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ABSTRACT

• Tensors are not just higher dimensional arrays, they are higher order 
extensions to vectors and matrices. They capture multi-linear 
structures more efficiently than matricising higher dimensions 
datasets. Dimensionality curse performance degradation is addressed 
using various approaches. This talk will survey tensor decompositions 
techniques and their applications in data mining and machine learning 
along with performance evaluations, challenges and future trends.



High dimensional Matrices

Vectors are linear structure that captures dimension and magnitude representative 
to some reference frame that is mostly the origin.

Matrices capture linear transformation in the vector spaces for the columns, and 
used in various linear actions such as in computer graphics for rotations, 
reflections, and other linear transformations such as scaling, additions, and 
sheering among others.

High dimensional matrices sometimes refers to matrices of higher number of 
columns that will require computational power that might not be feasible for large 
problems.

Dimensionality reduction algorithms are generally applied to capture the structure 
of the dataset in lower dimensions, such as PCA, capture the highest variance in
the first few uncorrelated orthogonal principal components using eigenvectors 
characteristics and ranking by highest eigen values. SVD provides lower rank 
compressions using singular values to identify the best approximate rank. 

Linear Algebra



From Matrix to Tensor: A Complex Extrapolation

Charles Van Loan et al., ‘Future Directions in Tensor-Based Computation and Modeling’, 
Arlington, Virginia at the National Science Foundation, Feb. 2009. Available: 
http://www.cs.cornell.edu/cv/TenWork/Home.htm.



What is a Tensor

• From relativity theory, tensors were used to interpret movement in space and time, from 
particles in the atom to the universe astronomical objects in a hierarchy of reference frames.

• Typical usage is in space time analysis, where space is three dimensional in nature (x, y, z) 
and time t is measured with intervals with  constant c, then an object s world-line is 
expressed as ds2 = dx2 + dy2 + dz2 + c2dt2

• A typical tensor 
object in pattern 
recognition 
or machine vision 
applications is 
commonly 
specified in a 
high-dimensional 
tensor space. 

• Recognition 
methods operating 
directly on this 
suffer from 
the curse of 
dimensionality.
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Tensor Representation

Tensors maintain the multiway interactions in
the higher spaces.

The n indices for the n dimensions, such as 
the ith index is a point in the domain of the ith
coordinate, describing a function mapping the 
index values as coefficients to variables 
mapping to an output value in the cell 
indexed. 

(a) Mode-1 (Columns) fibers x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) 
Fibers: xij:(d) Horizontal Slices (e) Vertical Slices (f)Frontal Slices



Tensor Operations

• Tensor N-Mode Products for 𝑋 𝜖 ℛI1 x I2 𝑥 …௫ ே୍ with matrix U 𝜖 ℛ ௃௫ ே୍ results in tensor 
𝜖 ℛI1 x … I𝑛 ିଵ ୶ J xூಿశభ…x ூಿ 

 ( Χ ൈ௡ 𝑈ሻi1, i2, ... in-1, j, in+1,... ,  in = ∑ 𝑥 i1, i2, ... in 𝑢𝑗𝑖𝑛
ூಿ
௜೙ୀଵ

• The n-mode product of a tensor with a matrix is related to a change of basis in the 
case when a tensor defines a multilinear operator.

• The Kronecker product for 𝑋 𝜖 ℛI𝑥 𝐽 with matrix U 𝜖 ℛ௄௫௅results in tensor 𝜖 ℛூ௄௫௃௅ 

𝜒⨂𝑈 ൌ
𝑥ଵ,ଵ𝑈 ⋯ 𝑥ଵ,௃𝑈

⋮ ⋱ ⋮
𝑥ூ,ଵ𝑈 ⋯ 𝑥ூ,௃𝑈

= [𝑥ଵ⨂𝑢ଵ 𝑥ଵ⨂𝑢ଶ      𝑥ଵ⨂𝑢ଷ ... 𝑥௃⨂𝑢௅ିଵ 𝑥௃⨂𝑢௅]

• The Khatri-Rao product for 𝑋 𝜖 ℛI𝑥 𝐾 with matrix U 𝜖 ℛ ௃௫௄results in tensor 𝜖 ℛூ௃௫௄

𝜒 ⊙ 𝑈 ൌ [𝑥ଵ⨂𝑢ଵ 𝑥ଶ⨂𝑢ଶ  …     𝑥௄⨂𝑢௞]

Multilinear Algebra

T. G. Kolda and B. W. Bader, ‘Tensor Decompositions and Applications’, SIAM Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009, doi: 
10.1137/07070111X.



• Hitchcock in 1927 proposed the idea of the polyadic form of a tensor, i.e., expressing a tensor as 
the sum of a finite number of rank-one tensors;

• Canonical decomposition (CANDECOMP) factorises a tensor into a sum of 𝜒 𝜖 ℛூ௫௃௫௄

𝜒 ൌ  ∑ 𝑎௥ ∘ோ
௥ୀଵ 𝑏௥ ∘ 𝑐௥ ൎ  ∑ 𝑎௜௥𝑏௝௥𝑐௞௥

ோ
௥ୀଵ  

for all ar 𝜖 ℛூ, br 𝜖 ℛ ௃, and cr 𝜖 ℛ௄.

Producing 𝜒ሺଵሻ ൎ 𝐴ሺ𝐶 ⊙ 𝐵ሻ், , 𝜒ሺଶሻ ൎ 𝐵 𝐶 ⊙ 𝐴 ், 𝜒ሺଷሻ ൎ 𝐶ሺ𝐵 ⊙ 𝐴ሻ்

Concisely expressed as𝜒 ൎ 𝜆; 𝐴, 𝐵, 𝐶 = ∑ 𝜆௥ 𝑎௥ ∘ோ
௥ୀଵ 𝑏௥ ∘ 𝑐௥

This three-way model is expressed as the frontal slices of 𝜒

N dimensions generalisation: 𝑋 𝜖 ℛI1 x I2 𝑥 …௫ ே୍ as 𝜒 ൎ 𝜆; 𝐴ሺଵሻ, 𝐴ሺଶሻ , … . , 𝐴ሺேሻ = ∑ 𝜆௥ 𝑎௥
ሺଵሻ ∘ோ

௥ୀଵ 𝑎௥
ሺଶሻ ∘

… 𝑎௥
ሺேሻ 

Dimensionality Reduction
Summation Notation - CANDECOMP

Example CP applications: 
• time-varying EEG spectrum arranged as a three-dimensional array with modes corresponding to time, 

frequency, and channel. 
• vowel-sound data where different individuals (mode 1) spoke different vowels (mode 2) and the formant 

(i.e., the pitch) was measured (mode 3).



Tucker 3-way and multiway Analysis

• Decomposes a tensor to a core tensor multiplied by a matrix along each mode:
𝜒 ൎ 𝐺 ൈଵ 𝐴 ൈଶ 𝐵 ൈଷ 𝐶 ൌ ∑ ∑ ∑ 𝑔௜௝௞𝑎௜

௄
௞ୀଵ

ூ
௝ୀଵ ∘ூ

௜ୀଵ 𝑏௝ ∘ 𝑐௞ ൌ 𝐺; 𝐴, 𝐵, 𝐶

N-Dim generalisation: 𝑋 𝜖 ℛI1 x I2 𝑥 …௫ ே୍ as 𝜒 ൎ 𝐺; 𝐴ሺଵሻ, 𝐴ሺଶሻ , … . , 𝐴ሺேሻ

xi1i2…iN = ∑ … ∑ … 𝑔௥ଵ…௥
ோே
௥௡ୀଵ ௡ ோଵ

௥ଵୀଵ 𝑎௜ଵ௥ଵ
ሺଵሻ ∘ 𝑎௜ଶ௥ଶ

ሺଶሻ ∘ … 𝑎௜௡௥௡
ሺேሻ  

Example Applications:
• TensorFaces takes facial images for

different people, each in different
angles, lighting, facial expressions, …
more modes as required

M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: Tensor‐Faces, in ECCV 2002: 
Proceedings of the 7th European Conference on Computer Vision, vol. 2350 of Lecture Notes in Computer 
Science, Springer, 2002, pp. 447{460.



Example Application: Bader et al. [Temporal 

analysis of semantic graphs using ASALSAN ‐ ICDM 2007] 
applied their ASALSAN method for 
computing DEDICOM on email 
communication graphs over time. In this 
case, xijk corresponded to the (scaled) 
number of email messages sent from 
person i to person j in month k.

Other Tensor Decomposition Approaches

PARAFAC2

Example Application: PARAFAC2 
handles time shifts in resolving 
chromatographic data with spectral 
detection. In this application, the first 
mode corresponds to elution time, the 
second mode to wavelength, and the 
third mode to samples.

DEDICOM

X ൎ ARAT



Dimensionality Curse 

• Approximation and separability are of paramount importance. By representing functions of 
many variables as sums of separable functions, one obtains a method to bypass the curse of 
dimensionality.

• For example: Tensor networks represent a very high-order tensor by connecting many low-
order tensors through contractions and sparse representations. Example datasets are found in 
solving Hamiltonian eigenvalue problems in quantum chemistry. Vectors of order n = 2100 can 
be successfully approximated with many fewer than n numbers.



Performance Evaluation
Tensor Does not suffer from Dimensionality Curse

Input Output VVP TVP TTP

ෑ 𝐼𝑁
𝑁

𝑛ൌ1

P
𝑃 ෑ 𝐼𝑁

𝑁

𝑛ൌ1 𝑃 ෍ 𝐼𝑁

𝑁

𝑛ൌ1

𝑃 ෍ 𝑃𝑁  ൈ 𝐼𝑁

𝑁

𝑛ൌ1
10 ൈ 10 4 400 80 40 (Pn = 2)
100 ൈ 100 4 40,000 800 400 (Pn = 2)
100 ൈ 100 ൈ
100

8 8,000,000 2400 600 (Pn = 2)

ෑ 100
4

𝑛ൌ1

16 1,600,000,000 6400 800 (Pn = 2)

H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, ‘A
survey of multilinear subspace learning for tensor
data’, Pattern Recognit., vol. 44, no. 7, pp. 1540–1551,
Jul. 2011, doi: 10.1016/j.patcog.2011.01.004.

Comparison Linear subspace 
learning

Multilinear subspace 
learning

Representation Reshape into vectors Natural tensorial 
representation

Structure Break natural structure Preserve natural structure
Parameter Estimate a large 

number of parameters
Estimate fewer parameters

SSS problem More severe SSS 
problem

Less SSS problem

Massive data Hardly applicable to 
massive data

Able to handle massive data



Tensorising Neural Networks

• The dense weight matrices of the fully-connected layers in DNN can be represented by the 
Tensor Train (TT) format such that the number of parameters is reduced by a huge factor 
while preserving the expressive power of the layer. TT can compute all the derivatives 
required by the back-propagation algorithm. 

• TT-Format: 𝜒 𝜖 ℛJ1 x J2 𝑥 …௫୐஽ (j1;… ; jd) = G1[j1]G2[j2] … Gd[jd]

• Example Application: Very Deep VGG networks we report the compression factor of the 
dense weight matrix of a fully-connected layer up to 200000 times leading to the compression 
factor of the whole network up to 7 times.

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, ‘Tensorizing Neural Networks’, ArXiv150906569 Cs, vol. 28, 
Dec. 2015, Accessed: Feb. 24, 2021. [Online]. Available: http://arxiv.org/abs/1509.06569.



Vector and Matrix Parallel Processing Examples

R. A. van de Geijn and E. S. Quintana-Ort´, The Science of Programming Matrix 
Computations. www.lulu.com, 2008.



Tensor Partitioning Example for Multiple Sequence Alignment

• Figure a shows two sequences 
partitioning space (Full matrix is 
(n1 x n2), where n1 is length of 
first sequence on the rows, and 
n2 is length of second sequence 
on the columns) visualising each 
dot as a partition of a matrix of 
size pxp (stride size) over three 
waves. First partition in the first 
wave, starts from index (0, 0), to 
index (p,p). The last column and 
the last row in the partition is sent 
for communication for following 
wave starting (p, p) to (2p, p) on
one processor, and (p, 2p) on 
another processor, and so forth.

2 Dimension Example

(0,0) to 
(p,p)

(0,p) to (0,2p) … … (0, n2-p) to 
(0,n2)

(p,0) to 
(2p,0)

(p,p) to 
(2p,2p)

⋱ ⋱ ⋮

⋮ … (2p,2p) to 
(3p,3p)

⋱ ⋮

(n1-p, 0) to 
(n1,0)

… … … (n1-p, n2-p) 
to (n1,n2)



(0,0, n3-p) to 
(p, p, n3)

(0, p, n3-p) to 
(p, 2p, n3)

… … (0, n2-p, n3-p) to 
(p, n2, n3)

Tensor Partitioning Example for Multiple Sequence Alignment

• The Figure shows three 
sequences partitioning 
space (Full matrix is (n1 x 
n2 x n3), where n1 is 
length of first sequence , 
… etc) visualising each 
dot as a partition of a 
matrix of size pxpxp over 
n1xn2xn3/p waves. First 
partition in the first wave, 
starts from index (0, 0, 0), 
to index (p,p, p). The last 
column and the last row in 
the partition is sent for 
communication for 
following wave starting (p, 
p, p) to (2p, 2p, 2p) on one
processor, and (p, 2p) on 
another processor.

3 dimension Example

(0,0, 0) to 
(p, p, p)

(0, p, 0) to 
(p, p, p)

… … (0, n2-p, 0) to (p, 
n2, p)

(p, 0, 0) to 
(2p,p, p)

(p, p, p) to 
(2p, 2p, p)

⋱ ⋱ ⋮

⋮ … (2p, 2p, p) to 
(3p, 3p, p)

⋱ ⋮

(n1-p, 0, 0) 
to (n1, p, 
p)

… … … (n1-p, n2-p, 0) to 
(n1, n2, p)

⋱

⋱

(n1-p, n2-p, n3-p) to 
(n1, n2, n3)

⋱



Tensor Partitioning Example for Multiple Sequence Alignment
Higher Dimensions

Dimensions

M. Helal, H. El-Gindy, L. Mullin, and B. Gaeta, ‘Parallelizing Optimal Multiple Sequence 
Alignment by Dynamic Programming’, Dec. 2008, pp. 669–674, doi: 10.1109/ISPA.2008.93.



Tensor Partitioning Example for Multiple Sequence Alignment
Search Space Reduction

Performance results for the conducted experiments illustrating the alignment scoring accuracy (Red: 
Entropy; Blue: Sum of Pairs score) over the change of the ε value on the x-axis.

M. Helal, L. Mullin, J. Potter, and V. Sintchenko, ‘Search Space Reduction 
Technique for Distributed Multiple Sequence Alignment’, Oct. 2009, pp. 219–226, 
doi: 10.1109/NPC.2009.43.





Challenges and Future Trends

• Hierarchical code that works invariant of dimension and shape (attempted this in my MSc and 
PhD experiments). More modular APIs for analytics are required. Others have developed 
libraries for various analytics such as tensorly interface to PyTorch, Keras and TensorFlow, 
tensorbox toolbox in matlap, 

• Automating code generation such as the Matrix/Vector correctness proof and partitioning code 
generated in Spark - FLAME code-skeleton generator (http://edx-org-
utaustinx.s3.amazonaws.com/UT501x/Spark/index.html)

• Developing multilinear extensions of graph-embedding algorithms such as Isomap.
• Since many tensor decomposition approaches are iterative and not closed formula, more work

on optimising the initialisation, projection order and the stopping criteria.
• Developing tensor LAPACK with cookbooks describing literature on the suitability or optimality of 

one model over another.
• These packages require non-functional requirements such as portability, reusability, reliability, 

correctness, and modularity especially on massively parallel multi-core architectures. Although 
the deepening memory hierarchy and architectural heterogeneity would be challenging.

• Addressing the issue of floating point stability in tensor computations



For more information:

Please check my research page on my website, and hopefully I will 
update it as I go:

http://www.manalhelal.com/research/

Any Questions?


