WiBit": Net"

Variables, Data
Types, Formulas

Variable

- Symbolic name that represents a value within a computer program

Variable Declaration

- Variable Names
- Legal Characters
- A thru Z
o a thru z
- 0 thru 9
- ' '
- Other Rules
- Cannot start with a number
- Cannot contain spaces

Variable Declaration

- Legal Variable Name
- Variable123
- Illegal Variable Name
- 123Variable
- Variable 123

Types of Data Types

- Primitive
- AKA "Building block Data Type"
- Supported data types provided by a programming language
- Typically representations of numeric values such as numbers and characters
- Composite
- Data type that is constructed of primitive data types
- Can also contain already defined composite data types
o Examples: Structures, Unions, Classes

Signed Vs Unsigned

- Signed
- Primitive data type instance that allocates memory to store both positive and negative numbers
- Unsigned
- Primitive data type instance that only allocated memory for positive numbers

Common Primitive Data Types

NOTE: These numbers are not consistent across languages and platforms

Variable Type	Memory Size	Signed Range	Unsigned Range
Integer	4 Bytes	$-2,147,483,648$ to $2,147,483,647$	0 to $4,294,967,295$
Short Integer	2 Bytes	$-32,768$ to 32,767	0 to 65,535
Character	1 Byte	N/A	0 to 255
String	1 Byte ${ }^{*} n$	N/A	0 to n
Boolean	1 Byte	N/A	TRUE (1) or FALSE (0)
Float	4 Bytes	Accurate within 7 Significant Figures	
Double	8 Bytes	Accurate within 15 Significant Figures	

Primitive Data Types: Integer

- A whole number
- Boolean (4 Bits)
- Values 1 (true) or 0 (false)
- Byte (8 Bits)
- Signed Range: -128 to +127
- Unsigned Range: 0 to 255
- Short Integer (16 Bits)
- Signed Range: $-32,768$ to $+32,767$
- Unsigned Range: 0 to 65,535
- Integer (32 Bits)
- Signed Range: -2,147,483,648 to +2,147,483,647
- Unsigned Range: 0 to 4,294,967,295
- Long Integer (64 Bits)
- Signed Range: -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
- Unsigned Range: 0 to $18,446,744,073,709,551,615$

Primitive Data Types: Character

- A single ASCII or Unicode character
- ASCII (8 Bits)
- Range: 0-255
$0^{\prime} \quad \prime=32$
$0^{\prime} A \prime=65$
$0^{\prime} \sim \prime=126$
- Unicode (16 Bits)
- Range: 0-65,535

Primitive Data Types: String

- A sequence of characters
- "This is a string!"

Introduction to Computer Programming

Composite Data Types

Słudent

Introduction to Computer Programming

Composite Data Types

Student

String Name
String Major

Integer Studentld

Comparison Operators

Symbol	Operation
$==$	Equal
$!=$	Not equal
$<$	Less than
$<=$	Less than or equal
$>$	Greater than
$>=$	Valua or equal
Comparison Expression	FALSE
$3==1$	FALSE
$(2 * 2)<(1 / 2)$	TRUE
$(9 * 1-3)>=(7-1)$	TRUE
$(2 \% 2)<2$	TRUE
$(1+4)<=100$	FALSE
$(2 * 10)!=20$	

Comparison Operators

Symbol	Operation
11	Or
$\& \&$	And
Comparison Expression	Value
$(10==5) \mid 1(10<100)$	(FALSE I IRUE $)=$ TRUE
$(10==5) \&(10<100)$	(FALSE \& TRUE $)=$ FALSE

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or } \operatorname{Power}(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) * \mathrm{~h}) / 2
$$

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or Power }(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) * \mathrm{~h}) / 2
$$

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or Power }(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) \star \mathrm{h}) / 2
$$

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or } \operatorname{Power}(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) \star \mathrm{h}) / 2
$$

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or } \operatorname{Power}(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) * \mathrm{~h}) / 2
$$

Formulas

$$
\begin{aligned}
& X=3 \times 10 \quad \mathrm{X}=3 \star 10 \\
& X=\frac{2}{3} \times 100 \quad \mathrm{X}=(2 / 3) \star 100
\end{aligned}
$$

$$
X=10^{2} X=10 \wedge 2 \text { or Power }(10,2)
$$

$$
X=\sqrt{10} X=10 \wedge(1 / 2) \text { or } \operatorname{Power}(10,1 / 2)
$$

$$
A=\frac{(B+b) \times h}{2} \mathrm{~A}=((\mathrm{B}+\mathrm{b}) \star \mathrm{h}) / 2
$$

Formulas
 $$
z=a x^{2}+b x+c
$$
 $$
z=a * \operatorname{Power}(x, 2)+b * x+c
$$

Formulas

$z=a x^{2}+b x+c$

$z \Longrightarrow a * \operatorname{Power}(x, 2)+b * x+c$

Formulas

$z=a x^{2}+b x+c$

Formulas
 $z=a x^{2}+b x+c$

$$
\begin{aligned}
& \text { FOrn@u|aS } \\
& x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \\
& x=(-b+\operatorname{Power}(\operatorname{Power}(b, 2)-4 * a * c, 1 / 2)) /(2 * a)
\end{aligned}
$$

Formulas

$\mathrm{x}=(-\mathrm{b}+\operatorname{Power}(\operatorname{Power}(\mathrm{b}, 2)-4 * \mathrm{a} * \mathrm{c}, 1 / 2)) /(2 \star \mathrm{a})$

Formulas

Formulas

$\mathrm{x}=(-\mathrm{b}+\operatorname{Power} \neq \operatorname{Power}(\mathrm{b}, 2)-4 * \mathrm{a} * \mathrm{c}, 1 / 2)) /(2 * \mathrm{a})$

Typecasting

- Converting between data types
- One data type inherits the properties of another

Where to use Typecasting

Integer $\mathrm{x}=4$
Integer $y=10$
Double $z=y / x$

$$
z=2
$$

casting

Integer $\mathrm{x}=4$
Integer $y=10$

Double $z=$ (Double) $y /($ Double) x
$z=2.5$

Variable Declaration

- C++
- int Number $=1234$;
- char $C=$ ' S^{\prime};
o string word = "Hello!";
- bool isTrue = true;
o double pi $=3.14$

Variable Declaration

- Visual Basic (Beginners All-Purpose Symbolic Instruction Code)
- Dim Number As Integer $=1234$

O Dim c As Char = "s"

- Dim word As String = "Hello!"
- Dim istrue As Boolean = true;
- Dim pi As Double $=3.14$

Variable Declaration

- PERL / PHP
o \$Number = 1234;
- \$word = "Hello!";
o \$isTrue = true;
- \$pi = 3.14;

Variable Declaration

- TCL
o set Number 1234;
o set word "Hello!";
- set isTrue 1;
- set pi 3.14;

WiBit: Net

The End?

