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Abstract 
In this article, I am trying to present my thoughts about my career in computing as I progressed 
through it from undergraduate, to industrial experiences, to postgraduate, to post-doctorate 
experiences, and academic lecturer to recent undergraduates and postgraduates. Computer science 
and engineering degrees fluctuate between high appreciation and great expectations for the future 
at one end, and lack of trust and low appreciation at the other end. I conclude that there is no 
ultimate answer to this paradox in the near future. However, I have enjoyed my career so far, and 
expect to continue enjoying these fluctuations and accept them all.  

Origins 
Computing is an organizational behaviour and problem solving techniques practiced since the early 
ages of humanity to reduce the complexity of daily challenges. Computer Science (CS) finds its 
foundation in mathematics. The word “programming” is first used to describe a system of equations 
that describes the relationships between the factors that affect the phenomenal occurrences of an 
observed event. The objective of studying these systems is to analyse causes, predict outcomes, or 
just explaining them. This has been practiced in all domains, such as: physics, chemistry, 
environmental conditions such as earth sciences and astronomy, human cognition, psychology, 
medicine, politics and social change, among practically all aspects of life. When it was practiced 
manually, it was coined the term “scientific method”, which is the systematic collection of 
observations and analysis of the collected data mathematically and statistically. When it started to 
get partially automated or fully automated, it was coined the term “computing”. 

We have all seen the circulation of several videos by world leading business executives explaining 
how the future will witness the death of various jobs, and more and more reliance on machine 
learning and robotics to replace humans. We have already witnessed the sizing down of several 
firms and employment problems in several sectors, particularly in banking, finance, administrative 
jobs due to Enterprise Resource Planning (ERP) computer systems and databases with various 
business intelligence modules, ATMs, web and cloud computing for remote availability among many 
other technologies that dramatically changed our lives. Even highly specialized jobs such as medical, 
pharmaceutical, agricultural and earth sciences among others have started relying on semi-
automated robots to achieve higher accuracy, speed, remote presence, and remote sensing as 
examples only. This transformation has social and human impacts that are widely studied in various 
departments, and alternative education systems and employment opportunities should always be 
created to cope with the change. This will require curriculum updates, all learning objectives 
updated, transferable skills gained, because probably all currently known skills will not be needed in 



the near future. Anticipating this future and swinging with it, is a serious challenge. These 
transformations of professions are discussed in this book [1]. 

As a child in the 80s, I used to sign “Architect” under my name. I was fascinated by buildings’ 
external and internal architecture. However, when I reached undergraduate education, having a 
British High School Certificate, and some administrative shifts in Egypt, delayed my enrolment in 
Egyptian national universities. The American University in Cairo (AUC) was the only choice such that I 
do not miss the academic year. At that time in the 90s, there was Mechanical Engineering and 
Construction Engineering only in AUC. The final skills a student would acquire in construction 
engineering secure jobs in sites of construction, rather than pure architectural drawings and design 
that was available in other universities. Since I enjoy office relaxed environments, I decided to major 
in CS. A friend, who majored in mechanical engineering, sarcastically told me that I majored for a 
profession that is easily practiced by other discipline graduates if they cannot find jobs in their fields 
of study, while she is the “engineer”. Amazingly, she was 100% correct as noted in this open 
question article [2]. This article lists a number of quotes that better explain my frustration and waves 
of over-confidence followed by waves of depressions. CS programming is practiced without 
specialized education since the early times. My father has a physics degree in the 70s, and practiced 
CS right after graduation. Same did all the early pioneers of the field, who come from mathematics, 
physics, various engineering disciplines, financial and accounting, as a non-inclusive list; they all 
practiced programming at various levels up to establishing the foundation of the discipline, such as 
Alan Turing and Dijkstra. Even in recent years, professionals from all other disciplines have practiced 
programming to implement their own ideas without hiring a CS professional. I have worked in 
Australia with medical doctors who built their own web solutions using php language on their own. 
The first undergraduate degree in CS in Egypt was granted to a class in the mid-80s; probably 
worldwide it was not taught separately for a long time as well after its inception in the 60s. After 
almost 40 years of graduates with Computer Science (CS) and Computer Engineering (CE) majors, 
many if not all computing aspects are still practiced by other disciplines for various reasons. Possible 
reasons for this are: to save the communication time of explaining the requirements to a 
professional CS or CE; freedom in attempting to implement own ideas of possible solutions; to save 
the cost of another hire; to maintain the secrecy and do not disclose details to others; to have a pay 
raise, or promotion by adding CS and CE skills to one’s resume. 

In my undergraduate studies, I started with command line programming, and in my final years, 
Graphical User Interfaces (GUI) was a recent advancement. I started with structured programming as 
the norm. Then in my final years, object oriented was a new paradigm for computing. Now it is the 
norm. Soon after graduation, web computing has become wide spread, and I had to self-educate 
myself on its foundations and keep up with its advances. Then various forms of distributed and 
parallel computing started to evolve. Sometimes the concepts remain useful while the names 
change, such as clusters, grids, and cloud computing all can benefit from distributed memory 
architectures (NUMA) and multicore as shared memory architecture (UMA).  However, some other 
times the technology evolves and a mind shift is required to keep up, such as GPGPU. The 
dependence on libraries, operating systems, and even programming languages, could lead to a 
disaster of falling behind. None of what I was educated on in my undergraduate years exist today. 
However, the concepts do exist and help in understanding new emerging concepts. 



Is computing a science discipline or engineering discipline? 
I have heard before the definition that science is studying the whole entities analytically until its 
tiniest atomic components are separated and understood independently, and the relationships 
between these components are identified. On the other hand, engineering is the study of various 
ways of assembling the separate components into various useful constructions to satisfy some 
objectives and requirements. In computing algorithms, this can be described as partitioning vs. 
agglomerative algorithms. Based on the ACM/IEEE-CS Joint Task Force on Computing Curricula 2013 
(CS2013) [3], is divided into 20 knowledge areas, that are taught in 2 tiers in various levels, and 
choice of what is core and what is elective. These 20 knowledge areas are listed in Table 1. 

Table 1: Computer Science Knowledge Areas as recommended by The Joint Task Force on Computing Curricula 2013 [3] 

# Abbreviation Knowledge Area # Abbreviation Knowledge Area 
1 AL Algorithms and 

Complexity 
10 NC Networking and Communication 

2 AR Architecture and 
Organization 

11 OS Operating Systems 

3 CN Computational Science 12 PBD Platform-based Development 
4 DS Discrete Structures 13 PD Parallel and Distributed 

Computing 
5 GV Graphics and Visual 

Computing 
14 PL Programming Languages 

6 HCI Human-Computer 
Interaction 

15 SDF Software Development 
Fundamentals 

7 IAS Security and 
Information Assurance 

16 SE Software Engineering 

8 IM Information 
Management 

17 SF Systems Fundamentals 

9 IS Intelligent Systems 18 SP Social Issues and Professional 
Practice 

 

The ACM/IEEE-CE Joint Task Group on Computer Engineering Curricula recommended in 2016, 12 
knowledge areas for computer engineering degrees  [4]. These are shown in Table 2. 

Table 2: Computer Engineering Knowledge Areas as recommended by The Joint Task Force on Computer Engineering 
Curricula 2016 [4] 

# Abbreviation Knowledge Area # Abbreviation Knowledge Area 
1 CE-CAE Circuits and 

Electronics 
7 CE-PPP Preparation for Professional 

Practice 
2 CE-CAL Computing Algorithms 8 CE-SEC Information Security 
3 CE-CAO Computer 

Architecture and 
Organization 

9 CE-SGP Signal Processing 

4 CE-DIG Digital Design 10 CE-SPE Systems and Project Engineering 
5 CE-ESY Embedded Systems 11 CE-SRM Systems Resource Management 
6 CE-NWK Computer Networks 12 CE-SWD Software Design 
 



The common knowledge areas between CS and CE are: Algorithms, computer architecture and 
organization, Networking and communication, operating systems, programming and software 
design, data security and encryption, software engineering and project management. We can see 
clearly that CS prepares students to various aspects of software development and problem solving. 
On the other hand, CE prepares students to hardware development as the infrastructure layer for 
software development. This makes both disciplines considered engineering disciplines, CS prepares 
for software engineering, and CE prepares for hardware engineering.  

A commonly known fact among Egyptians in the 90s is that the basic difference between engineering 
degrees that qualify for engineering syndicate membership is the study of descriptive geometry 
subject. This subject is what develops the engineering sense and ability to project 3D surroundings 
on 2D papers from any perspective and for any parameterized change in scene contents and 
arrangements in objects, lights intensity, source and angle, viewing angle, and any possible involved 
parameter. This is studied in CS graphics courses that can be further studied theoretically in the field 
of computational geometry. The engineering sense is empowered when this is practiced from 
scratch and preferably manually by hand on a piece of paper. However, the existence of software 
tools that is programmed to perform this automatically is what reduced the engineering sense in 
recent graduates. The existence of these automation packages in practically every discipline is a 
major obstacle in education. Training students on using tools to start professions of applying these 
tools repeatedly to new datasets, will require continuous training to use new tools, and probably 
mind shifts to new emerging technologies later on. Besides, this approach prevents graduates from 
eventually participating in the generation of these software packages at the end. 

What, when, and where 
Computing education gives us a number of questions to address. The answers to these questions will 
keep changing over time, and all possible answers can be valid for a particular purpose. These 
questions are: what computing topics to teach, and to what depth, and when to start teaching them, 
and finally in which department or discipline? Programming basics are being taught now in high 
schools. Moreover, computing subjects are taught in one or more courses in many other 
undergraduate disciplines, for example: mathematics and statistics, mechanical and civil 
engineering, finance and accounting, biology, chemistry, and physics. I also know that a political 
science college does offer CS courses as a major or minor for future politicians. I failed to understand 
the motivations for this establishment, but there is probably a reason politicians need to design 
software and hardware on their own. The presentation of CS as a service to other disciplines, 
created space for interdisciplinary education that was coined the term “computational science”. 
Computational science refers to the use of computers, algorithms, networks and high performance 
computing to do computational simulation, scientific experimentation, geometry, mathematical 
models, numerical analysis, and visualization to address computing problems in the sciences and 
engineering. These problems often model real-world changing conditions and spans various domains 
such as: geographic information systems (GIS) and earth sciences and observation, hydrodynamics 
(fluid dynamics, reservoir modelling, global ocean/climate modelling), atmospheric science 
(seismology), chemistry, magneto-hydrodynamics, astrophysics, environmental studies, nuclear 
engineering, biology, economics, materials research, medical imaging, animal science, structural 



analysis, solid mechanics, civil engineering related transport phenomena, and other physical field 
problems in many science and engineering firms and laboratories [5].  

These interdisciplinary sciences can be studied in three models. First, the specialized computational 
models can be studied within their specialized departments as elective or final year’s specialization. 
This will add the burden of deciding how many courses from the fundamental CS, and up to which 
level of depth. Second, CS students study a few fundamental models that span a number of 
disciplines, and acquire extensive system analysis skills that enable CS professional to analyse any 
given data set for any defined objective. The second approach is now labelled as data science. The 
third approach is to start new degrees that specialize in the interdisciplinary domain, such as 
bioinformatics. The third approach assumes the problem will remain open area of research for long, 
and continues application of current methods to solve existing problems will require waves of 
graduates over a number of years. Often this is not the case. We see lots of problems started as an 
area that attracts funds and scientists, and soon becomes totally solved with off the shelf libraries 
solving it and parameterized to all possible variations. This leaves very tiny window for innovation in 
the same direction, and will replace human graduates with these automated systems. 

What is the end product? 
If the end product is a software or hardware product, then this is a CS or CE contribution, even if the 
problem domain is in another discipline. Eventually an off-the-shelf library, toolbox, APIs, web 
service, special purpose hardware, or any form of delivering the end product can be generated. Once 
the product is finalized, well documented, and parameterized for re-use and customization, the 
enrichment of knowledge discovery in the target domain is what is practiced by the domain experts 
such as the use of Stata, matlab and R to perform traditional statistical analysis for a given dataset. 
Pre-processing the dataset could be a very challenging task using various data structure 
transformations, dimensionality transformation, feature extraction from text, images, audio, video, 
MRI images among many types of datasets. If the level of data pre-processing qualify for a 
knowledge contribution, it can be a credit to CS and CE professionals.  

On the other side, the simple re-use of APIs can be using the same fundamental programming 
constructs that CS and CE professionals are trained on. These include but not limited to: library 
interfacing and inclusion, loops, selection statements, function calls, variables types and logical 
sequencing of these statements (algorithms and problem solving techniques).  The level of 
proficiency manifested by all these programmers from other disciplines can vary. Some can simply 
use spread sheets built-in equations, Office APIs to automate a computation, simple Stata/matlab/R 
code, or even visual basic complete projects. Some can be advanced to the level of use of external 
databases, web programming, parallel, distributed and cloud computing techniques. No matter how 
advanced the programming done by non-CS and non-CE professionals, if the outcome has enriched 
the knowledge in another domain by simple application of existing CS and CE modules, then I think 
this programmer is still labelled as end-user of software and hardware products. The fear lies in 
educating CS and CE students to simple re-use of existing products through customizations only 
without being able to contribute to their production and advancements. 



Computer Science Crises 
All the discussion above describes a case that was described as CS identity and education crises. The 
crises is the consistent need to update the curriculum from huge possible choices, and the reduction 
in the number of interested students to qualify to the job market that needs increasingly more of 
STEM (Science, Technology, Engineering and Math) professionals generally and CS and CE 
specifically.  The description of the crises have been addressed from a psychological perspective and 
as a matter of perception as in [6]. Dijkstra in [7] questions the depth of hard science education in 
the computing degrees and the influence of business oriented education. More math courses need 
to be added to CS, such that graduates can contribute to the theory of algorithms and deserve the 
title “scientist” indeed. In any curriculum for a degree in CS, a minimum of 5 mathematics courses 
are required to accredit the degree by many organization. However, even 10:15 courses will not be 
enough to turn computer scientists and engineers into mathematicians. The independent study of 
math courses in later postgraduate studies for computer scientists and engineers usually becomes 
overwhelming as postgrads discover that they should have learned these topics earlier to facilitate 
the understanding of end products that they have focused on. This perception is what is sometimes 
described as “math envy” [6]. I actually describe it as scientific curiosity to learn the theoretical 
foundations to the studied end applications. This curiosity is useful for the further advancements of 
these algorithms. Postgraduates usually panic to be overwhelmed with math, and they should 
address this knowledge by comprehending the highest levels of abstraction first that covers the 
intuition and the applications. Then deeper levels of understanding can be developed only if needed 
and when needed. After all, CS and CE professionals will always be busy expanding these models to 
perform for bigger datasets, newer hardware technologies, further automation and features 
additions, and there might be limited opportunities in their career to need deeper understanding of 
these math models. 

The question of business influence has become unavoidable. We have seen advancements in CS and 
CE coming from major industry companies such as: IBM, Intel, AMD, Apple, Google, Microsoft, 
Amazon, and many more. Education should try to generalize, and use case studies from the detailed 
product specifications offered by these companies. Research as well sometimes capitalizes on 
advancements offered by these companies to benchmark, compare, and develop theories from 
these products. It is very difficult to prevent the influence of business and industry on computing 
education, while in fact major advances in this field have been developed in research and 
development departments in industry. I think CS and CE are applied disciplines where there is no 
fine line between academia and business oriented industry. However, academic handling of 
industrial advancements can abstract the business objectives into scientific curiosity and underlying 
theories behind the end products. 

Research Methods 
Research methods define the scientific approach to contribute to the body of knowledge. Three 
research methods are usually discussed: empirical, exploratory, and constructive. The empirical 
method is the most famous knowledge contribution coming from attempts to explain a phenomena 
or a dataset. This dataset is collected over a number of years, about a particular condition such as a 
disease, climate change, purchase patterns, customer behaviour, learning efficiency through 
analysing student outcomes and millions of other datasets. These datasets are available in many 



databases and data repositories in many companies, web servers, university research projects, and 
practically everywhere. The traditional empirical research methods uses qualitative (when data are 
text, images, audio) and quantitative methods (when data is numerical or categorical) to describe 
using statistics packages the causes of an event occurrence, the prediction of an outcome, the 
correlation between factors, prove or negate a hypothesis. These datasets can scale up to form a big 
data problem. In these cases, traditional sequential off the shelf solutions might fail, and CS 
approaches become needed to migrate an existing solution using emerging technologies such as 
high performance computing, multithreading on multicore programming, GPGPU processing, mobile 
and web computing, cloud computing, migrating to distributed databases using any of the recent 
advances of NoSQL, visualization using graph databases and other data visualization techniques, and 
the list is endless. 

The knowledge contribution can be in the form of identifying problems and their specifications such 
as in the exploratory research. Another form of contribution is to construct a solution for an existing 
defined problem. Since CS is often presented as a service to other disciplines, identifying the proper 
research methods and scientific methods to address a defined problem in another discipline is often 
confused with traditional empirical research methods. I believe that constructive research methods 
are more suitable to CS and CE, since their main knowledge contribution is the construction of 
software or hardware. The constructed product is either a breakthrough design based on no 
previous generation, or an optimization of existing construction to enhance the performance or add 
features. Since there is huge number of solutions that claim different features and performance 
promises, another knowledge contribution of CS and CE is benchmarking all these products to 
identify the suitability of each of them to various new problems, and to identify short comings that 
are not defined by the original authors, or simply confirm authors’ claims. 

There are two approaches in interdisciplinary computational problems. First, a solution is already 
designed, and the main objective for CS contribution is either one or all of the following: 1) the 
scaling up for larger datasets, 2) achieve speed up, or 3) higher accuracy in producing the results.  
Second approach is when the problem is defined in the other discipline, and CS is used to design a 
solution from scratch, by means of simulation, visualization, prediction. This endeavour requires 
iterative approach of revising results and fine tuning the solution until an established solution is 
documented as off the shelf package parameterized and ready for reuse. 

As a person who was offended by being on a profession that can be practiced by anyone who cannot 
find a job in their field of study, I always try to quantify the CS contribution and resolve the paradox 
of why it is becoming that important, while being trivialized at the same time. I find the first 
approach of implementing a solution already designed by the other discipline, is when the CS 
contribution can be described as a “coding” exercise that doesn’t qualify for a research contribution. 
Academic honesty requires acknowledging any contribution in terms of time and effort spent on all 
steps to final results. This means “coding” is not as trivial as it sounds when the “software” output is 
the main contribution of the research project.  

Quite often there is a misunderstanding between having an already designed solution that only 
needs “coding”, and having only a structured list of requirements and images of possible output, 
with no plan of the steps from analysis, design, implementation, testing, up to verification to reach 
this output. I find several research projects think they only need “coding”, while they do not have 



any step achieved in any software engineering model. In many cases, other disciplines need CS and 
CE researchers to design the solution from scratch, and only guide the requirement specification 
step, and the verification of results step. Since defining a problem and its specification is a major 
body of knowledge contribution, the chance of trivializing other disciplines contribution practically 
does not exist.  

Computational Grand Challenges 
The computing grand challenges have been updated over the years by various institutions worldwide 
[8]. In the 60s and up to the 80s the grand challenges were focused on high performance computing. 
A number of important computational science problems have been identified such as: climate 
change, human genome, among others. The human genome project has been considered 
completed, and a new biological focus has been shifted towards assembling the tree of life and 
understanding biological systems. The trend of large scale computation such as in Big Data analytics 
continue to make high performance computing various models as a grand challenge. Data 
visualization have been proposed as well, machine learning and robotics, CS and CE education 
continuous advancements, and workforce development [9]. 

Ethical Considerations 
The IEEE code of ethics [10] states 10 points about ethical considerations to commit to while 
practicing any of the engineering and technological professions. Some of these points are difficult to 
quantify and set strict boundaries to their practice to separate an ethical from an unethical practice. 
Point number seven states the importance of honest criticism, evaluation of credit, and 
acknowledgement of the contribution of others. Since computing is presented as a service to all 
other disciplines, the evaluation of the credit to CS and CE professionals might always be a problem. 
There is no Noble prize for computing disciplines for probably the reasons discussed in this article.  

The blame of this lack of appreciation does not go totally to non-computing disciplines only. My first 
employer was a pharmaceutical company, and the chemist CEO has strongly expressed his lack of 
confidence in all computing professionals. Later on, I managed to impress him and gave him some 
good projects to reduce this lack of trust. I believe the problem is collectively caused by some of the 
computing practitioners. The ethical practice in machine learning is discussed in [11], identifying 
three avenues for cheating: data, algorithms, and results. Not only machine learning, same 
considerations apply to all software products; on data input manipulations, processing data 
incorrectly, and misinterpretations or visualization of results. I have attended the lecture about 
research reproducibility [12] and find it very much relevant to all research outcomes not only in 
social and political research. The open source initiatives and availability of data on web repositories 
are examples of the main achievements in the last decade of technological advancements. The 
standards of data sharing, and processing documentations could be the answer to define what is 
ethical and what is not.   

Conclusion 
There is no doubt that computing professions will survive and flourish for a long time to come. 
Incredible dependence on the technological products these professionals develop has been 



witnessed over the last 6 decades from all disciplines. The dependence on technology will increase 
and is expected to replace currently performed manual tasks for higher speed, accuracy, and 
ubiquities. The computing education has definitely evolved from unrecognized, perceived with lack 
of trust and appreciation, to very much needed and appreciated, but disputed about distribution of 
credit. The distribution of the computing education from high schools, to various depths in various 
higher education departments is inevitable. People will always want to run their own projects 
independently. However, I believe the need will always exist for deeper knowledge of how the 
hardware and software are developed from scratch, to develop reusable, parameterized, 
generalized, complete packages with all possible features included for different types of end user 
choice of applications. This is why CS and CE education need to focus on the problem solving, 
analytical thinking and continuous learning and transferable skills, rather than specific products or 
technological detailed education that might not exist in a few years. 
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