WiBit ∴Net[™]

Variables, Data Types, Formulas

Variable

• Symbolic name that represents a value within a computer program

Variable Declaration

• Variable Names

- Legal Characters
 - o A thru Z
 - o a thru z
 - o 0 thru 9
 - '__'
- Other Rules
 - Cannot start with a number
 - Cannot contain spaces

Variable Declaration

- Legal Variable Name
 - Variable123
- o Illegal Variable Name
 - o 123Variable
 - Variable 123

Types of Data Types

• Primitive

- AKA "Building block Data Type"
- Supported data types provided by a programming language
- Typically representations of numeric values such as numbers and characters

Composite

- Data type that is constructed of primitive data types
- Can also contain already defined composite data types
- Examples: Structures, Unions, Classes

Signed Vs Unsigned

- Signed
 - Primitive data type instance that allocates memory to store both positive and negative numbers

• Unsigned

 Primitive data type instance that only allocated memory for positive numbers

Common Primitive Data Types

NOTE: These numbers are not consistent across languages and platforms

Variable Type	Memory Size	Signed Range	Unsigned Range
Integer	4 Bytes	-2,147,483,648 to 2,147,483,647	0 to 4,294,967,295
Short Integer	2 Bytes	-32,768 to 32,767	0 to 65,535
Character	1 Byte	N/A	0 to 255
String	1 Byte * n	N/A	0 to n
Boolean	1 Byte	N/A	TRUE (1) or FALSE (0)
Float	4 Bytes	Accurate within 7 Significant Figures	
Double	8 Bytes	Accurate within 15 Significant Figures	

Primitive Data Types: Integer

- A whole number
 - Boolean (4 Bits)
 - Values 1 (true) or 0 (false)
 - Byte (8 Bits)
 - Signed Range: -128 to +127
 - Unsigned Range: 0 to 255
 - Short Integer (16 Bits)
 - Signed Range: -32,768 to +32,767
 - Unsigned Range: 0 to 65,535
 - Integer (32 Bits)
 - Signed Range: -2,147,483,648 to +2,147,483,647
 - Unsigned Range: 0 to 4,294,967,295
 - Long Integer (64 Bits)
 - Signed Range: -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
 - Unsigned Range: 0 to 18,446,744,073,709,551,615

Primitive Data Types: Floating Point

- A rational number
 - Float (32 Bits)
 - 7 significant figures
 - **o** 2 / 3 = 0.6666667
 - Double (64 Bits)
 - 15 significant figures
 - Decimal (96 Bits)
 - 29 significant figures

Primitive Data Types: Character

• A single ASCII or Unicode character

- ASCII (8 Bits)
 - Range: 0 255

- Unicode (16 Bits)
 - Range: 0 − 65,535

Primitive Data Types: String

• A sequence of characters

• "This is a string!"

Composite Data Types

Student

Composite Data Types

Student

String Name

String Major

Integer StudentId

Composite Data Types

Student

String Name

String Major

Integer StudentId

Basic Math Operators

Symbol	Operation
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Modulus

Expression	Value
1 + 2	3
100 * 3	300
10/2	5
5 % 2	1
1 – 10	-9

Comparison Operators

Symbol	Operation
==	Equal
!=	Not equal
<	Less than
<=	Less than or equal
>	Greater than
>=	Greater than or equal

Comparison Expression	Value
3 == 1	FALSE
(2 * 2) < (1 / 2)	FALSE
(9 * 1 – 3) >= (7 - 1)	TRUE
(2 % 2) < 2	TRUE
(1 + 4) <= 100	TRUE
(2 * 10) != 20	FALSE

Comparison Operators

Symbol	Operation
	Or
&&	And

Comparison Expression	Value
(10 == 5) (10 < 100)	(FALSE TRUE) = TRUE
(10 == 5) && (10 < 100)	(FALSE && TRUE) = FALSE

Formulas

$$X = 3 \times 10$$

$$X = 3 \times 10$$

$$X = \frac{2}{3} \times 10$$

$$X = (2 / 3) \times 100$$

$$X = 10^{2}$$

$$X = 10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}$$

$$X = \sqrt{10} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}$$

$$X = \sqrt{10} \times 10^{2} \times 10^{2} \times 10^{2} \times 10^{2}$$

$$A = ((B + b) \times h) / 2$$

i Net

Formulas

$$X = 3 \times 10 \quad X = 3 \times 10$$

$$x = \frac{2}{3} \times 10 \quad X = (2 / 3) \times 100$$

$$x = \frac{2}{3} \times 10^{2} \quad X = 10^{2} \quad X = 10^{2} \quad 2 \text{ or Power}(10, 2)$$

$$X = \sqrt{10} \quad X = 10^{2} \quad (1 / 2) \text{ or Power}(10, \frac{1}{2})$$

$$A = \frac{(B+b) \times h}{2} \quad A = ((B + b) \times h) / 2$$

Formulas

$$X = 3 \times 10 \qquad X = 3 \times 10$$

$$X = \frac{2}{3} \times 10 \qquad X = (2 / 3) \times 100$$

$$X = 10^{2} \qquad X = 10 \wedge 2 \text{ or Power}(10, 2)$$

$$X = \sqrt{10} \qquad X = 10 \wedge (1 / 2) \text{ or Power}(10, \frac{1}{2})$$

$$A = \frac{(B+b) \times h}{2} \qquad A = ((B + b) \times h) / 2$$

Copyright ${}^{\odot}$ BlueSignet LLC. All rights reserved.

i Net

WiBit.Net

Typecasting

• Converting between data types

• One data type inherits the properties of another

Where to use Typecasting Integer x = 4Integer y = 10

Double z = y / x

Where to use Typecasting Integer x = 4 Integer y = 10

Double z = (Double)y / (Double)x

z = 2.5

Variable Declaration

• C++

- **o int** Number = 1234;
- **char** c = `s';
- string word = "Hello!";
- o bool isTrue = true;
- double pi = 3.14

Variable Declaration

• Visual Basic (Beginners All-Purpose Symbolic Instruction Code)

- Dim Number As Integer = 1234
- Dim c As Char = "s"
- Dim word As String = "Hello!"
- Dim isTrue As Boolean = true;
- Dim pi As Double = 3.14

Variable Declaration

• PERL / PHP

- \$Number = 1234;
- \$word = "Hello!";
- \$isTrue = true;
- \$pi = 3.14;

Variable Declaration

• TCL

- set Number 1234;
- set word "Hello!";
- set isTrue 1;
- set pi 3.14;

WiBit Net

The End?