WiBit: Net

Pseudo Code

What is Pseudo Code

- High level and informal set of instructions used to describe an algorithm
- NOT a programming language
- Used to plan programs (Usually the next step after flow chart design)
- No standards
- Everyone does it their own way

Intocucicon ocomputar Poosemming :Net
 Pseudo Code: Variable Expression
 <VARIABLE NAME> = <EXPRESSION>

$$
\begin{aligned}
& \text { Pseudo Code: Variable Expression } \\
& x=5 \\
& y=10 \\
& z=x+y \\
& a=(z+x) *(z+y)
\end{aligned}
$$

Function Power (X, Y)\{

$$
C=0
$$

$$
A=1
$$

< DO POWER PROCESS >
Return A
\}
Pseudo Code: Function Expression
 \title{
Pseudo Code: Call Function
 \title{
Pseudo Code: Call Function <FUNCTION NAME> (<ARGUMENTS>)
}

[^0]
Pseudo Code: Decision Statement

- If/Else Decision
- A decision rendered by Boolean expressions that follow a logical flow of conditions
- IF something is true, do something

Pseudo Code: Decision Statement

```
If (<CONDITION>)
{
    <INSTRUCTIONS>
}
If (<CONDITION>)
Else If (<CONDITION>)
{
    <INSTRUCTIONS>
    <INSTRUCTIONS>
}
Else
{
    <INSTRUCTIONS>
}
```


Pseudo Code: Decision Statement

```
If (<CONDITION> && <CONDITION>)
{
        <INSTRUCTIONS>
}
}
If (!<CONDITION>)
{
    <INSTRUCTIONS>
}
If (<CONDITION>)
{
    If (<CONDITION>)
If (<CONDITION> | | <CONDITION>)
{
    <INSTRUCTIONS>
If (<CONDITION> | | <CONDITION> && <CONDITION>)
{
    <INSTRUCTIONS>
{
If (<CONDITION> || (<CONDITION> && <CONDITION>))
    {
            <INSTRUCTIONS>
    }
}
```


Pseudo Code: Decision Statement

- <CONDITION> must be a YES or NO expression - Example: If (< Does X = Y? >)

```
BASE = 3
EXPONENT = 4
ANSWER = Power(BASE, EXPONENT)
If (ANSWER > 10)
{
    PRINT "ANSWER is greater then 10"
}
Else If (ANSWER >= 5 && ANSWER <= 9)
{
    PRINT "ANSWER is between 5 and 9"
}
Else
{
    PRINT "ANSWER is less then 5"
}
```


While (<CONDITION>) \{
 <INSTRUCTIONS>
 \}

Pseudo Code: Looping (While)

```
    Function Power (X, Y)
    {
        C=0
        A = 1
        While (C < Y)
        {
        C=C+1
        A = A * X
    }
    Return A
}
```

 Pseudo Code: Looping (While)

Pseudo Code: Looping (Do-While)

```
Do
\{
<INSTRUCTIONS>
\}
While (<CONDITION>)
```

[^1]
Pseudo Code: Looping (For)

```
For (<START EXPRESSION>; <CONDITION>; <ITERATION EXPRESSION>)
\{
<INSTRUCTIONS>
\}
```

Pseudo Code: Looping (For)
$\mathrm{Y}=10$
For (X = 1; X <= Y; X++)
\{
PRINT X
\}

uisr[0] - 1 Pseudo

Code

LIST[1] $=2$
LIST[2] $=0$
$i=0$
LENGTH $=3$

TEMP $=\operatorname{Arr}[i]$
$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$
$\operatorname{Arr}[i+1]=$ TEMP $i=-1$

ursf[0] = $=1$ Pseudo Code
 LIST[1] $=2$

LIST[2] $=0$

ursf[0] $=1$ Pseudo Code LIST[1] $=2$
 LIST[2] = 0

-

$i=0$
LENGTH $=3$
$(1>2)=\mathrm{NO}$

urst[0] = $=1$ Pseudo Code
 LIST[1] $=2$

LIST[2] $=0$

$i=1$
LENGTH $=3$

ursf[0] = $=1$ Pseudo Code

$\operatorname{LIST}[0]=1$ DeUOOCOOC

 $\operatorname{LIST}[1]=0 \longleftrightarrow$ LIST[2] $=2 \longleftrightarrow$TEMP = Arr[i]
$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$ $\operatorname{Arr}[i+1]=$ TEMP $i=-1$

unstiol $=1$ Pseudo Code
 LIST[1] $=0$

LIST[2] = 2
$i=0$
LENGTH $=3$

ursfion - 1 Pseudo Code
 LIST[1] $=0$

LIST[2] = 2
$i=0$
LENGTH $=3$
$(1<2)=Y E S$

TEMP = Arr[i]
Arr[i] $=\operatorname{Arr}[i+1]$ $\operatorname{Arr}[i+1]=$ TEMP $i=-1$

$i=0$
LENGTH $=3$
$(1>0)=Y E S$

TEMP $=\operatorname{Arr}[i]$
Arr[i] $=\operatorname{Arr}[i+1]$ $\operatorname{Arr}[i+1]=$ TEMP $i=-1$

i $=0$
LENGTH $=3$
$(1>0)=Y E S$
TEMP = 1

$\operatorname{LIST}[0]=0$ DeuOOCOOC
 LIST[1] $=1$

LIST[2] = 2
$i=0$
LENGTH $=3$

TEMP $=\operatorname{Arr}[i]$
$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$
$\operatorname{Arr}[i+1]=$ TEMP $i=-1$

 $\operatorname{LIST}[1]=1$

LIST[2] = 2

 LIST[1] $=1$

LIST[2] = 2
$i=1$
LENGTH $=3$

TEMP $=\operatorname{Arr}[i]$
$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$
$\operatorname{Arr}[i+1]=$ TEMP $i=-1$

LIST[0] $=0$
 LIST[1] $=1$
 Pseudo Code

LIST[2] = 2

$i=1$
LENGTH $=3$
$(1>2)=\mathrm{NO}$

 $\operatorname{LIST}[1]=1$

LIST[2] = 2
$i=2$
LENGTH $=3$

TEMP $=\operatorname{Arr}[i]$
$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$
$\operatorname{Arr}[i+1]=$ TEMP $i=-1$

urstion - o Pseudo Code
 LIST[1] $=1$

LIST[2] = 2

$$
\begin{aligned}
& i=2 \\
& \text { LENGTH }=3 \\
& (2<2)=\text { NO }
\end{aligned}
$$

$\operatorname{Arr}[i]=\operatorname{Arr}[i+1]$ $\operatorname{Arr}[i+1]=$ TEMP $i=-1$

Pseudo Code

Function Sort(Arr)
\{

```
LENGTH = Length(Arr)
For (i = 0; i < LENGTH - 1; i++)
{
    If (Arr[i] > Arr[i + 1])
    {
        TEMP = Arr[i]
        Arr[i] = Arr[i + 1]
        Arr[i + 1] = TEMP
        i = -1
    }
}
Return Arr;
```


Pseudo Code

Function Sort(Arr)

```
LENGTH = Length (Arr)
```

For (i $=0$; i LENGTH - 1; i++)
\{
If (Arr[i] > Arr[i + 1])
\{
TEMP = Arr[i]
Arr[i] $=$ Arr[i +1$]$
Arr[i + 1] = TEMP
i $=-1$
\}
\}
Return Arr;

WiBit" Net

The End?

[^0]: ## Pseudo Code: Call Function

 BASE $=3$
 EXPONENT = 4
 ANSWER = Power (BASE, EXPONENT)

[^1]: ## Pseudo Code: Looping (Do-While)

 $X=1$
 $\mathrm{Y}=10$
 Do
 \{
 PRINT X
 $X=X+1$
 \}
 While (X <= Y)

