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Research Points – Identification & Design 



My Research Interests ✓

Identifying a research question 1

Agenda 

Planning a research Project 2
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Machine Learning & Reasoning iv 

Computational Science a



Research Question & Plan 



Working on E-Learning 
applications? 

What is a Research Point? 

Building E-Voting or Electronic Government generally? 

Repeating an experiment 
on different dataset? 

Building Basic computer 
science application for a 
different discipline? 

Migrating an application 
to the cloud? 

Discussing the Service 
Level Agreements for 
new projects? 

Repeating a comparison 
survey? 

Questionnaires and 
Statistical Analysis? 



•  Personal Interests: 
–  Identify Journals and Conferences in the research topic and 

their impact factors and keep up with their call for papers. 
–  Read in the latest publications in the interesting topic 

•  National Problems: 
–  Problems that has solutions internationally are not research 

problems, unless the adaptation to Egyptian requirements is 
challenging. 

•  Worldwide Grand Challenges: 
–  A grand challenge is a fundamental problem in science or engineering, 

with broad applications, whose solution would be enabled by the 
application of high performance computing resources that could become 
available in the near future. 

What is a Research Question? 
Where to find, and how to Develop? 



•  Research GAPS: 
–  Through reading books, publications, internet, and colleagues 

discussions, identify gaps in the literature to formulate questions that 
need further investigation. This usually requires a few iterations. 

•  Fill the GAP: 
–  Identifying a solution hypothesis to fill in the gap or optimize an existing 

solution. 

•  Design Experiments: 
–  Design the experiment to test your hypothesis or suggested methods. 
–  Collect Results and validate 

•  Draw conclusions & Identify Future Work Ideas. 

What is a Research Question? 
Where to find, and how to Develop? 



Grand Computational Challenges Examples 

The word genome refers to all 
the DNA in an organism, 
including its genes. The 
Human Genome Project aims 
to discover all the 100,000 
human genes, to determine 
the complete sequence of the 
3 billion DNA subunits that 
make up the genome, to 
develop data-analysis and 
sequencing tools, and to make 
this information accessible for 
further biological study 

The Human Genome Project Symbolic computations Topics 1 2 

• speech recognition, 
• computer vision, 
• natural language understanding, 
• automated reasoning, and 
• tools for design, manufacturing, 
and simulation of complex 
systems." 



Grand Computational Challenges Examples 

By comparing numerical simulations and the real 
universe, scientists hope to learn more about the 
composition and distribution of the mysterious dark 
which pervades the universe. X-ray clusters are 
clusters of galaxies immersed in halos of million-
degree gas which emit energy in the form of X-
rays. Astronomers study X-ray clusters because 
they map out the large-scale structure of the 
universe. Scientists at the Laboratory for 
Computational Astrophysics, National Center for 
Supercomputing Applications, at the University of 
Illinois at Urbana Champaign studied the formation 
of X-ray clusters using numerical simulations 
running on massively parallel computers. Their 
model represented a cube 500 million light years 
on each side. The cube was divided into a network 
of 134 million smaller cubes, each approximately 
one million light years on a side. In each cell, they 
solved the equations of hydrodynamics (these deal 
with the motions of the gas) to predict the behavior 
of gas density, pressure, temperature, and volume. 

Simulation of X-Ray Clusters Ground Water Contamination 3 4 

In order to study ground water 
contamination, complex chemical and 
physical interactions must be modeled. 
Approximations must be made because 
the exact properties of a contaminated site 
are unknown. The model will be divided 
into more than 100,000 grid blocks, each 
describing a small geographic area. Within 
each grid block, equations will describe 
the behavior of gases and liquids as they 
interact and move from location to 
location. Some blocks may represent 
locations in a body of water, while others 
will model liquid moving through dirt or 
seeping through cracks in rock. Research 
work should design remediation methods 
that work, and must recommend methods 
that can be carried out at the least cost. 



Sources & Applications 
Funding 

• GERSS-German-Egyptian Research 
Short term Scholarships 
• EGYPT-SOUTH AFRICA JOINT 
SCIENCE & TECHNOLOGY 
RESEARCH PROGRAMME 
• EU-Egypt Science and Innovation 
• Science and Technology 
Development Fund (STDF) 

Egyptian National S&T Information Network 
 

World-Wide Universities 

3 

Companies such as Google, 
Microsof t , Oracle, and other 
specialised companies announce 
research funding and sponsorships 

Industrial Research & Development 

•  Planning A Masters topic that can lead 
to a PhD topic is better. 

•  Develop a research plan for 5 or 7 
years. 

•  Developing research plan tailored to 
funding requirements, otherwise work 
on your own. 

•  Focus on one or a few related 
domains of applications and methods. 
Don’t work on many unrelated 
problems, you won’t build an 
experience this way. 

•  Collaborate with other experts in other 
disciplines. 

2 

1 

• Funded Research Projects 
• Fulbright Egypt 
• EURAXESS 
• FP7 
• Marie Curie 



•  Formal  
– Prove facts about algorithms and system formal 

specification in order to allow the automatic 
verification of an implementation of that 
component.  

– Alternatively, researchers may be interested on 
the time or space complexity of an algorithm, or 
on the correctness or the quality of the solutions 
generated by the algorithm. 

Computer Science Research Methods 



•  Experimental  
– Used in CS to evaluate new solutions for problems.  
– Experimental evaluation is often divided into two 

phases.  
•  In an exploratory phase the researcher is taking 

measurements that will help identify what are the 
questions that should be asked about the system under 
evaluation.  

•  Then an evaluation phase will attempt to answer these 
questions. A well-designed experiment will start with a list 
of the questions that the experiment is expected to 
answer. 

Computer Science Research Methods 



•  Build  
– A “build” research methodology consists of building 

an artifact: 
•  either a physical artifact or a software system to 

demonstrate that it is possible.  
•  To be considered research, the construction of the artifact 

must be new or it must include new features that have not 
been demonstrated before in other artifacts. 

Computer Science Research Methods 



•  Process 
– A process methodology is used to understand the 

processes used to accomplish tasks in Computing 
Science.  

– This methodology is mostly used in the areas of 
Software Engineering and Man-Machine Interface 
which deal with the way humans build and use 
computer systems. 

– The study of processes may also be used to 
understand cognition in the field of Artificial 
Intelligence. 

Computer Science Research Methods 



•  Model  
–  The model methodology is centered on defining an abstract 

model for a real system. This model will be much less 
complex than the system that it models, and therefore will 
allow the researcher to better understand the system and to 
use the model to perform experiments that could not be 
performed in the system itself because of cost or 
accessibility. 

–  The model methodology is often used in combination with 
the other four methodologies. Experiments based on a 
model are called simulations. When a formal description of 
the model is created to verify the functionality or correctness 
of a system, the task is called model checking. 

Computer Science Research Methods 



From Start to Finish 
Research Plan 

t R e s e a r c h e x i s t i n g 
solutions, and critically 
compare and analyse their 
performance. Sometimes 
m e r g i n g w i t h  n e w 
emerging technologies is 
t h e  m e t h o d ,  a n d 
sometimes simple try and 
error can formulate a new 
method. 

Proposing an Original Method Finding a GAP 

Design your experiment, 
execute it and gather 
resul ts . Analyze the 
resul ts us ing known 
validation and verification 
methods used in the 
p r o b l e m d o m a i n , 
compare with previous 
s o l u t i o n s , i d e n t i f y 
l imitations, and draw 
conclusion. 

Validation and Conclusion 
3 2 1 tFind a gap in 

literature of your 
interest areas, for 
a problem with no 
s o l u t i o n s ,  o r 
d r a w b a c k s i n 
solutions that you 
can address. 
 
You can also look 
f o r  a  g r a n d 
challenge. 
 



My Research Interests 



Computational Science 

Bioinformatics 

Operation Research & Optimisation 

Data Mining & Knowledge Bases 

Parallel Processing & Algorithms 

Artificial Intelligence 

Building Ontology, Machine Learning & Reasoning 

My Research Interests 

1 

2 

3 

4 

a 

b 
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Computational Science 



•  With computers, scientists and engineers have made numerous 
discoveries that they would not have made otherwise. In fact, 
computers have revolutionized the way that many scientists do 
their work. 

•  Solve 2x + 5 = 7. Sure, that's easy enough. Or solve a system 
of two equations and two unknowns like 

2x + 5y = 17 

3x - 2y = 4 

•  You don't need a computer for that. But imagine solving a 
problem by hand with 3 million variables. That's how many are 
required in the Spectral Element Ocean Model1, a vast 
computer simulation, that tests the wind's effects on the Earth's 
oceans. Problems of this magnitude, common in today's 
science, wouldn't be possible without computers. 

What is Computational Science? 



•  Traditionally, science was done in a laboratory as a combination 
of theory and physical experimentation (which included hand 
calculations), but computers have made possible a new and 
powerful way of doing science -- numerical simulation -- that 
augments the old.  

•  Numerical simulation is the process of modeling mathematically 
a physical phenomenon, and then running an experiment with 
the mathematical model. Computational mathematicians or 
computational scientists play a major role in this new way of 
doing science, creating, evaluating, and refining the 
mathematical models used to simulate the physical 
phenomena. 

•  Simulation can be used when physical experiments are too 
costly, time consuming, dangerous, or even impossible. 

What is Computational Science? 



1.  Computational science is an interdisciplinary field at 
the intersection of three domains: mathematics, 
computer science, and the biological and physical 
sciences. The computational scientist uses tools 
from computer science and mathematics to study 
problems from physical science, social science, 
engineering, etc. 

2.  Most of the problems that computational scientists 
work on involve vast amounts of data and a large 
number of variables. Through the advances in 
computer technology and numerical methods, 
mathematicians and scientists are able to work 
together modeling and solving problems that were 
impossible to address ten years ago. 

3.  Computational scientists do more than use a 
computer to find solutions to mathematical models 
developed from scientific problems however. They 
also develop new mathematical tools and theory 
and develop new numerical methods and improve 
the accuracy and speed of existing methods. 

Computational Science? 

Science	
  

Computer	
  
Science	
  Mathema1cs	
  

Computational Science 



Parallel Processing & Algorithms 



HPC – Computational Science 

•  Most large scale scientific computing 
performed is some form of simulation 
– Simulation can always use 

•  A few more objects to simulate 
•  Smaller timesteps 
•  More timesteps 
•  More precision 
•  Real time behavior 

– Computational steering 



Grand challenge: modeling the Sun 

•  Why? 
–  Solar flare prediction, improve general physics, etc 
–  There exist a number of theoretic models for the Sun 
–  There are numerous observations (X-ray/visual/magnetic) 

•  Which model is (most) correct? 
–  Processes not well understood 
–  Simulation is the only way to tell… 

•  3D and O(10243), 60TByte memory,4000FP’s per grid 
point 

•  Multipeta/teraflop range computing. 



Scientific Simulations 

•  Fixed Time Step 
–  Integration over time 
–  Each time step, all individuals in the simulation are updated 

by advancing ‘simulated time’ by a constant delta 
•  Variable time step: 

–  Integration over time 
–  Whenever the simulation becomes ‘interesting’ take smaller 

time steps 



Monte Carlo Simulations 

•  Start with “random” or “reasonable” initial conditions 
–  For example, place simulated individuals somewhere in a 

grid 
•  Pick a random individual 

–  Move in random way 
–  Check if movement is allowed 

•  If allowed, update the whole system to take movement into account. 
•  If not allowed, take back movement as if it didn’t happen 

•  http://sic.epfl.ch/SA/publications/
SCR95/7-95-21a.html 



Finite Element Methods 

•  The finite element method (FEM) (its practical application often known as finite 
element analysis (FEA)) is a numerical technique for finding approximate solutions 
to partial differential equations (PDE) and their systems, as well as (less often) 
integral equations. In simple terms, FEM is a method for dividing up a very 
complicated problem into small elements that can be solved in relation to each 
other. FEM is a special case of the more general Galerkin method with polynomial 
approximation functions. The solution approach is based on eliminating the spatial 
derivatives from the PDE. This approximates the PDE with 

–  a system of algebraic equations for steady state problems, 
–  a system of ordinary differential equations for transient problems. 

•  These equation systems are linear if the underlying PDE is linear, and vice versa. 
Algebraic equation systems are solved using numerical linear algebra methods. 
Ordinary differential equations that arise in transient problems are then numerically 
integrated using standard techniques such as Euler's method or the Runge-Kutta 
method. 



Finite Element Methods 

•  What is a finite element? 
–  Take a continuum model 

•  Discretize. 
•  Limit size of continuum 

–  Each element of discretized continuum is a Finite element 
–  Useful if 

•  Global continuum system is too complex 
–  Break it down into ‘primitive elements’ 
–  Simulate the primitive elements separately (divide & conquer style) 
–  Sum the effects of the individual parts somehow to approximate the 

continuum 



Geographic partitioning 

•  Partition data geographically: 
–  Give each processor the same amount of 'space' to work 

on 
•  Not fair because some parts of the data can be more 

computationally intensive than others! 
•  Does not take communication patterns into account 



Geographic partitioning 

List< list<Node> > partitions_per_cpu; 
void partition(int num_cpus, list<Node> g) {  

 If (num_cpus == 1) { 
   partitions_per_cpu += g;  
   return; 
 } If (x_distance_is_largest(g)) { 
   list<Node> list = g.nodes_sorted_over_x();  
   list<Node> first_half = list[0 .. list.length/2];  
   list<Node> second_half = list[list.length/2 .. list.length]; 
   partition(num_cpus/2, first_half);  
   partition(num_cpus/2,  second_half); 
 } else if (y_distance_is_largest(g) { 
   // symmetric to 'x' ... 
 } else { 
   // symmetric to 'x' .... 
   assert(z_distance_is_largest(g)); 
 } 

} 



Graph partitioning 

•  Find the longest path in the graph, cut in half, and 
recursively apply to partitions: 

List< list<Node> > partitions_per_cpu; 
void partition(int num_cpus, list<Node> g) {  

 If (num_cpus == 1) { 
  partitions_per_cpu += g;  
  return; 
 }  
 list<path> p = find_longest_path(g); 
 list<Node> first_half = list[0 .. list.length/2];  
 list<Node> second_half = list[list.length/2 .. list.length]; 
 partition(num_cpus/2, first_half);  
 partition(num_cpus/2, second_half); 

} 



Graph Partitioning 

Text Text 



Finding the longest path in a graph 

  A-C = 2 as  
A-B-C (2)  
is longer 
than A-C (1) 

  
  

A	
  

B	
  

C	
  

D	
  



int distances[N,N];  // initialized with '0'  
Path paths[N,N];   // a path is a list of nodes, each path has a 
       // length (#nodes)  
Path best;    // best path found thus far 
Path find_it(DirectedEdge[N] edges) { 

 for each edge E in edges:  
  distances[E.from, E.to] = 1; 
  path[E.from, E.to] = path(E.from, E.to); 
 for x = 0 to N:  
  for y = 0 to N: 
   for z = 0 to N:  
    If (distances[x,y] > 0 && distances[y,z] > 0) { 
     If (distances[x,y] + distances[y,z] > distances[x,z]) {  
      distances[x,z] = distances[x,y] + distances[y,z] 
      paths[x,z] = paths[x,y].append(path[y,z]);  
      If best.length < paths[x,z].length: 
       best = paths[x,z]; 
     } 
    } 

} 

Finding the longest path in a graph 



•  Simulate	
  wind,	
  clouds,	
  precipita1on,	
  etc	
  that	
  
influence	
  wind	
  &	
  weather	
  
•  Uses	
  basic	
  physics	
  (mechanics,	
  fluid	
  property	
  
formulas)	
  
– Conserva1on	
  of	
  mass,	
  energy	
  and	
  momentum	
  
– Hydrosta1c	
  approxima1on	
  
– Gas	
  state	
  equa1ons	
  

•  pressure	
  =	
  density	
  *	
  temperature	
  *	
  height	
  

Atmosphere Modeling (1) 



•  First	
  try,	
  put	
  every	
  thing	
  on	
  a	
  3D	
  grid	
  
–  Each	
  grid	
  point	
  =	
  1	
  task	
  

•  Note:	
  points	
  in	
  grid	
  don’t	
  move,	
  they	
  get	
  different	
  values	
  

Atmosphere Modeling (2) 



•  Every	
  grid	
  point	
  
–  Communicates	
  with	
  11	
  others	
  	
  
– Most	
  communica1on	
  is	
  horizontal	
  

Atmosphere Modeling (3) 



•  Agglomera1on	
  
–  Each	
  grid	
  point	
  =	
  1	
  task	
  

•  Nx*Ny*Nz	
  tasks	
  
–  Too	
  many	
  

– Most	
  communica1on	
  is	
  horizontal,	
  thus	
  
agglomerate	
  mostly	
  horizontally	
  

•  Load	
  imbalances	
  
– At	
  night	
  no	
  radia1on	
  in	
  physics	
  model	
  
– Clouds	
  only	
  at	
  threshold	
  humidity	
  

•  Ques1on:	
  is	
  this	
  a	
  finite	
  element	
  simula1on	
  ?	
  

Atmosphere Modeling (4) 



•  Particle Simulation 
•  Rendering 

– Parallel raytracing 
•  Simulate individual ‘rays’ of light 

– Radiosity rendering 
•  Simulate light as an amount of energy that is 

emitted by each surface 

•  Fluid-Dynamics 
•  Fourier methods 
•  Wavelets 

Other Parallel Computational Problems  



•  The	
  cloud	
  is	
  mostly	
  used	
  for	
  Distributed	
  Processing.	
  
•  We	
  are	
  inves1ga1ng	
  the	
  cloud	
  reliability	
  for	
  parallel	
  
processing:	
  
–  Check-­‐poin1ng	
  /	
  restar1ng	
  mechanisms	
  
–  Sta1c	
  &	
  Dynamic	
  Data	
  Par11oning	
  
–  Scheduling	
  &	
  load	
  balance	
  

Cloud Computing Parallel Processing 



•  Parallelizing	
  interes1ng	
  algorithms	
  to	
  benefit	
  from	
  
GPU	
  technologies	
  

GPU Programming 



Operation Research & Optimization 



•  A Macroscopic traffic flow model is a 
mathematical model that formulates the 
relationships among traffic flow 
characteristics like density, flow, mean speed 
of a traffic stream, etc. 

•  Studying major Egyptian cities traffic flow and 
optimizing major road design decisions such 
as: U-Turns, round-about, roads intersections, 
high-way exits distances, … etc.   

Roads Design Optimization 



Artificial Intelligence 



•  Building a complete Arabic lexicon for use 
in building knowledge bases, Arabic 
Ontology, text and data mining. 

Arabic Lexicon 



•  Building a legal ontology for the Egyptian 
constitution and laws. 

Legal Ontology 



•  Legal automatic reasoners to model the 
change of a constitution subject and its 
cascades to the relevant laws. 

AI Reasoning and Learning 



Bioinformatics 



•  Bioinformatics applies algorithms and statistical 
techniques to the interpretation, classification and 
understanding of biological datasets.  

•  These datasets typically consist of large numbers of 
DNA, RNA, or protein sequences. Sequence alignment 
is used to assemble the datasets for analysis.  

•  Multiple Sequence Alignment (MSA) is one of the most 
important computational biology problems, whose 
optimal methods are still an active area of research. 

Bioinformatics 



Bio Computing (1) 

•  Has	
  large	
  computa1onal	
  requirements	
  
– DNA	
  sequence	
  alignment	
  
– Protein	
  database	
  search	
  
– Molecule	
  matching	
  (see	
  if	
  molecule	
  X	
  can	
  be	
  a_ached	
  to	
  
molecule	
  Y)	
  



Bio Computing (2) 

•  DNA	
  sequence	
  alignment	
  
–  DNA	
  scanning	
  machines	
  deliver	
  chunks	
  of	
  dna	
  strings	
  

•  We	
  want	
  the	
  large	
  complete	
  string,	
  not	
  the	
  fragments	
  
–  Dna	
  scans	
  deliver	
  large	
  amounts	
  of	
  DNA	
  fragments	
  
–  DNA	
  encoded	
  as	
  string	
  of	
  base	
  pairs	
  (A,	
  C,	
  T,	
  G)	
  
–  Human	
  has	
  48	
  chromosomes,	
  *3*109	
  bases	
  



Bio Computing (3) 

•  DNA sequence alignment example: 

•  Have string  
    ACTGAGCTTCAC 

•  And string  
    CACAGAGTATC 

•  Head-tail match, thus make a larger string. 
–  use probability that it’s the correct match before making the 

decision to merge 
–  potentially large numbers of possible matchesto consider 
–  3 Gbytes of input * N times for maintaining probable matches....	
  



Bio Computing (4) 

•  Protein Folding problem 
–  Given a sequence of amino-acid molecules, find the least 

energy 3D configuration 
•  C3OH3CHCOGCS3.....	
  



Bio Computing (4a) 

•  When	
  able	
  to	
  predict	
  the	
  correct	
  stable	
  folding	
  of	
  an	
  
arbitrary	
  protein	
  
–  Can	
  see	
  if	
  it	
  ‘fits’	
  inside	
  another	
  molecule	
  

•  If	
  fit	
  then	
  possible	
  medicine	
  (protein	
  blocker	
  for	
  other	
  protein)	
  
– See	
  if	
  surface	
  proper1es	
  equal	
  to	
  other	
  molecule	
  in	
  
3D	
  

– Etc.	
  



Bio Computing (5) 

•  Protein	
  Folding	
  
–  Par1ally	
  embarrassingly	
  parallel	
  

•  All	
  possible	
  foldings	
  can	
  be	
  tried	
  in	
  parallel	
  
– Misses	
  cut-­‐offs	
  
–  Tes1ng	
  if	
  a	
  state	
  is	
  possible	
  is	
  non	
  trivial...	
  



Bio Computing (6) 

SequentialFindMinimumEnergyConfiguration(mol) { 
 Queue = empty  
 Min_energy=energy(mol)  
 Min_config=mol 
 Put mol in queue 
 while not queue is empty 
  m = queue.get(); 
  for I=0 to #joints in m  
   m’=twist joint I in m 
   if(m’ is valid configuration)  
    put m’ in queue 
    if energy(m’) < min_energy  
     min_energy = energy(m’) 
     min_config = m’ 



Bio Computing (7) 

ParallelFindMinimumEnergyConfiguration(molecule mol)  
 Queue = empty  
 Min_energy=energy(mol)  
 Min_config=mol 
 Put mol in queue  
 Parallel while not queue is empty 
  m = queue.get();  
  for I=0 to #joints in m 
   m’ = twist joint I in m  
   if (m’ is valid configuration) 
    put m’ in queue  
    if energy(m’) < min_energy 
     min_energy = energy(m’)  
     min_config = m’ 



My Previous Work 



Multiple Sequence Alignment (MSA) 

MSA	
  of	
  7	
  neuroglobins	
  using	
  clustalx	
  



•  Compare a new sequence with the sequences in a 
protein family.   

•  Phylogenetic analysis: Gain insight into evolutionary 
relationships. 

•  Identify conserved domains/elements in sequences. 
•  Compare regions of similarity among multiple 

organisms. 
•  Identify probes for similar sequences in other 

organisms. 
•  Develop PCR primers. 

Why MSA? 



MSA Methods 

Search	
  Techniques	
  

Calculus	
  Base	
  
Techniques	
  

Enumera1ve	
  
Techniques	
  

BFS	
  DFS	
   Dynamic	
  
Programming	
  

	
  
	
  
Tabu	
  Search	
  
	
  

Hill	
  
Climbing	
  

Simulated	
  
Annealing	
  

Evolu1onary	
  
Algorithms	
  

Gene1c	
  
Programming	
  

Sort	
  Fibonacci	
  

Guided	
  random	
  search	
  
techniques	
  

Gene1c	
  
Algorithms	
  



•  Assume Min. percent identity of ~40% for proteins and 
~70% for DNA, otherwise, much higher likelihood of 
errors. 

•  Sensitive to sequences input order. 
•  Depend on pair-wise alignments, which is less sensitive 

and cause bias in the positioning of gaps. 
•  Statistical Uncertainty. 
•  Assume conserved order of aligned residues. ABA, 

ProDA, TBA, MAUVE don't assume this. 
•  Care must be made in choosing scoring matrices and 

penalties. 

Problems with Existing MSA Methods 



2D - Dynamic Programming MSA 

-­‐ A T C G C G T A T G C
0 1 2 3 4 5 6 7 8 9 10 11

-­‐ 0 	
  <	
  < -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 -­‐22 -­‐24 	
  >
A 1 	
  	
  	
  < -­‐4 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 -­‐22 -­‐24 	
  >
T 2 	
  	
  	
  < -­‐6 -­‐6 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 	
  >
T 3 	
  	
  	
  < -­‐8 -­‐8 -­‐4 0 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 	
  >
C 4 	
  	
  	
  < -­‐10 -­‐10 -­‐6 -­‐2 0 -­‐2 -­‐4 -­‐6 -­‐6 -­‐8 -­‐10 -­‐12 	
  >
G 5 	
  	
  	
  < -­‐12 -­‐12 -­‐8 -­‐4 0 0 0 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 	
  >
G 6 	
  	
  	
  < -­‐14 -­‐14 -­‐10 -­‐6 -­‐2 2 0 2 0 -­‐2 -­‐4 -­‐6 	
  >
C 7 	
  	
  	
  < -­‐16 -­‐16 -­‐12 -­‐8 -­‐4 0 2 2 2 0 -­‐2 -­‐2 	
  >
T 8 	
  	
  	
  < -­‐18 -­‐18 -­‐14 -­‐10 -­‐6 -­‐2 2 2 2 2 0 -­‐2 	
  >
A 9 	
  	
  	
  < -­‐20 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 0 2 4 2 4 2 	
  >
T 10 	
  	
  	
  < -­‐22 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐2 0 2 6 4 4 	
  >
C 11 	
  	
  	
  < -­‐24 -­‐24 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 -­‐2 2 4 8 6 	
  >
G 12 	
  	
  	
  < -­‐26 -­‐26 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐4 0 2 6 8 	
  >
G 13 	
  	
  	
  < -­‐28 -­‐28 -­‐24 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 -­‐2 0 4 8 	
  >
C 14 	
  	
  	
  < -­‐30 -­‐30 -­‐26 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐4 -­‐2 2 6 	
  >	
  >

A lig ned	
  S equenc es 	
  :
>S eq2 A T -­‐ C G C G T A T G -­‐ -­‐ C
>S eq1 A T T C G G C T A T C G G C

1 1 -­‐1 1 1 0 0 1 1 1 0 -­‐1 -­‐1 1
T he	
  A lig nment	
  S c ore	
  = 	
  5

Seq1:	
  ATCGCGTATGC 	
   	
  Seq2:	
  ATTCGGCTATCGGC	
  
	
  



3D DP MSA 
-­‐ A C G T
0 1 2 3 4 0 -­‐
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  >
A 1 	
  	
  	
  	
  	
  < -­‐4 -­‐8 -­‐12 -­‐16 -­‐20 	
  	
  >
C 2 	
  	
  	
  	
  	
  < -­‐6 -­‐12 -­‐18 -­‐24 -­‐30 	
  	
  >
T 3 	
  	
  	
  	
  	
  < -­‐8 -­‐16 -­‐24 -­‐32 -­‐40 	
  	
  >	
  >

-­‐ A C G T 1 A
-­‐ 0 	
  	
  	
  <	
  < -­‐4 -­‐8 -­‐12 -­‐16 -­‐20 	
  	
  >
A 1 	
  	
  	
  	
  	
  < -­‐8 -­‐8 -­‐10 -­‐12 -­‐14 	
  	
  >
C 2 	
  	
  	
  	
  	
  < -­‐12 -­‐10 -­‐8 -­‐10 -­‐12 	
  	
  >
T 3 	
  	
  	
  	
  	
  < -­‐16 -­‐12 -­‐10 -­‐8 -­‐10 	
  	
  >	
  >

-­‐ A C G T 2 T
-­‐ 0 	
  	
  	
  <	
  < -­‐6 -­‐12 -­‐18 -­‐24 -­‐30 	
  	
  >
A 1 	
  	
  	
  	
  	
  < -­‐12 -­‐10 -­‐8 -­‐10 -­‐12 	
  	
  >
C 2 	
  	
  	
  	
  	
  < -­‐18 -­‐8 -­‐2 -­‐4 -­‐6 	
  	
  >
T 3 	
  	
  	
  	
  	
  < -­‐24 -­‐10 -­‐4 -­‐2 -­‐4 	
  	
  >	
  >	
  >

>	
  s eq4 A C G T
>	
  s eq3 A C T -­‐
> 	
   s e q 2 A T -­‐ -­‐

3 1 -­‐2 -­‐2
T he 	
  A l ig nm e nt 	
   S c o r e 	
  = 	
   0

-­‐
A
T



 
 

                 G1 + TS (G1)  ‏
S(i0 i1 i2 i3 ... ik) = max  G2 + TS (G2)  ‏

                  : 
                 G2

k
-1 + TS (G2

k
-1)  ‏

 
Where: 
TS (Gi) = (sub(dj, dk) for each pair j, k in G) +( gS * (K-D))  ‏
Gi: Neighbour i of current cell, up to 2k-1 neighbours 
D: No of decremented indices to get this particular neighbour 
TS: Temporary Score function assigned to each neighbour based on how many 

multidimensional indices were decremented to get to this neighbour 
gS: gap Score Value * (K-D): multiply the gap Score Value with number of indices 

that remained the same (were not decremented to get this neighbour), retrieved 
by Total Dimensions K (Sequences) – D. 

 

K-D DP MSA 

●	
  ●	
  ●	
  	
  

●	
  ●	
  ●	
  	
  

Scoring	
  This	
  Cell	
  

Lower	
  Neighbours	
  Cells	
  

Higher	
  Neighbours	
  Cells	
  

1 2 2k	
  -­‐	
  1	
  

1 2 2k	
  -­‐	
  1	
  

HELAL, M, Mullin, LM, Gaeta, B, El-Gindy, H. 2007. Multiple Sequence Alignment using Massively Parallel Mathematics of  
Arrays.  In: Proceedings of  the International Conference on High Performance Computing, Networking and Communication Systems (HPCNCS- 
07).  Orlando, FL. USA, pp.120-127. 



•  Distributed MSA based on MOA is designed 
by retrieving diagonals of partitions that can 
be scored simultaneously in one wave of 
computation. 

•  Their dependencies are computed in an 
earlier wave of computation, and sent to the 
waiting processors. 

Parallelization Technique 



Master / Slave Dependency Analysis 
MSA	
  Pair	
  Wise	
  wave-­‐front	
  Dependency:	
  	
  	
  top,	
  
lei,	
  and	
  lei-­‐up	
  diagonal.	
  So,	
  each	
  processor	
  can	
  
process	
  a	
  row.	
  
	
  

2D	
  MoA	
  MSA	
  Waves	
  Par::ons	
  	
  

3D	
  MoA	
  MSA	
  Waves	
  Par::ons	
  for	
  
shape	
  <3	
  3	
  3>,	
  and	
  the	
  par::ons	
  in	
  
each	
  wave	
  are	
  shown	
  
independently.	
  
	
  



Peer-to-Peer Partitioning  
Waves	
  of	
  computa1ons	
  based	
  on	
  clustering	
  par11ons	
  on	
  equal	
  distances	
  

from	
  the	
  origin	
  as	
  independent	
  (can	
  be	
  computed	
  simultaneously	
  on	
  
parallel	
  processors)	
  calculated	
  as	
  :	
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  ParBBons	
  

HELAL, M, El-Gindy, H, Mullin, LM, Gaeta, B. 2008. Parallelizing Optimal Multiple Sequence Alignment by Dynamic 
Programming. In: Proceedings of  the International Symposium on Advances in Parallel and Distributed Computing Techniques (APDCT-08) held in 
conjunction with 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA-08). Sydney, Australia: 
IEEE Computer Society, pp.669-674. 



wave	
  5	
  

origin	
   origin	
  

origin	
  

wave	
  1	
  wave	
  1	
  

5D	
  Waves	
  
&	
  
	
  

	
  ParBBons	
  

7D	
  Waves	
  
&	
  
	
  

	
  ParBBons	
  

6D	
  Waves	
  &	
  
	
  

	
  ParBBons	
  

wave	
  2	
  

wave	
  3	
  

wave	
  4	
  

wave	
  1	
  
wave	
  2	
  

wave	
  3	
  
wave	
  4	
  

wave	
  5	
  

wave	
  6	
  

wave	
  2	
  

wave	
  6	
  

wave	
  3	
  
wave	
  4	
  

wave	
  7	
  
wave	
  5	
  



Parallelization Results 

{10,	
  10,	
  10}	
  =	
  1331
{30,	
  28,	
  26}	
  =	
  24273

{65,	
  60,	
  55}	
  =	
  225456
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•  Using Matlab® optimization tool box to produce the optimal S, V, 
e values that minimize the total distributed time equation: 

 
             r * max (pm) + (c/2) * (P2 Σp2

m)  ‏
 
k = dimension; S = Partition size; li = shape at dimension i; V = Cluster Size 

with processors 0 <= m < V 
r = (2k-1) * sk = a partition's scoring cost 
c = sk-(s-1)k = a partition's communication cost 
P = π li-1 / s-1 = Total partitions in all waves, all processors 
Pe = (e * (t-2)) + 2 for e > k otherwise, (e * (t-4))+k+2 
max (pm) = ┌P/V┐ + 2 
 
 

Optimization 





Search Space Reduction 



Reduced Search Space Performance 
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HELAL, M, Mullin, L, Potter, J, Sintchenko, V. 2009. Search Space Reduction Technique for Distributed Multiple Sequence Alignment. 
In: Sixth IFIP International Conference on Network and Parallel Computing (NPC 2009). Gold Coast, Queensland, Australia. 



Quinolone-Resistance Determining Regions 
(QRDRs) Experiment 

Similarity	
  regions’	
  plots:	
  mmDst	
  (a),	
  Muscle	
  (b),	
  Tcoffee	
  (c),	
  clustalW(d).	
  

(a)	
   (b)	
  

(d)	
  (c)	
  

HELAL, M, Sintchenko, V. 2009. Dynamic Programming Algorithms for Discovery of  Antibiotic Resistance in Microbial Genomes. 
In: Health Informatics Conference (HIC-09). Canberra, Australia. 



Mycoplasma Clusters Visualized 

HELAL, M, El-Gindy, H, Gaeta, G, Sinchenko, V. 2008. High Performance Multiple Sequence Alignment Algorithms for 
Comparison of  Microbial Genomes. In: 19th International Conference on Genome Informatics - GIW 2008. Gold Coast. 



Clustering & Classification 

VP1-EV71 500 sequences Heatmap 

Nocardia 16S-RNA 364 sequences Heatmap 



Distance Matrix Linear Mapping Clustering 

Nocardia 16S-RNA 364 sequences LC Clustering 
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VP1-EV71 500 sequences LC Clustering 
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PCA Clustering 

Nocardia 16S-RNA 364 sequences PCA (1 and 2) Clustering 



PCA Clustering 

Nocardia 16S-RNA 364 sequences PCA (2 and 3) Clustering 



PCA Clustering 

VP1-EV71 500 sequences PCA (1 and 2) Clustering 



Cluto Optimization Clustering 

Nocardia 16S-RNA 364 Cluto Clustering 



K-Means 



Clustering Comparison 

Algorithm	
   Exact	
   %	
   ParBal	
   %	
  

LM	
  –m=128,	
  c=1	
   304	
   83.52	
   339	
   93.13	
  

Cluto	
   304	
   83.52	
   332	
   91.21	
  

HC	
  -­‐	
  77	
   294	
   80.77	
   320	
   87.91	
  

Manual	
  PCA	
   291	
   79.95	
   326	
   89.56	
  

LM	
  Over	
  PCA	
   277	
   76.10	
   305	
   83.79	
  

Kmeans	
  -­‐	
  77	
   258	
   70.88	
   309	
   84.89	
  



•  Developing the Parallel Optimal MSA Tool for public 
access, and different datasets and functions. 

•  Further investigating the clustering and classification 
techniques for different data sets. 

•  Applying the design on GPU and Clouds architectures. 
•  Optimise the scoring function. 
•  Design high dimensional generic database schema to 

enable further data mining techniques. 

Future Work 
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