look over Chapter 15 again, as well as your notes from the guest lecture by the reference librarian.

71

If you are doing user documentation, as we mentioned in the document specification assignment, your format is
going to be more like the ones used for naive-user documentation, so review Chapter 8 of this workbook. Also, the
section entitled “Manual Writing” in Trzyna and Batschelet [TB87, Chapter 12, pages 281–297] has a good deal of
useful general advice and some helpful examples.

14.3.2 The tripartite structure of a formal report

As discussed in the documentation specification assignment, what follows is intended to be general, to provide an idea
of the basic components of a formal report. It is not an outline for you to fill in, especially since some of the headings
name functions, rather than being titles for sections. You will have to choose which things you need to include. You
are unlikely to need all four items in Section 1, for instance, and you may or may not want to include a letter of
transmittal to the contact person for your project. See pages 220–223 of Huckin and Olsen for an explanation of
letters of transmittal [HO91, Section 11.3]. You might have to include a quite substantial appendix or supplementary
section, depending on the project.

Front Matter Letter of transmittal, title page, contents, list of figures, list of tables, and acknowledgments.

1 Executive summary, abstract, preface, and introduction.
See Section 12.3.2.

2 Technical Discussion
See Section 12.3.2.

3 Recommendations
See Section 12.3.2.

Appendices and Attachments bibliography or list of cited works, tables, documents, data, source code, maps,
letters, testimonials, brochures, resumes, index—depending on what you are writing. Usually the list of cited
works (labeled References) comes first, and the index comes last. The others come in whatever order is
appropriate, and are called Appendices.

Versions and modifications of this outline may be used for your final reports. Modify this outline to suit your
project—don’t force your paper to fit the outline. You may find that the main body of your report divides naturally
into four or five parts instead of three; that’s fine, but ten parts would not be fine. Be wary of subdividing into too
many parts at one level, as that indicates that you haven’t properly grouped related subjects together.

Most important, give each of your sections meaningful headers, not the generic headers we used in the outline.
The outline above is a guide, not a rule. Compare it with the schemes in Huckin and Olsen, Chapters 12 and 15.

There are similarities and differences, but the underlying ideas are consistent.

14.3.3 Explanation of Tripartite Structure

The outline in Section 14.3.2 is the basic tripartite structure of formal reports. The three parts of the tripartite
structure are the beginning, the middle, and the end, not surprisingly. As we discussed in the outline assignment,
starting down in the bowels of the report, the Technical Discussion has three parts: 2.1, 2.2, and 2.3. But the
Technical Discussion itself is the middle, or the body, of a larger structure, where the beginning is part 1, and the
end is part 3.. This whole piece, parts 1–3, is the main body of your report and forms the “middle” between the
Front Matter and the Attachments for the entire report.

Besides being organized in nested “middles”, between beginnings and ends, you will notice that the document
progresses serially from the simple to the complex, and repeats itself in increasingly complex ways at least once, and
more likely twice. For example, the simplest text is going to be in the executive summary, and this may be as far as
some management readers will get. The most technical material may very well be a long list of design specifications
in an appendix, and may not even be recognizable for what it is by some readers.

The purpose of this feature, the organized and repetitious progress through ever more complex explanations of
the same thing, is that technical reports have many audiences with many purposes. The management reader is
concerned with allocating resources, both money and personnel, and planning for the organization as a whole. The

72

executive summary tells her/him what projects have become feasible, what problems have been solved, what new
products are possible. This is the kind of information on which management decisions are based.

The production engineer who will implement the new design, however, may very well skip most of the beginning
material, go to the heart of the technical discussion, read it quickly so she/he will understand what’s going on, and
then move on to the detailed specification of the new design. On the other hand, another engineer with a similar
design problem may consult only the technical discussion, looking for ideas for solving her/his somewhat different
problem.

Overall then, organization of a technical report in this fashion serves the needs of all the audiences who will
consult the report.

14.3.4 A note on page numbering

Every page after the title page must be numbered, and your table of contents must list the page numbers for at least
the major sections of the report. There are many popular styles for page numbering, and you may choose whichever
you like, as long as you use it consistently.

Many computer scientists prefer a page numbering that starts on page 1 (page 0 is the title page), and continues
sequentially until the end of the report. This style is easy to generate with word and document processors, and is
easy for the reader to understand. When printing on both sides of the paper, the odd-numbered page is always the
right-hand page, and the even-numbered page the left-hand page.

The more traditional scheme uses lower-case Roman numerals for the front matter, and starts page 1 at the
beginning of the body, numbering sequentially from there. It is a holdover from when books were typeset by hand,
and the front matter was often not written when the main body was being typeset. Some traditionalists still insist
on this scheme, even though the technical motivation for it has almost disappeared.

One compromise scheme sometimes found in frequently modified documents (such as computer manuals) is to
number separately within each chapter, so that Chapter 1 starts on page 1–1, Chapter 2 on page 2–1, and so forth.
In traditional formats, appendices are often numbered this way, with Appendix A starting on page A–1. Separate
numbering for each chapter allows updating a manual by replacing one chapter, rather than replacing the entire
manual.

14.4 Citing your sources

It is absolutely essential that every idea you present in your paper can be traced back to the original source. You
should provide a citation for every idea—not just direct quotes and paraphrases.

A citation generally refers to the immediately preceding sentence (if it comes before the period) or paragraph (if
it comes at the end of a paragraph, after the final period). Providing a citation just tells people where an idea came
from, and does not indicate that any quotation or paraphrasing has taken place. Providing a citation is not sufficient
protection from charges of plagiarism if you copy someone else’s words without making the quotation explicit.

The citations come in several different styles—I generally like square brackets around a short identifier that can
be used to look up the citation in the reference list, though some people prefer numbers to alphameric identifiers, and
some people prefer parentheses to square brackets. The reference list itself should be alphabetized by first author
(which should be consistent with the alphameric identifiers, if you use them).

For more details about good citation formatting and style, I recommend A Handbook for Scholars [van78]. The
book is well written and is a pleasure to read, despite the unpromising title.

14.5 Oral Reports

You may still be working on your draft when you give your oral report. This is an advantage; you can incorporate
any feedback you get from the class in your final draft. Wise students will do their oral presentations as early as
possible. In industry, oral presentations (sometimes more than one) are often given before the final draft of a report
is submitted.

73

14.6 What to turn in

The due dates for the assignments are given in the syllabus.

Draft 1 The first draft of your project is due in class. We will work on them extensively in class that day. This
session will be concerned primarily with organization of material, adequate explanation, and inclusiveness.

Draft 2 The second draft of your project is due in class. This time we will be concerned with formatting, and a
host of editorial questions involving clarity of presentation and explanations. The nitty-gritty stuff.

Final The final project is due, no later than 5:00 p.m., in Kevin’s office. You will turn in the following:

• the final version of the report (20–30 pages, a bit shorter for one-author reports), produced as nicely as
you can,

• both earlier drafts, with comments by your partners,

• all previous assignments (so we can look at them when writing narrative evaluations).

74

Chapter 15

Poster presentation

15.1 Goals—informal poster presentation, library work

This assignment has several goals:

• To require students to learn to use the reference resources available to them. These resources will be discussed
in detail in a guest lecture by a reference librarian.

• To teach you how to present material in a concise way, in a format becoming more popular for scientific
presentations.

• To practice creation of visual aids.

• To get you started on your final project, deciding what are the most important aspects of it.

Posters are an informal means of presenting scientific and engineering results at conferences, where there is not
enough time for everyone with interesting new results to present a full paper. For example, at ISMB 2000, there
were about 40 oral presentations and 300 posters, and the number of posters has increased each year since, while the
number of oral presentations has remained roughly constant.

There are also student poster competitions, run by AT&T and by ACM. (See http://www.research.att.com/academic/researchday/
and http://www1.acm.org/spost/call.html for more details.)

The purpose of a poster is to catch the eye of someone walking by, provide them with some information about
your results, and leave them convinced that your work would be worth knowing about. It is standard at conferences
to schedule a time for people to stand next to their posters for a couple of hours, to answer questions people might
have. However, you cannot rely on this mechanism for any important information, as not everyone who sees the
poster will have time to stop for an extended chat.

15.2 Textbook resources

There are no chapters in Huckin and Olsen specifically on poster presentation, but chapters 8 and 9 on visual aids
are the most relevant.

15.3 Audience Assessment—fellow students

Audience assessment is not the main stress in this assignment. Your audience is other people like you—people who
knew as much (or as little) as you, before you did this assignment. The more similar the audience is to you, the
easier it is to write for—just think about what you would want to know.

The main principle to keep in mind here is always to assume that your audience can be counted on to know
rather less than you think they ought to or wish they did.

Warning: in many cultures it is polite to pretend that your reader is highly intelligent, and you flatter them
by giving them material that is difficult to understand. This is not true of American technical writing. Here, you

75

flatter people by taking the time to explain something in such a way that they can understand it. Watch out for
unconscious cultural effects on your writing.

15.4 Preliminary Draft

I find it useful to prepare scaled versions of the poster that fit on a single 8.5”-by-11” piece of paper (about 1/4
scale). If text or graphics are unreadable at this scale, then they probably won’t work on the final poster.

Be sure that the essential information (title, author, affiliation [UCSC], source for additional information, . . .)
is prominently displayed.

Note that poster arrangements are two-dimensional, unlike the serial ordering of a paper. If there is a preferred
serial order, then the natural flow for the poster is from the upper left corner, to the lower right, in much the same
order as you would read text. (Note; languages with different writing schemes have different natural viewing orders—
you may want to prepare a poster differently for an audience that primarily reads and writes Hebrew, Arabic, or
Chinese, for example).

Check that the natural left-to-right, top-to-bottom scan will get the information in the order you want. Look for
unbalanced graphics or text-heavy blocks.

15.4.1 Choosing the graphic elements

Since the purpose of the poster is to attract the attention of a busy conference attendee, it helps enormously to use
color and graphics. If the graphics appear to be content-free, however, they will work against the final goal of getting
the conference attendee to think that your research is worth knowing more about.

Generally the most effective graphics are graphs of the results of an experiment, but other forms of graphics can
also work well (think of the pictures used for explaining quicksort, for example).

The graphics must have a clear, immediate connection to the point you are trying to make. If you want to show
that method A is better than method B, for example, both methods should appear on the same graph, with clearly
labeled axes, with a good separation between the plotted lines. People will look first at the graphical elements, before
reading any of the text—the graphs must be comprehensible without wading through the entire text.

15.4.2 Preparing the poster

Before you prepare your poster, wander around Baskin Engineering and Sinsheimer Labs, looking at the research
posters on the walls. Pick out some posters that work particularly well at attracting your attention and conveying
information to you. Try to figure out what makes them work so well. Pick out some posters that seem to fail
miserably—what went wrong with them? It may just be that you are outside the target audience, but there could
be presentation errors that you could avoid in your own posters.

1. Poster size.

The size for posters varies a lot, depending on the space available at the conference. Generally, there are 12-32
square feet of space available. The height of posters is usually limited to 4 feet (approx 120 cm), and the width
varies from 3 to 8 feet (90 to 240 cm).

For this class, make your posters no larger than 4’ high by 6’ wide, and no smaller than 3’ high by 3’ wide.

2. Poster materials.

A poster is made of paper, cardboard, or foam core. Although some posters are printed on 3’ wide paper
on expensive color printers, many are constructed out of multiple 8.5” by 11” pieces of paper. The one-piece
posters have the advantage of being easy to transport and put up (if they can be rolled up and put into poster
tubes), but the multiple-page posters are easier to modify and cheaper to produce.

If you are limited to black-and-white printing, then using colored backdrops and (occasionally) colored paper
can give a little more visual interest to your presentation.

If you do a multiple page poster, you can either pre-assemble the poster onto a piece of poster board, or attempt
to assemble the poster on-site. On-site assembly allows for easier transport, but takes a long time to set up,

76

particularly since you don’t generally know in advance what sort of wall or display panel you will be attaching
the poster to.

3. Type size.

The title and authors of a poster must be readable from some distance away, so should use letters at least
1/2” high (48-54 point fonts). The main body text can be smaller, 36-48 point fonts, with fine print (such as
citations or figure labeling) as small as 18 points.

4. Text density.

There are many different styles of posters, from ones that are just a standard research paper stuck on the wall
(very heavy on text, with no visual appeal) to advertisements that have no useful information.

The best posters have just enough text to get across the main points—usually around 200-500 words—together
with pictures that make the main points even more quickly.

Some sections can be presented in outline format (not necessarily full sentences) to save space, as long as the
ideas are completely clear to the reader.

15.5 Final draft

Make sure that your final draft is free of spelling, grammar, and punctuation errors. Nothing destroys people’s
confidence in writing more than trivial errors.

On the poster day you will be expected to put up your poster at the very beginning of class, and answer questions
about it during the class, you will also be expected to look at the other students’ posters and ask them questions.

77

Bibliography

[ACM] Collected Algorithms from ACM.

[Bli88] Jim Blinn. Things I hope not to see or hear at SIGGRAPH. IEEE Computer Graphics and Applications,
pages 69–70, May 1988.

[Bro86] Scott Brookie. UNIX for Luddites. Technical report, Division of Social Sciences, Merrill College, University
of California, Santa Cruz, 1986.

[CS90] Marilyn M. Cooper and Cynthia L. Selfe. Computer conferences and learning: Authority, resistance, and
internally persuasive discourse. College English, 52(8):847–869, December 1990.

[Fol80] Wilson Follett. Modern American Usage—a Guide. Avenel Books, New York, 1980.

[Gri83] David Gries. The Science of Programming. Springer-Verlag, New York, 1983.

[Hac89] Diana Hacker. A Writer’s Reference. St. Martin’s Press, New York, 1989.

[HO91] Thomas N. Huckin and Leslie A. Olsen. Technical Writing and Professional Communication for Nonnative
Speakers of English. McGraw-Hill Book Company, New York, 1991.

[Hol84] Nigel Holmes. Designer’s Guide to Creating Charts and Diagrams. Watson-Guptill Publications, New
York, 1984. Nigel Holmes is an illustrator for Time Magazine, and this book presents his style of almost
information-less charts and diagrams.

[HRHS86] A. S. Hornby, Christina A. Ruse, Dolores Harris, and William A. Stewart, editors. Oxford Student’s
Dictionary of American English. Oxford University Press, Oxford, 1986.

[IEE90] IEEE. IEEE code of ethics. The Institute, 14(9):2, October 1990.

[KLR88] Donald E. Knuth, Tracy Larrabee, and P. M. Roberts. Mathematical writing. Technical Report STAN-
CS-88-1193, Stanford University. Department of Computer Science, January 1988. This report is based
on a course [CS 209] of the same name given at Stanford University during Autumn quarter, 1987.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume 3—Sorting and Searching. Addison-Wesley
Publishing Company, Reading, MA, 1973.

[Knu84] Donald E. Knuth. The TEXbook. Addison-Wesley Publishing Company, Reading, MA, 1984.

[Knu86] Donald E. Knuth. TEX: the Program. Addison-Wesley Publishing Company, Reading, MA, 1986.

[MP88] Peter J. McGuire and Sara M. Putzell. A Guide to Technical Writing. Harcourt Brace Jovanovich, San
Diego, CA, 1988.

[O’H86] Frank O’Hare. The Modern Writer’s Handbook. Macmillan, New York, 1986.

[SJW79] William Strunk Jr. and E. B. White. The Elements of Style. Macmillan, New York, third edition, 1979.

[TB87] Thomas N. Trzyna and Margaret W. Batschelet. Writing for the Technical Professions. Wadsworth
Publishing Company, Belmont, CA, 1987.

78

[Tuf83] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, CT, 1983.

[van78] Mary-Claire van Leunen. A Handbook for Scholars. Random House, New York, 1978.

[Wir76] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

79

Appendix A

Grammar and format notes (read this
appendix first)

This appendix is a mish-mash of things we want to say to students, but that we have not found a natural home for
elsewhere in the workbook. Most of the comments are a result of things we have seen done poorly by previous years’
students. We recommend reading this appendix at the beginning of the quarter.

We have divided things roughly into 6 sections: content, discourse structure, format, sentence structure, punctu-
ation, and word choice. This order is almost the same as the order you use in writing the paper. Content should be
the first thing you consider; formatting should be part of the final polishing. No single section should be regarded
as more important than the others, although we may choose to concentrate on different aspects of your writing in
different assignments.

A.1 Content errors

In most technical writing, the content is the most important aspect of the document. Be sure your information is
accurate and complete.

What we look for in the content will vary with each assignment. We try to anticipate what things people will
leave out, and what extraneous material will be included, and warn you about them ahead of time, but writers are
ingenious at finding ways to fool us, and errors that we did not expect crop up all the time. The new content errors
will be discussed in class after each assignment.

A.2 Discourse structure errors

This section covers stylistic problems that are above the sentence level. There are four areas that commonly cause
problems: sections, paragraphs, pronouns, and tone.

A.2.1 Sections and section headers

Technical writing is often consulted, rather than read from beginning to end. You must use clear informative headers
for your sections, so the reader can find the desired information quickly. If the sections are too long, the reader won’t
have enough headers to find info quickly. If the sections are too short, the headers won’t stand out enough from the
body of the text. Don’t look for solid rules about how big a section should be—it depends on both the material and
the audience.

A.2.2 Paragraphs

Your paragraphs should have a single topic, explained in a topic sentence. Your readers will expect sentences within
a paragraph to be more closely related than sentences in different paragraphs, so you shouldn’t just chop your writing
up into arbitrary pieces.

80

Within a paragraph, the transitions between sentences generally relate the end of one sentence to the beginning of
the next. Repeating a sentence subject in adjacent sentences often makes your writing sound choppy and unpolished.

Between paragraphs, the transitions are a little more distant, but the first sentences usually has some reference
to the topic of the preceding paragraph. The next paragraph of this explanation doesn’t follow that guideline—the
paragraphs correspond to different parts of the evaluation sheet, and so I have split this section into subsections.

A.2.3 Pronouns

When you use a pronoun (such as, it, this, these, those), be sure it has a clear antecedent. Pronouns without
antecedents are often grammatically correct, but stylistically awful (for example, this sentence could have been It
is often the case that pronouns without antecedents are grammatically correct, . . .). Pronouns at the beginnings of
sentences are particularly prone to this sort of vagueness.

Students often use pronouns when they would do better to repeat part of the noun phrase. For example, I’d
rather see a noun phrase like this message, than the simple pronoun this.

The correct use of this is often tricky. The referent has to be crystal-clear to the reader before you can use this
(or those). If another noun phrase intrudes between the referent and the noun phrase you are attaching the article
to, you probably can’t use this. Many writers use this as a pronoun, particularly in constructions like “This is due
to the fact that” Although grammatically correct, this usage is poor style. You’ll have much clearer sentences
if you use this only as an adjective, not as a pronoun. Any sentence that contains “this is” or “it is” can probably
be reconstructed to read more clearly.

Some people err in the other direction, and use incredible contortions to avoid pronouns, particularly I or we.
You’d do better to say, I believe the method will work well, than to say It is believed that Don’t say we unless
there are multiple authors, or you are addressing the reader and mean you and me together. You should only use you
for addressing the reader, not some imaginary third-person. The idiomatic usage you can, meaning that someone
can, should not be used unless you really mean that the reader can.

Cleaning up the pronouns is something to do in a late draft, but make sure you do it before the final draft.

A.2.4 Tone

Technical writing is usually fairly formal. Slang is avoided, people are referred to by their full names (or by their
titles and last names), and standard grammar is used. Americans are often too informal in their writing—remember,
you don’t know exactly who will read what you write.

Part of the formality is expressed by avoiding contractions. Expand don’t to do not, can’t to can not, won’t to will
not, and so forth. If you look at this sentence and at the previous paragraph, you’ll see that I’ve used contractions
freely—this use of contractions is a deliberate attempt to reduce the formality of the document and make it somewhat
friendlier. Formality is not an end in itself—try to judge the right level for the audience and material to be presented.

Trying to avoid the problem of being too slangy, some people try writing in a stiff, formal style. Unfortunately,
the result sounds more like a Victorian gothic novelist than a modern engineer. Your aim should be to write crisply
and clearly, not stiffly. If you concentrate on presenting the right material to the right audience, the tone should
come almost automatically.

Another aspect of tone, confidence, is discussed in Section 3.4.1.

A.3 Format errors

We want all assignments turned in as PDF files for standard 8 1
2” by 11” paper, with reasonable margins on all four

sides. Papers should be free of typing errors (“typos”) and spelling errors. Watch out for doubled words (the same
word twice in a row), particularly from the end of one line to the beginning of the next. For in-class assignments, we
can’t expect typing, but we still expect neatness. Try to have some clean paper without ragged edges for each class.

Each assignment will have some required standard format (letter, memo, manual, or some such). Most of the
standard formats require titles, and many need section headers as well. When you use them, make sure that the
section headers are formatted properly, with a blank line before and after each header.

Choosing good titles and section headers is an art—they should contain as much information in as few words
as possible. We don’t want to see any generic titles this quarter—any one who turns in a final project titled Final
Project has clearly not learned much in this class.

81

When you receive help from a person, you should acknowledge that help, usually in a separate Acknowledgements
section, sometimes in a cover memo. When you obtain information from a book, journal, or other printed source,
it should be properly cited and included in a References section. In computer science and computer engineering,
footnotes are used sparingly, and only for comments that need to be said but are not part of the main flow of the
discussion. Do not use footnotes for citations; use a reference section at the end instead. The preferred citation
format if none is specified is to put the author’s name and the date of publication in square brackets, but some
journals specify other, older forms. See [van78] for a more detailed discussion of citations.

Using someone else’s work without giving proper credit is plagiarism—the most serious of academic
sins. Collaboration and cooperation are fine—this is not a competitive class, but you must always give credit where
it is due.

Remember to put you name and the date on every assignment. Most formats have a standard place for the
author’s name, a title, and the date. For this class, we always want to see your first draft with your partner’s
comments.

A.4 Sentence structure errors

This section covers both stylistic faults and grammatical faults. Correcting stylistic faults will improve your writing;
correcting grammatical faults is essential.

A.4.1 Faults in style

The most common stylistic sentence structure faults are run-on sentences. A run-on sentence strings several inde-
pendent sentences together, often with grammatically correct transitions. Modern style in technical writing favors
fairly short straight-forward sentences, with occasional longer ones for variety. Any extremely long sentences should
be broken into smaller pieces. But be careful not to go to extremes—a choppy style with all short sentences is as
bad having run-on sentences.

Novice writers tend to over-use the passive voice in formal writing. Check each passive sentence to see if it can
be made active. Sometimes, however, passive sentences are the best way to say things. For example, the active
sentence The student’s advisor must approve the choice of courses, is subtly incorrect. It asserts that the advisor
has no choice—s/he must approve the choice, no matter how bad it is. The passive sentence The student’s choice of
courses must be approved by the advisor, is less emphatic about the obligation on the advisor. Perhaps even better
is The student must have the choice of courses approved by his or her advisor, which avoids the passive and leaves
the obligation clearly on the student, and not the advisor.

Passive sentences can also be used to maintain the normal topical flow of a sentence (from old information to
new information). Note how the flow encouraged me to make the previous sentence passive, and how I avoided the
passive in this sentence. See [HO91, Chapter 25] for more information on using information ordering in constructing
sentences.

Starting each sentence in a paragraph the same way sounds childish. Starting each sentence the same way can
sometimes be used effectively in poetry or songs. But starting each sentence the same in technical writing is not a
good idea. (If this paragraph does not make it clear how bad the repeated sentence opening sounds, I don’t know
what will.) Don’t vary the sentence starts randomly; try to make smooth transitions from the end of the previous
sentence instead.

Repeated starts are not the only bad sentence beginnings. Watch out particularly for There are, There is, It is,
This, These, and other contentless beginnings.

Watch out for elided words. For example, the sentence structure If A, then B is often spoken or written as If A,
B. The elision of then is grammatically acceptable, but can lead to confusion, particularly if A or B is a list. Compare
If a, b, or c, d and If a, b, c, or d with If a, b, or c, then d and If a, then b, c, or d.

A.4.2 Faults in grammar

The grammatical faults are more serious than the stylistic ones. You can often get away with bad style, but your
readers will be seriously confused or offended by bad grammar. For example, always use complete sentences, not
fragments. Fragments are acceptable in some literary styles, but not in technical writing. Section 8.4 has some
examples of fragments, illustrating how difficult they can be to read.

82

If you start a sentence with a modifying phrase, be sure it is supposed to modify the subject. A dangling modifier
can be unintentionally humorous. For example, Never having passed an exam, the teacher failed the student, says
that the teacher flunked the exams, not the student. Similarly, After typing a return, the cursor moves to the next
line. asserts that the cursor types.

These dangling modifiers seem to occur most often in the assignment about naive-user documentation, where
they are the most dangerous. The less familiarity one has with a subject, the harder it is to figure out what the
dangling modifiers are really modifying.

Even if the subject of your sentence is correct, you can confuse your reader if it doesn’t agree with the verb
that follows. Number agreement is particularly important. Remember that a subject like each of the elements is
singular, but subjects like all of the elements are plural. Semantic agreement is also important. The most common
semantic problems come from leaving out or mis-placing the actor of an action verb. For example, The data decided
me to . . . , is wrong—though you could say The data convinced me to

The subject is used as the topic in English. Having a separate topic phrase (As for the procedure, it sorts
numbers.) sounds like a bad translation of good Japanese. Rearrange the sentence to make the object of the topic
preposition the subject or object of the sentence (The procedure sorts numbers.).

Many non-native speakers have trouble with English tenses. They do not match the tenses of Asian languages
in any simple way. If you have trouble with English tenses, see an English-as-a-second-language tutor. Huckin and
Olsen’s explanation of English tenses is also valuable [HO91, Chapter 31]. Occasionally a native speaker will use
one of the more complex tenses (particularly the subjunctive mood) incorrectly. Any standard grammar text should
explain the formally correct usage sufficiently for most native speakers.

A.5 Punctuation errors

A.5.1 Hyphens and dashes

Learn the difference between hyphens (-) and the two types of dashes (– and —). When typing, use one hyphen (-)
for a hyphen or en-dash, two (--) for an em-dash. Spaces should not be used around hyphens or dashes of either
sort. See also Section 3.5.3 for details on hyphens and dashes.

A hyphen is used to join compound words together (for example, mother-in-law), particularly when a complex
noun phrase is being used as a modifier. (Be warned: the complex-noun-phrase-modifier style of writing is hard to
read.) Hyphens are sometimes used to attach prefixes and suffixes to words, particularly when the word is likely to
be misread without the hyphen (for example, pseudo-operation, re-enter, and pre-enroll).

Some students detach prefixes and try to use them as adjectives. The prefixes sub-, pre-, pseudo-, and proto-
must be part of another word, either as a single word (subroutine) or attached with hyphens (Proto-Indo-European).

Hyphens are also used at the end of a line to indicate that a word continues on the next line. Unlike many other
languages, English has strong rules about where a word can be hyphenated. You can only break between syllables,
and you should have at least three letters before and after the hyphen. If you are not certain, it’s far better not to
hyphenate than to hyphenate incorrectly. Most word processors that hyphenate do an awful job of it—don’t trust
them!

En-dashes and em-dashes are different lengths and have different uses. The shorter en-dash is used to indicate a
range of values or times (for example, June 30–July 31); the longer em-dash is used to indicate a long pause and a
discontinuity in the flow of ideas. If you have too many em-dashes, your readers will think that you couldn’t keep
your attention on the subject, or that you are hopelessly badly organized.

A.5.2 Quotation marks

Quotation marks (“quotes”) are used to enclose a directly quoted statement from another source, or, sometimes, to
set off a slang word or deliberately mis-used word. The second usage probably derives from the first, attributing the
word to an outside source. Don’t use quotation marks for emphasis—use italics or underlines instead. Single-quotes
are used for quotations inside quotations. Some fonts have separate left and right quotes (“like this” and ‘this’); if
yours does, use them. Brackets [] are for comments from the quoting author inside a quoted passage. One popular
bracketed comment is [sic], which is used to indicate that the error in a quotation was in the original, and was not
added in transcription.

83

We disagree with many punctuation experts on one point—they insist on putting commas inside quotes. This is
correct when quoting human conversation or human-to-human writing, but when quoting any communication with
a computer, retain the original punctuation inside the quote marks. For example, you type “mail”, not “mail.”
Exact punctuation is often critical in computer communications—resist the attempts of those who know no better
to “correct” your usage!

A.5.3 Parentheses and brackets

Parentheses should only be used for additional material that can be omitted without changing the meaning. They are
used for short examples, or for comments from the author. Longer digressions usually belong in footnotes, or, better
yet, in some other section of the writing. Parentheses bind tightly to the words inside them—there should be no
space after a left-parenthesis or before a right-parenthesis (like this). There should be a space before left-parenthesis,
and either space or punctuation after the right-parenthesis. If you put an entire sentence in parentheses, the sentence
ending punctuation should be inside the parentheses and the the whole parenthetical structure should not be inside
another sentence. (That is, you can punctuate such a remark this way.) I, along with many people who compose at
the keyboard, over-use parentheses. You can often replace them with commas, or remove the parenthetical comment.

Don’t use brackets [] in place of parentheses (). They serve different functions in English. Although some
authors use parentheses for citations, brackets are preferred in most computer science publications. Another use for
brackets is to interpolate editorial comments into the middle of a quotation (vulgarly known as butting-in).

A.5.4 Commas and related marks

Most problems in English punctuation come in the use of commas, which have fairly complex rules. Traditional
grammar books and secretary’s handbooks (such as Hacker [Hac89]) cover the rules in some detail. One mis-use of
commas that is not always well covered is the comma-splice. A splice happens when two independent clauses get
joined with only a comma for glue. The problem can be fixed in several ways: by adding a conjunction (usually but or
and), by splitting into two separate sentences, or by replacing the comma with a longer pause (usually a semi-colon
or dash).

Semi-colons and colons have specific uses. They are not all-purpose substitutes for commas. Huckin and Olsen’s
explanation seems inadequate, but O’hare’s is not bad [O’H86, 142–147].

Watch out for punctuation around Latin abbreviations! The periods that are part of the abbreviation are not
used for sentence and clause punctuation (except that an abbreviation at the end of a declarative sentence does not
need a double period). The abbreviations i.e. and e.g. should almost always have a comma after them (i.e., like
this). You are probably better often avoiding Latin abbreviations.

Put two spaces after a sentence-ending period. Readers rely on that cue to break your text into sentences, and
your text can look quite dense and forbidding if you omit the extra space.

A.6 Word choice errors

This section deals with grammatical and stylistic problems with diction. Many American writers suffer from puffy,
pompous writing, particularly when they are trying to write formally. Cut out the words that carry no meaning,
watch out for fashionable words and phrases, and, always, know what your words mean! All jargon and acronyms
should be explained at the level your audience requires. Generally, more explanation is needed than most authors
are aware of. If you’re not certain, it’s generally better to explain too much than to explain too little.

A.6.1 Commonly misused words and phrases

Certain words and phrases are so commonly mis-used that it is worth looking for them specifically. For example,
the -ize suffix can be added to almost any noun or adjective in English to make it a verb, but the result is almost
always hideous. (See [SJW79, 50–51].) Utilize, prioritize, and finalize are prohibited—you can use use, rank, and
finish instead.

The which/that distinction is disappearing from spoken English (in America), but is still important in writing.
Strunk and White [SJW79, 59] have an explanation of the correct usage.

84

Some words can’t be intensified. You can’t have something that is “more unique” or “most unique,” because
uniqueness is a property that is either present or absent, nothing in between. Similarly, nothing can be “especially
essential”— to say A is essential to B means that A is the essence of B, that is, that A is what makes B what it is.
Either A is essential, or it is not, but A can be more or less important to B.

Another word that is often mis-used is optimal. When you say that something is optimal, you mean that it is the
best—not just good. It is impossible for something to be more optimal, just as it is impossible for something to be
more perfect—both should be expressed as more nearly optimal or more nearly perfect.

The expression locally optimal is often used in describing solutions to combinatorial optimization problems,
but is meaningless without more information. Technically, a solution is locally optimal if no other solution in some
neighborhood is better. Although neighborhoods are usually well-defined in Euclidean space, there are many different
neighborhood definitions possible in the search spaces of combinatorial optimization problems. Something can be
locally optimal with respect to one set of neighborhoods, but not with respect to a different set.

Speakers of Californian English are fond of adding adverbs to their sentences to slow them down. Most of you
are aware that totally is not used as a general intensifier in formal English, but only with the meaning in total.
Unfortunately, far too many students use basically and actually as substitutes. These also have exact meanings—
look at the corresponding prepositional phrases, which have not been as badly corrupted: as a basis and in actuality.
If these phrases don’t fit, you are probably mis-using the adverbs—try omitting them.

Non-native speakers occasionally use the wrong preposition. Many preposition usages are idiomatic, and cannot
be predicted from the meaning. The only thing to do is to learn verbs and prepositions together. Reading well-written
English is the best way to learn the correct combinations. Huckin and Olsen’s chapter on informal conversational
expressions is also useful [HO91, Chapter 37].

The words first, second, third, . . . , last are already adverbs. The constructions firstly, secondly, and so forth are
not words.

The word thus is not a shorter form of therefore—it means in this manner, not because of these things. Because
thus is already an adverb, there is no word thusly.

One problem that many of us share involves the word only. Because only can modify several different things in
a single sentence, it is important to put it in the right place. Unfortunately, most of use tend to move it forward in
the sentence so that it modifies the top-level verb. Notice the difference between I’m only working on my homework
for an hour, I’m working on my only homework for an hour, and I’m working on my homework for only an hour.

Another strange usage I’ve seen, but do not understand the origins of, is “A leaf node is when . . . ” for “A leaf
node is a node that . . . ”.

Recursion comes from the verb recur. There is no verb recurse.

A.6.2 Sentence grammar affects word choice

Non-native speakers, particularly Asians, have difficulty using English articles and using singular and plural nouns
correctly. Correct usage depends on the noun and on the thing it refers to (its referent). Chapters 29 and 30 of
Huckin and Olsen [HO91] have some excellent heuristics for choosing articles correctly.

The most useful heuristic is determining whether a noun phrase has a unique referent, which is occasionally tricky.
One case is obvious—when you have already explicitly mentioned the referent. For example, I can now talk about
this case, but I can’t say “a case” or “one case” to refer to it. If I haven’t explicitly mentioned the referent before,
but it is clearly unique (for example, the sun and the moon), I still have to use the, not a. I can’t say, “A first proof
was found by . . . ,” because by identifying the unique first proof, I have ensured a unique referent. I can say “a
possible first attempt”, implying that it is not only one possible one. A plural noun can have a unique referent if the
set it refers to is unique (for example, the stars or the moons of Jupiter).

You may have noticed that I left that out of the discussion on articles and demonstrative adjectives. It is mainly
for pointing to particular objects, usually in contrast to this. For example, “I want you to use this article, not that
one.” You can probably do fine technical writing for years without using that as an article.

85

