
Dr. Manal Helal
CCIT – AASTMT
19/1/2013

Research Points – Identification & Design

My Research Interests ✓

Identifying a research question 1

Agenda

Planning a research Project 2

3

Parallel Processing b

Optimization c

AI Interests d

Bioinformatics e

Data mining i

Knowledge Bases ii

Ontology Building iii

Machine Learning & Reasoning iv

Computational Science a

Research Question & Plan

Working on E-Learning
applications?

What is a Research Point?

Building E-Voting or Electronic Government generally?

Repeating an experiment
on different dataset?

Building Basic computer
science application for a
different discipline?

Migrating an application
to the cloud?

Discussing the Service
Level Agreements for
new projects?

Repeating a comparison
survey?

Questionnaires and
Statistical Analysis?

•  Personal Interests:
–  Identify Journals and Conferences in the research topic and

their impact factors and keep up with their call for papers.
–  Read in the latest publications in the interesting topic

•  National Problems:
–  Problems that has solutions internationally are not research

problems, unless the adaptation to Egyptian requirements is
challenging.

•  Worldwide Grand Challenges:
–  A grand challenge is a fundamental problem in science or engineering,

with broad applications, whose solution would be enabled by the
application of high performance computing resources that could become
available in the near future.

What is a Research Question?
Where to find, and how to Develop?

•  Research GAPS:
–  Through reading books, publications, internet, and colleagues

discussions, identify gaps in the literature to formulate questions that
need further investigation. This usually requires a few iterations.

•  Fill the GAP:
–  Identifying a solution hypothesis to fill in the gap or optimize an existing

solution.

•  Design Experiments:
–  Design the experiment to test your hypothesis or suggested methods.
–  Collect Results and validate

•  Draw conclusions & Identify Future Work Ideas.

What is a Research Question?
Where to find, and how to Develop?

Grand Computational Challenges Examples

The word genome refers to all
the DNA in an organism,
including its genes. The
Human Genome Project aims
to discover all the 100,000
human genes, to determine
the complete sequence of the
3 billion DNA subunits that
make up the genome, to
develop data-analysis and
sequencing tools, and to make
this information accessible for
further biological study

The Human Genome Project Symbolic computations Topics 1 2

• speech recognition,
• computer vision,
• natural language understanding,
• automated reasoning, and
• tools for design, manufacturing,
and simulation of complex
systems."

Grand Computational Challenges Examples

By comparing numerical simulations and the real
universe, scientists hope to learn more about the
composition and distribution of the mysterious dark
which pervades the universe. X-ray clusters are
clusters of galaxies immersed in halos of million-
degree gas which emit energy in the form of X-
rays. Astronomers study X-ray clusters because
they map out the large-scale structure of the
universe. Scientists at the Laboratory for
Computational Astrophysics, National Center for
Supercomputing Applications, at the University of
Illinois at Urbana Champaign studied the formation
of X-ray clusters using numerical simulations
running on massively parallel computers. Their
model represented a cube 500 million light years
on each side. The cube was divided into a network
of 134 million smaller cubes, each approximately
one million light years on a side. In each cell, they
solved the equations of hydrodynamics (these deal
with the motions of the gas) to predict the behavior
of gas density, pressure, temperature, and volume.

Simulation of X-Ray Clusters Ground Water Contamination 3 4

In order to study ground water
contamination, complex chemical and
physical interactions must be modeled.
Approximations must be made because
the exact properties of a contaminated site
are unknown. The model will be divided
into more than 100,000 grid blocks, each
describing a small geographic area. Within
each grid block, equations will describe
the behavior of gases and liquids as they
interact and move from location to
location. Some blocks may represent
locations in a body of water, while others
will model liquid moving through dirt or
seeping through cracks in rock. Research
work should design remediation methods
that work, and must recommend methods
that can be carried out at the least cost.

Sources & Applications
Funding

• GERSS-German-Egyptian Research
Short term Scholarships
• EGYPT-SOUTH AFRICA JOINT
SCIENCE & TECHNOLOGY
RESEARCH PROGRAMME
• EU-Egypt Science and Innovation
• Science and Technology
Development Fund (STDF)

Egyptian National S&T Information Network

World-Wide Universities

3

Companies such as Google,
Microsof t , Oracle, and other
specialised companies announce
research funding and sponsorships

Industrial Research & Development

•  Planning A Masters topic that can lead
to a PhD topic is better.

•  Develop a research plan for 5 or 7
years.

•  Developing research plan tailored to
funding requirements, otherwise work
on your own.

•  Focus on one or a few related
domains of applications and methods.
Don’t work on many unrelated
problems, you won’t build an
experience this way.

•  Collaborate with other experts in other
disciplines.

2

1

• Funded Research Projects
• Fulbright Egypt
• EURAXESS
• FP7
• Marie Curie

•  Formal
– Prove facts about algorithms and system formal

specification in order to allow the automatic
verification of an implementation of that
component.

– Alternatively, researchers may be interested on
the time or space complexity of an algorithm, or
on the correctness or the quality of the solutions
generated by the algorithm.

Computer Science Research Methods

•  Experimental
– Used in CS to evaluate new solutions for problems.
– Experimental evaluation is often divided into two

phases.
•  In an exploratory phase the researcher is taking

measurements that will help identify what are the
questions that should be asked about the system under
evaluation.

•  Then an evaluation phase will attempt to answer these
questions. A well-designed experiment will start with a list
of the questions that the experiment is expected to
answer.

Computer Science Research Methods

•  Build
– A “build” research methodology consists of building

an artifact:
•  either a physical artifact or a software system to

demonstrate that it is possible.
•  To be considered research, the construction of the artifact

must be new or it must include new features that have not
been demonstrated before in other artifacts.

Computer Science Research Methods

•  Process
– A process methodology is used to understand the

processes used to accomplish tasks in Computing
Science.

– This methodology is mostly used in the areas of
Software Engineering and Man-Machine Interface
which deal with the way humans build and use
computer systems.

– The study of processes may also be used to
understand cognition in the field of Artificial
Intelligence.

Computer Science Research Methods

•  Model
–  The model methodology is centered on defining an abstract

model for a real system. This model will be much less
complex than the system that it models, and therefore will
allow the researcher to better understand the system and to
use the model to perform experiments that could not be
performed in the system itself because of cost or
accessibility.

–  The model methodology is often used in combination with
the other four methodologies. Experiments based on a
model are called simulations. When a formal description of
the model is created to verify the functionality or correctness
of a system, the task is called model checking.

Computer Science Research Methods

From Start to Finish
Research Plan

t R e s e a r c h e x i s t i n g
solutions, and critically
compare and analyse their
performance. Sometimes
m e r g i n g w i t h n e w
emerging technologies is
t h e m e t h o d , a n d
sometimes simple try and
error can formulate a new
method.

Proposing an Original Method Finding a GAP

Design your experiment,
execute it and gather
resul ts . Analyze the
resul ts us ing known
validation and verification
methods used in the
p r o b l e m d o m a i n ,
compare with previous
s o l u t i o n s , i d e n t i f y
l imitations, and draw
conclusion.

Validation and Conclusion
3 2 1 tFind a gap in

literature of your
interest areas, for
a problem with no
s o l u t i o n s , o r
d r a w b a c k s i n
solutions that you
can address.

You can also look
f o r a g r a n d
challenge.

My Research Interests

Computational Science

Bioinformatics

Operation Research & Optimisation

Data Mining & Knowledge Bases

Parallel Processing & Algorithms

Artificial Intelligence

Building Ontology, Machine Learning & Reasoning

My Research Interests

1

2

3

4

a

b

5

Computational Science

•  With computers, scientists and engineers have made numerous
discoveries that they would not have made otherwise. In fact,
computers have revolutionized the way that many scientists do
their work.

•  Solve 2x + 5 = 7. Sure, that's easy enough. Or solve a system
of two equations and two unknowns like

2x + 5y = 17

3x - 2y = 4

•  You don't need a computer for that. But imagine solving a
problem by hand with 3 million variables. That's how many are
required in the Spectral Element Ocean Model1, a vast
computer simulation, that tests the wind's effects on the Earth's
oceans. Problems of this magnitude, common in today's
science, wouldn't be possible without computers.

What is Computational Science?

•  Traditionally, science was done in a laboratory as a combination
of theory and physical experimentation (which included hand
calculations), but computers have made possible a new and
powerful way of doing science -- numerical simulation -- that
augments the old.

•  Numerical simulation is the process of modeling mathematically
a physical phenomenon, and then running an experiment with
the mathematical model. Computational mathematicians or
computational scientists play a major role in this new way of
doing science, creating, evaluating, and refining the
mathematical models used to simulate the physical
phenomena.

•  Simulation can be used when physical experiments are too
costly, time consuming, dangerous, or even impossible.

What is Computational Science?

1.  Computational science is an interdisciplinary field at
the intersection of three domains: mathematics,
computer science, and the biological and physical
sciences. The computational scientist uses tools
from computer science and mathematics to study
problems from physical science, social science,
engineering, etc.

2.  Most of the problems that computational scientists
work on involve vast amounts of data and a large
number of variables. Through the advances in
computer technology and numerical methods,
mathematicians and scientists are able to work
together modeling and solving problems that were
impossible to address ten years ago.

3.  Computational scientists do more than use a
computer to find solutions to mathematical models
developed from scientific problems however. They
also develop new mathematical tools and theory
and develop new numerical methods and improve
the accuracy and speed of existing methods.

Computational Science?

Science	

Computer	

Science	
 Mathema1cs	

Computational Science

Parallel Processing & Algorithms

HPC – Computational Science

•  Most large scale scientific computing
performed is some form of simulation
– Simulation can always use

•  A few more objects to simulate
•  Smaller timesteps
•  More timesteps
•  More precision
•  Real time behavior

– Computational steering

Grand challenge: modeling the Sun

•  Why?
–  Solar flare prediction, improve general physics, etc
–  There exist a number of theoretic models for the Sun
–  There are numerous observations (X-ray/visual/magnetic)

•  Which model is (most) correct?
–  Processes not well understood
–  Simulation is the only way to tell…

•  3D and O(10243), 60TByte memory,4000FP’s per grid
point

•  Multipeta/teraflop range computing.

Scientific Simulations

•  Fixed Time Step
–  Integration over time
–  Each time step, all individuals in the simulation are updated

by advancing ‘simulated time’ by a constant delta
•  Variable time step:

–  Integration over time
–  Whenever the simulation becomes ‘interesting’ take smaller

time steps

Monte Carlo Simulations

•  Start with “random” or “reasonable” initial conditions
–  For example, place simulated individuals somewhere in a

grid
•  Pick a random individual

–  Move in random way
–  Check if movement is allowed

•  If allowed, update the whole system to take movement into account.
•  If not allowed, take back movement as if it didn’t happen

•  http://sic.epfl.ch/SA/publications/
SCR95/7-95-21a.html

Finite Element Methods

•  The finite element method (FEM) (its practical application often known as finite
element analysis (FEA)) is a numerical technique for finding approximate solutions
to partial differential equations (PDE) and their systems, as well as (less often)
integral equations. In simple terms, FEM is a method for dividing up a very
complicated problem into small elements that can be solved in relation to each
other. FEM is a special case of the more general Galerkin method with polynomial
approximation functions. The solution approach is based on eliminating the spatial
derivatives from the PDE. This approximates the PDE with

–  a system of algebraic equations for steady state problems,
–  a system of ordinary differential equations for transient problems.

•  These equation systems are linear if the underlying PDE is linear, and vice versa.
Algebraic equation systems are solved using numerical linear algebra methods.
Ordinary differential equations that arise in transient problems are then numerically
integrated using standard techniques such as Euler's method or the Runge-Kutta
method.

Finite Element Methods

•  What is a finite element?
–  Take a continuum model

•  Discretize.
•  Limit size of continuum

–  Each element of discretized continuum is a Finite element
–  Useful if

•  Global continuum system is too complex
–  Break it down into ‘primitive elements’
–  Simulate the primitive elements separately (divide & conquer style)
–  Sum the effects of the individual parts somehow to approximate the

continuum

Geographic partitioning

•  Partition data geographically:
–  Give each processor the same amount of 'space' to work

on
•  Not fair because some parts of the data can be more

computationally intensive than others!
•  Does not take communication patterns into account

Geographic partitioning

List< list<Node> > partitions_per_cpu;
void partition(int num_cpus, list<Node> g) {

 If (num_cpus == 1) {
 partitions_per_cpu += g;
 return;
 } If (x_distance_is_largest(g)) {
 list<Node> list = g.nodes_sorted_over_x();
 list<Node> first_half = list[0 .. list.length/2];
 list<Node> second_half = list[list.length/2 .. list.length];
 partition(num_cpus/2, first_half);
 partition(num_cpus/2, second_half);
 } else if (y_distance_is_largest(g) {
 // symmetric to 'x' ...
 } else {
 // symmetric to 'x'
 assert(z_distance_is_largest(g));
 }

}

Graph partitioning

•  Find the longest path in the graph, cut in half, and
recursively apply to partitions:

List< list<Node> > partitions_per_cpu;
void partition(int num_cpus, list<Node> g) {

 If (num_cpus == 1) {
 partitions_per_cpu += g;
 return;
 }
 list<path> p = find_longest_path(g);
 list<Node> first_half = list[0 .. list.length/2];
 list<Node> second_half = list[list.length/2 .. list.length];
 partition(num_cpus/2, first_half);
 partition(num_cpus/2, second_half);

}

Graph Partitioning

Text Text

Finding the longest path in a graph

 A-C = 2 as
A-B-C (2)
is longer
than A-C (1)

A	

B	

C	

D	

int distances[N,N]; // initialized with '0'
Path paths[N,N]; // a path is a list of nodes, each path has a
 // length (#nodes)
Path best; // best path found thus far
Path find_it(DirectedEdge[N] edges) {

 for each edge E in edges:
 distances[E.from, E.to] = 1;
 path[E.from, E.to] = path(E.from, E.to);
 for x = 0 to N:
 for y = 0 to N:
 for z = 0 to N:
 If (distances[x,y] > 0 && distances[y,z] > 0) {
 If (distances[x,y] + distances[y,z] > distances[x,z]) {
 distances[x,z] = distances[x,y] + distances[y,z]
 paths[x,z] = paths[x,y].append(path[y,z]);
 If best.length < paths[x,z].length:
 best = paths[x,z];
 }
 }

}

Finding the longest path in a graph

•  Simulate	
 wind,	
 clouds,	
 precipita1on,	
 etc	
 that	

influence	
 wind	
 &	
 weather	

•  Uses	
 basic	
 physics	
 (mechanics,	
 fluid	
 property	

formulas)	

– Conserva1on	
 of	
 mass,	
 energy	
 and	
 momentum	

– Hydrosta1c	
 approxima1on	

– Gas	
 state	
 equa1ons	

•  pressure	
 =	
 density	
 *	
 temperature	
 *	
 height	

Atmosphere Modeling (1)

•  First	
 try,	
 put	
 every	
 thing	
 on	
 a	
 3D	
 grid	

–  Each	
 grid	
 point	
 =	
 1	
 task	

•  Note:	
 points	
 in	
 grid	
 don’t	
 move,	
 they	
 get	
 different	
 values	

Atmosphere Modeling (2)

•  Every	
 grid	
 point	

–  Communicates	
 with	
 11	
 others	
 	

– Most	
 communica1on	
 is	
 horizontal	

Atmosphere Modeling (3)

•  Agglomera1on	

–  Each	
 grid	
 point	
 =	
 1	
 task	

•  Nx*Ny*Nz	
 tasks	

–  Too	
 many	

– Most	
 communica1on	
 is	
 horizontal,	
 thus	

agglomerate	
 mostly	
 horizontally	

•  Load	
 imbalances	

– At	
 night	
 no	
 radia1on	
 in	
 physics	
 model	

– Clouds	
 only	
 at	
 threshold	
 humidity	

•  Ques1on:	
 is	
 this	
 a	
 finite	
 element	
 simula1on	
 ?	

Atmosphere Modeling (4)

•  Particle Simulation
•  Rendering

– Parallel raytracing
•  Simulate individual ‘rays’ of light

– Radiosity rendering
•  Simulate light as an amount of energy that is

emitted by each surface

•  Fluid-Dynamics
•  Fourier methods
•  Wavelets

Other Parallel Computational Problems

•  The	
 cloud	
 is	
 mostly	
 used	
 for	
 Distributed	
 Processing.	

•  We	
 are	
 inves1ga1ng	
 the	
 cloud	
 reliability	
 for	
 parallel	

processing:	

–  Check-­‐poin1ng	
 /	
 restar1ng	
 mechanisms	

–  Sta1c	
 &	
 Dynamic	
 Data	
 Par11oning	

–  Scheduling	
 &	
 load	
 balance	

Cloud Computing Parallel Processing

•  Parallelizing	
 interes1ng	
 algorithms	
 to	
 benefit	
 from	

GPU	
 technologies	

GPU Programming

Operation Research & Optimization

•  A Macroscopic traffic flow model is a
mathematical model that formulates the
relationships among traffic flow
characteristics like density, flow, mean speed
of a traffic stream, etc.

•  Studying major Egyptian cities traffic flow and
optimizing major road design decisions such
as: U-Turns, round-about, roads intersections,
high-way exits distances, … etc.

Roads Design Optimization

Artificial Intelligence

•  Building a complete Arabic lexicon for use
in building knowledge bases, Arabic
Ontology, text and data mining.

Arabic Lexicon

•  Building a legal ontology for the Egyptian
constitution and laws.

Legal Ontology

•  Legal automatic reasoners to model the
change of a constitution subject and its
cascades to the relevant laws.

AI Reasoning and Learning

Bioinformatics

•  Bioinformatics applies algorithms and statistical
techniques to the interpretation, classification and
understanding of biological datasets.

•  These datasets typically consist of large numbers of
DNA, RNA, or protein sequences. Sequence alignment
is used to assemble the datasets for analysis.

•  Multiple Sequence Alignment (MSA) is one of the most
important computational biology problems, whose
optimal methods are still an active area of research.

Bioinformatics

Bio Computing (1)

•  Has	
 large	
 computa1onal	
 requirements	

– DNA	
 sequence	
 alignment	

– Protein	
 database	
 search	

– Molecule	
 matching	
 (see	
 if	
 molecule	
 X	
 can	
 be	
 a_ached	
 to	

molecule	
 Y)	

Bio Computing (2)

•  DNA	
 sequence	
 alignment	

–  DNA	
 scanning	
 machines	
 deliver	
 chunks	
 of	
 dna	
 strings	

•  We	
 want	
 the	
 large	
 complete	
 string,	
 not	
 the	
 fragments	

–  Dna	
 scans	
 deliver	
 large	
 amounts	
 of	
 DNA	
 fragments	

–  DNA	
 encoded	
 as	
 string	
 of	
 base	
 pairs	
 (A,	
 C,	
 T,	
 G)	

–  Human	
 has	
 48	
 chromosomes,	
 *3*109	
 bases	

Bio Computing (3)

•  DNA sequence alignment example:

•  Have string
 ACTGAGCTTCAC

•  And string
 CACAGAGTATC

•  Head-tail match, thus make a larger string.
–  use probability that it’s the correct match before making the

decision to merge
–  potentially large numbers of possible matchesto consider
–  3 Gbytes of input * N times for maintaining probable matches....	

Bio Computing (4)

•  Protein Folding problem
–  Given a sequence of amino-acid molecules, find the least

energy 3D configuration
•  C3OH3CHCOGCS3.....	

Bio Computing (4a)

•  When	
 able	
 to	
 predict	
 the	
 correct	
 stable	
 folding	
 of	
 an	

arbitrary	
 protein	

–  Can	
 see	
 if	
 it	
 ‘fits’	
 inside	
 another	
 molecule	

•  If	
 fit	
 then	
 possible	
 medicine	
 (protein	
 blocker	
 for	
 other	
 protein)	

– See	
 if	
 surface	
 proper1es	
 equal	
 to	
 other	
 molecule	
 in	

3D	

– Etc.	

Bio Computing (5)

•  Protein	
 Folding	

–  Par1ally	
 embarrassingly	
 parallel	

•  All	
 possible	
 foldings	
 can	
 be	
 tried	
 in	
 parallel	

– Misses	
 cut-­‐offs	

–  Tes1ng	
 if	
 a	
 state	
 is	
 possible	
 is	
 non	
 trivial...	

Bio Computing (6)

SequentialFindMinimumEnergyConfiguration(mol) {
 Queue = empty
 Min_energy=energy(mol)
 Min_config=mol
 Put mol in queue
 while not queue is empty
 m = queue.get();
 for I=0 to #joints in m
 m’=twist joint I in m
 if(m’ is valid configuration)
 put m’ in queue
 if energy(m’) < min_energy
 min_energy = energy(m’)
 min_config = m’

Bio Computing (7)

ParallelFindMinimumEnergyConfiguration(molecule mol)
 Queue = empty
 Min_energy=energy(mol)
 Min_config=mol
 Put mol in queue
 Parallel while not queue is empty
 m = queue.get();
 for I=0 to #joints in m
 m’ = twist joint I in m
 if (m’ is valid configuration)
 put m’ in queue
 if energy(m’) < min_energy
 min_energy = energy(m’)
 min_config = m’

My Previous Work

Multiple Sequence Alignment (MSA)

MSA	
 of	
 7	
 neuroglobins	
 using	
 clustalx	

•  Compare a new sequence with the sequences in a
protein family.

•  Phylogenetic analysis: Gain insight into evolutionary
relationships.

•  Identify conserved domains/elements in sequences.
•  Compare regions of similarity among multiple

organisms.
•  Identify probes for similar sequences in other

organisms.
•  Develop PCR primers.

Why MSA?

MSA Methods

Search	
 Techniques	

Calculus	
 Base	

Techniques	

Enumera1ve	

Techniques	

BFS	
 DFS	
 Dynamic	

Programming	

	

	

Tabu	
 Search	

	

Hill	

Climbing	

Simulated	

Annealing	

Evolu1onary	

Algorithms	

Gene1c	

Programming	

Sort	
 Fibonacci	

Guided	
 random	
 search	

techniques	

Gene1c	

Algorithms	

•  Assume Min. percent identity of ~40% for proteins and
~70% for DNA, otherwise, much higher likelihood of
errors.

•  Sensitive to sequences input order.
•  Depend on pair-wise alignments, which is less sensitive

and cause bias in the positioning of gaps.
•  Statistical Uncertainty.
•  Assume conserved order of aligned residues. ABA,

ProDA, TBA, MAUVE don't assume this.
•  Care must be made in choosing scoring matrices and

penalties.

Problems with Existing MSA Methods

2D - Dynamic Programming MSA

-­‐ A T C G C G T A T G C
0 1 2 3 4 5 6 7 8 9 10 11

-­‐ 0 	
 <	
 < -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 -­‐22 -­‐24 	
 >
A 1 	
 	
 	
 < -­‐4 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 -­‐22 -­‐24 	
 >
T 2 	
 	
 	
 < -­‐6 -­‐6 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 -­‐18 -­‐20 	
 >
T 3 	
 	
 	
 < -­‐8 -­‐8 -­‐4 0 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 -­‐12 -­‐14 -­‐16 	
 >
C 4 	
 	
 	
 < -­‐10 -­‐10 -­‐6 -­‐2 0 -­‐2 -­‐4 -­‐6 -­‐6 -­‐8 -­‐10 -­‐12 	
 >
G 5 	
 	
 	
 < -­‐12 -­‐12 -­‐8 -­‐4 0 0 0 -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 	
 >
G 6 	
 	
 	
 < -­‐14 -­‐14 -­‐10 -­‐6 -­‐2 2 0 2 0 -­‐2 -­‐4 -­‐6 	
 >
C 7 	
 	
 	
 < -­‐16 -­‐16 -­‐12 -­‐8 -­‐4 0 2 2 2 0 -­‐2 -­‐2 	
 >
T 8 	
 	
 	
 < -­‐18 -­‐18 -­‐14 -­‐10 -­‐6 -­‐2 2 2 2 2 0 -­‐2 	
 >
A 9 	
 	
 	
 < -­‐20 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 0 2 4 2 4 2 	
 >
T 10 	
 	
 	
 < -­‐22 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐2 0 2 6 4 4 	
 >
C 11 	
 	
 	
 < -­‐24 -­‐24 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 -­‐2 2 4 8 6 	
 >
G 12 	
 	
 	
 < -­‐26 -­‐26 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐4 0 2 6 8 	
 >
G 13 	
 	
 	
 < -­‐28 -­‐28 -­‐24 -­‐20 -­‐16 -­‐12 -­‐8 -­‐4 -­‐2 0 4 8 	
 >
C 14 	
 	
 	
 < -­‐30 -­‐30 -­‐26 -­‐22 -­‐18 -­‐14 -­‐10 -­‐6 -­‐4 -­‐2 2 6 	
 >	
 >

A lig ned	
 S equenc es 	
 :
>S eq2 A T -­‐ C G C G T A T G -­‐ -­‐ C
>S eq1 A T T C G G C T A T C G G C

1 1 -­‐1 1 1 0 0 1 1 1 0 -­‐1 -­‐1 1
T he	
 A lig nment	
 S c ore	
 = 	
 5

Seq1:	
 ATCGCGTATGC 	
 	
 Seq2:	
 ATTCGGCTATCGGC	

	

3D DP MSA
-­‐ A C G T
0 1 2 3 4 0 -­‐

-­‐ 0 	
 <	
 <	
 < -­‐2 -­‐4 -­‐6 -­‐8 -­‐10 	
 	
 >
A 1 	
 	
 	
 	
 	
 < -­‐4 -­‐8 -­‐12 -­‐16 -­‐20 	
 	
 >
C 2 	
 	
 	
 	
 	
 < -­‐6 -­‐12 -­‐18 -­‐24 -­‐30 	
 	
 >
T 3 	
 	
 	
 	
 	
 < -­‐8 -­‐16 -­‐24 -­‐32 -­‐40 	
 	
 >	
 >

-­‐ A C G T 1 A
-­‐ 0 	
 	
 	
 <	
 < -­‐4 -­‐8 -­‐12 -­‐16 -­‐20 	
 	
 >
A 1 	
 	
 	
 	
 	
 < -­‐8 -­‐8 -­‐10 -­‐12 -­‐14 	
 	
 >
C 2 	
 	
 	
 	
 	
 < -­‐12 -­‐10 -­‐8 -­‐10 -­‐12 	
 	
 >
T 3 	
 	
 	
 	
 	
 < -­‐16 -­‐12 -­‐10 -­‐8 -­‐10 	
 	
 >	
 >

-­‐ A C G T 2 T
-­‐ 0 	
 	
 	
 <	
 < -­‐6 -­‐12 -­‐18 -­‐24 -­‐30 	
 	
 >
A 1 	
 	
 	
 	
 	
 < -­‐12 -­‐10 -­‐8 -­‐10 -­‐12 	
 	
 >
C 2 	
 	
 	
 	
 	
 < -­‐18 -­‐8 -­‐2 -­‐4 -­‐6 	
 	
 >
T 3 	
 	
 	
 	
 	
 < -­‐24 -­‐10 -­‐4 -­‐2 -­‐4 	
 	
 >	
 >	
 >

>	
 s eq4 A C G T
>	
 s eq3 A C T -­‐
> 	
 s e q 2 A T -­‐ -­‐

3 1 -­‐2 -­‐2
T he 	
 A l ig nm e nt 	
 S c o r e 	
 = 	
 0

-­‐
A
T

 G1 + TS (G1) ‏
S(i0 i1 i2 i3 ... ik) = max G2 + TS (G2) ‏

 :
 G2

k
-1 + TS (G2

k
-1) ‏

Where:
TS (Gi) = (sub(dj, dk) for each pair j, k in G) +(gS * (K-D)) ‏
Gi: Neighbour i of current cell, up to 2k-1 neighbours
D: No of decremented indices to get this particular neighbour
TS: Temporary Score function assigned to each neighbour based on how many

multidimensional indices were decremented to get to this neighbour
gS: gap Score Value * (K-D): multiply the gap Score Value with number of indices

that remained the same (were not decremented to get this neighbour), retrieved
by Total Dimensions K (Sequences) – D.

K-D DP MSA

●	
 ●	
 ●	
 	

●	
 ●	
 ●	
 	

Scoring	
 This	
 Cell	

Lower	
 Neighbours	
 Cells	

Higher	
 Neighbours	
 Cells	

1 2 2k	
 -­‐	
 1	

1 2 2k	
 -­‐	
 1	

HELAL, M, Mullin, LM, Gaeta, B, El-Gindy, H. 2007. Multiple Sequence Alignment using Massively Parallel Mathematics of
Arrays. In: Proceedings of the International Conference on High Performance Computing, Networking and Communication Systems (HPCNCS-
07). Orlando, FL. USA, pp.120-127.

•  Distributed MSA based on MOA is designed
by retrieving diagonals of partitions that can
be scored simultaneously in one wave of
computation.

•  Their dependencies are computed in an
earlier wave of computation, and sent to the
waiting processors.

Parallelization Technique

Master / Slave Dependency Analysis
MSA	
 Pair	
 Wise	
 wave-­‐front	
 Dependency:	
 	
 	
 top,	

lei,	
 and	
 lei-­‐up	
 diagonal.	
 So,	
 each	
 processor	
 can	

process	
 a	
 row.	

	

2D	
 MoA	
 MSA	
 Waves	
 Par::ons	
 	

3D	
 MoA	
 MSA	
 Waves	
 Par::ons	
 for	

shape	
 <3	
 3	
 3>,	
 and	
 the	
 par::ons	
 in	

each	
 wave	
 are	
 shown	

independently.	

	

Peer-to-Peer Partitioning
Waves	
 of	
 computa1ons	
 based	
 on	
 clustering	
 par11ons	
 on	
 equal	
 distances	

from	
 the	
 origin	
 as	
 independent	
 (can	
 be	
 computed	
 simultaneously	
 on	

parallel	
 processors)	
 calculated	
 as	
 :	

origin	

origin	

origin	

wave	
 1	

wave	
 2	

wave	
 2	

wave	
 1	

wave	
 1	

wave	
 2	

wave	
 3	

wave	
 4	

wave	
 3	

2D	
 Waves	

&	

	

	
 ParBBons	

3D	
 Waves	
 &	

	

	
 ParBBons	

4D	
 Waves	
 &	

	

	
 ParBBons	

HELAL, M, El-Gindy, H, Mullin, LM, Gaeta, B. 2008. Parallelizing Optimal Multiple Sequence Alignment by Dynamic
Programming. In: Proceedings of the International Symposium on Advances in Parallel and Distributed Computing Techniques (APDCT-08) held in
conjunction with 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA-08). Sydney, Australia:
IEEE Computer Society, pp.669-674.

wave	
 5	

origin	
 origin	

origin	

wave	
 1	
 wave	
 1	

5D	
 Waves	

&	

	

	
 ParBBons	

7D	
 Waves	

&	

	

	
 ParBBons	

6D	
 Waves	
 &	

	

	
 ParBBons	

wave	
 2	

wave	
 3	

wave	
 4	

wave	
 1	

wave	
 2	

wave	
 3	

wave	
 4	

wave	
 5	

wave	
 6	

wave	
 2	

wave	
 6	

wave	
 3	

wave	
 4	

wave	
 7	

wave	
 5	

Parallelization Results

{10,	
 10,	
 10}	
 =	
 1331
{30,	
 28,	
 26}	
 =	
 24273

{65,	
 60,	
 55}	
 =	
 225456

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

S eq	
 S 	
 Time
F P 	
 S 	
 Time

S equential	
 Vs 	
 Parallel

0.0000	

0.0002	

0.0004	

0.0006	

0.0008	

0.0010	

0.0012	

0.0014	

0.0016	

0	
 20	
 40	
 60	
 80	

El
ap

se
d	

Bm

e	

(s
ec
on

ds
)	

Number	
 of	
 processors	

Processor	
 Scalability	

•  Using Matlab® optimization tool box to produce the optimal S, V,
e values that minimize the total distributed time equation:

 r * max (pm) + (c/2) * (P2 Σp2

m) ‏

k = dimension; S = Partition size; li = shape at dimension i; V = Cluster Size

with processors 0 <= m < V
r = (2k-1) * sk = a partition's scoring cost
c = sk-(s-1)k = a partition's communication cost
P = π li-1 / s-1 = Total partitions in all waves, all processors
Pe = (e * (t-2)) + 2 for e > k otherwise, (e * (t-4))+k+2
max (pm) = ┌P/V┐ + 2

Optimization

Search Space Reduction

Reduced Search Space Performance

0.1	

1	

10	

100	

1000	

10000	

100000	

1000000	

Total	
 ComputaBons	
 O(nk*2k)	

System	
 and	
 User	
 Bme	
 in	
 seconds	

Variance	
 over	
 Search	
 Space	

ReducBon	

STime	
 	
 	
 	
 	
 	
 	
 	
 	

UTime	

-­‐400	

-­‐200	

0	

200	

400	

600	

800	

1000	

1200	

Total	
 ComputaBons	
 O(nk*2k)	

Scores	
 and	
 Entropy	
 Variance	
 over	

Search	
 Space	
 ReducBon	

Score	

Entropy	

HELAL, M, Mullin, L, Potter, J, Sintchenko, V. 2009. Search Space Reduction Technique for Distributed Multiple Sequence Alignment.
In: Sixth IFIP International Conference on Network and Parallel Computing (NPC 2009). Gold Coast, Queensland, Australia.

Quinolone-Resistance Determining Regions
(QRDRs) Experiment

Similarity	
 regions’	
 plots:	
 mmDst	
 (a),	
 Muscle	
 (b),	
 Tcoffee	
 (c),	
 clustalW(d).	

(a)	
 (b)	

(d)	
 (c)	

HELAL, M, Sintchenko, V. 2009. Dynamic Programming Algorithms for Discovery of Antibiotic Resistance in Microbial Genomes.
In: Health Informatics Conference (HIC-09). Canberra, Australia.

Mycoplasma Clusters Visualized

HELAL, M, El-Gindy, H, Gaeta, G, Sinchenko, V. 2008. High Performance Multiple Sequence Alignment Algorithms for
Comparison of Microbial Genomes. In: 19th International Conference on Genome Informatics - GIW 2008. Gold Coast.

Clustering & Classification

VP1-EV71 500 sequences Heatmap

Nocardia 16S-RNA 364 sequences Heatmap

Distance Matrix Linear Mapping Clustering

Nocardia 16S-RNA 364 sequences LC Clustering

0	

50	

100	

150	

200	

250	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

Cl
us
te
rs
	
 N
um

be
r	

Number	
 of	
 Indices	

Single	
 Index	

Double	
 Index	

Trible	
 Index	

Quadrable	
 Index	

VP1-EV71 500 sequences LC Clustering

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

64
	

12
8	

25
6	

51
2	

10
24
	

20
48
	

40
96
	

81
92
	

16
38
4	

32
76
8	

65
53
6	

13
10
72
	

Cl
us
te
rs
	
 N
um

be
r	

Number	
 of	
 Indices	

Single	
 Index	

Double	
 Index	

Trible	
 Index	

Quadrable	
 Index	

PCA Clustering

Nocardia 16S-RNA 364 sequences PCA (1 and 2) Clustering

PCA Clustering

Nocardia 16S-RNA 364 sequences PCA (2 and 3) Clustering

PCA Clustering

VP1-EV71 500 sequences PCA (1 and 2) Clustering

Cluto Optimization Clustering

Nocardia 16S-RNA 364 Cluto Clustering

K-Means

Clustering Comparison

Algorithm	
 Exact	
 %	
 ParBal	
 %	

LM	
 –m=128,	
 c=1	
 304	
 83.52	
 339	
 93.13	

Cluto	
 304	
 83.52	
 332	
 91.21	

HC	
 -­‐	
 77	
 294	
 80.77	
 320	
 87.91	

Manual	
 PCA	
 291	
 79.95	
 326	
 89.56	

LM	
 Over	
 PCA	
 277	
 76.10	
 305	
 83.79	

Kmeans	
 -­‐	
 77	
 258	
 70.88	
 309	
 84.89	

•  Developing the Parallel Optimal MSA Tool for public
access, and different datasets and functions.

•  Further investigating the clustering and classification
techniques for different data sets.

•  Applying the design on GPU and Clouds architectures.
•  Optimise the scoring function.
•  Design high dimensional generic database schema to

enable further data mining techniques.

Future Work

References

1)  Richard A. Tapia, Cynthia Lanius, “Computational Science:
Tools for a Changing World - A High School Curriculum”, Rice
university publications, 2003.

2)  Ronald Veldema, “Parallel Algorithms Lecture Slides”,
Department Informatik, Friedrich-Alexander-Universität
Erlangen-Nürnberg

THANK YOU!

